
Stream-based Machine Learning

for Real-time QoE Analysis

of Encrypted Video Streaming Traffic

Michael Seufert∗, Pedro Casas∗, Nikolas Wehner∗, Li Gang†, Kuang Li†

∗AIT Austrian Institute of Technology GmbH, Vienna, Austria
†Huawei Technologies, Department of R&D, Shenzhen, P.R. China

michael.seufert.fl@ait.ac.at, pedro.casas@ait.ac.at, nikolas.wehner@ait.ac.at, lig619@huawei.com, kuangli@huawei.com

Abstract—As stalling is the worst Quality of Experience (QoE)
degradation of HTTP adaptive video streaming (HAS), this work
presents a stream-based machine learning approach, ViCrypt,
which analyzes stalling of YouTube streaming sessions in real-
time from encrypted network traffic. The video streaming session
is subdivided into a stream of short time slots of 1 s length,
while considering two additional macro windows each for the
current streaming trend and the whole ongoing streaming session.
Constant memory features are extracted from the encrypted
network traffic in these three windows in a stream-based fashion,
and fed into a random forest model, which predicts whether the
current time slot contains stalling or not. The presented system
can predict stalling with a very high accuracy and the finest
granularity to date (1 s), and thus, can be used in networks for
real-time QoE analysis from encrypted YouTube video streaming
traffic. The independent predictions for each consecutive slot of
a streaming session can further be aggregated to obtain stalling
estimations for the whole session. Thereby, the proposed method
allows to quantify the initial delay, as well as the overall number
of stalling events and the stalling ratio, i.e., the ratio of total
stalling time and total playback time.

I. INTRODUCTION

Video services are the most popular and most demanding

applications of the Internet due to the high number of requests,

high bit rates of the video content and strict real-time require-

ments of the video playback. Still, the delivered streaming

service has to meet the expectations of the end users. To

understand and eventually improve Internet services like video

streaming, application providers and Internet service providers

use the concept of Quality of Experience (QoE) to quantify

the subjective experience and satisfaction of their customers

with the network and the service. For video streaming, the

most severe QoE degradations are the playback interruptions

(stalling) and the waiting time until the start of the playback

(initial delay) [1]–[3]. While these degradations have been

partially mitigated by adapting the video bit rate to the network

conditions (HTTP Adaptive Streaming, HAS), stalling is still

the most annoying QoE degradation, which network and

service providers have to avoid.

In the QoE-aware traffic management cycle [4], network

operators continuously monitor the QoE of their customers

and apply network traffic management, such as bandwidth

shaping or re-routing, to avoid the stalling of video streams or

to relief users from occurring stalling events. For this, network

operators favor real-time QoE monitoring in the network as an

input to their traffic management decisions. However, the trend

towards encrypted traffic (HTTPS) significantly reduced the

visibility of network operators. It is no longer possible to use

Deep Packet Inspection (DPI) based methods to analyze the

video data contained in each packets in order to reconstruct the

streaming process and the video buffer. The encrypted packets

only allow to obtain basic information about the streaming

process, such as packet sizes and inter-arrival times of packets.

In this work, ViCrypt, a stream-based machine learning

approach is presented, which predicts stalling of YouTube

streaming sessions in real-time from such basic features. The

streaming session is subdivided into short time slots of 1 s

length. Features are computed for each time slot, as well as

for corresponding macro windows, which consider the current

streaming trend and the whole ongoing streaming session.

These features are computed in a stream-based fashion with

constant memory consumption and are fed into a random forest

model, which predicts whether the current time slot of 1 s

contains stalling or not. This is by now the finest granular-

ity of real-time prediction. The independent predictions for

each consecutive slot of a streaming session can further be

aggregated to obtain stalling estimations for the whole session.

Thereby, ViCrypt allows to quantify the initial delay, as well

as the overall number of stalling events and the stalling ratio,

i.e., the ratio of total stalling time and total playback time.

The remainder of the paper is structured as follows. Sec-

tion II describes related works on QoE of HAS and network-

based QoE monitoring. Section III introduces the concept of

ViCrypt, and presents the features and training of the random

forest model. A performance evaluation of the ViCrypt system

is conducted in Section IV, and Section V concludes.

II. RELATED WORK

The most important results on Quality of Experience (QoE)

of HTTP adaptive streaming (HAS) were summarized in [1].

Also more recent publications confirmed the findings that

stalling, initial delay, and quality adaptation are the most dom-

inant QoE factors. Stalling, i.e., the playback interruptions due

to buffer depletion, is considered the worst QoE degradation

[2], [3]. This is why the real-time prediction of stalling is the

most important goal of this work. Moreover, the played out

 76

video quality and the time on each quality layer also impact

the QoE [5], but they are out of focus of this work.

Several works focused on estimating stalling of video

streaming, which can be mapped to QoE, e.g., with the model

presented in [6]. [7]–[9] transferred the approach of [10]

and proposed an in-network system based on DPI to extract

downloaded playtimes. They could be used to estimate the

buffered playtime at the client, and thus, the corresponding

stalling events. Similar approaches were followed by [11],

which supported more video encodings and container formats,

and by [12], which predicted stalling in LTE networks. [13] es-

timated stalling events based on the ratio of playback time and

download time, but needed the total size of the video for real

time estimation of stalling. Recently, a parametric bit stream-

based quality assessment model for HAS was standardized

(P.1203, [14]), which predicts the MOS from stream inspection

and supports four modes of input information.

Due to the trend towards end-to-end encryption, DPI-based

approaches cannot be applied any longer. This has motivated a

recent trend in QoE-based network monitoring using low-level

network measurements rather than relying on application-layer

metrics. While some approaches explicitly tackle the QoE of

mobile apps, including [15]–[17], there are also general ap-

proaches for QoE analyses based on network-layer monitoring

of encrypted video streaming traffic. Authors in [18] evaluate

machine learning-based architectures that estimate YouTube

QoE from features derived from packet sizes, inter-arrival

times, and throughput measurements. A similar approach is

presented in [19], where authors rely on real cellular network

measurements to predict typical QoE indicators for streaming

services (e.g., played resolutions, stalling events), based on

features such as round-trip times, packet loss and chunk sizes.

Here, authors also used machine learning as a promising

technique for large-scale quality monitoring and prediction.

[20] focuses on the reconstruction of buffered playtime at

the video player side, as previously done in [7], but for

encrypted network traffic. This is leveraged to estimate video

QoE metrics in [21]. [22], which is the most similar work,

used machine learning to predict initial delay, stalling, and

video quality from the network traffic in windows of 10 s. The

considered features are derived from IP or TCP/UDP headers

only.

Different from all these papers, ViCrypt detects QoE degra-

dations on encrypted video streaming traffic in real-time by us-

ing a stream-like analysis approach. It considers three windows

(current, trend, session) with only a minimal memory footprint,

i.e., the windows store only a small set of features, which can

be computed with constant memory consumption. The features

are based on packet-level statistics of the network traffic, and

allow to accurately recognize stalling of the streamed video

within time slots of 1 s. This is by now the finest granularity

of real-time prediction. Finally, with ViCrypt, the individual

predictions of each time slot can be aggregated to also obtain

accurate stalling statistics on a session level.

III. METHODOLOGY

This work presents ViCrypt, a system for real-time QoE

analysis of encrypted video streaming traffic. As stalling is

still the major QoE degradation for HAS, the first version

of ViCrypt focuses on the detection of stalling. The video

streaming session is subdivided into a sequence of time slots,

which have a constant length. After a slot ended, the stalling

prediction is applied in order to detect stalling in real-time.

Throughout this work, a slot length of 1 s is used, which

constitutes a decent trade-off between stalling detection delay

and accuracy. The individual predictions of each time slot can

later be aggregated to obtain a session-level stalling evaluation,

i.e., the initial delay as well as the number and length of

stalling events. The remainder of this section describes the

feature extraction, the data set generation, and the training of

the ML model.

A. Feature Extraction

The stalling prediction for the current time slot can only

rely on features extracted from the traffic of the current or

past slots. As there is a possibly large amount of previous

time slots, which would lead to a high memory consumption,

the past streaming information has to be compressed and

structured. For this, in addition to the current slot, the proposed

system keeps track of only two additional macro windows,

namely, the trend window and the session window. The trend

window comprises t slots in a sliding-window fashion, and

thereby, contains all traffic of the current time slot and the t−1

most recent slots. Throughout this work, a trend size of t = 3

is used, which means that, for each slot, the corresponding

trend window contains the traffic of the current slot and the

previous two time slots. The session window is a macro

window, which covers all traffic of the session so far, i.e.,

it includes all previous slots including the current time slot.

The features of each current slot, trend window, and session

window are computed in an online fashion without the need to

store information for each packet, which significantly reduces

the memory consumption from linear to constant.

First, simple count-based features are computed from the

traffic observed in the time slot. These consist of the number

of total, uplink, and downlink packets, and the amount of trans-

ferred bytes (total, uplink, downlink). Moreover, the number

and byte volume of TCP and UDP packets is counted, and

the upload ratio, download ratio, TCP ratio, and UDP ratio

are computed from these counters for both number of packets

and amount of bytes. Next, time-based features are computed.

These include time from the start of the slot until the first

packet, the time after the last packet until the slot ends, and

the burst duration, i.e., the time between the first packet and

the last packet of the time slot. All features are again computed

for the total traffic, as well as for uplink and downlink traffic.

The average throughput of the slot (traffic volume divided by

slot length) and the burst throughput (traffic volume divided by

burst duration) can be subsequently derived for total, uplink,

77

and downlink traffic. A covariance-based algorithm1 is used to

compute a linear regression for the cumulative traffic volume

over time in an online fashion. Two regressions are performed

for uplink and downlink traffic, and the slope and intercept of

the corresponding regression lines are also added as features.

Finally, several characteristics of the traffic can be described

by a distribution. An algorithm is utilized, based on [23],

which can compute the first four moments of any distribution

in an online fashion, i.e, the mean, the variance, the skewness,

and the kurtosis. This algorithm was trivially augmented to

additionally output the standard deviation, the coefficient of

variance, as well as the minimal and the maximal value. These

distribution-based features were computed for the packet size

and the inter-arrival time of packets, i.e., the time between

two consecutive packets. For this, uplink and downlink traffic

were distinguished.

This results in 69 basic features for the traffic in a time

slot. As described above, two macro windows are additionally

considered, namely, the trend and the session window, for

which the same 69 basic features are computed. Together

with the ordinal sequence number of the current time slot,

this sums up to 208 features, which characterize each slot

of 1 s length. Note again that there is a constant memory

consumption for the computation of the basic features of

each time slot. However, in order to keep track of the trend

windows of size t, not only the current trend window, but

additionally, t−1 future trend windows have to be maintained

and updated. These future trend windows are the windows,

which will become trend windows in 1, . . . , t−1 windows, but

already have to consider the traffic in the current time slot. In

contrast, only a single session window is needed, as it just hast

to accumulate all traffic of the whole session. Thus, in total,

t + 2 windows with 69 features each have to be maintained

and updated at all times, i.e., current time slot, trend window,

session window, and t− 1 future trend windows.

B. Data Set

Over a period of several weeks in summer 2018, 4714

YouTube video sessions were streamed and recorded. There-

fore, a Java-based monitoring tool similar to [24] was used. It

used the Selenium browser automation library to automatically

start a Chrome browser and browse to a single random

YouTube video and stream for 180 s or until the video end. The

chrome browser was configured such that all HTTP requests

were logged to a file (-log-net-log) and QUIC traffic was

enabled (--enable-quic). A JavaScript-based monitoring

script [4], [25] was injected into the web page to record every

250 ms the current timestamp, as well as the current video

playtime, buffered playtime, video resolution, and player state.

This application-layer information about the streaming session

was also logged to a file.

The video sessions were streamed with highly diverse

network characteristics to reach a highly generalizable model.

1https://stats.stackexchange.com/questions/23481/
are-there-algorithms-for-computing-running-linear-or-logistic-regression-param

The videos were either streamed from a home or corporate

WiFi network, or an LTE mobile network. For some sessions a

firewall was enabled, which blocked all QUIC traffic, such that

the videos were streamed via TCP. The maximum bandwidth

was roughly 20 Mbps. Additionally, some streaming sessions

faced bandwidth limitations, which were applied to limit both

up- and downlink traffic. The bandwidth limitations were

either constant on a level of 300 Kbps, 1 Mbps, 3 Mbps, or

5 Mbps, or they fluctuated between these levels every 1-5

minutes. Moreover, during some video streaming sessions,

user actions were emulated via Selenium, i.e., the streaming

was paused and optionally resumed later, or a jump to a

different playback position was executed. The reason was

to obtain some additional stalling caused by the bandwidth

limitations and the emulated user actions.

During the whole streaming session, the network traffic was

captured using tshark. The network trace files were parsed

with a Java parser based on the fast Kaitai Struct pcap

parser2, which extracted and logged basic packet information

(timestamp, source IP, source port, destination IP, destination

port, size), as well as DNS lookup responses to obtain a

mapping between IP addresses and domain names. In each

network trace, YouTube video flows were identified based on

the domain name (googlevideo.com), and features were only

extracted from the traffic of all video flows, i.e., all other non-

YouTube flows were ignored.

Finally, also the recently published open dataset [26],

[27] was considered, which collected measurements from

the mobile Android YouTube app. As the data set contains

multiple measurements of the same scenario (location, network

condition, video content), only three random iterations were

selected from each of the 45 scenarios. Thus, in total 135

YouTube app video sessions were added to the data set.

80% of the video sessions (randomly selected) were consid-

ered for training, and the remaining video sessions comprised

the test set. This means 3879 sessions were used for training,

and the test set consisted of 970 sessions. Figure 1 shows

the stalling characteristics of the training set (solid lines) and

the test set (dashed lines) as cumulative distribution functions

(CDF). It can be seen that the initial delay time (excluding

page load time and stalling during playback) is mostly low.

68% of the sessions have an initial delay below 3 s. This is

partially due to short advertisement clips before some videos

on YouTube, which require few data to be downloaded and

can start very fast. However, some sessions face serious initial

delays of several seconds as the 95-percentile is 15.3 s and the

99-percentile is 28.3 s. For stalling (excluding initial delay),

the figure shows that 72% of the sessions do not face stalling

at all. If stalling is present, the highest number of stalling

events is 5, while the total stalling time can be high having

a 95-percentile of 6.4 s and a 99-percentile of 19.5 s. While

these numbers were given for the training set, it can be seen

from the similarity of the shapes that the test set shows the

same characteristics as the training set.

2https://kaitai.io/

78

Fig. 1: Stalling characteristics of training and test set.

C. Training

The following steps were executed with the open source ma-

chine learning software Weka3. The training data consisted in

total of 635209 time slots. As the training set contained much

less slots with stalling (class = 1, 18.46%) than slots without

stalling (class = 0, 81.54%), bootstrapping was applied. For

this, the training set was doubled and re-sampled in Weka by

drawing uniformly random with replacement from each class

to obtain balanced classes with 635209 instances each. During

the preparation of the bootstrapped training set, the order of

the slots was also randomized, which helps to avoid any serial-

position effects in the data set during training.

Four different feature sets are used throughout this work.

The first set (C feature set) includes only the 70 features of

the current time slot. Thereby, only current information about

the streaming is used. The second set (CT feature set) adds all

69 features of the trend window. Thus, it additionally takes the

last 3 s of the streaming session into account. The third set (CS

feature set) consists of all features of the current time slot and

all features of the session window. This means, in addition to

the current time slot, it considers the session window, i.e., the

entire past streaming session. The last set (CTS feature set)

is straightforward and uses all 208 extracted features (current

slot, trend window, session window).

D. Stalling Prediction

For each feature set, a random forest model using 25

trees is trained on the training set. The random forest model

outperformed other models on the same classification task in

terms of accuracy and training speed, and the number of trees

was chosen to avoid overfitting. The classification accuracy of

the random forest model is evaluated on the test set.

First, the classification accuracy is evaluated per time slot.

This means, the results of the bare classification task for any

slot of the test set will be reported. This situation allows to

obtain a real-time prediction for any video session, which

indicates if there is stalling in the current time slot or not.

Finally, the classification accuracy is evaluated per session.

For this, individual and independent predictions of the se-

3https://www.cs.waikato.ac.nz/ml/weka/

quence of time slots within a session are aggregated on the

session level. This allows to obtain stalling information for

the whole session, such as the initial delay, the number of

stalling events, and the total stalling time (excluding initial

delay), which can be converted into the stalling ratio (ratio

of total stalling time and total playback time). The trained

model predicts for each consecutive slot of the session if

there is stalling or not. The initial delay in seconds is given

by the number of slots (time slot length is 1 s) at the start

of the session, for which the model predicted stalling. After

the initial delay, a stalling event is counted if two or more

consecutive time slots are predicted as “stalling” to make

the aggregated stalling metrics more robust towards false

predictions of individual time slots. In this case, the number

of consecutive slots with stalling is added to the total stalling

time in seconds. Thus, by simple counting of slot predictions,

this aggregation method allows to obtain the initial delay,

the number of stalling events, the total stalling time, and the

stalling ratio of the whole streaming session. Note that the

granularity of the initial delay and stalling time prediction is

limited by the time slot length, i.e., it is 1 s. However, this

granularity should be sufficient for most use cases.

IV. PERFORMANCE EVALUATION

In this section, the real-time prediction of stalling per

time slot, and the aggregation of individual, consecutive slot

predictions to session-level stalling metrics are evaluated.

A. Real-time Prediction of Stalling

The real-time prediction of stalling assigns each of the

current time slot to class “no stalling” or “stalling”. After

training the random forest models with the different feature

sets, their performances were checked on the test set, which

contained 157171 time slots.

The model using only features of the current time slot (C

feature set) reached already a decent accuracy of 85.86%.

When adding more features, the accuracy increases to 88.34%

(CT) and 94.67% (CS). Here, it can be seen that the features of

the session window are better suited for the stalling prediction,

as they provide a higher gain compared to the features of the

trend window.

Table I shows the corresponding confusion matrices. Rows

indicate the actual class of the time slot, while the columns

represent the predicted classes. It can be seen that for C

and CT the error is generally higher for false positives, i.e.,

slots without stalling were considered to contain stalling.

For CS, the error changes towards more false negatives, i.e.,

“stalling” time slots were not recognized by the model. Table II

further evaluates the prediction in terms of precision (ratio of

actual “stalling” slots among all predicted “stalling” slots),

recall (ratio of predicted “stalling” slots among all actual

“stalling” slots), and F1-measure (harmonic mean of precision

and recall). Note that the definitions are analogously in terms

of class “no stalling”, and that the weighted average of these

metrics was computed from the per-class scores weighted by

the number of instances of each class. While the metrics are

79

(a) Initial delay. (b) Number of stalling events.

(c) Total stalling time. (d) Stalling ratio.

Fig. 2: Prediction errors of session-based stalling metrics.

generally high for the “no stalling” class, the prediction of

“stalling” is suffering. The lower values could be attributed

to the very unbalanced measurement data, which only showed

very little stalling, and would probably increase after more

measurements with very bad network conditions.

In the following, the results of the full feature set CTS

are presented. The model using all features reached a very

high accuracy of 94.79%, which gives the best performance

overall. Table III presents the confusion matrix, and Table IV

gives detailed evaluation results. It can be seen that the error is

generally higher for false negatives. While prediction, recall,

and F1-measure are very high for class “no stalling”, the

lower recall of class “stalling” caused by the false negatives

is visible. Still, the results show a very decent performance in

predicting stalling in real-time for individual time slots.

B. Session-based Stalling Prediction

In the following, the results of the session-based stalling

prediction are presented. For this, individual predictions of

consecutive time slots were aggregated to obtain stalling

metrics on a session level, namely, initial delay, number of

stalling events, total stalling time, and stalling ratio. This also

means that all results inherit the granularity of the individual

slots of 1 s. For the stalling prediction, the random forest model

with the full feature set (CTS) is used.

Figure 2 shows the prediction errors of the session-based

stalling prediction, i.e., the distribution of the difference be-

tween the predicted metric and the actual metric. Figure 2a

shows the prediction error for the initial delay. It can be seen

that the initial delay can be predicted exactly, i.e., with the

granularity of 1 s, for 39.48% of the sessions. For 68.14% of

the sessions, the prediction error is 1 s or less, and for 81.03%,

it is at most 2 s. As the prediction error is mostly positive, the

model tends to overestimate the actual initial delay.

Figure 2b shows the distribution of the prediction error for

number of stalling events. No error occurs for 61.54% of the

sessions, including both sessions with and without stalling.

For 24.85% of the sessions, the number of stalling events was

underestimated. When considering the prediction error of the

total stalling time in Figure 2c, it can be seen that the stalling

duration can be predicted with high accuracy. For 58.93% of

the sessions, there is no error, for 70.28%, the error is 1 s

or less, and for 82.56%, it is 3 s or less. Finally, Figure 2d

considers the prediction error for the stalling ratio, i.e., the

ratio of total stalling time and total playtime of the video. It

can be seen that the predicted stalling ratio is within ±0.05

of the actual stalling ratio (difference in interval from -0.05 to

0.05) for 88.54% of the sessions. For the remaining sessions,

the model tends to overestimate the stalling ratio. The high

accuracy here compared to the results above is a consequence

of the generally small amount of stalling with respect to the

length of the sessions.

All in all, the results show that it is possible to aggregate

the individual stalling predictions of consecutive windows to

obtain stalling metrics on session level. Moreover, the ViCrypt

system showed a decent performance for obtaining stalling

metrics with sufficiently small prediction errors.

V. CONCLUSION

This paper presented ViCrypt, a stream-based machine

learning approach for real-time stalling prediction from en-

crypted video streaming traffic. The approach is based on

individual stalling predictions for time slots of 1 s. A simple

random forest model was trained on a dataset of moni-

tored YouTube video streaming sessions with different sets

of features. All features were computed in a stream-based

fashion with constant memory consumption. While session-

based features showed a higher gain than trend-based features,

the feature set with all features (current slot, trend window,

session window) performed best. The approach reached a very

high accuracy and precision. Only for recall, the numbers were

slightly lower, due to the highly imbalanced dataset, which

contained relatively few stalling.

Furthermore, this paper showed that the individual predic-

tions of consecutive time slots could be aggregated to predict

stalling metrics on session level with low prediction errors.

Thus, the ViCrypt system allows to monitor stalling in real-

time, which is crucial to analyze and properly manage the

QoE of video streaming, even with encrypted traffic. In future

works, the system has to be trained on more windows with

stalling to come up with an improved performance. Finally,

the ViCrypt approach will be transferred to predict also other

QoE factors, such as the visual quality of the streaming.

REFERENCES

[1] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[2] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Time-varying Subjective
Quality Model for Mobile Streaming Videos with Stalling Events,” in
SPIE Applications of Digital Image Processing XXXVIII, 2015.

[3] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-experience of Streaming
Video: Interactions between Presentation Quality and Playback Stalling,”
in IEEE International Conference on Image Processing (ICIP), 2016.

80

TABLE I: Confusion matrix for slot prediction for C, CT, CS features

C features CT features CS features
no stalling stalling no stalling stalling no stalling stalling

no stalling 120084 13309 123340 10053 130720 2673
stalling 8913 14865 8276 15502 5710 18068

TABLE II: Evaluation of slot prediction for C, CT, CS features

C features CT features CS features
precision recall F1 precision recall F1 precision recall F1

no stalling 0.931 0.900 0.915 0.937 0.925 0.931 0.958 0.980 0.969
stalling 0.528 0.625 0.572 0.607 0.652 0.628 0.871 0.760 0.812

weighted avg. 0.870 0.859 0.863 0.887 0.883 0.885 0.945 0.947 0.945

TABLE III: Confusion matrix for slot prediction for CTS

features

CTS features
no stalling stalling

no stalling 130969 2424
stalling 5768 18010

TABLE IV: Evaluation of slot prediction for CTS features

CTS features
precision recall F1

no stalling 0.958 0.982 0.970
stalling 0.881 0.757 0.815

weighted avg. 0.946 0.948 0.946

[4] M. Seufert, “Quality of Experience and Access Network
Traffic Management of HTTP Adaptive Video Streaming,”
Doctoral Thesis, University of Würzburg, 2017. [Online].
Available: https://opus.bibliothek.uni-wuerzburg.de/files/15413/Seufert
Michael Thomas HTTP.pdf

[5] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer
on Quality of Experience of HTTP Adaptive Streaming,” in 11th

International Conference on Network and Service Management (CNSM),
2015.

[6] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,
“Quantification of YouTube QoE via Crowdsourcing,” in International

Workshop on Multimedia Quality of Experience - Modeling, Evaluation,

and Directions (MQoE), 2011.
[7] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring

for ISPs,” in 2nd International Workshop on Future Internet and Next

Generation Networks (FINGNet), 2012.
[8] P. Casas, R. Schatz, and T. Hoßfeld, “Monitoring YouTube QoE: Is Your

Mobile Network Delivering the Right Experience to Your Customers?”
in IEEE Wireless Communications and Networking Conference (WCNC),
2013.

[9] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-
line Monitoring of YouTube QoE in Operational 3G Networks,” ACM

SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[10] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo:
A YouTube Application Comfort Monitoring Tool,” in 1st Workshop

of Quality of Experience for Multimedia Content Sharing (QoEMCS),
2010.

[11] M. Eckert, T. M. Knoll, and F. Schlegel, “Advanced MOS Calculation
for Network Based QoE Estimation of TCP Streamed Video Services,” in
7th International Conference on Signal Processing and Communication

Systems (ICSPCS), 2013.
[12] P. Ameigeiras, A. Azcona-Rivas, J. Navarro-Ortiz, J. J. Ramos-Munoz,

and J. M. Lopez-Soler, “A Simple Model for Predicting the Number
and Duration of Rebuffering Events for YouTube Flows,” IEEE Com-

munications Letters, vol. 16, no. 2, pp. 278–280, 2012.
[13] P. Szilágyi and C. Vulkán, “Network side Lightweight and Scalable

YouTube QoE Estimation,” in IEEE International Conference on Com-

munications (ICC), 2015.

[14] International Telecommunication Union, “ITU-T Recommendation
P.1203: Parametric Bitstream-based Quality Assessment of Progressive
Download and Adaptive Audiovisual Streaming Services over Reliable
Transport,” 2016. [Online]. Available: https://www.itu.int/rec/T-REC-P.
1203/en

[15] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: Toward Quality-of-Experience Estimation for Mobile
Apps from Passive Network Measurements,” in 15th Workshop on

Mobile Computing Systems and Applications (HotMobile), 2014.
[16] P. Casas, M. Seufert, F. Wamser, B. Gardlo, A. Sackl, and R. Schatz,

“Next to You: Monitoring Quality of Experience in Cellular Networks
from the End-devices,” IEEE Transactions on Network and Service

Management, vol. 13, no. 2, pp. 181–196, 2016.
[17] P. Casas, A. D’Alconzo, F. Wamser, M. Seufert, B. Gardlo, A. Schwind,

P. Tran-Gia, and R. Schatz, “Predicting QoE in Cellular Networks using
Machine Learning and in-Smartphone Measurements,” in 9th Interna-

tional Conference on Quality of Multimedia Experience (QoMEX), 2017.
[18] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “YouTube QoE

Estimation Based on the Analysis of Encrypted Network Traffic Using
Machine Learning,” in 5th IEEE International Workshop on Quality of

Experience for Multimedia Communications (QoEMC), 2016.
[19] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,

“Measuring Video QoE from Encrypted Traffic,” in ACM Internet

Measurement Conference (IMC), 2016.
[20] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan,

“BUFFEST: Predicting Buffer Conditions and Real-time Requirements
of HTTP(S) Adaptive Streaming Clients,” in 8th ACM on Multimedia

Systems Conference (MMSys), 2017.
[21] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “eMIMIC: Estimat-

ing HTTP-based Video QoE Metrics from Encrypted Network Traffic,”
in 2nd Network Traffic Measurement and Analysis Conference (TMA),
2018.

[22] M. H. Mazhar and M. Z. Shafiq, “Real-time Video Quality of Experience
Monitoring for HTTPS and QUIC,” in IEEE INFOCOM, 2018.

[23] P. Pébay, “Formulas for Robust, One-Pass Parallel Computation of
Covariances and Arbitrary-Order Statistical Moments,” Sandia National
Laboratories, Tech. Rep., 2008.

[24] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and Implementation of Video QoE Measurements in a Mo-
bile Broadband Testbed,” in IEEE/IFIP Workshop on Mobile Network

Measurement (MNM), 2017.
[25] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,

“YoMoApp: a Tool for Analyzing QoE of YouTube HTTP Adaptive
Streaming in Mobile Networks,” in European Conference on Networks

and Communications (EuCNC), 2015.
[26] T. Karagkioules, D. Tsilimantos, S. Valentin, F. Wamser, B. Zeidler,

M. Seufert, F. Loh, and P. Tran-Gia, “A Public Dataset for YouTube’s
Mobile Streaming Client,” in 2nd Workshop on Mobile Network Mea-

surement (MNM), Vienna, Austria, 2018.
[27] M. Seufert, B. Zeidler, F. Wamser, T. Karagkioules, D. Tsilimantos,

F. Loh, P. Tran-Gia, and S. Valentin, “A Wrapper for Automatic
Measurements with YouTube’s Native Android App,” in 2nd Network

Traffic Measurement and Analysis Conference (TMA), Vienna, Austria,
2018.

81

