
I See What you See: Real Time Prediction of Video
!ality from Encrypted Streaming Traffic

Sarah Wassermann∗, Michael Seufert†, Pedro Casas∗, Li Gang⋄, Kuang Li⋄

∗ AIT Austrian Institute of Technology, † University of Würzburg, ⋄ Huawei Technologies

ABSTRACT

We address the problem of real-time QoE monitoring of HAS,
from the ISP perspective, focusing in particular on video-
resolution analysis. Given the wide adoption of end-to-end
encryption, we resort to machine-learning models to pre-
dict different video resolution levels in a fine-grained scale,
ranging from 144p to 1080p resolution, using as input only
packet-level data. The proposed measurement system per-
forms predictions in real time, during the course of an ongo-
ing video-streaming session, with a time granularity as small
as one second. We consider the particular case of YouTube
video streaming. Empirical evaluations on a large and het-
erogeneous corpus of YouTube measurements demonstrate
that the proposed system can predict video resolution with
very high accuracy, and in real time. Different from state of
the art, the prediction task is not bound to coarse-grained
video quality classes and does not require chunk-detection
approaches for feature extraction.

CCS CONCEPTS

• Networks→ Network measurement; Network moni-

toring;Network performance analysis; •Computingmethod-

ologies→ Supervised learning.

KEYWORDS

Network Monitoring; QoE; HTTP Adaptive Video Streaming; En-

crypted Traffic.

ACM Reference Format:

Sarah Wassermann∗, Michael Seufert†, Pedro Casas∗, Li Gang⋄,

Kuang Li⋄. 2019. I See What you See: Real Time Prediction of Video

This is the author's version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in:
Internet-QoE’19, October 21, 2019, Los Cabos, Mexico

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6927-5

https://doi.org/10.1145/3349611.3355549

Quality from Encrypted Streaming Traffic. In 4th Internet-QoEWork-

shop: QoE-based Analysis and Management of Data Communication

Networks (Internet-QoE’19), October 21, 2019, Los Cabos, Mexico.

ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3349611.

3355549

1 INTRODUCTION

Video streaming is one of the key applications on the Internet.
To satisfy end users and avoid customer churn, Internet Ser-
vice Providers (ISPs) strive to deliver a high video-streaming
Quality of Experience (QoE). In the past, video streaming
mostly suffered from re-buffering events and initial play-
back delays [3, 15]. Such degradations have been partially
mitigated by adapting the video bitrate to the network con-
ditions, using the so-called HTTP Adaptive Streaming (HAS)
protocols. For HAS, the video content has to be available
in multiple bitrates, i.e., quality levels, and split into small
segments each containing a few seconds of playtime. The
adaptation logic on the client side requests the next part
of the video in an appropriate bitrate, such that playback
delay is minimized, stalling is avoided, and the quality level
is maximized to best utilize the available bandwidth.
To change the video bitrate, also the visual quality level

of the streamed video has to be altered, e.g., in terms of
resolution, frame rate, or compression, which introduces
an additional impact on QoE. As a consequence, ISPs are
highly interested in solutions able to detect events when the
played out quality level drops as soon as they happen, to
take appropriate countermeasures. The trend towards end-
to-end encryption (e.g., HTTPS), however, has significantly
reduced the visibility of network operators on the traffic
of their customers, making the monitoring process more
challenging and cumbersome. It is no longer possible to rely
on Deep Packet Inspection (DPI) based approaches to analyze
the video data contained in each packet to reconstruct the
streaming process and the video buffer [1] or to intercept
and analyze segment requests.
In this paper, we present a machine-learning-based sys-

tem to predict the video resolution in YouTube with very
high accuracy, and in real time. In particular, and different
from previous work, it focuses on the fine-grained predic-
tion of the resolution. To do so, our approach analyzes on-
going streaming sessions using fine-grained time slots of

1

one-second length, computing multiple lightweight, statisti-
cal features from the video traffic in a stream-based fashion.
Besides per-time-slot features, our approach additionally
computes features for different temporal aggregations of
past slots, including a short-term memory capturing the last
T slots, as well as a long-term memory, aggregating all time
slots since the start of the video session.
While there have been already multiple proposals pre-

sented in the past to deal with this prediction problem, the
contributions brought by the proposed approach as com-
pared to the state of the art are various and paramount, and
in particular from an application perspective, to enhance the
monitoring tasks of the ISP:
1 - Fine-grained, real-time operation: it predicts video
resolution in real time, during the live streaming of a video
session, using a temporal granularity as small as one sec-
ond, enabling quick anomaly detection and troubleshooting
approaches, as well as proactive traffic management.
2 - Stream-like computation,without chunk-detection

requirements: different from all previously presented pro-
posals, our methodology continuously extracts features from
the encrypted stream of packets in a stream-like, recursive
manner, using bounded - and lightweight - memory foot-
prints; this enables its execution on top of limited memory
hardware, such as set-top boxes or home routers, which are
nowadays the most preferred devices for conducting end-
customer monitoring by major vendors.
3 - Extensivemachine-learning-model benchmarking:

also different from previous work, we devote a significant
part of the study to benchmark different machine-learning
algorithms, as well as evaluating their performance using
different sets of inputs, engineered by feature selection.
4 - Empirical validation over anheterogeneousYouTube

dataset: lastly, we show that the proposed technique per-
forms accurately under a very heterogeneous set of scenarios,
by empirically testing it over a large dataset of 15,000 stream-
ing sessions of different YouTube videos. The dataset cov-
ers different access technologies (WiFi and LTE), different
transport protocols (QUIC and TCP), variable bandwidth con-
figurations, different players and devices (standard HTML
player in laptops and native YouTube app in smartphones),
as well as considering measurements at 4 different ISPs in
4 different EU countries. This is an additional delimit from
state of the art, where proposals are generally validated over
limited and less representative scenarios.

2 RELATEDWORK

Themost important results onQoE forHTTP adaptive stream-
ing (HAS) are summarized in [15]. More recent publications
also confirm the findings that stalling, initial delay, and qual-
ity adaptation are the most dominant QoE-relevant metrics.
Although adaptation incurs less severe QoE degradation than

stalling, its impact should not be neglected. Each adaptation
dimension (e.g., resolution, frame rate, quantization) has a
specific impact on the perceived quality [15]. It has been
shown that a quality switch implies a QoE degradation, and
that the QoE changes according to the adaptation direction,
even though switching down the video quality will have a
stronger negative impact on video QoE [9]. The adaptation
amplitude is the most dominant factor and a high ampli-
tude leads to a low QoE, while low amplitudes might not be
detectable [12]. Although a high frequency of quality adap-
tation will be annoying for end users [12], the actual quality
changes have little impact on QoE. Only the resulting reduc-
tion of the time on high video quality causes relevant QoE
degradation [6].
Due to the trend towards end-to-end encryption, DPI-

based approaches are no longer effective. This has moti-
vated a recent trend in QoE-based network monitoring us-
ing low-level network measurements rather than relying on
application-layer metrics. Authors in [13] evaluate machine-
learning-based architectures that estimate YouTube QoE
from features derived from packet sizes, inter-arrival times,
and throughput measurements. A similar approach is pre-
sented in [2], where authors rely on real cellular network
measurements and machine-learning models to predict typ-
ical QoE indicators for streaming services (e.g., played res-
olutions, stalling events), based on features such as round-
trip times, packet loss and chunk sizes. The authors of [16]
estimate video-quality metrics (initial delay, stalling ratio,
number of stallings, total stalling time) and user engagement
for YouTube videos watched on smartphones, relying on
machine learning and network-layer features. [8] focuses on
the reconstruction of buffered playtime at the video player
side, as previously done in [14], but for encrypted traffic.
This is leveraged to estimate video-QoE metrics in [10].

Different from these papers, our method estimates video
quality from encrypted video traffic in real time by using a
stream-analysis approach. It considers threewindows (current-
, trend-, and session-based) with aminimalmemory footprint,
i.e., the windows store only a small feature set, computable
in fixed memory bounds, allowing for effective real-time
operation. The features are based on packet-level statistics of
the network traffic and do not require chunk-detection mech-
anisms, allowing to accurately and continuously recognize
QoE degradations within time slots of one second.
The two most similar approaches to ours are Requet [5]

and the system presented in [11]. However, the proposed
method improves both in multiple aspects: (i) while both
approaches claim to be real-time, there is no temporal evalu-
ation of the computational cost inquired in the feature extrac-
tion procedures, questioning their claims; (ii) while Requet
also provides the same fine-grained classes for prediction
of video resolution as our approach – [11] predictions are

2

way more coarse-grained, limiting their usability in practice;
(iii) Requet requires chunk-detection mechanisms to extract
chunk-based features, which is error prone and introduces
additional complexities, which is not needed by ours; (iv)
[11] operates at a 10 s temporal scale, limiting the applicabil-
ity of the approach for critical troubleshooting applications.

3 METHODOLOGY & DATASET

The proposed system considers a video-streaming session
as an ordered sequence of contiguous time slots of fixed
length. Throughout this work, we use a slot length of 1 s,
which constitutes a good trade-off between prediction delay
and accuracy. At each time t , multiple statistical features are
extracted from the packets contained at different temporal
aggregations of current and past time slots, including: fea-
tures extracted from the current time slot; short-memory
or trend features, extracted from the last T time slots – in
this paper we take T = 3; and long-memory or progressive
features, extracted from all past time slots until time t , from
the start of the video session. The total number of features
computed from these slots adds to a total of 207 features.
A prediction is computed at every new time slot, using the
extracted features as input for machine-learning models.

Features include the number of total, uplink, and downlink
packets and transferred bytes, as well as time-based features,
including the time from the start of the slot until the first
packet, and the time between the first and last packets of
the time slot. To avoid the need to store previous traffic or
detailed information about packets in the past, the entire
feature set is computed in a stream, online fashion. This
approach has minimal memory footprint, and can run in
constrained hardware equipment. As we show next, this
allows for real-time feature extraction and prediction.

3.1 Dataset Description

We streamed and recordedmore than different 15,000 YouTube
video sessions between June 2018 and February 2019, result-
ing in a total of more than 4,600,000 one-second time slots.
For this task, we used a Java-based monitoring tool which
relies on the Selenium browser automation library to auto-
matically start a Chrome browser and browse to randomly
selected YouTube videos. We configured Chrome such that
all HTTP requests were logged and QUIC traffic was enabled.
We injected a JavaScript-based monitoring script into the
web page to record, every 250ms, the current timestamp, as
well as the current video playtime, buffered playtime, video
resolution, and player state.
To obtain a generalizable model, we streamed the video

sessions with highly diverse network characteristics. Videos
were streamed either from a home or corporate WiFi net-
work, or an LTE mobile network, using both QUIC and
TCP. The maximum bandwidth was roughly 20Mbps. Some

Training time (min) Accuracy (%)

DT 43 92

RF10 2 92

ADA 125 68

ERT10 1 90

BAGGING 37 95

BAYES 1 42

KNN 9 73

NN 507 58

SVM 194 54

Table 1: Benchmarking of different ML models.

streaming sessions faced bandwidth limitations, both in the
uplink and downlink directions. Bandwidth limitations were
either constant on a level of 300 kbps, 1Mbps, 3Mbps, or
5Mbps, or fluctuated between these levels every 1 to 5 min-
utes. Videos were recorded over four different ISPs, and from
different vantage points, located in four different EU coun-
tries, including Austria, Italy, France, and Germany. We cap-
tured network traffic for every streamed video session, and
extracted features from the traffic of all flows composing the
video-streaming session, i.e., all other non-YouTube flows
were discarded. Finally, we also considered the recently pub-
lished YouTube App open dataset [7], which includes mea-
surements from the native, mobile Android YouTube app.
Recorded video sessions have durations of up to 11 min-

utes, with an average duration of about 5 minutes. Typical
video-resolution levels in YouTube include 144p, 240p, 360p,
480p, 720p, and 1080p. The distribution of resolution levels
in the considered dataset shows that the adaptation logic of
YouTube decided to stream videos most of the time in 480p
(55%), but also in very low resolutions (9% 144p, 6% 240p, 10%
360p). HD resolution was rare (18% 720p, 1% 1080p). Even
if supported by YouTube, video resolutions above 1080p are
not present in our dataset, therefore the study focuses on
video resolution levels ranging from 144p to 1080p.

4 VIDEO RESOLUTION EVALUATION

We tackle the estimation of the video resolution as a classifi-
cation task. The classes correspond to the typical YouTube
video resolution levels, namely, 144p, 240p, 360p, 480p, 720p,
and 1080p. Thus, our task is based on six classes, which is
substantially more precise and fine-grained than other ap-
proaches such as [2, 11, 13], using at most 3 different levels.

4.1 Model Benchmarking

We benchmark nine machine-learning algorithms using 5-
fold stratified cross-validation. With this kind of cross val-
idation, we ensure that the five folds are computed by pre-
serving the percentage of samples for each class. For each
algorithm, we report the total running time, i.e. the time

3

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

(a) DT recall. (b) RF10 recall. (c) ADA recall. (c) ERT10 recall.

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

(d) BAGGING recall. (e) KNN recall. (f) NN recall. (g) SVM recall.

Figure 1: Accuracy per class (i.e. recall) obtained by the benchmarked ML models for the resolution prediction.

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

(a) DT precision. (b) RF10 precision. (c) ADA precision. (c) ERT10 precision.

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50 60 70 80 90 100

144

240

360

480

720

1080

0%

20%

40%

60%

80%

100%

(d) BAGGING precision. (e) KNN precision. (f) NN precision. (g) SVM precision.

Figure 2: Precision per class obtained by the benchmarked ML models for the resolution prediction.

needed to process the whole dataset, and the overall accu-
racy. Tests were done on a server machine, see Section 4.3
for specific hardware description. We consider the following
models: (1) decision trees (DT), (2) random forests with 10
trees (RF10), (3) Adaboost using 50 trees (ADA), (4) an en-
semble with 10 extremely randomized trees [4] (ERT10), (5)
bagging with 10 trees (BAGGING), (6) Naïve Bayes (BAYES),
(7) k-nearest neighbors with k= 5 (KNN), (8) feed forward
neural networks with 3 hidden layers (NN), and (9) SVMs.

For DT, RF10, and ERT10, we penalize prediction errors for
each sample i based on the occurrence frequency of its class,
which improves the prediction accuracy for these classes.
We further exploit the fact that RF10, ERT10, BAGGING,
and KNN can be parallelized and let them run on the 48
virtual cores of the server machine, in a parallelized fashion.
For NN, we rely on TensorFlow on GPU, while we use the
well-known scikit-learn library for the remaining models.

Table 1 reports the model training processing times, and
the accuracies obtained by the models. Besides Adaboost,

all tree-based models provide high accuracy. KNN also out-
puts decent results with an accuracy of 73%. BAYES is by far
the worst, most probably linked to a lack of input indepen-
dence. NN and SVM also yield bad results, especially when
considering their significantly higher training times. We
can appreciate the benefit of parallelization: besides BAYES,
the fastest algorithms are the ones which are parallelizable,
which is a non-negligible advantage for these models. For
instance, RF10 and ERT10 completed their tasks in at most 2
minutes, while ADA, NN, and SVM took several hours.

As the video-resolution classes are highly imbalanced, we
take a closer look at the per-class accuracy (i.e. recall) and
precision. Results are reported in Figures. 1 and 2, respec-
tively. Due to its bad performance, we do not consider BAYES
for this analysis. In Figure 1, we observe that the 480p-class is
accurately detected by all of the eight models, with SVM be-
ing the worst with an accuracy below 70%. DT, RF10, ERT10,
and BAGGING achieve a near perfect score for this video
resolution. This comes as no real surprise, as more than 50%

4

Features # Features Accuracy (%)

FC 69 70

FT 69 73

FS 69 96

FDOW N 81 90

FU P 81 90

FTOP20 20 95

Table 2: Video-resolution-prediction performance us-

ing different feature subsets.

of the time slots have a resolution of 480p. However, it is
interesting to note that most models accurately estimate the
144p class, even though it is a very underrepresented class,
with only 9% of the samples. For all the models, these two
classes are the ones that are the most accurately detected. For
some models, in particular for ADA and NN, it is challenging
to accurately classify the 240p and 360p resolutions; for NN,
the accuracy for 360p is even close to 0%. From Figure 2, we
can see that the precision of the benchmarked models is sim-
ilar to the recall: it is at its highest for DT, RF10, ERT10, and
BAGGING (always higher than 80%), while it is relatively
low for ADA, NN, and SVM. This per-class analysis further
indicates that DT, RF10, ERT10, and BAGGING provide excel-
lent prediction results. Out of these four models, RF10 is the
most appropriate one for the real-time prediction task, as be-
sides being accurate it is also extremely fast. Therefore, from
now on, further evaluation results consider the usage

of the RF10 model as predictor.

4.2 Feature Importance Analysis

We study now the relevance of the different input features for
video-resolution estimation, in terms of prediction accuracy.
In particular, we subdivide the full input set of 20 features
into six feature sets: (1) FC – the set of features computed
from the current time slot; (2) FT – the set of features com-
puted from the short-memory, trend window; (3) FS – the
set of features computed from the long-memory, progres-
sive window; (4) FDOW N – all features computed from the
downlink traffic; (5) FU P – all features computed from the
uplink traffic; (6) FTOP20 – the 20 most important features,
as selected by the RF10 model.

We rely on 5-fold stratified cross-validation to benchmark
the accuracy of the system using each of these six feature sets.
Table 2 reports the number of features in each feature set, and
the accuracy realized through each of them. FC and FT fea-
ture sets yield the poorest results, with a down-performance
of about 20 percentage points with respect to the usage of
the full feature set. This indicates that using only snapshot
and/or short-term memory features is not sufficient to accu-
rately predict video resolution. Performance is much better
when using global, session-based features – FS , FDOW N , or

FU P , with the FS feature set achieving even higher accuracy
– +4 percentage points, than when considering the full fea-
ture set. This is not surprising, as it is commonly accepted
that using noisy or poorly correlated-to-the-target input fea-
tures can actually degrade prediction performance for certain
machine-learning models. The advantage here is that the FS
feature set consists of 81 out of the original 207 features,
reducing the computational requirements needed for feature
extraction and model training.

Last, we choose the 20 most important features – FTOP20,
according to an embedded feature-selection technique, which
basically ranks the relevance of each feature according to
its prediction accuracy, for the specific RF10 model. We pro-
ceed as follows: for each run of the 5-fold stratified cross-
validation, we select the 20 most relevant features based on
the training folds, and test the model trained on those 20
features on the test fold. We select the overall top 20 features
based on their importance score averaged over the five folds,
as well as the average accuracy of the algorithm over the
folds with only the selected features. Session-related features
are the most relevant among the top 20 features in FTOP20, in-
cluding features related to the session-downlink-throughput
pattern (e.g., mean throughput, burst throughput, etc.), as
well as related to the interarrival times between packets
(e.g., mean and variation values). Prediction accuracy us-
ing the FTOP20 feature set is as high as 95%, indicating that
a carefully engineered input-feature set can provide excel-
lent results, saving significant resources in terms of feature-
computation time. Indeed, FTOP20 consists of roughly 10%
of the whole feature set, and provides a +3 percentage-point
out-performance.

4.3 Computational Time Analysis

To sustain our claims of real-time operation capabilities, we
devote the last part of the study to the analysis of the com-
putational times involved in the complete end-to-end online
process, including online feature computation and prediction
times. We consider the RF10 model using the full feature set
as input – 207 features, which represents an upper bound
to the computational complexity of the system. Figure 3(a)
depicts the fine-grained operation of the predictor over an
example video-streaming session, showing the continuous
evolution of both the real video resolution level and its pre-
diction. Note that the prediction is almost perfect over time,
with errors located mainly at the beginning of the video-
streaming session – when the adaptation logic makes more
dynamic changes.
Figure 3 additionally reports the computational times

needed for the continuous update of the complete feature set
in (b) and the video-resolution-prediction times in (c). For the
sake of completeness, we perform the evaluations using two
different hardware configurations, corresponding to different

5

0 50 100 150 200

Time slot

100

200

300

400

500

600

700

800

R
e
s
o
lu

ti
o
n

True resolution

Predicted resolution

0 1 2 3 4

video packets 10
4

10
2

10
4

10
6

P
ro

c
e

s
s
in

g
 t

im
e

 (
s
)

Laptop

Server

0 50 100 150 200

Time slot

0

5

10

15

20

P
ro

c
e

s
s
in

g
 t

im
e

 (
m

s
)

Laptop

Server

(a) Video-resolution prediction. (b) Features update time at each new packet. (c) Prediction time.

Figure 3: Video-resolution prediction and computation analysis.

physical machines: the server configuration corresponds to
a high-end computing server, equipped with two Intel Xeon
Silver 4116 processors including 12 physical cores each – a
total of 48 virtual cores thanks to Intel HyperThreading, 128
GB of RAM, and a NVIDIA GeForce RTX 2080 TI graphics
card with 11 GB of VRAM; the laptop configurations corre-
sponds to a standard end-user notebook computer, including
an Intel Core i5-4200U CPU with 2 physical cores and a total
of 4 virtual ones, 8 GB of RAM, and an integrated GPU Intel
HD Graphics 4400.
Figure 3(b) depicts the time needed to update the full

feature set at each packet arrival; as explained before, fea-
ture computation is done in a stream manner, with features
updated with every new incoming packet. Feature updates
are done extremely fast on both hardware configurations,
taking only some microseconds. Most importantly, besides
some small transient effects, the whole feature set is con-
tinuously updated in almost constant time. On server, the
slowest feature-set update takes about 12 ms, while the av-
erage duration is 13 µs. More than 90% of the updates take
less than 25 µs. On laptop, the average processing duration
is 37 µs, with a maximum value of 129 ms.
Finally, Figure 3(c) depicts the time needed by the RF10

model to process the set of inputs and provide a prediction
at every new time slot. To make computations harder, we
disable the parallelization of the algorithm for the prediction
phase. On server, almost every prediction is performed in
around 1ms, with an average of 0.7ms and a maximum
of around 1.4ms. On laptop, the average prediction time
is 2.5ms, with a maximum of around 15ms. These results
demonstrate that overall, the proposed system is able to
perform video-resolution predictions in real time, with an
end-to-end delay way below the time slot length of 1 s.

5 CONCLUSION

We presented a machine-learning-based system for real-time
prediction of video resolution in HAS, working fully on top
of encrypted network traffic. The proposed system performs
predictions with a fine-grained temporal resolution of one

second, which is, up to date, the smallest temporal granular-
ity used for video quality predictions in the context of en-
crypted traffic. In addition, video resolution is predicted over
six different resolution levels, extending previous work in the
area. We built a comprehensive dataset consisting of more
than 15,000 randomly selected YouTube videos streamed
under diverse network conditions, devices, ISPs, transport
protocols, and geographical locations. We benchmarked mul-
tiple machine-learning models and found that tree-based
techniques are by far the most appropriate models for the
proposed task. Indeed, tree-based models provide highly ac-
curate results and are execution-fast. We also showed that
features tracking the characteristics of a video session since
the start of the streaming are the most relevant ones in terms
of prediction accuracy, and that by only using 20 input fea-
tures, a simple random-forest model can achieve highly ac-
curate results. Last, we also showed that the stream-based
strategy used by our system to perform feature computations
is highly efficient in terms of computational times, underlin-
ing its real-time properties.

REFERENCES
[1] P. Casas et al., “YOUQMON: A System for On-lineMonitoring of YouTubeQoE inOperational

3G Networks”. ACM SIGMETRICS Perform. Eval. Rev. 41(2), 2013.
[2] G. Dimopoulos et al., “Measuring Video QoE from Encrypted Traffic”. In ACM IMC Confer-

ence, 2016.
[3] S. Egger et al., “Waiting Times in Quality of Experience for Web Based Services”. In QoMEX

Conference, 2012.
[4] P. Geurts et al., “Extremely Randomized Trees”. Machine Learning 63(1), 2006.
[5] C. Gutterman et al., “Requet: Real-time QoE Detection for Encrypted YouTube Traffic”. In

ACM MMSys Conference, 2019.
[6] T. Hoßfeld et al., “Assessing Effect Sizes of Influence Factors Towards a QoEModel for HTTP

Adaptive Streaming”. In QoMEX Conference, 2014.
[7] T. Karagkioules et al., “A Public Dataset for YouTube’s Mobile Streaming Client”. In

TMA/MNMWorkshop, 2018.
[8] V. Krishnamoorthi et al., “BUFFEST: Predicting Buffer Conditions and Realtime Requirements

of HTTP(S) Adaptive Streaming Clients”. In ACM MMSys Conference, 2017.
[9] B. Lewcio et al., “Video Quality in Next Generation Mobile Networks - Perception of Time-

varying Transmission”. In IEEE CQR Workshop, 2011.
[10] T. Mangla et al., “eMIMIC: Estimating HTTP-based Video QoE Metrics from Encrypted Net-

work Traffic”. In TMA Conference, 2018.
[11] M. H. Mazhar et al., “Real-time Video Quality of Experience Monitoring for HTTPS and

QUIC”. In IEEE INFOCOM Conference, 2018.
[12] P. Ni et al., “Flicker Effects in Adaptive Video Streaming to Handheld Devices”. In ACM MM

Conference, 2011.
[13] I. Orsolic et al., “YouTube QoE Estimation Based on the Analysis of Encrypted Network Traf-

fic Using Machine Learning”. In QoEMC Workshop, 2016.
[14] R. Schatz et al., “Passive YouTube QoE Monitoring for ISPs”. In FINGNet Workshop, 2012.
[15] M. Seufert et al., “A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE

Communications Surveys & Tutorials 17(1), 2015.
[16] S. Wassermann et al., “Machine Learning Models for YouTube QoE and User Engagement

Prediction in Smartphones”. ACM SIGMETRICS Perform. Eval. Rev. 46(3), 2019.

6

