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Abstract—Due to biased assumptions on the underlying ordinal
rating scale in subjective Quality of Experience (QoE) studies,
Mean Opinion Score (MOS)-based evaluations provide results,
which are hard to interpret and can be little meaningful.
This paper proposes to consider the full QoE distribution for
evaluating and reporting QoE results instead of only using MOS
values. The QoE distribution can be represented in a concise way
by using the parameters of a multinomial distribution without
losing any information about the underlying QoE ratings, and
even keeps backward compatibility with previous, biased MOS-
based results. Considering QoE results as a realization of a
multinomial distribution allows to rely on a well-established the-
oretical background, which enables meaningful evaluations also
for ordinal rating scales. Exemplary evaluations are described in
this work, which demonstrate these fundamental advantages of
considering QoE distributions over MOS-based evaluations.

                                                                         

I. INTRODUCTION

The concept of Quality of Experience (QoE) [1] constitutes

a major research field, which aims to understand and improve

the subjective perception of the quality of a networked service

as a whole by the end user. It is widely recognized that

the QoE is influenced by different QoE factors, which are

characteristics of the user, system, service, application, or

context [1]. In order to identify these factors and quantify their

influence on the QoE of a service, extensive subjective studies

have to be conducted. In these studies, users typically assess

their experience with a given stimulus on a rating scale, such

as the Absolute Category Rating (ACR) scale [2], which will

be considered in the remainder of this work. The ACR scale

allows to quantify the user experience as one of five values

ranging from 1 (bad) to 5 (excellent). Then, the numerical

values of the ratings are typically aggregated by using the

arithmetic mean to obtain the Mean Opinion Score (MOS),

which has attracted a very high popularity and is widely used

as the de facto QoE metric in both industry and academia.

However, the major pitfall of this kind of QoE evaluations

is the underlying assumption about the mapping of QoE to

the rating scale. When conducting a subjective user study,

user ratings are actually collected on a categorical scale,

hence the name “Absolute Category Rating”, which allows

to indicate the subjective QoE as one of five categories,

namely, “bad”, “poor”, “fair”, “good”, or “excellent”. As the

different categories can be sorted according to the QoE, i.e.,

“bad” < “poor” < “fair” < “good” < “excellent”, this rating

scale also represents an ordinal scale. Although the numerical

values associated to the categories might suggest so, however,

the rating scale is not an interval scale as the elements of

the scale cannot be included into arithmetic operations. The

reason is that, while some differences might look numerically

equidistant, the corresponding differences between categories

might not be actually equal. In particular for QoE ratings, it is

unclear and highly questionable if, e.g., the difference in user

experience between “bad” (1) and “poor” (2) is the same as

between “fair” (3) and “good” (4).

Given that the rating scale of a subjective user study is not

an interval scale, averaging ratings by using the arithmetic

mean is not an interpretable quantity. As a measure of central

tendency, ordinal scales only allow to compute the mode, i.e.,

the category with the highest number of ratings, as well as

the median, which is the 50-percentile of the ratings, i.e., the

category, for which 50% of the ratings are lower or equal. If

the ratings of a subjective study are nevertheless aggregated in

terms of arithmetic mean to a MOS, the implicit assumption

is introduced that the differences between numerical values

represent the actual differences in QoE. This would imply that

all the differences in experience between adjacent QoE rating

categories are equal, which is a substantial bias and can lead

to systematic errors, e.g., [3].

When quantifying QoE differences or QoE improvements of

different stimuli, often differences of MOS values are reported,

e.g., the MOS value of stimulus B is by x larger than the

MOS value of stimulus A. However, these differences between

MOS values face the same issues as differences between the

rating categories, and are not a meaningful metric. Other

works continue to quantify QoE improvements also in terms of

percentages of MOS, e.g., stimulus B has a MOS improvement

of x% over stimulus A. However, such operation would be

only interpretable on a ratio scale, which requires an absolute

zero, and thereby, allows to compute multiplications and ratios

of quantities. Still, an absolute zero for experience is hard to

find, and the definition of ratios between categories has strange

effects, such that, for example, a MOS increase of 100% is an

increase of one category when having “bad” (1) as baseline,

but an increase of two categories when considering “poor”

(2) as baseline. Consequently, this would allow for highly

questionable interpretations that, for example, a “good” (4)

experience is two times better than “poor” (2) experience, or

four times better than “bad” (1) experience. Therefore, the

expression of QoE differences in terms of MOS ratios is also

not a meaningful quantity.                                    

                                                                                                                                              



This paper proposes to consider the full QoE distribution

over the ordinal rating categories for evaluating and reporting

QoE results instead of using MOS-based metrics. The QoE

distribution can be represented in a concise way by using

the parameters of a multinomial distribution without losing

any information about the underlying QoE ratings, and even

keeps backward compatibility with previous, biased MOS-

based results. Considering QoE results as a realization of a

multinomial distribution allows to rely on a well-established

theoretical background, which has various options for more

meaningful evaluations. These advantages over MOS-based

evaluations are outlined in this work with the help of examples.

Therefore, the remainder of the paper is organized as fol-

lows. Section II describes related work on QoE and MOS fun-

damentals. Section III introduces the theoretical background

on multinomial distributions, from which QoE distributions

form a small subset. Applications for QoE evaluations based

on QoE distributions are described in Section IV, showing

their advantages over MOS-based evaluations. Finally, Sec-

tion V concludes this paper.

II. RELATED WORK

A comprehensive definition of QoE was given in [1] in-

cluding influence factors of QoE, such as human, system,

and context influence factors. However, it was not specified

how QoE assessment should be conducted. After a variety of

practical implementations in a multitude of studies, cf., e.g.,

[4]–[6], an overview document was provided in [7], which

links to several recommendations for QoE assessment for

particular services, such as web browsing [8] or multimedia

applications [2]. Here, [7] names MOS as a QoE metric,

although it recognizes that test methods can be classified

according the applied scaling method and scale level, i.e.,

nominal, ordinal, interval, and ratio. However, the linked

documents might lack this awareness, such as [2], which

recommends the usage of the 5-point ACR scale, from which

MOS, confidence intervals, and standard deviations shall be

computed. However, as the ACR scale is an ordinal scale,

but not an interval scale, these metrics are not interpretable

without introducing substantial bias. [9] compared the classical

assessment of user satisfaction based on MOS with the notion

of acceptability of service quality. Evaluation methods are

reviewed and differences between both perspectives on QoE

assessment are discussed.

Substantial contributions towards improving QoE assess-

ment beyond the MOS were started in [10], which emphasizes

that MOS values lose considerable amount of information

about the QoE ratings. To overcome this issue, the authors

suggested to additionally consider the standard deviation of

opinion scores (SOS). However, SOS values face the same

substantial bias as MOS, as it is implicitly assumed that the

rating scale of user experience is an interval scale. The work

in [10] was extended in [11], in which quantiles, entropy,

and probability distribution were added to a recommended set

of QoE descriptors. In contrast to MOS and SOS, the newly

added descriptors do not face the issues that were previously

discussed. Additionally, [11] postulated the idea that individual

ratings for a single test condition can be described as realiza-

tions of a binomial distribution. [12] continued the previous

works and elaborated more on the value of quantiles and

acceptance thresholds, such as percentage of Poor-or-Worse

(%PoW) and Good-or-Better (%GoB). [13] modeled an indi-

vidual user rating with a truncated normal distribution. Most

recently, the concept of QoE was extended to QoE fairness

[14], i.e., the notion that users in a shared system should

experience a fair QoE distribution. The proposed fairness

metric is based on the standard deviation of individual QoE

ratings, which is again the SOS. Thus, the fairness metric also

inherits the problems of SOS, which were described above.

This work will avoid this pitfall of QoE assessment by

considering that all ratings of a test condition follow a multi-

nomial distribution on the ordinal rating categories, which

also takes a more holistic perspective of the subjective user

study. Consequently, it also allows to obtain all the previously

proposed metrics, which is shortly discussed. Additionally, this

theoretical framework provides several advantages over MOS-

based QoE evaluations, such as simple testing and quantifica-

tion of QoE differences between two QoE distributions.

III. THEORETICAL BACKGROUND ON QOE

DISTRIBUTIONS

This section introduces QoE distributions as a subset of

multinomial distributions and shortly recaps the theoretical

background. Afterwards, it is outlined how previously used

MOS-based evaluations could be obtained from QoE distribu-

tions. However, except for some backward compatibility, this

would not be recommended due to the inherent bias when

applied to QoE ratings on ordinal scales.

A. Multinomial Distributions

Multinomial distributions describe probabilities in an ex-

periment where n balls are drawn with replacement from a

bag with balls of k different colors. The probability that a

ball of color i is drawn is pi with
∑k

i=1 pi = 1. The random

variables Xi count how often a ball of color i is drawn. Then,

the probability mass function of the multinomial distribution

is given as:

P (X1 = x1, X2 = x2, . . . , Xk = xk) =

=

{
n!

x1!·x2!·...·xk!
· px1

1 · px2
2 · . . . · pxk

k , when
∑k

i=1 xi = n,

0, otherwise.

(1)

Thus, Equation 1 describes the joint probability for all i =
1, . . . , k that in an experiment, in which n balls are drawn

with replacement, Xi = xi balls are drawn with color i.

B. QoE Distributions

This experiment, which constitutes multinomial distribu-

tions, can be easily mapped to QoE studies, in which n partici-

pants rate the QoE of a stimulus. There are k categories on the

rating scale, and the numbers Xi count the participants, which

                                                                                                                                              



rate category i. The parameters pi describe the underlying

and hidden probability that the presented stimulus gives an

experience in category i. In case of the 5-point ACR scale,

which is considered in the remainder of this work, k = 5
and i represents the numerical value assigned to the rating

categories, i.e., “bad” (i = 1), “poor” (i = 2), “fair” (i = 3),

“good” (i = 4), and “excellent” (i = 5). Thus, the result

of a QoE study x = (x1, x2, x3, x4, x5) is a realization of

a QoE distribution, which comprise a subset of multinomial

distributions.

The vector notation x is a very compact and concise way

to report the results of a QoE study, and allows to fully

make use of the advantages of considering QoE distributions.

From this representation, also the underlying parameters of

the QoE distribution pi can be estimated using a maximum

likelihood approach. Thereby, the estimated parameters p̂i can

be obtained as:

p̂i =
xi

n
=

xi∑5
j=1 xj

, i = 1, . . . , 5. (2)

Following Equation 2, the outcome of a QoE study can

also be reported with another compact representation p̂ =
(p̂1, p̂2, p̂3, p̂4, p̂5, n), from which one of the p̂i could be

omitted as
∑5

i=1 p̂i = 1. Obviously both representations x
and p̂ can be easily converted into the other representation.

The compact representations allow to compute quantiles

easily, which are a meaningful metric for ordinal scales. Let

ĉ = (ĉ1, ĉ2, ĉ3, ĉ4, ĉ5, n) be the vector containing cumulative

probabilities computed from p̂, i.e., ĉi =
∑i

j=1 p̂j . Note that

ĉ is also a representation equivalent to x and p̂. Then, the

q-quantile Qq is the category i given by:

Qq = min{i|ĉi ≥ q}. (3)

Moreover, it is possible to directly compute a more intuitive

percentage of Poor-or-Worse (%PoW) and Good-or-Better

(%GoB) , which is different from the previous definition based

on the E-model [12]. This means, it is possible to literally

obtain the %PoW as the percentage of users who rated the

category “poor” (2) or worse, i.e., “bad” (1), and also the

%GoB as the percentage of users who rated the category

“good” (4) or better, i.e., “excellent” (5):

%PoW = ĉ2 · 100%, %GoB = (1− ĉ3) · 100%. (4)

C. Backward Compatibility towards MOS-based Evaluations

Although MOS-based evaluations face the issues described

above, for the sake of backward compatibility, MOS-based

QoE metrics can be computed from QoE results expressed as

QoE distributions. In the following, these computations are

outlined briefly.

First, the sample mean of ratings, or MOS value, can be

obtained from x or p̂ as follows:

MOS =

∑5
i=1 i · xi∑5
i=1 xi

=

∑5
i=1 i · xi

n
=

5∑
i=1

i · p̂i. (5)

TABLE I: Exemplary QoE distributions from conducted study.

QoE Distribution MOS SOS CI0.95MOS F

S1 = (48, 20, 4, 3, 0) =
1.49 0.78 [1.32; 1.67] 0.61

(0.64, 0.27, 0.05, 0.04, 0.00, 75)

S2 = (11, 25, 18, 7, 1) =
2.39 0.96 [2.15; 2.63] 0.52

(0.18, 0.40, 0.29, 0.11, 0.02, 62)

S3 = (13, 15, 16, 21, 3) =
2.79 1.20 [2.51; 3.08] 0.40

(0.19, 0.22, 0.24, 0.31, 0.04, 68)

The sample standard deviation of ratings, or SOS value [10],

is given by:

SOS =

√
xi · (i−MOS)2

(
∑5

i=1 xi)− 1
=

√
n

n− 1
· p̂i · (i−MOS)2.

(6)

The confidence interval (CI) of the MOS for a confidence level

of 1−α can be computed for large enough n (cf. central limit

theorem) using the (1 − α
2 )-quantile of the standard normal

distribution z(1−α
2 ):

CI1−α
MOS =

[
MOS − z(1−α

2 )
SOS√

n
;MOS + z(1−α

2 )
SOS√

n

]
.

(7)

Note that for small sample sizes, the standard normal dis-

tribution should be replaced by Student’s t distribution. By

substituting a desired CI width d in the error margin d
2 =

z(1−α
2 )

SOS√
n

of Equation 7 and solving for n, also required

sample sizes n can be easily obtained. Finally, also the QoE

fairness index F [14] can be obtained as:

F = 1− SOS

2
. (8)

Given the inherent bias of these MOS-based evaluations, in

the following, improved QoE evaluations will be presented,

which leverage the advantages of QoE distributions.

IV. APPLICATIONS OF QOE DISTRIBUTIONS

This section presents applications of QoE distributions,

which give more meaningful QoE evaluations based on the

ordinal rating scales of QoE studies. To demonstrate the

improved evaluations, the ratings for three stimuli S1, S2,

and S3 are considered, which have been collected in a past

crowdsourcing QoE study and have been filtered to exclude

unreliable ratings [15]. These exemplary QoE distributions are

described in Table I. S1 has a significantly lower MOS than

the other stimuli, but the highest fairness score. S3 has a higher

MOS than S2, but the 95% CIs overlap, and the fairness score

is lower for S2. The QoE distributions of S1 (black), S2 (dark

brown) and S3 (light brown) are also visualized in Figure 1

as PDFs (p̂, bars) and CDFs (ĉ, dashed lines).

A. Confidence Intervals and Sample Size

Equation 2 described the maximum likelihood estimation of

each of the parameters pi of the QoE distribution. To obtain

confidence intervals, a binomial confidence interval can be

                                                                                                                                              



Fig. 1: Exemplary QoE distributions from conducted study.

computed for each parameter p̂i individually for large enough

n (cf. central limit theorem):

CI1−α
p̂i

=

[
p̂i − z(1−α

2 )

√
p̂i(1−p̂i)

n ; p̂i + z(1−α
2 )

√
p̂i(1−p̂i)

n

]
.

(9)

This results in five confidence intervals for each

parameter pi of the QoE distribution, such as CI0.95S1
=

([0.53; 0.75], [0.17; 0.37], [0.00; 0.10], [0.00; 0.10], [0.00; 0.00]),
CI0.95S2

= ([0.08; 0.27], [0.28; 0.52], [0.18; 0.40], [0.03; 0.19],
[0.00; 0.05]) and CI0.95S3

= ([0.10; 0.28], [0.12; 0.32],
[0.13; 0.34], [0.20; 0.42], [0.00; 0.09]). Some CIs for the same

parameter do not overlap, which indicates that there is

significant difference for this parameter on a significance

level of 5%, e.g., for p1 between S1 and the other two QoE

distributions, or for p4 between S2 and S3. Again, Equation 9

also allows to compute sample sizes nSi for a desired width

di of CIp̂i
, i.e., CIp̂i

=
[
p̂i − di

2 ; p̂i +
di

2

]
:

nSi
=

4 · z2(1−α
2 ) · p̂i(1− p̂i)

d2i
. (10)

After the sample sizes nSi
have been computed with a desired

width di for all parameters p̂i, the maximum sample size nS =
maxi nSi

should be used as the sample size of the entire QoE

study. For the considered stimuli, a desired width of d = 0.1
for all CIs would result in nS = 355 for S1, nS = 370 for

S2, and nS = 328 for S3. Note that simultaneous CIs can be

computed following the method presented in [16].

B. Comparison of QoE Results

For comparing different QoE distributions, the concept

of stochastic dominance [17] from decision theory can be

utilized and transferred. Stochastic dominance describes a

partial ordering between random variables. It can indicate if a

gamble, i.e., a probability distribution over possible outcomes,

is dominant and should be preferred. For QoE distributions,

this means, that, if ratings (outcomes) are obtained from a su-

perior QoE distribution, the corresponding stimulus (gamble)

should be preferred. Different orders of dominance exist, but

as it is a partial ordering, there might not always be a dominant

distribution in comparisons of QoE results.

A QoE distribution B with cumulative representation ĉB

has a first-order stochastic dominance (FSD) over a QoE

distribution A with ĉA, if:

ĉBi ≤ ĉAi , ∀i = 1, . . . , 5. (11)

Intuitively, this FSD of B indicates that the probability of

having a rating of at least category i, i.e., 1 − ĉBi−1 is higher

than the corresponding probability for A, i.e., 1 − ĉAi−1, for

all categories. A weaker form of dominance is second-order

stochastic dominance. QoE distribution B has a second-order

stochastic dominance (SSD) over a QoE distribution A, if:

j∑
i=1

ĉBi ≤
j∑

i=1

ĉAi , ∀j = 1, . . . , 5. (12)

The intuitive explanation of SSD is that overall differences in

probability mass between B and A are shifted more towards

categories with higher QoE, i.e.,
∑j

i=1 ĉ
A
i − ĉBi ≥ 0 for all

j. Obviously, FSD implies SSD. Note that the definition of

SSD in this work avoids the typical definition via integrals,

cf. [17], as integrals are not meaningful for ordinal scales. For

the exemplary QoE distributions, S2 and S3 show FSD over

S1, while for S2 and S3, neither FSD nor SSD can be observed

in any direction.

C. Testing for Significant QoE Differences

After two QoE distributions have been compared, it has to

be tested if there is a significant difference between them.

The null hypothesis is that two realizations were drawn from

the same QoE distributions. The p-value is the probability of

facing the observed or a more extreme realization assuming

that the null hypothesis was true. If the p-value is below the

significance level α, which is selected by the researcher, the

null hypothesis is rejected, and thus, the two QoE distributions

are considered as being significantly different.

While many non-parametric statistical tests exist, which

compare probability distributions, the Mann-Whitney U test

should be considered for ordinal data [18]. It computes the U
statistics for both QoE distributions A and B from the ranks of

the ratings, considering the number of tied ranks ti = xA
i +xB

i :

U =
5∑

i=1

⎛
⎝xi · (1 +

i−1∑
j=1

tj +
ti − 1

2
)

⎞
⎠− n(n+ 1)

2
. (13)

The smaller of both U values is considered and its

significance can be looked up in dedicated tables. For large

samples, the standardized value zU = U−μU

σU
with mean

μU = nA·nB

2 and tie-corrected standard deviation σU =√
nAnB

12

(
(nA + nB + 1)−∑5

i=1
ti3−ti

(nA+nB)(nA+nB−1)

)
approximately follows a standard normal distribution, and

thus, can be compared to the critical values ±z(1−α
2 ). In the

considered QoE study, the p-value for the Mann-Whitney

U test between S2 and S3 is 0.04 (two-tailed), i.e., the

null hypothesis that both QoE distributions are equal has

to be rejected on a significance level of α = 5%. The

p-values between S1 and S2 and between S1 and S3 are

much smaller (< 10−7), thereby, also indicating significant

differences. Note that the Kruskal-Wallis test, which is the

one-way analysis of variance (ANOVA) on ranks, extends the

Mann-Whitney U test to compare multiple QoE distributions.

                                                                                                                                              



D. Quantification of QoE Differences

To quantify differences between two QoE distributions,

there exist a plethora of statistical distances. Simple examples

include the total variation distance δ(A,B) = maxi |p̂Ai −
p̂Bi |, i = 1, . . . , 5, which is the largest difference between the

probabilities that both distributions assign to the same cate-

gory, or the Kolmogorov-Smirnov test statistic DKS(A,B) =
maxi |ĉAi − ĉBi |, i = 1, . . . , 5, which is the maximum vertical

distance between the corresponding cumulative probability

distributions. The widely used Kullback-Leibler divergence

DKL, however, is not recommended as it is not a metric.

Moreover, if one of the categories was never rated by any

users, i.e., its probability is zero, DKL and its derived sym-

metric versions become ∞, e.g., in S1 for “excellent” (5).

A more robust and intuitive distance metric is given by the

Wasserstein metric, which is also called earth mover’s distance

DEM [19]. It indicates the minimal amount of probability

mass that has to be moved to change the shape and make

one probability distribution look exactly the same as the

other probability distribution. Obviously, the more different

the distributions are, the more probability mass has to be

moved, hence, DEM will be larger. A simple formula exists

to compute DEM between QoE distributions A and B:

DEM (A,B) =

4∑
j=1

|ĉAj − ĉBj |. (14)

Note that DEM indicates the absolute value of probability

mass, which has to be shifted. However, the probability mass

is counted for each of the intermediate categories, if it flows

between categories that are not adjacent. Thus, it can only

be interpreted as the shifted probability mass weighted by the

number of categories that it has to be shifted. For example,

considering A = (0, 0, 0.1, 0, 0.9), B = (0, 0, 0, 0.2, 0.8), and

I5 = (0, 0, 0, 0, 1), both DEM (A, I5) = DEM (B, I5) = 0.2.

However, in the case of A, it means that a probability mass of

0.1 has to be shifted by two categories, while, in case of B, a

probability mass of 0.2 has to be shifted by one category. Note

once again that it has to be carefully avoided to interpret these

numbers in terms of numerical differences or ratios between

QoE rating categories, which is not possible for ordinal rating

scales and would again introduce the inherent bias discussed

above. This means, for example, that although the above dis-

cussed shifts from A to I5 (0.1 for two categories) and from B
to I5 (0.2 for one category) are numerically equal, they cannot

be considered equal in terms of QoE improvement, which is

also indicated by the fact that DEM (A,B) = 0.2 �= 0.

For two arbitrary QoE distributions A and B,

maxA,B DEM (A,B) = 4, which is reached for the

distance between I1 = (1, 0, 0, 0, 0) and I5 = (0, 0, 0, 0, 1),
i.e., a probability mass of 1 has to be shifted by four

categories. Thus, it is possible to normalize the DEM to the

unit interval [0, 1] by DEM,norm(A,B) = 1
4DEM (A,B).

For the considered QoE study, it can again be seen from

DEM,norm(S1, S2) = 0.22 and DEM,norm(S1, S3) = 0.33
that S1 is not very close to S2 and S3. In contrast,

DEM,norm(S2, S3) = 0.11, which confirms that S2 and

S3 are rather similar. DEM,norm also allows to construct a

QoE deficit index QDI of a QoE distribution A. For this,

QDI is defined as the normalized distance to the ideal QoE

distribution I5 = (0, 0, 0, 0, 1), for which all participants rated

an “excellent” (5) experience:

QDI(A) = DEM,norm(A, I5) =
1

4

4∑
j=1

ĉAj . (15)

QDI is in the unit interval, i.e., a QoE deficit index of 0

indicates an ideal QoE distribution (A = I5), and a QDI
of 1 means that A has the worst possible QoE distribution

I1 = (1, 0, 0, 0, 0). Also, a corresponding QoE level index

QLI of a QoE distribution A can be derived as QLI(A) =
DEM,norm(A, I1) = 1 − QDI(A). As QDI and QLI are

based on DEM , the same limitations apply in terms of

interpretation. Here again, consider the example discussed for

DEM above, which equally applies to QDI . Note that there

is also a mathematical relation to MOS via MOS(A) =
5 − DEM (A, I5) = 5 − 4 · QDI(A) = 1 + 4 · QLI(A). It

allows to define MOS based on a distance metric between

QoE distributions over ordinal categories, rather than relying

on a biased cast of ordinal rating data to an interval scale.

Thus, it allows for an unbiased interpretation of MOS in terms

of QoE probability masses, which are shifted and weighted

by the number of shifted rating categories. Consequently, the

ranking of the stimuli S1, S2, and S3 in terms of QLI with

QLI(S1) = 0.12 < QLI(S2) = 0.35 < QLI(S3) = 0.45 is

equivalent to the ranking based on MOS. The ranking and

the QLI scores indicate that the highest QoE deficit is in S1,

in terms of the number of ratings and/or number of categories

that would have to be shifted to reach an ideal QoE.

Next, the net flow of probability mass NFi(A → B)i from

each category i of A towards category i + 1 of B can be

obtained from the terms of the sum in Equation 14:

NFi(A → B) = ĉAi − ĉBi , i = 1, . . . , 4. (16)

Here, a positive NFi(A → B) means that probability mass

of A flows from category i towards i + 1 in B, i.e., towards

higher QoE. In contrast, if NFi(A → B) is negative, A’s

probability mass flows from category i + 1 to i in B, i.e.,

towards lower QoE. Note that, in contrast to DEM , NFi is

signed and directed, such that NFi(A → B) = −NFi(B →
A). This concept also allows to count the number of categories

with a positive or negative net flow from A to B and vice

versa. At the same time, NFi(A → B) also quantifies the net

probability mass, which flows between the categories. Confer

with Equation 11, which indicates FSD when all NFi(A →
B) are positive. When all signed net flows are added, the

resulting number indicates the net balance, i.e., the overall

directed net probability flow from A to B:

NB(A → B) =

4∑
i=1

NFi(A → B). (17)

                                                                                                                                              



Note the relation to SSD in Equation 12, which follows if

all partial sums of NB(A → B) are positive. Generally

speaking, NB(A → B) is a signed number that for positive

values indicates a shift of probability mass towards higher

QoE categories, such as in the considered example, in which

NB(S1 → S2) = 0.89 and NB(S2 → S3) = 0.41 > 0.

Again, it is weighted by the number of categories and, as

differently signed shifts of probability mass have been can-

celed out, it should not be interpreted in terms of quantitative

differences or ratios between QoE rating categories, which

cannot be obtained from ordinal scales.

E. Metric for QoE Fairness

Finally, also the QoE fairness of a QoE distribution can be

assessed. For any given QoE distribution A, the closest, per-

fectly fair QoE distribution ImA
is the monolithic distribution,

for which all participants have rated the modal QoE category

of A, i.e., the category of A with the highest number of

participants. The fair QoE distribution Im, which has category

m ∈ {1, . . . , 5} as mode, can be described by pm = 1 and

pi = 0, ∀i �= m. Consequently, a simple QoE fairness metric

Fa can be described by the level of agreement on the modal

category normalized to the unit interval:

Fa(A) =
5

4
· (p̂mA

− 1

5
) =

5

4
· (max

i
p̂i − 1

5
). (18)

The normalization takes into account that, due to the five

rating categories, the minimum mode of any QoE distribution

is 1
5 . A fairness score of 1 indicates that all participants have

rated the same category, while a fairness score of 0 indicates

a uniform rating distribution. In the considered example,

the QoE distributions reach the following fairness scores:

Fa(S1) = 0.55, Fa(S2) = 0.25, and Fa(S3) = 0.14.

This concept of fairness towards a monolithic distribution

also allows to define a more advanced QoE fairness score

Fd, which is based on the DEM distance between A and its

corresponding ImA
. Using maxA DEM (A, ImA

) = 7
3 , which

is the maximum distance between any QoE distribution A
and its closest, perfectly fair QoE distribution ImA

, the QoE

fairness score can be normalized to the unit interval:

Fd(A) = 1− DEM (A, ImA
)

7
3

= 1− 3 ·DEM (A, ImA
)

7
. (19)

Here again, a fairness score of 1 indicates perfect fairness

of the QoE ratings, i.e., all participants have rated the same

category, which is the mode of A. In contrast, a fairness score

of 0 indicates the highest unfairness in the QoE ratings in terms

of DEM . This is achieved, e.g., for A = ( 13 ,
1
3 −ε, 0, 0, 1

3 +ε)
with a small ε > 0, which has mode m = 5. The distance to

the corresponding I5 = (0, 0, 0, 0, 1) is DEM (A, I5) =
7
3−3ε,

which approaches the maximum value. In the considered QoE

study, Fd(S1) = 0.79, Fd(S2) = 0.68, and Fd(S3) = 0.45,

i.e., the fairness decreases from S1 to S3, with S1 being closest

to a monolithic QoE distribution.

V. CONCLUSION

This work described the inherent bias in many MOS-

based evaluations of QoE studies, which is caused by too

simplistic assumptions about the mapping of QoE to the

rating scale. Typically QoE studies use only ordinal rating

scales, such as the 5-point ACR scale, for which means,

differences, and ratios between categorical values are not

meaningful. To overcome this issue, this work considered

QoE distributions, which can be based on the well-established

theoretical framework of multinomial distributions. Exemplary

evaluations based on QoE distributions were described, which

give meaningful results also for ordinal rating scales, and

thus show fundamental advantages over biased MOS-based

evaluations. In future works, the concept of QoE distributions

has to be extended towards even more applications, e.g., how

QoE models can be formulated based on QoE distributions.
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[1] P. Le Callet, S. Möller, and A. Perkis (eds), “Qualinet White Paper
on Definitions of Quality of Experience,” Lausanne, Switzerland, Tech.
Rep., 2013, version 1.2.

[2] International Telecommunication Union, “ITU-T Recommendation
P.910: Subjective Video Quality Assessment Methods for Multimedia
Applications,” 2008.

[3] T. M. Liddell and J. K. Kruschke, “Analyzing Ordinal Data with Metric
Models: What Could Possibly Go Wrong?” Journal of Experimental
Social Psychology, vol. 79, 2018.

[4] M. Alreshoodi and J. Woods, “Survey on QoE\QoS Correlation Models
for Multimedia Services,” International Journal of Distributed and
Parallel Systems, vol. 4, no. 3, 2013.

[5] M.-N. Garcia, F. De Simone, S. Tavakoli, N. Staelens, S. Egger,
K. Brunnström, and A. Raake, “Quality of Experience and HTTP
Adaptive Streaming: A Review of Subjective Studies,” in QoMEX, 2014.

[6] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, 2015.

[7] International Telecommunication Union, “ITU-T Recommendation
G.1011: Reference Guide to Quality of Experience Assessment Method-
ologies,” 2015.

[8] ——, “ITU-T Recommendation P.1501: Subjective Testing Methodol-
ogy for Web Browsing,” 2013.

[9] R. Schatz, S. Egger, and A. Platzer, “Poor, Good enough or Even Better?
Bridging the Gap between Acceptability and QoE of Mobile Broadband
Data Services,” in ICC, 2011.

[10] T. Hoßfeld, R. Schatz, and S. Egger, “SOS: The MOS is not enough!”
in QoMEX, 2011.

[11] T. Hoßfeld, P. E. Heegaard, and M. Varela, “QoE beyond the MOS:
Added Value using Quantiles and Distributions,” in QoMEX, 2015.

[12] T. Hoßfeld, P. E. Heegaard, M. Varela, and S. Möller, “QoE beyond the
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