
Online Detection of Stalling and Scrubbing in
Adaptive Video Streaming

Lorenzo Maggi∗, Jérémie Leguay†, Michael Seufert‡, Pedro Casas‡
∗Nokia Bell Labs, France, †Huawei Technologies, France Research Center

‡AIT Austrian Institute of Technology GmbH, Vienna, Austria

Abstract—Whether it is for network engineering or business
intelligence insight purposes, it is crucial for an Internet Service
Provider (ISP) to infer the Quality of Experience (QoE) perceived
by the end user during a video streaming session. Specifically,
it is important to detect video stalls as soon as they occur, to
rapidly take counter-measures such as re-allocating resources
more fairly among users. Video stalls fall into two different
classes: (i) those caused by poor network conditions and (ii) those
caused directly by the user when scrubbing or dragging the video
playback forwards or backwards. However, only the former type
of stalls degrade the QoE perceived by the end user. Therefore,
in this paper we propose a technique to detect and classify
stall events by observing the packets associated to a streaming
session. We solve a least squares problem to minimize the
distance between the estimated chunk’s bitrate and the potential
bitrate sequence that a plausible playback buffer dynamics would
produce. This amounts to finding the maximally likely state
sequence for a properly defined Hidden Markov Model. We
propose two polynomial dynamic programming algorithms, one
of which running in online fashion, computing the exact solution
in the ideal case of complete and exact measurement set. We claim
that our method is also applicable in an encrypted scenario, since
it is robust with respect to the estimation error of a number of
parameters, as we show via simulations.

I. INTRODUCTION

Due to both high popularity and demanding network
requirements of video streaming services, Internet Service
Providers (ISPs) face the double challenge to deliver streaming
traffic efficiently, simultaneously satisfying their customers
expectations. To do so, ISPs rely on the concept of Quality
of Experience [1], which allows to quantify the subjective
experience of their customers from objective measurements.
In video streaming, the most severe QoE degradation consists
of playback interruptions - so called stalling, caused by re-
buffering events [2], [3], [4], along with the waiting time until
the playback resumes. While the advent of HTTP adaptive
streaming has been able to mitigate these issues by adapting
the video bitrate to the network conditions, stalling is still the
most annoying and prevalent QoE degradation for the end user.
Stalling is not only detrimental for the overall user experience,
but it is also highly correlated to viewer engagement [5].

The ever growing competition forces ISPs to integrate QoE
metrics into the core of their network management systems,
from the network monitoring layer up to the traffic engineering

∗Part of this work has been done while L. Maggi was at Huawei

one. Thus, ISPs are highly interested in detecting the occur-
rence of stalling events caused by network problems as soon
as they occur, to take appropriate countermeasures. However,
the trend towards encrypted traffic has made the monitoring
process more challenging and cumbersome for ISPs. In fact,
in the encrypted scenario it is no longer possible to rely on
Deep Packet Inspection (DPI) approaches to analyze the video
data contained in each packet and, finally, to reconstruct the
streaming process and the video buffer [6]. Yet, some machine
learning approaches have recently been proposed to detect
stalling from encrypted traffic, e.g., [7], [8], [9].

However, stalling might not only be caused by poor network
conditions, but also by user behavior. Indeed, a playback
interruption also happens when a user decides to jump (or
scrub) the video playback cursor to a position which is outside
the range of currently buffered playtime. Therefore, ISPs have
to be careful not to confuse scrubbing (here called type II
stalling), with (type I) stalling, which is due to poor network
conditions. Scrubbing does not deteriorate QoE, as the user is
aware of it, as opposed to type I stalling which is an indicator
of unsatisfying network conditions, hence requiring ISPs to
take immediate action.

In the adaptive video streaming scenario, we are the first
to propose an online model-based method to detect video
stalling events and distinguish between those caused by poor
network conditions (type I) and by user scrubbing (type II).
The main technical problem to overcome is that both types
of stall generate deceptively similar observations at the packet
stream level, hence they are indistinguishable via, say, a simple
threshold policy on the chunk bitrate level.

Our first contribution is an online polynomial-time
(O(#chunks2)) algorithm that is able to detect and distinguish
between type I and type II stalls. Our procedure can be seen as
a Maximum Likelihood (ML) estimation of the state sequence
of the Hidden Markov Model associated to the playback buffer
state. In practice, we minimize via dynamic programming the
sum of squares of the difference between the chunks’ bitrate
that are observed (or estimated) and those being produced by
a plausible playback buffer dynamics. Then, we also present a
more complex, but still polynomial (O(#chunks4)) algorithm
that can leverage side-information on the maximum number
of scrubbing events in a session to improve the detection and
classification accuracy. Finally, we show via simulations that
our algorithms are robust with respect to the estimation error of
a number of factors, as the user application streaming policy,

the chunk download instants, and the chunk bitrate estimation.
This suggests that our approach is also viable in the encrypted
streaming scenario.

The remainder of the paper is structured as follows. Sec-
tion II outlines related works, and Section III presents the
scenario. Section IV describes the problem, which is solved
in Sections V-VI with the help of dynamic programming.
Section VII presents numerical evaluations, and Section VIII
concludes the paper. Please refer to Table I for the list of
notation symbols.

II. RELATED WORKS

Several papers focused on the estimation of video streaming
stalling, as this is a key impacting factor for the QoE perceived
by the end user, as described in [10]. Authors in [11], [6]
proposed a system to extract downloaded playtime based on
DPI of network packets. Thanks to it, the buffered playtime
at the client’s side can be reconstructed, thus allowing for
stalling event detection. Similar approaches were adopted
by [12], [13]. The work [14] relies on the ratio of playback
time and download time to estimate stalling, but requires the
total size of the video, which might not always be available.
Recently, the P.1203 model [15] has been standardized to
predict the MOS (Mean Opinion Score) of HAS from stream
inspection, thereby, also considering stalling. [16] focuses on
the reconstruction of buffered playtime at the video player
side, as previously done in [11]. It consists in a threshold-
based policy to notice gaps in the downloading of chunks and
assumes that the player has moved to a new playback position.

The requirements for the detection of user-actions in
HTTP(S) adaptive streaming at network level are analyzed in
[17]. The key challenge there is to recognize the result of user
actions (e.g., play, pause, seeking) and distinguish them from
streaming-related phenomena. In the literature, user actions
have been considered only as features in QoE models. For
instance, [18] found that video impairments can trigger user in-
teractions, such as pausing the streaming and scrubbing. They
proposed to integrate the user-viewing activities to estimate
subjective parameters in a classical MOS log-logistic function.
Moreover, [19] investigated a feature engineering method to
correlate user experience with user-perceived quality and user
actions. To the best of our knowledge, we are the first to
propose a method to detect user scrubbing and distinguish
them from standard stalling in online fashion.

To infer QoE, a number of practical challenges needs to be
addressed as most video traffic is nowadays fully encrypted
and user actions cannot be read from control traffic. Several
parameters are to be inferred from packet traces with limited
available information (e.g., transport protocol, arrivals times,
payload size). In addition, as a single video might be split
across multiple flows, the identification and tracking of video
sessions is crucial. Several solutions based on machine learn-
ing and expert rules have been proposed to extract information
from encrypted streams, e.g., [20], [21], [7], [8], [9].

Authors in [20] estimate YouTube QoE from features
derived from packet sizes, inter-arrival times and network

Symbol Description
ti [s] download time of the i-th chunk
pi [MB] payload size of the i-th chunk
bi [MB/s] encoding bitrate of the i-th chunk
λi [s] playback time in the application’s buffer at time ti
i = {0, 1} whether the video is in stall at time ti
si = {0, 1} whether a scrubbing occurs during (ti−1; ti]
ci [MB/s] series of channel throughput {ck}k≤i

f(λi, ci) := bi+1, HAS streaming policy
θ [s] if the playback is in stall, it resumes when λ > θ
Yi := (λi, ψi) buffer state at time ti
I total number of chunks
·̂ ISP’s estimation of metric ·
C [MB/s] average network throughput

σHAS std of HAS buffer threshold estimation error
σDT std of chunk download time estimation error
pBR prob. that a chunk bitrate is mistaken with an adjacent one

Table I
LIST OF NOTATION SYMBOLS

throughput. A similar approach in [21] relies on real cellular
network measurements to predict typical QoE indicators for
streaming services. [7] leverages the work in [16] to estimate
video QoE metrics. [8] predicts initial delay, stalling, and
video quality from the network traffic in windows of 10s. The
considered features are derived from IP or TCP/UDP headers
only. [9] detects stalling of the streamed video within time
slots of 1s by using a stream-like analysis approach based on
packet-level statistics of the network traffic. The individual
predictions of each time slot can be aggregated to also obtain
accurate stalling statistics on a session level. Our solution
leverages existing work only to infer parameters such as the
video chunk bitrate, chunk arrival times and streaming policy
parameters from encrypted packet traffic. It is not based on
machine learning but rather follows a model-based approach,
going beyond simplistic threshold based policies, which have
no theoretical support and are sub-optimal.

III. SCENARIO

In the HTTP Adaptive Streaming (HAS) context, video
files are encoded at multiple bitrate levels, segmented into
consecutive fragments and stored in a web server. In our
terminology, a chunk is a video fragment encoded at a specific
bitrate. At the end user’s side, the video client adopts a
streaming technique (see Section III-B), deciding when the
next chunk should be fetched and at which bitrate. Clearly,
higher bitrate translates into a better video quality for the
user, but also into a longer download delay, since the chunk’s
payload size is bigger. Downloaded but yet un-watched chunks
are stored in the client’s application buffer, whose dynamics
are described in Section III-A.

A. Client buffer dynamics

Let us now formalize the evolution of the client’s buffer,
containing the chunks that have been downloaded from the
web server but that have not been played yet. In this paper
we sample our observations at times {ti}i, where ti is the
download time of the i-th chunk. We call λi the total playback
time of the chunks present in the buffer at time ti. The video

2

0.5

1.0

[M
B/
se
c]

network throughput

1
2
3

chunk bitrate layer

0 20 40 60 80 100 120 140 160
time [sec]

0

2

4

6

8

10

[s
ec
]

playback buffer length

in stall
playing
scrubbing

Figure 1. Buffer dynamics with scrubbing and stall events. We can already
notice that a simple threshold policy on the chunk bitrate layer does not suffice
to detect and classify stall events.

playback follows a hysteresis process: it stalls whenever the
buffer empties, i.e., λ = 0, and it resumes when λ exceeds
a threshold value θ, that is application-specific. We use the
binary variable ψi = {0, 1} to denote whether (ψi = 1) the
playback is in stall mode or else (ψi = 0) the video is being
regularly played at time ti.

At any time, the user can drag the playback cursor ahead or
backwards, to seek for a specific scene of interest. We call this
user action scrubbing. We assume that whenever this happens,
the video buffer empties completely, since the requested is not
yet or no longer present in the application’s buffer. We call
si = {0, 1} the binary variable that denotes whether (si = 1)
at least a scrubbing occurs during interval (ti−1; ti].

We describe the state of the buffer at the chunk download
time ti as the pair (λi, ψi), denoting the playback length of
the application’s buffer and whether the playback is stalled at
time ti. At time 0, the buffer is empty and the playback is
in stall, i.e., (λ0 = 0, ψ0 = 1). Then, the buffer state evolves
according to the recursive law:

(λi, ψi) = Ω
(si)
i

(
λi−1, ψi−1, bi, pi, ti − ti−1, θ

)
(1)

where pi and bi are the payload size and the encoding bitrate
of the i-th chunk, respectively, and the law Ω

(si)
i is defined as

follows (see, e.g., [11] for a validation of the model):

λi = (1− si)
[
max

(
λi−1 − (1− ψi−1)(ti − ti−1), 0

)
+
pi
bi

]
i =

{
1 if

(
ψi−1 = 1 ∨ λi = pi

bi

)
∧ λi < θ

0 else.
(2)

In other words, upon the download of the i-th chunk, if the
video is not in stall (ψi−1 = 0) then the buffered playback time
λi decreases by the time interval (ti− ti−1) elapsed since the
last chunk download event. Also, λi increases by the playback
time pi

bi
of the chunk just downloaded. Clearly, λ must be

ensured to be non-negative; on the other hand, we remark that
we do not need to upper bound λ (even if the buffer has finite
length) since the process is driven by the successful download
time of the chunks, that are hence ensured to fit in the buffer.

B. Client HAS streaming policy

The HAS application at the client’s side implements a
streaming policy that decides when the next chunk should
be requested and at which encoding bitrate. We here assume
for simplicity that a new chunk is requested as soon as the
download of the previous chunk is terminated. Hence, we can
describe the HAS policy as a function f that maps the current
buffer length λi and the network throughput historic samples
ci = {ck}k≤i into the bitrate bi+1 of the next chunk to be
downloaded, i.e.,

bi+1 = f
(
(1− si+1)λi, ci

)
. (3)

Typically, the channel history ci is used to predict the future
channel evolution. The range of possible adaptive streaming
policies is vast, but they can can be categorized into three
classes: buffer-based, rate-based, or buffer-rate-based, depend-
ing on whether f(.) is a function of the buffer occupation
λ only, of the channel measurements c only, or of both,
respectively. In this paper we assume that the HAS policy is
either buffer- or buffer-rate-based, since we need exploit the
correlation between the chunks’ bitrate and the buffer state.

For a pictorial intuition, in Fig. 1 we illustrate the buffer
dynamics and the corresponding downloaded chunk bitrate
layer in the presence of two scrubbing events.

C. Available measurements for an ISP in practice

In an operational scenario, the ISP only observes the packets
associated to the streaming session between the video client
and the web server. In the ideal case, the ISP would know
when the session starts (at time 0, by convention) and, for
each chunk i = 1, . . . , I , would measure its download time
ti, its payload size pi, and obtain the corresponding bitrate
bi through content inspection. As such, the ISP could easily
compute the playback duration of chunk i as the ratio pi/bi.

In practice, when the streaming session is encrypted, the ISP
has first to detect and reconstruct the chunks from the sequence
of monitored packets [7]. In addition, packets are normally
intercepted on-the-fly within the network, hence potentially
still far from the client destination [7]. These two facts imply
that the measured chunk download times {t̂i} do not coincide
with the true ones {ti}i. Last but not least, chunks’ bitrate
{bi}i is not directly accessible via packet inspection due to
encryption, and it has to be estimated as {b̂i}i, for example
by modeling the specific streaming content [7] or by relying
on statistical learning approaches [7].

Ideally, the ISP is fully aware of the client’s HAS policy
f(.) and the playback resume threshold θ. In practice, the ISP
may be informed about the kind of streaming technique used
by the client (e.g., whether it is buffer-, rate-, or buffer-rate
based) but it can only estimate the actual shape of the HAS
function f(.), denoted by f̂(.), and the threshold θ̂.

IV. PROBLEM FORMULATION

In this paper we tackle the issue faced by an ISP aiming
at detecting the stall events, possibly as soon as they occur,

3

and at classifying them into those of type I (caused by poor
channel conditions) and of type II (due to user scrubbing).

We consider the practical scenario depicted in Section III-C,
where due to non-ideal probing and encrypted traffic we can
only estimate the parameters t, b, f, θ as t̂, b̂, f̂ , θ̂, respectively.

Our main idea is to infer the user’s scrubbing behavior and
the video stalls by computing the buffer length sequence and
the scrubbing events that generate an array of chunks’ bitrate
being as “close” as possible to the estimated one {b̂i}i in
terms of Euclidean distance. More formally, we aim to solve
the following Least Squares (LS) problem:

min
λ,ψ,s

I∑
i=1

[
b̂i − f̂

(
(1− si)λi−1, ci−1

)]2
(LS)

s.t. (λi, ψi) = Ω
(si)
i

(
λi−1, ψi−1, b̂i, pi, t̂i − t̂i−1, θ̂

)
λ0 = 0, ψ0 = 1,

where the unknowns are λ, describing the buffer length
dynamics, ψ and s, denoting the presence of a stall (type I
or II) and of a scrubbing (type II stalls), respectively. The
recursive buffer law Ω is defined as in (2). Once computed
the optimal values of λ, ψ, s, the ISP can distinguish between
type I and II stalls by simply comparing the scrubbing vector
s and the instants i at which the buffer empties, i.e., λi = 0.

Hidden Markov Model (HMM) interpretation: In order
to justify and provide further intuitions to our (LS) problem
formulation for stall and scrubbing detection, we now give
an interpretation that is founded on the theory of Hidden
Markov Models. To this aim, let us first assume that the
ISP can access the true measurements of t, b, f, θ. Under the
hypothesis that the user scrubbing behavior described by {si}i
is independent across time indexes i, the process evolving over
the state pairs of the form (λi, ψi) is also Markovian. This fact
stems directly from the buffer dynamics law defined in (LS).
Also, if we define by πi+1 the probability that si+1 = 1,
then the state (λi, ψi, si) transitions to state Ω

(si+1)
i+1 (λi, ψi, ·)

with probability πi+1. In the HMM jargon, the tuples {Ω(si)
i }i

define the hidden Markov model of the system at hand,
depending on the unknown scrubbing vector s. On the other
hand, one can observe the chunks’ bitrate succession b which
is a known function f(.) of the current state. We remark that
the observed variable {bi}i is not a Markov process per se.

Our task is to reconstruct the most likely succession of
hidden states given the observed bitrate sequence. This can
be equivalently formulated (see [22]) as the minimization of
the Euclidean distance between the observations and the one
produced by a guess of the hidden state succession, plus a
regularization term depending on the scrubbing probability π:

min
λ,ψ,s

I∑
i=1

[
bi − f

(
(1− si)λi−1, ci−1

)]2
+ µ log

(
1− πi
πi

)
.

Since we do not have any a priori knowledge on the presence
of scrubbing at a certain time instant, then we let πi = 0.5,
which brings us to our original formulation in (LS). The only

difference in our case resides in the fact that in (LS) we replace
the true values t, b, f, θ with the estimated ones t̂, b̂, f̂ , θ̂.

V. SOLVING (LS) VIA DYNAMIC PROGRAMMING

In this section we present a dynamic programming approach
to solve our main least squares problem (LS) in polynomial
time and, remarkably, in an online fashion, as new chunks are
observed. Following our HMM interpretation of the problem
(LS) given in Section IV, we let the buffer length / stall pair
(λi, ψi) := Yi play the role of the state of the system at time
ti. In a control-theoretic jargon, we think of the scrubbing
vector s as the control variable, that drives the state of the
system as close as possible to the observed one.

In order to explain our dynamic programming approach, let
us now suppose that the system is in state Yi−1 = (λi−1, ψi−1)
at time ti−1. If the control variable si = 1, then the buffer
empties and the playback stalls, hence at the next step ti
we have Yi = (0, 1). Otherwise, if si = 0 then the buffer
state evolves by the law Yi = Ω(0)(Yi−1, bi). Thus, we can
attach an additive cost δ(si) to the transition Yi−1

si→ Yi
controlled by the scrubbing variable si, and defined as the
squared difference between the current estimated chunk bitrate
and the one produced by the current plausible state:

Yi−1
si−→ Yi = Ω(si)(Yi−1, · · ·), with additive cost:

δ(si)(Yi−1, Yi) =
∣∣̂bi − f((1− si)λi−1, ci−1)

∣∣2. (4)

Our problem then becomes a min-cost path one, that re-
quires to compute the discrete (buffer) state and (scrubbing)
control succession with minimal cost. To this aim, we resort
to the celebrated Bellman’s principle [23]. Let us first define
δ∗(Yi) as the minimum total cost to reach state Yi from
the initial state Y0 = (0, 1). Naturally, we let δ∗(Y0) := 0.
Then, the Bellman equation defines δ∗(Yi) by induction as
the minimum cost to reach Yi from any potential previous
state Yi−1 and for both choices of the variable si = {0, 1}:
δ∗(Yi) = min

Yi−1∈Xi−1,si∈{0,1}:
Yi=Ω

(si)

i (Yi−1)

δ∗(Yi−1) + δ(si)(Yi−1, Yi),

(5)

where Xi is the set of reachable states at time step ti for a
certain choice of the control variables s1, . . . , si.

In order to actually solve the Bellman equation (5) we use
a forward induction technique and we find the minimum cost
δ∗(Yi) for successive values of the chunk index i = 1, . . . , I .
Then, we compute the optimal final state Y ∗I as:

Y ∗I = arg min
YI∈XI

δ∗(YI) (6)

and we retrieve the optimal buffer state and scrubbing vector
in backward fashion starting from Y ∗I . We provide the details
of the forward-induction procedure in Algorithm 1.
Complexity: Classically, dynamic programming techniques
suffer from the curse of dimensionality [23] which denotes the
exponential growth of the state space as size of the input (in
our case, the number of time intervals I) increases. On the one
hand, in our model there exist 2I possible paths from the initial

4

Algorithm 1: Least Squares (LS) Algorithm

1 Set Y0 = (λ0, ψ0) := (0, 1), δ∗(Y0) := 0, X0 := {Y0};
for i = 1, . . . , I do

2 Generate all reachable states Xi at time ti:

Xi = {Yi = Ω
(si)
i (Yi−1), ∀Yi−1 ∈ Xi−1, si = 0, 1}.

3 Compute the minimum cost δ∗(Yi) by solving the
Bellman equation (5), for all Yi ∈ Xi.

4 Compute the predecessor (Yi−1, si) = pred(Yi) as
the arg min of Equation (5), for all Yi ∈ Xi.

5 Compute the optimal final state Y ∗I as in (6).
6 Retrieve the optimal buffer dynamics and scrubbing

times in backward fashion:
7 for j = 1, . . . , I do
8 Compute (Y ∗I−j , s

∗
I−j) = pred(Y ∗I−j+1)

9 return the Least Squares scrubbing vector s∗i and
buffer state Y ∗i := (λ∗i , ψ

∗
i) for all i = 1, . . . , I

state Y0 to the final stage i = I on the state transition graph
defined by Equation (4), which correspond to all the binary
scrubbing vector combinations. On the other hand, Bellman’s
equation (5) allows us to prune at least half of the possible
paths generated at each step i. This implies that the maximum
number of feasible states |Xi| is at most i + 1 and that the
overall complexity is quadratic in the number of steps I .

Lemma 1. Algorithm 1 solves exactly the Least Squares
problem (LS) with complexity O(I2).

Proof. The optimality of Algorithm 1 has already been shown
via the Bellman principle in (5). To prove its complexity,
we first observe that, according to the buffer dynamics rule
Ω(si) described in (2), the control si = 1 forces all states of
the kind Yi−1 ∈ Xi−1 to converge to the empty buffer state
(λi = 0, ψi = 1) = Ω

(1)
i (Yi−1, bi). Then, such state has at

least |Xi−1| potential predecessors, and only one is chosen
via Bellman equation (5) with complexity linear in |Xi−1|.
All other states Yi ∈ Xi have only one possible predecessor.
It stems that i) the total complexity of Algorithm 1 at step i
is linear in |Xi−1|. Next, we notice the set of feasible states
Xi is a function of the previous states Xi−1 as:

Xi = {Yi = Ω(si=0)(Yi−1, bi), ∀Yi−1 ∈ Xi−1} ∪ {(0, 1)}.
Therefore, |Xi| ≤ |Xi−1|+ 1 and thus ii) |Xi| ≤ i+ 1. Since
there are I steps, the thesis directly follows from i),ii).

Online detection: It is crucial to observe that the LS detection
can be performed in online fashion, to detect scrubbing and
stall events as soon as they occur, by slightly modifying
Algorithm 1. In fact, the induction procedure in steps 1-4
of Algorithm 1 only requires a single forward pass on the
input data (i.e., the bitrate b̂, the download times t, the chunk
payload p and channel throughput c). Then, if one wishes to
solve (LS) at each intermediary step ti, it suffices to retrieve
at each time ti in backward fashion the LS buffer dynamics

and scrubbing vector via the steps 6-8 of Algorithm 1. So, the
only variation consists in plugging lines 5-8 into the main for
loops. Since the complexity of backward retrieval is linear in
the number of chunks i observed up to time ti, and since this
is carried out I times, it stems that the overall complexity of
the online version of Algorithm 1 is still O(I2).

Corollary 1. The online version of Algorithm 1, computing the
intermediary optimal solution from step 1 to each intermediary
step i = 1, . . . , I , also has overall complexity O(I2).

VI. CONSTRAINING THE NUMBER OF SCRUBBINGS

In this section we make the further assumption that the ISP
is able to access some side information on the user’s scrub-
bing behavior, and more specifically on the total number of
scrubbing events

∑I
i=1 si being at most S. Such information

may be extracted by analyzing the statistical properties of
observed features (i.e., bitrate and channel throughput) in an
a posteriori fashion, after the whole streaming session dataset
has been observed, as advocated in [17]. For this reason,
we expect that the technique proposed in this section is not
suitable for online stall detection purposes. We wish to exploit
such side information to improve the accuracy of our approach
and, more specifically, reduce the occurrence of false positive
scrubbing detection of our approach.

Our next goal is then to solve the following Constrained
Least Squares (CLS) problem:

Solve (LS) s.t.
I∑
i=1

si ≤ S. (CLS)

Using the dynamic programming jargon and the notation
introduced in the Section V, (CLS) requires to solve a
min-cost path from the initial state Y0 to the final step i = I ,
under the the hard constraint that the control variable si can
be set to 1 at most S times. The constrained min-cost path
problem is known to be NP-hard [24] for general graphs;
in our special case, though, it can be solved in polynomial
time by carefully adapting Algorithm 1 to the constrained case.

Solving (CLS) via Dynamic Programming: We now adapt
the dynamic programming Algorithm 1 used to solve (LS)
to solve the constrained problem (CLS) in polynomial time.
For this purpose, we embed the number of scrubbing events
Si =

∑i
k=1 sk accumulated up to the current step ti in the

definition of state Y ′i of the system, which then becomes the
triple Y ′i = (λi, ψi, Si). The transition law between states now
writes:

Y ′i−1 = (λi−1, ψi−1, Si−1)
si−→ Yi = (λi, ψi, Si) (7)

s.t. (λi, ψi) = Ω(si)(λi−1, ψi−1)

Si = Si−1 + si.

If Si > S then the transition does not exist since it violates
the constraint. The cost δ(si)(Y ′i−1, Y

′
i) associated to the state

transition is defined exactly as in (4), as the number of

5

accumulated scrubbings does not affect the objective function.
The Bellman’s equation underlying (CLS) then becomes:

δ∗(Y ′i) = min
Y ′i ∈Xi−1,si∈{0,1}:

(λi,ψi)=Ω
(si)

i (λi−1,ψi−1,···)
Si=Si−1+si≤S

δ∗(Y ′i−1) + δ(si)(Y ′i−1, Y
′
i) (8)

where the initial state is now Y ′0 = (λ0 = 0, ψ0 = 1, Si =
0) with associated optimal cost δ∗ = 0. Bellman’s equation
(8) for (CLS) can be solved by using the forward induction
procedure, similarly to what has been shown in Algorithm 1.

Algorithm 2: Constrained Least Squares (CLS) Algo-
rithm

1 Analogous to Algorithm 1 with two variants: the new
state transition is defined as (7) and the new
Bellman’s equation is (8)

Due to the enlarged state space, the complexity of Algorithm
2 is higher than for Algorithm 1, but it is still polynomial in
the input size, and more specifically quartic in the number I
of downloaded chunks.

Lemma 2. Algorithm 2 solves exactly the constrained Least
Squares problem (CLS) with complexity O(I4).

Proof. Let X ′i be the set of reachable states at time step ti.
Let us split X ′i into two categories, XA′

i and XB′

i . We denote
by XB′

i the states having an empty buffer, i.e., XB′

i = Xi ∩
{(0, 1, Si)}S1=1,...,S . Instead, XA′

i = Xi \ XB′

i is the set of
states generated by the absence of scrubbing during the last
interval (si = 0). In order to bound the number of states at
step i, we then notice that the next two relations holds:

|XA′

i | ≤ |XA′

i−1|+ |XB′

i−1| (9)

|XB′

i | ≤S, ∀ i = 1, . . . , I, (10)

where (9) follows from the fact that the set of possible
predecessors of XB′

i is a subset of XB′

i−1 ∪ XA′

i−1. Since at
the boundary i = 0 we have |XA′

0 | = 0 and |XB′

0 | = 1, then
we deduce from (10-9) that

|XA′

i | ≤ iS. (11)

Next, we upper bound the complexity C(i) of iteration i
of Algorithm 2. Since all states in XA′

i have only one
predecessor, they just need to be generated, in a time linear in
XA′

i . On the other hand, to find the optimal predecessor for
each of the state Y ′i ∈ XB′

i one needs to solve the Bellman
equation (8), with linear complexity in the number of possible
predecessors, being at most |XA′

i−1|+ 1. Therefore,

C(i) ≤XA′

i + (|XA′

i−1|+ 1)|XB′

i |

≤ i(S2
+ S) + S − S2

, (12)

where (12) stems from (11) and (10). Finally, we can bound
the total complexity of the algorithm as

∑I
i=1 C(i) ∈ O((S

2
+

S)I2). Finally, since S ≤ I we conclude that the overall
complexity is O(I4), which proves the thesis.

1.60 2.40 3.20 4.00
avg throughput C [MB/sec]

0.4
0.5
0.6
0.7
0.8
0.9
1.0

de
te
ct
io
n
ac

cu
ra
cy

type I stalls

precision, dwnld time err. σDT=0.1
recall, dwnld time err. σDT=0.1
precision, dwnld time err. σDT=0.25
recall, dwnld time err. σDT=0.25

1.60 2.40 3.20 4.00
avg throughput C [MB/sec]

0.4
0.5
0.6
0.7
0.8
0.9
1.0 type II stalls (scrubbing)

Figure 2. LS Algorithm 1 robustness against estimation error on download
times. HAS policy threshold estimation error std σHAS = 0.1, probability of
chunk bitrate estimation error pBR = 0.1.

1.60 2.40 3.20 4.00
avg throughput C [MB/sec]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

de
te
ct
io
n
ac

cu
ra
cy

type I stalls

precision, bitrate prob. err. pBR=0.1
recall, bitrate prob. err. pBR=0.1
precision, bitrate prob. err. pBR=0.2
recall, bitrate prob. err. pBR=0.2

1.60 2.40 3.20 4.00
avg throughput C [MB/sec]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 type II stalls (scrubbing)

Figure 3. LS Algorithm 1 robustness against estimation error on chunk bitrate.
HAS policy threshold estimation error std σHAS = 0.1, chunk download time
error std σDT = 0.1.

VII. NUMERICAL EVALUATIONS

After presenting our stalling detection and classification
algorithms and their complexity, we now turn to evaluating
their performance via extensive numerical simulations. In par-
ticular, we focus on showing the robustness of our approaches
with respect to the estimation error of three key factors, i.e.,
the chunk download time, the shape of HAS policy and the
chunks’ encoding bitrate.
Simulation settings: In order to test the performance of
our algorithms, we generated synthetic data on a realistic
HAS scenario that we now describe. We consider a threshold
buffer-based HAS policy with playback resume threshold
θ = 5s and with three available chunk encoding bitrate levels.
More specifically, when the buffer contains a playback time
≤ 10s (within (10s, 20s) and ≥ 20s, respectively) the HAS
application fetches a chunk with encoding bitrate equal to
0.5MB/s (1MB/s and 3MB/s, respectively). The application
buffer capacity is equivalent to 30 playback seconds. The
network throughput ci is generated via an ARIMA model with
average value C MB/s. In each simulated streaming session
the user scrubs the video 3 times at uniformly random times
over a whole time horizon of 5 minutes. All measurement
points are averages over 100 trials.
Robustness w.r.t. estimation errors: In Fig. 2-6 we evaluate
the robustness of LS Algorithm 1 with respect to the estimation
errors on chunk bitrate, HAS policy and chunk download time,
for different values of the average network throughput. We

6

1.60 2.40 3.20 4.00
avg throughput C [MB/sec]

0.4
0.5
0.6
0.7
0.8
0.9
1.0

de
te
ct
io
n
ac
cu
ra
cy

type I stalls

precision, HAS policy err. σHAS=0.1
recall, ABS policy err. σHAS=0.1
precision, HAS policy err. σHAS=0.25
recall, ABS policy err. σHAS=0.25

1.60 2.40 3.20 4.00
avg throughput C [MB/sec]

0.4
0.5
0.6
0.7
0.8
0.9
1.0 type II stalls (scrubbing)

Figure 4. LS Algorithm 1 robustness against estimation error on HAS policy.
Chunk download time error std σDT = 0.1, probability of chunk bitrate
estimation error pBR = 0.1.

0.00 0.05 0.10 0.15 0.20
bitrate estimation err. prob. pBR

0.4
0.5
0.6
0.7
0.8
0.9
1.0

de
te
ct
io
n
ac
cu
ra
cy

type I stalls

precision, throughput C=2 MB/s
recall, throughput C=2 MB/s
precision, throughput C=4 MB/s
recall, throughput C=4 MB/s

0.00 0.05 0.10 0.15 0.20
bitrate estimation err. prob. pBR

0.4
0.5
0.6
0.7
0.8
0.9
1.0 type II stalls (scrubbing)

Figure 5. LS Algorithm 1 robustness against estimation error on chunk bitrate.
Chunk download time error std σDT = 0.1, HAS policy threshold estimation
error std σHAS = 0.1.

measure the accuracy of type I and II stall detection in terms
of precision and recall1. In our simulations, the stall detection
is deemed correct if it falls at most 2 chunk download intervals
away from the correct one.

Let us now describe how we emulate estimation errors. The
chunk bitrate level b̂ is mistaken with an adjacent level (i.e.,
layer 1 → 2, layer 2 → 1, 3, layer 3 → 1) with a certain
probability pBR, independently of each other. The estimation
error on HAS thresholds of the streaming policy is Gaussian
with standard deviation equal to σHAS times the difference
between two consecutive thresholds (in our case, 10s). Simi-
larly, the estimated chunk download times are affected by an
additive Gaussian i.i.d. error with standard deviation equal to
σDT times the interval between consecutive download instants.
This models the fact that packets are intercepted on-the-fly by
a probe within the network, hence not at the application side.
As shown in Fig. 2-6, the LS algorithm shows remarkable
robustness with respect to chunk download time and HAS
policy. Our method is more sensitive to the errors on chunk
bitrate (see Fig. 5), which deteriorates the precision of stall
and scrubbing detection. Such behavior is expected, since our
least squares approach relies on chunk bitrate estimation to
imitate the observed chunk bitrate succession with a plausible
one, to finally infer the buffer evolution.

We also observe that the detection accuracy improves as the
channel throughput C increases. Intuitively, with high values

1precision = true positives
true + false positives

, recall = true positives
true pos.+ false neg.

0.00 0.05 0.10 0.15 0.20
bitrate estimation err. prob. pBR

0.75

0.80

0.85

0.90

0.95

1.00

de
te
ct
io
n
ac

cu
ra
cy

type I stalls

precision, HAS err. σHAS=0.1
recall, HAS err. σHAS=0.1
precision, HAS err. σHAS=0.25
recall, HAS err. σHAS=0.25

0.00 0.05 0.10 0.15 0.20
bitrate estimation err. prob. pBR

0.75

0.80

0.85

0.90

0.95

1.00 type II stalls (scrubbing)

Figure 6. LS Algorithm 1 robustness against estimation error on chunk bitrate
and HAS policy. Chunk download time error std σDT = 0.1, average network
throughput C = 4MB/s.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
avg network through ut C [MB/sec]

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

sc
ru
bb
in
g
 r
ec
isi
on

LS vs. CLS

LS, bitrate err. pBR=0.1
LS, bitrate err. pBR=0.2
CLS, ̄S=5, bitrate err. pBR=0.1
CLS, ̄S=5, bitrate err. pBR=0.2
CLS, ̄S=7, bitrate err. pBR=0.1
CLS, ̄S=7, bitrate err. pBR=0.2

Figure 7. LS Algorithm 1 vs. CLS Algorithm 2 scrubbing detection
performance. HAS policy threshold estimation error std σHAS = 0.1, chunk
download time error std σDT = 0.1. Notice that CLS allows to limit the
false positive occurrences.

of C, the buffer fill up more quickly, which translates in higher
chunk bitrate for any buffer- or buffer-rate based policy. In this
case, stalls, which generally produce low bitrate observations,
are thus more easily distinguishable for our method.
Increasing scrubbing precision via (CLS): As observed ear-
lier on, although robust to estimation errors, the LS algorithm
has tendency to overestimate the number of stall events in
the presence of important errors on chunk bitrate estimation.
This hence generates too many false positives which reflects
into lower precision. By upper limiting the possible number
of scrubbings S(= 5, 7) via CLS Algorithm 2, the scrubbing
detection precision improves, as we can appreciate in Fig. 7.
However, this comes with an increase of complexity, from
O(I2) for (LS) to O(I4) for (CLS), as shown in Lemma 2.
Online detection: We demonstrate the capability of Algorithm
1 to solve the (LS) detection problem in online fashion, as
outlined in Section V. As new chunks’ bitrate are observed,
LS Algorithm 1 is able to produce new estimates of the stall
and scrubbing vectors, without the need of solving the whole
optimization problem (LS) from scratch. In Fig. 8 we show
the detection accuracy of ML algorithm as time goes by, with
three scrubbing events at time 50s, 130s and 210s. Scrubbing
can be indeed detected on-the-fly, with a small delay of a
couple of seconds that is visible through the temporary drop
in the scrubbing detection precision. The detection delay is
due to a common feature of dynamic control problems: as the
decision instant approaches the end of the time window, the

7

0 50 100 150 200 250 300
time [sec]

0.0
0.2
0.4
0.6
0.8
1.0

de
te

ct
io

n
ac

cu
ra

cy
online scrubbing detection

precision, channel=2 MB/sec
recall, channel=2 MB/sec
precision, channel=4 MB/sec
recall, channel=4 MB/sec
scrubbing

Figure 8. Online scrubbing detection of LS Algorithm 1, with chunk
estimation probability error pBR = 0.2 and three scrubbings (at the vertical
black dashed lines)

dynamic programming decision become more greedy, hence
more prone to errors.

VIII. CONCLUSIONS

Detecting video stalling is of paramount importance to the
ISP, for network engineering or business intelligence insight
purposes, and in particular to rapidly detected end-user QoE
degradation. However, one has to distinguish between the stalls
caused by poor network conditions and those due to user-
initiated actions such as video-player scrubbing, since only the
former one contributes to degrade the user’s QoE. Motivated
by this, we have proposed two polynomial algorithms that,
by reconstructing the most plausible buffer evolution, detect
the stall events and decide whether each stall is caused by
user scrubbing or not. Both algorithms solve a least squares
problem that finds its roots in the Hidden Markov Model
theory. The former approach (LS, Alg. 1) can be executed
in online fashion, to detect stall and scrubbing events as
soon as they occur. The latter (CLS, Alg. 2) can exploit
side information from the user’s behavior on the maximum
number of scrubbing events within a session. Our simulations
suggest that the proposed methods are practical and suitable
for the encrypted setting, since they are sufficiently robust with
respect to estimation errors on a number of parameters, as
the chunks’ bitrate, the chunk download times and the client’s
streaming policy. As a future plan, we plan to plug our method
in a real HAS system with encrypted traffic, where chunk
bitrate is estimated via supervised learning approaches.

REFERENCES

[1] P. Le Callet, S. Möller, and A. Perkis (eds), “Qualinet White Paper on
Definitions of Quality of Experience,” European Network on Quality
of Experience in Multimedia Systems and Services (COST Action IC
1003), Tech. Rep., 2013, version 1.2.

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[3] D. Ghadiyaram, J. Pan, and A. C. Bovik, “A Time-varying Subjective
Quality Model for Mobile Streaming Videos with Stalling Events,” in
Proceedings of SPIE Applications of Digital Image Processing XXXVIII,
2015.

[4] K. Zeng, H. Yeganeh, and Z. Wang, “Quality-of-experience of Streaming
Video: Interactions between Presentation Quality and Playback Stalling,”
in Proceedings of the IEEE International Conference on Image Process-
ing (ICIP), 2016.

[5] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan,
and H. Zhang, “Understanding the Impact of Video Quality on User
Engagement,” in Proceedings of the ACM SIGCOMM, 2011.

[6] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-
line Monitoring of YouTube QoE in Operational 3G Networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[7] T. Mangla, E. Halepovic, M. Ammar, and E. Zegura, “eMIMIC: Estimat-
ing HTTP-based Video QoE Metrics from Encrypted Network Traffic,”
in Network Traffic Measurement and Analysis Conference (TMA), 2018.

[8] M. H. Mazhar and M. Z. Shafiq, “Real-time video quality of experience
monitoring for https and quic,” in IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications, 2018.

[9] M. Seufert, P. Casas, N. Wehner, L. Gang, and K. Li, “Stream-
based Machine Learning for Real-time QoE Analysis of Encrypted
Video Streaming Traffic,” in 3rd International Workshop on Quality of
Experience Management, 2019.

[10] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T. Zinner, and P. Tran-Gia,
“Quantification of YouTube QoE via Crowdsourcing,” in Proceedings
of the International Workshop on Multimedia Quality of Experience -
Modeling, Evaluation, and Directions (MQoE), 2011.

[11] R. Schatz, T. Hoßfeld, and P. Casas, “Passive YouTube QoE Monitoring
for ISPs.” in IMIS, 2012, pp. 358–364.

[12] P. Ameigeiras, A. Azcona-Rivas, J. Navarro-Ortiz, J. J. Ramos-Munoz,
and J. M. Lopez-Soler, “A Simple Model for Predicting the Number
and Duration of Rebuffering Events for YouTube Flows,” IEEE Com-
munications Letters, vol. 16, no. 2, pp. 278–280, 2012.

[13] M. Eckert, T. M. Knoll, and F. Schlegel, “Advanced MOS Calculation
for Network Based QoE Estimation of TCP Streamed Video Services,”
in Proceedings of the 7th International Conference on Signal Processing
and Communication Systems (ICSPCS), 2013.

[14] P. Szilágyi and C. Vulkán, “Network side Lightweight and Scalable
YouTube QoE Estimation,” in Proceedings of the IEEE International
Conference on Communications (ICC), 2015.

[15] International Telecommunication Union, “ITU-T Recommendation
P.1203: Parametric Bitstream-based Quality Assessment of Progressive
Download and Adaptive Audiovisual Streaming Services over Reliable
Transport,” 2016. [Online]. Available: {https://www.itu.int/rec/T-REC-P.
1203/en}

[16] V. Krishnamoorthi, N. Carlsson, E. Halepovic, and E. Petajan,
“BUFFEST: Predicting buffer conditions and real-time requirements of
HTTP (S) adaptive streaming clients,” in Proceedings of the 8th ACM
on Multimedia Systems Conference. ACM, 2017, pp. 76–87.

[17] Sandvine, “Industry White Paper: Video Quality of Experience:
Requirements and Considerations for Meaningful Insight,” Tech. Rep.,
2016. [Online]. Available: https://www.sandvine.com/hubfs/downloads/
archive/whitepaper-video-quality-of-experience.pdf

[18] R. K. Mok, E. W. Chan, X. Luo, and R. K. Chang, “Inferring the QoE
of HTTP video streaming from user-viewing activities,” in Proceedings
of the first ACM SIGCOMM workshop on Measurements up the stack.
ACM, 2011, pp. 31–36.

[19] T. Yue, H. Wang, and S. Cheng, “Learning from users: a data-driven
method of QoE evaluation for Internet video,” Multimedia Tools and
Applications, pp. 1–32, 2018.

[20] I. Orsolic, D. Pevec, M. Suznjevic, and L. Skorin-Kapov, “A Machine
Learning Approach to Classifying YouTube QoE based on Encrypted
Network Traffic,” Multimedia Tools and Applications, vol. 76, no. 21,
pp. 22 267–22 301, 2017.

[21] G. Dimopoulos, I. Leontiadis, P. Barlet-Ros, and K. Papagiannaki,
“Measuring video QoE from encrypted traffic,” in Proceedings of the
2016 Internet Measurement Conference. ACM, 2016, pp. 513–526.

[22] L. R. Rabiner, “A tutorial on hidden Markov models and selected
applications in speech recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

[23] R. E. Bellman, “Dynamic Programming,” Princeton University Press,
1957.

[24] M. R. Garey and D. S. Johnson, Computers and intractability. Freeman
New York, 2002, vol. 29.

8

