
Performance Evaluation of Service Functions Chain
Placement Algorithms in Edge Cloud

Lam Dinh-Xuan1, Michael Seufert1, Florian Wamser1, Phuoc Tran-Gia1

Constantinos Vassilakis2, Anastasios Zafeiropoulos2

1Institute of Computer Science, University of Würzburg, Würzburg, Germany
2Ubitech Ltd, Research Department, Athens, Greece

1lam.dinh-xuan|seufert|florian.wamser|trangia@informatik.uni-wuerzburg.de
2constantinosvassilakis@gmail.com, azafeiropoulos@ubitech.eu

Abstract—The emergence of Network Function Virtualization
(NFV) paradigm has become a potential solution dealing with the
rapid growth of the global Internet traffic in the last decades.
There, network appliances are transformed into Virtual Network
Functions (VNF) running on standard server. This promises
to significantly reduce overall cost and energy consumption.
Additionally, hardware-based network function chain is replaced
by a chain of the VNFs, called Service Function Chain (SFC).
The expected benefit of SFC is the reduction in the complexity
when deploying heterogeneous network services. However, the
considerable drawback of SFC is the distribution of the VNFs
over different hosts. An inefficient placement of VNFs can induce
a high latency within the chain and wasted server resources.

In this work, we propose four placement algorithms that
aim to efficiently place the SFC in servers with regard to
minimizing service response time and resource utilization. Herein,
heuristic approaches are evaluated against optimal solutions for
the placement problems, which are formulated by using Integer
Linear Programming. We evaluate and compare these placement
strategies in a simulator. Our result shows that the optimized
solutions produce lowest service response time and least server
utilization in all types of simulated SFCs. On the other hand, the
heuristic algorithms are also able to come close to the optimum
by simple placing rules.

I. INTRODUCTION

The tremendous growth of global Internet traffic has been

forcing network operators to struggle with reducing capital and

operational costs [1]. Additionally, they must cope with the

increasing demand for flexibly provisioned services. Thereby,

the network service must be provided by the network operators

with a high Quality of Experience (QoE) in order to achieve

high customer satisfaction and to avoid user churn [2], [3].

To handle these problems, a more innovative and agile net-

work technology has been emerged, called Network Function

Virtualization (NFV) [4]–[6]. The main idea of this paradigm

is to decouple the network functions from their physical

hardware. For example, the routing function of a router can

be detached from its expensive dedicated hardware to become

a plain software, which can run on any commodity server.

Such kind of function is called Virtual Network Function

(VNF). In the NFV architecture, multiple VNFs can be chained

together. The resulting construct is called Service Function
Chain (SFC) [7], [8]. In such a chain, typically, each VNF

executes a certain function and all VNFs must be processed

in a specific order. Thereby, the VNFs can be dynamically

deployed in a server or distributed over different servers

in datacenters to meet various requirements. For example,

multiple VNFs can be instantiated for a particular function

in order to increase resilience or for load balancing. Thus, the

advantage of SFCs is promising to reduce the complexity of

deploying heterogeneous network services.

However, deploying such a SFC in an NFV system has

several challenges. On the one hand, VNFs distributing in mul-

tiple servers will increase the length of the chain, if the servers

are placed in different datacenters. This will considerably rise

the latency within the SFC itself and can reduce the QoE.

On the other hand, since the VNFs can be placed in different

servers, their resource utilization must be taken into account.

In fact, complex optimization problems can be formulated for

a given system, but their solution can be time consuming.

Thus, heuristics are needed to quickly obtain solutions, which

achieve a close-to-optimal performance.

To address these problems, we propose and evaluate two

heuristics for distributing VNFs of service chains in datacen-

ters of an edge cloud, named centralization and orchestration
algorithms. These placement algorithms aim to minimize

total latency or server utilization. They are evaluated against

optimal solutions for the placement problems, which are

formulated and solved by using Integer Linear Programming

(ILP). For the performance evaluation, we extend the event-

based EdgeNetworkCloudSim simulator [9] with the inclusion

of the CPLEX Optimizer toolbox1. This toolbox uses Opti-

mization Programming Language (OPL) to express the ILP

mathematical model. Then, the OPL model is solved by using

the CPLEX Optimizer.

In fact, SFC placement problem is widely studied on differ-

ent directions. The objective of existing works has focused on

cost reduction [10], [11], virtualization and trade-off between

different objectives [12], [13] or optimizing energy consump-

tion [14], [15] among others. Our study is different from

these research works, where we consider the SFC placement

problem in the context of edge cloud computing. Wherein, the

1https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-
optimizer

227

user is near to datacenter and his device is included as the end

point of the whole chain.

In this study, we use EdgeNetworkCloudSim to simulate

a fixed network topology in an edge cloud. Users randomly

request service chains consisting of three VNFs that can be

placed on different servers. The performance of all placement

algorithms is evaluated with respect to QoE in terms of service

response time, and with respect to resource consumption in

terms of number of utilized servers. Our simulation result

shows that the optimized solutions obtained by using ILP

model achieve lowest service response time and least service

utilization rate among the others. However, the heuristic al-

gorithms are able to come close to the optimum by simple

placing rules. Our insights may help network operators and the

research community to quickly compute good SFC placements

for NFV infrastructures in an edge cloud context.

The remainder of the paper is structured as following. After

the introduction, background and related work are presented

in Section II. Thereafter, Section III describes the extension

of EdgeNetworkCloudSim, edge cloud topology, and perfor-

mance metrics. The description of four placement algorithms is

presented in Section IV. The outcome of our study is detailed

in Section V. Finally, Section VI concludes this work.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce edge cloud and the

definition of service function chain in Section II-A. Thereafter,

we give an overview of related works in Section II-B.

A. Background

Edge computing is a method of enhancing cloud computing

systems by off-loading applications, services, and hardware

resources to the edge of the network [16]. Therefore, the

edge cloud introduces a new intermediate layer at the edge

of the network, which is physically placed in between cloud

datacenter and user. This removes a major bottleneck and

reduces high latencies in services due to the long distance to

the user. Thus, in edge computing, time is the key parameter. In

contrast to a conventional cloud datacenter, the latency here

between the user and the SFC is relatively small, since the

user device is located next to the datacenter. Consequently, the

latency between the VNFs in the chain is important and has a

high impact on the overall latency. A good SFC placement

strategy produces a low internal delay in the SFC, which

contributes much to the overall service response time. Thereby,

study on SFC placement algorithms in the edge cloud is

essential. In contrast, in cloud computing, the VNFs of a SFC

are placed at datacenters. With a high latency between the

user and the datacenter, the influence of an SFC optimization

algorithm on the overall service response time is negligible

with a fixed user compared to an edge cloud scenario.

In this paper, we assume that a user device is directly

connected to an edge cloud with four datacenters. The user

requests a service in the edge cloud, and receives response

from servers located in these datacenters. We simulate three

types of personal services, Video Streaming (STR), Web, and

Database (DB). These services are characterized by their own

virtual machine resource demands, and are requested and used

by only one single user. Note that, these services do not re-

semble real cloud applications, but they were mainly specified

in order to have different service chain characteristics. Each

service is requested and processed as a chain of VNFs, thus,

in the remainder of this paper, the terms SFC and service

will be used interchangeably. In the simulation, we define a

SFC consisting of three VNFs that must be executed in order

to provide full service functionality. This definition is also

consistent with the SFC described in [7]. Figure 1 shows an

overview of communication between a user and a SFC.

����

����
���	

���	
����
���
������
�������

���

����

����

����

Fig. 1. Overview of Service Function Chain Communication

In Fig. 1, each VNF is installed in a Virtual Machine (VM).

Herein, the type of a VM also represents the VNF require-

ments. The VM types are predefined based on instance types

introduced by Amazon Elastic Compute Cloud2. Table I shows

the definition of the VM types in EdgeNetworkCloudSim.

TABLE I
VM TYPE DEFINITION

VM Type CPU RAM
T2Nano 1 1024MB
T2Small 2 2048MB
T2Large 4 4096MB

In Fig. 1, the arrows represent the direction of data flow

and the sequence of processing VNF tasks. Specifically, when

the user requests a service, the request is processed at VNF1,

followed by VNF2, and VNF3. Then, the response message

will also be sent back in sequence from VNF3 to the user.

Therefore, the placement of VMs primarily influences the

latency between the VNFs in the chain, and thus, also the

service response time. This makes it crucial to design place-

ment strategies, which quickly find a good possible placement

of SFCs in terms of QoE and resource utilization.

B. Related Work

In [17], Calheiros et al. present their original work on

an event-based simulator for cloud computing infrastructure,

called CloudSim. An extension of CloudSim with a GUI is

CloudAnalyst [18]. In [19], Garg et al. introduce another

extension of CloudSim that enables network communication,

called NetworkCloudSim. In [9], Seufert et al. introduce

EdgeNetworkCloudSim that is an extension of Network-

CloudSim. There, EdgeNetworkCloudSim moves from batch-

like processing of computation jobs to more persistent and

personalized cloud services that are implemented in an edge

cloud. In the simulation, the authors allow to define several

2https://aws.amazon.com/ec2/instance-types/

228

characteristics of cloud services, which can be processed in

a chain of VMs. The framework is able to simulate user

requesting a service and can compute response times and

resource utilization among others.

The architecture for the specification of SFCs is officially

described in [7] by IETF. In fact, the concept of SFC receives

a considerable interest from research community. In [8], John

et al. introduce several research topics on network service

chaining. In [10], Savi et al. study the impact of processing

capability on the placement of service chains. They model a

set of NFV nodes hosting service chains using an ILP model.

The main objective of the model is to minimize the number

of active NFV nodes with regard to the cost of processing

task. The authors conclude that with the increasing number of

service chains, the context switching costs strongly influence

the implementation cost of NFV.

In [12], Luizelli et at. consider the placement of SFC where

the placement problem is formulated by using an ILP model.

The main objective of the model is to minimize the number of

VNF instances mapped to infrastructure. The authors conclude

that the ILP model leads to a reduction of up to 25% in

the end-to-end delay compared to a baseline. However, their

baseline solution is another ILP model, where the objective

function is changed to minimize the chain length.

The authors in [13] formalize the chaining of VNFs using

a context-free language. Then, they formulate the placement

problem of chained VNFs as a Mixed Integer Quadratically

Constrained Program with regard to three different objectives.

Their results show a trade-off between optimizing the remain-

ing data rate, latency, and number of used nodes. In [14],

the authors propose the Merge-RD algorithm to place service

functions with respect to minimizing energy consumption.

They use GreenCloud to simulate a datacenter topology and to

evaluate the performance of the proposed algorithm. However,

with O(n4), the complexity of the algorithm is quite high

and time consuming. Other approaches in energy-efficient

and bandwidth-efficient SFC placement are presented in [15]

and [20], respectively. In [11], Bari et al. propose a heuristic

algorithm and an ILP model for optimizing SFC placement.

The algorithms aim to reduce capital and operational cost of

VNF deployment in the operator network. They conclude that

the heuristic algorithm outperforms the optimal solution in the

aspect of execution time.

The method of using an ILP model to formulate the place-

ment problem of VNFs is widely studied. In [21], Bouet et al.

propose a study that aims to minimize the overall cost of vDPI

deployment in an NFV infrastructure. The authors conclude

that the network structure and costs strongly influence the

execution time of the vDPI function. However, the authors do

not consider the chaining form of vDPI in their ILP model.

Similar studies on solving the placement problem of VNFs

formulated by using ILP are presented in [13], [22], [23].

The existing studies use similar methods as our study to

some extents in the aspect of optimizing SFC placement.

Most of the works are based on mixed integer programming

with different objective functions and constraints. Although,

their approaches can deliver optimal solutions for individual

problems, the performance of their proposals still need to be

assessed in a real scenario. Moreover, their result is mostly

obtained by solving the ILP model using CPLEX.

Our study is different from the mentioned research works

since we compare four different approaches for SFC place-

ment. This helps the network operator to have a comparative

view of the advantages and drawbacks of each solution. More-

over, we consider an edge cloud context where the user is close

to the datacenter. In our heuristic algorithms and ILP model,

the user device is also included as the end point of the whole

chain. Furthermore, to the best of our knowledge, this study

is the first that uses EdgeNetworkCloudSim to simulate and

evaluate the influence of different SFC placement strategies

on service response time or server utilization. Wherein, user

requests and SFC placement are done consecutively on the

same platform that increases the practical of our approach.

III. SFC SIMULATION IN EDGENETWORKCLOUDSIM

In this section, we first present the EdgeNetworkCloudSim

extension. Subsequently, we introduce the edge cloud topol-

ogy, simulation configurations, and service chain characteris-

tics used for the simulation. Finally, we present several metrics

to evaluate the performance of the algorithms.

A. EdgeNetworkCloudSim Extension

Placement algorithms for virtual machines can be easily

implemented in EdgeNetworkCloudSim. However, the frame-

work did not provide means to compute an optimal placement

with the help of ILP. In this work, EdgeNetworkCloudSim

is extended to be able to implement OPL models and solve

them with a CPLEX Optimizer. The following new classes are

added to the simulator to achieve the mentioned goal.

First, the AvailableResource class is implemented when-

ever a new service is requested. It monitors resource utilization

(e.g., CPU, RAM) of all servers in datacenters. Additionally,

the resource demand of the VMs in SFCs is also provided.

This information is used for the OPLData class.

The OPLModel class contains the pre-defined OPL model

with two objectives, which are minimizing service time and

resource utilization. The mathematical expression of the model

can be found in Section IV. The OPLData class contains the

data of the OPL model. The data consists of static and dynamic

information. The static information like topology and link

resources between nodes is initially provided. The dynamic

information consists of available resources of the servers (e.g.,

CPU, RAM), resource demand of the VMs, and location of the

user. Note that the user in EdgeNetworkCloudSim is simulated

as another VM, called UserVM. This UserVM is located in a

server of a dedicated datacenter, called UserDC, which can

not be used to place virtual machines of SFCs. The dynamic

information is gathered by the AvailableResource class and

regularly updated whenever a new SFC is requested.

Lastly, the PlacementSolver class is triggered when a new

service has been requested and the UserVM has been already

specified by the simulator. This class exploits the CPLEX

229

Optimizer toolbox to solve the OPL model and returns one

optimal solution each time. The solution is the specific location

of each VM of the service chain. EdgeNetworkCloudSim

can now make use of the solution and place these VMs

accordingly to start the service. If no solution can be found

due to insufficient available resources in the system, EdgeNet-

workCloudSim will discard the incoming SFC request. Since

we do not modify the placement during service run time, a

new optimal placement will be computed when a SFC has

been terminated and allocated resources are released.

B. Edge Cloud Topology
Figure 2 shows the topology of the simulation. This topol-

ogy is designed based on a real testbed of the EU H2020

INPUT project [24]. It consists of four datacenters (DC) and

four user datacenters (UserDC). One of the DCs has two

servers, and the others have only one. These servers have

different resource capacity. In the simulation, the VMs of

SFCs are distributed over these five servers of the edge cloud

depending on their available resources. The user device is

simulated as a UserVM that is installed within a server in

the UserDC. Each UserDC is connected to a DC, thereby,

representing all users, which are close to that edge datacenter.

Each UserDC is considered to have unlimited resources to

host UserVMs. The interconnection of DCs and UserDCs in

edge cloud is operated by different link capacities via two

types of switch. The server in each datacenter is directly

connected to its EdgeSwitch by a link with 5ms delay.

However, in DC-1, two servers are set to be interconnected

with zero delay. The EdgeSwitch of a DC is connected to

its AggregateSwitch through a 5ms delay connection. While,

in case of the UserDC, this connection has 10ms delay. All

AggregateSwitches are interconnected via a link with 50ms
delay. In the simulation, this topology is mapped with a BRITE

file [25] for modeling link bandwidth and associated latency.

Since we only consider link delay in the topology of the

simulation, we configure the link bandwidth of the topology

with a large number to ensure there is not any additional

latency in the network due to bandwidth bottlenecks.

���� ����

����

��	
������	
����

��	
���� ��	
��������

�����

�����

�����		
�	�
����
��

��	����
��

Fig. 2. Overview of Network Topology in Simulation

C. Service Chain Characteristic

As briefly described in Section II-A, we simulate three

types of personalized service. Each service chain has a single

UserVM with a fixed location in a UserDC, which sends

requests only to its particular service chain. Each service chain

requires three VMs with various types. Table II summarizes

the required VMs type of each service.

TABLE II
SUMMARY OF SFCS WITH MULTIPLE VM TYPES

Service VM-1 VM-2 VM-3
Video Streaming T2Small T2Nano T2Large

Web T2Large T2Small T2Nano
Database T2Nano T2Nano T2Small

The table shows that the Streaming and Web services require

a similar total size of VMs. However, their characteristics

are different. The Streaming service is simulated to deliver

video with different lengths. Specifically, the video length

is distributed exponentially around a mean of 30 s. Each

delivered video chunk has 2 s in length and 1100KB in

size. Consequently, when a Streaming service is requested,

the number of responses is corresponding to the number of

video chunks. On the other hand, Web and Database services

have only one response per request, but their response data

size is distributed around a mean of 2000KB and 50KB,

respectively. Besides, to simulate user-like behavior in the

simulation, we use an exponential distribution for service

requests (i.e., the time at which the service is instantiated)

with the mean value of 5min.The service life times and user

request inter-arrival times also use exponential distribution and

are different among simulated SFCs. Specifically, the mean

service life times of the Web, Database, and Streaming ser-

vices are 15min, 80min, and 20min, respectively. Whereas,

the corresponding mean request inter-arrival times are 1min,

10min, and 5min, respectively.

D. Performance Metrics

In this subsection, we define several metrics that are used

to evaluate the performance of SFC placement algorithms.

1) Service Response Time and Hop Count: Service re-
sponse time is the amount of time between the user request a

SFC and the reception of its response. In the simulation, the

service response time consists of the sum of all link delays and

the processing times at all VNFs. Herein, the processing time

at each VNF is set by default of 50ms in the simulator for all

services. Therefore, the total link delay is the main factor that

impacts the service response time of a SFC. Additionally, the

total hop count from the user to the SFC, which is the number

of intermediate nodes including switches between the UserVM

and the datacenter can be analyzed. It shows insights into the

dispersion of the SFC over different servers in the topology.

2) Resource Utilization: This is an important metric, since

reducing power consumption saves energy. In that way, addi-

tionally greenhouse gas emission is reduced, decreasing carbon

footprint. To this end, the idea is to place all VMs on the

smallest set of servers capable to deal with all running tasks.

230

Empty servers can then be shut down to save energy. Based

on this, we consider the number of servers, which are utilized

to provide a given number of services.

IV. SFC PLACEMENT ALGORITHMS

In this section, we present four SFC placement strategies,

which are Centralization (CEN), Orchestration (ORC), Service
Time Optimization (STO) and Resource Optimization (RO). On

the one hand, CEN and ORC are heuristic approaches. These

algorithm are designed and included within EdgeNetwork-

CloudSim to search quickly for a proper placement of SFCs.

On the other hand, STO and RO are optimal solutions, where

the placement problems of SFC are formulated using Integer

Linear Programming (ILP). In the simulation, the UserVM is

randomly chosen with equal probability among four UserDC
locations and is applied for all algorithms.

A. Centralization Algorithm

The centralization (CEN) placement algorithm tries to place

all VMs of a SFC as close as possible to the user, meaning

to have the lowest delay between the VMs and the user.

This algorithm is useful in classical cloud computing where

independent VMs of a user should be placed close to him.

However, it is unclear how the CEN performs in case of

service chains with communicating VMs. Algorithm 1 shows

the simplified pseudo-code of the centralization approach.

Algorithm 1 Centralization

1: Input: List of VMs, requested service and UserVm

2: Initialization;

3: for each vm in chain do
4: DC = findClosestDcToUser(uservm);

5: if DC == -1 then
6: abandonService();

7: end if
8: createVmInDc(vm, DC);

9: end for

Data provided for the algorithm are an ordered list of VMs,

UserVM location, and type of service. When receiving requests

to create VMs in a data center (DC), the simulator starts to

find a closest DC to the user for each VM. If there is still

an available DC, then the VM is placed in sequence and the

service can be processed. All the VMs can be placed in one

DC or distributed over different data centers. If at least one

VM could not be placed, there are not enough resources (i.e.,

CPU or RAM) in the system to deploy the entire SFC. In this

case, the requested SFC will be discarded or blocked.

In the CEN approach, all VMs of the service chain will be

placed around and close to the UserVM, but the algorithm does

not try to reduce the length of the chain. A large VM might be

placed far away from the UserVM due to the lack of resources

at the closer DC, but a smaller VM later in the chain may fit.

As a consequence, the length of the chain is increased and

data oscillate between data centers. This might significantly

influence the efficiency of the algorithm with respect to service

response time.

B. Orchestration Algorithm
The orchestration (ORC) algorithm differs from the CEN,

where only the first VM in the chain is attempted to be placed

as close as possible to the user. For the subsequent VMs, the

aim is to place them close to the previous VM. Based on this,

ORC tries to shorten the length of the chain that reduces the

latency. Algorithm 2 shows the simplified pseudo-code of the

orchestration algorithm.

Algorithm 2 Orchestration

1: Input: List of VMs, requested service and UserVm

2: Initialization;

3: DC = findClosestDcToUser(uservm);

4: if DC == -1 then
5: abandonService();

6: else
7: createVmInDc(firstVm, DC);

8: for next vm in chain do
9: DC = findClosestDcToPreviousVm();

10: if DC == -1 then
11: abandonService();

12: end if
13: createVmInDc(vm, DC);

14: end for
15: end if

Similar to CEN, this algorithm is provided with the ordered

list of VMs, UserVM location, and type of service. At first, it

tries to find a closest DC to the UserVM for the first VM in

chain. Afterwards, the algorithm tries to place the next VM

in chain as close as possible to the previous one in sequence.

Additionally, the next VM is only sent if the previous one has

been successfully placed. Thus, ideally all VMs are placed in

the same DC if it has enough resources. If no DC is found in

any case, the requested service is abandoned.
This algorithm overcomes the limitation of CEN, as it avoids

placing later VMs close to the user rather than close to the

previous VMs if possible. This helps to reduce the delay

within the SFC. Nevertheless, prioritizing the closest dc for

the first VM is not always the best option. Especially, when

this closest dc has only resources for some VMs and the other

VMs must be distributed to another farther dc. This leads to

an increased hop count within the chain and increased latency.

In this case, placing all VMs in the farther dc might be better,

since the delay within the chain would be zero. However, a

heuristic for this idea is not evaluated in this work. In the

next subsection, we present an optimized approach where the

placement problem of SFC is formulated by using ILP model.

C. Service Response Time and Resource Optimization
To formulate the problem and align with the definition of

the infrastructure and SFC described before, we consider that

each server is a member of a datacenter. We assume that all

servers within a datacenter are fully connected with links of

practically infinite bandwidth and zero delay. The first node of

a network inside a datacenter is considered to be the network

gateway. A UserVM is declared as statically allocated in a

231

server within a dedicated UserDC. The UserVM only acts as

the source of requests to a particular service chain. Table III

shows the notations that are used for the formulation of the

optimization problem.

TABLE III
SUMMARY OF PARAMETERS USED IN THE ILP MODEL

Parameters Description
T Set of application components
C Set of channels between application components, C ⊆ T × T
H Set of hosts
L Set of links between hosts, L ⊆ H ×H
S Set of user application components statically allocated at hosts, S ⊂ T

HS Set of hosts where static user application components are placed, HS ⊂ H ,

f : S → HS | ∀h′ ∈ HS ,∃t′ ∈ S : h′ = f(t′) (f is subjective)
R Set of unique resources offered by hosts
R′ Set of unique resources offered by links
M Set of monitored metrics at hosts
M ′ Set of monitored metrics at links
art Amount of resource r demand by application component t
irh Capacity of resource r at host h
βr
h Amount of resource r available at host h

mk
h Measured value of metric k at host h

crsd Amount of resource r demand required by channel (s, d)
bruv Amount of resource r available at link (u, v)

μk
uv Measured value of metric k at link (u, v)

Based on the notations and the considerations mentioned

before, the optimization problem is formulated as follows.
Given:

R = {CPU,Memory}
R′ = {Bandwidth}

M = ∅
Minimize:
• Objective 1: Minimize service response time (STO)

Objective1 =
∑

(s,d)∈C

πuv,sdμ
Delay
uv , ∀(u, v) ∈ L. (1)

• Objective 2: Minimize resource utilization (RO)

Objective2 =
∑

h∈H

(min{
∑

t∈T

σht, 1}100β
CPU
h

iCPU
h

). (2)

Objective 2 aims to minimize the product of the number of

servers used in a placement and the percentage of available

CPU. This optimization procedure will attempt to collocate

VMs in a server but will have the preference to an already

utilized server. Thus, the servers that have zero utilization will

not be activated until the others have been fully utilized. By

doing this, unused servers can be put in the idle state to save

energy. However, at the initial placement all servers will have

the same probability to be selected. The objective function

does not favor any of them (e.g., a server with high capacity).

Subject to:

πuv,sd ∈ {0, 1}, (s, d) ∈ C, (u, v) ∈ L. (3)

In Equation (3), πuv,sd is a decision variable and equals to 1
if task channel (s, d) is routed from link (u, v), 0 otherwise.

σht ∈ {0, 1}, h ∈ H, t ∈ T. (4)

In constraint (4), σht is a decision variable and equals to 1 if

task t is assigned to host h, 0 otherwise.
∑

h∈H

σht = 1, ∀t ∈ T, (5)

σht = 1, h ∈ HS , t ∈ S, (6)

∑

t∈T\S
σht = 0, ∀h ∈ HS . (7)

Constraint (5) ensures that a task (or application component) is

assigned only to one host. The static placement of the user task

is defined in Eq. (6), it is given as an input to the problem

and not decided. Whereas, constraint (7) specifies that user

applications are only placed in hosts assigned for them.
∑

t∈T

σhtα
r
t ≤ βr

h, ∀r ∈ R, ∀h ∈ H. (8)

Equation (8) stipulates that the considered host h must have

enough resources to allocate the application component t.
∑

(u,h)∈L

πuh,sd + σhs =
∑

(h,v)∈L

πhv,sd + σhd. (9)

Constraint (9) captures and expresses in one equation,

• the unsplittable flow constraint: A channel uses a single

outgoing link from source and a single incoming link at

destination and does not split,

∑

(u,h)∈L

πuh,sd = 1 ifσ us = 1,

∑

(h,v)∈L

πhv,sd = 1 ifσ vd = 1,

• the collocation of tasks: A communication path is not

required in the case that both s and d are assigned to the

same host (and no capacity checking),

σhs = σhd,
πuu,sd = 0,

• the flow conservation constraint: No traffic is stored in a

node unless this node is the source or the destination or

collocated source and destination,∑

(u,h)∈L

πuh,sd =
∑

(h,v)∈L

πhv,sd,

∀h ∈ H : σhs = 0, σhd = 0.

∑

(u,h)∈L

σhsπuh,sd = 0. (10)

Constraint (10) makes sure that there is no loop in the path

before reaching destination.

πuv,sd = πvu,ds, (s, d), (d, s) ∈ C, (u, v), (v, u) ∈ L. (11)

As determined in Eq. (11), a bidirectional communication

between two tasks is routed through the same bidirectional

overlay path. In addition to this, upstream and downstream of

a flow is not routed separately.
∑

(s,d)∈C

πuv,sdcsd ≤ buv, ∀(u, v) ∈ L. (12)

Constraint (12) guarantees that the link (u, v) must have

enough resource required by channel (s, d).

232

V. RESULT

In this section, we present the simulation results that com-

pare the performance of four SFC placement algorithms. We

simulated three types of personalized services with individual

algorithms in the extended EdgeNetworkCloudSim. The de-

tails of simulation implementation in EdgeNetworkCloudSim

can be found in the original work [9]. Based on the topology

and metrics presented above, we implement 20 replications

for each algorithm to increase the statistical significance. In

the next subsections, we evaluate the performance of the

algorithms according to two criteria, service response time
and resource utilization. The algorithms under evaluation are

Centralization (CEN), Orchestration (ORC), Service Response
Time Optimization (STO), and Resource Optimization (RO).
Wherein, STO and RO are Objective1 and Objective2 for-

mulated in Eq. (1) and Eq. (2), respectively.

A. SFC Placement Algorithms vs. Service Response Time

Figure 3 shows the average service response time of the

three SFCs with different placement algorithms. The x-axis

shows the services, the y-axis shows the service response time

in milliseconds. The bar group with different colors of each

service shows the mean service response time with a 95%
confidence interval of different placement algorithms.

Service Types
Streaming Database Web

Se
rv

ic
e

R
es

. T
im

e
(m

s)

0

100

200

300

400

500
CEN ORC STO RO

Fig. 3. Average Service Response Time of Different SFCs

Figure 3 shows that the Streaming service has a higher

service response time than the Database and the Web service. It

is due to the fact that the Streaming service responds multiple

video chunks per request, depending on the video length as

described in Section III-C. In fact, the average total response

time of the Streaming service is about 6000ms. However,

for the sake of comparability with other services, we only

show in Fig. 3 the average service response time of one

video chunk. The overhead of sending multiple video chunks

increases the average response time of one chunk as shown

in the figure. Conversely, the Database service has the lowest

average response time of about 250ms. Since it requires a

lower total size of all VMs, the placement algorithms have

a higher chance to place the VMs in a desired server which

decreases the overall service response time.

Regarding the service response time produced by different

placement algorithms, STO gains the lowest service response

time of all services, followed by ORC, CEN, and RO. For

instance, when STO is used as placement algorithm for the

Web service, it takes 272.80ms for a user to request the

service until receiving its response. Whereas, by using ORC,

CEN, or RO algorithms, it takes 277.80ms, 328.00ms, and

327.10ms, respectively. This does not come as a surprise, as

STO was designed to compute a placement, minimizing the

service response time by using the ILP model and considering

the whole system state. Note that, since our topology has only

four data centers, the processing time of CPLEX Optimizer

is negligible. However, with a larger network topology, the

solution space created by the CPLEX Optimizer is also large.

As a consequence, the solving time for an optimal placement

can negatively impact the overall service response time, since

the optimal solution is a NP-hard problem.

Thus, heuristic approaches have to be investigated, such as

ORC which reaches the second lowest service response time

for Streaming and Web services. In this algorithm, all VMs in

the chain are placed to have shortest distance between them.

The first VM in the chain is placed as close as possible to

the user. As a result, ORC constantly tries to minimize the

length of the chain. In fact, ORC has to scan all servers with

multiple loops to find the best placement for VMs. The chosen

servers must have enough resources for all VMs as well. This

operation is executed each time for a new coming service.

Thus, with an increasing number of requests from the user, it

also influences the overall service response time.

In fact, the ideal placement for the lowest service response

time is the situation, where all VMs in the chain are placed

in one server. In this case, the delay between the three VMs

in the chain is zero, which substantially decreases the overall

service response time. Figure 4 shows the probability of the

occurrence of this situation. The x-axis indicates the three

service types, the y-axis shows the probability of placing the

whole chain in one server. The bars with different colors

represent the mean probability for the different algorithms with

a 95% confidence interval.

Service Types
Streaming Database Web

Pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
CEN ORC STO RO

Fig. 4. Probability of Placing the Complete Chain in one Server

It can be seen that RO exhibits a higher results compared to

the other algorithms, since it is specially designed for resource

optimization. This behavior is described in more detail in

the next subsection. Regarding the other algorithms, Figure 4

shows that STO has a considerable higher value than ORC and

CEN algorithms. In the Streaming service, there is 52.44%
chance that STO places the whole chain of the service in one

server, while this number in case of ORC and CEN is 36.86%

233

and 32.29%, respectively. This tendency is also encountered

in the Database and the Web services. This is reasonable, since

STO calculates the SFC placement based on minimized total

delay. Thereby, it is one option to place all VMs in one server.

For instance, the selected server for the whole chain may not

be the closest one to the user. Since the delay between the VMs

in the chain is zero, the total delay is still smaller than the case

where the VMs are distributed over different servers. This is

the major difference between the optimized solution and the

heuristics. Indeed, ORC and CEN choose the placement of a

SFC based on iteratively scanning every server in data centers.

They try to select the server as close as possible to the user.

As a consequence, the closest servers are rapidly running out

of resources. Afterwards, the VMs of the next SFC must be

distributed over different servers. This is the reason why their

probability of all VMs in one server is lower.

Figure 5 shows the mean hop count calculated from different

algorithms. The x-axis shows the algorithms and the y-axis

displays the mean hop count with a 95% confidence interval.

Placement Algorithms
CEN ORC STO RO

H
op

s
C

ou
nt

0

2

4

6

8

Fig. 5. Average Hop Count of Different Placement Algorithms

The figure indicates that, CEN has the highest average hop

count compared to other algorithms. The average number of

intermediate nodes between the user and SFC calculated by

CEN is 6.04, while in case of STO and ORC is 4.7 and

5.3, respectively. In contrast to ORC, the CEN algorithm

always selects the closest server to the user to place VMs,

without consideration of the length of the chain. Consequently,

although the chosen servers are near to the user, the data flow

might be transferred in a long chain that significantly increases

the service response time.

To conclude this subsection, we have shown that the STO

placement strategy carried out by using ILP model has the

highest performance, since it achieves the lowest service

response time of all types. However, the performance of

STO might be influenced by the processing time of CPLEX

Optimizer in a larger topology. In this situation, the solving

time for the optimization problem would be high and might

considerably increase the overall service response time. The

heuristic algorithm ORC shows an acceptable performance,

since it attempts to minimize the length of the chain. Although

RO has low performance in service response time, it is

particularly designed for resource optimization as presented

in the next subsection.

B. SFC Placement Algorithms vs. Server Utilization

As presented in Section IV-C, the second objective of our

ILP model is to specify the placement of a SFC, where

resource utilization is minimized (i.e., RO algorithm). Figure 4

in the previous subsection indicates that RO has a noticeable

higher probability that it places all VMs of a SFC in one server

compared to the others. To this end, the objective function tries

to minimize the number of servers used for SFCs regarding

their available resources. This means, RO will place as much

SFCs as possible in one server and has the preference to an

already utilized server as well. Thereby, the unused servers

can be put in the idle mode or shut down to save energy.

To evaluate the performance of this placement strategy,

we calculate the number of utilized servers along with the

number of concurrently instantiated SFCs. Herein, a server

is considered as utilized when at least one CPU is allocated

to a VM of a SFC. Figure 6 shows the correlation between

the number of utilized servers and the number of concurrent

services. The x-axis shows the number of concurrent services,

the y-axis indicates the average number of corresponding used

servers, meaning the server utilization (ServUtil) rate. The

different colored lines display the mean ServUtil rate produced

by different placement algorithms. The error bars on each line

indicate the 95% confidence interval of the mean values.

Number of Concurrent Services
0 5 10 15 20 25

N
um

be
r

of
 S

er
ve

rs

1

2

3

4

5

CEN
ORC
STO
RO

Fig. 6. Number of Utilized Servers vs. Number of Concurrent Services

Figure 6 shows that STO, ORC, and CEN placement al-

gorithms produce similar ServUtil rate, when all servers are

handled by more than ten concurrently instantiated SFCs. This

is reasonable, since these algorithms attempt to minimize the

service response time by selecting the closest servers to the

user. Since users are located at different UserDCs as shown

in the topology, their nearest servers are quickly utilized.

Nevertheless, ORC, CEN, and STO are outnumbered by far

by the RO placement algorithm, which has a much lower

ServUtil rate as represented by the separate yellow line. It can

be seen that ten concurrent services only use 3.6 servers on

average. All servers are constantly utilized when there are 21
services instantiated at the same time. This maximum number

of concurrent services doubles the other placement algorithms.

This is due to the fact that the RO algorithm always prioritizes

the collocation of VMs in one server before considering the

others. Furthermore, when a SFC has finished execution and

releases resources of the hosted server, but this server is still

used by other services, it has a higher priority to be chosen

234

for the next incoming service than the unused ones. Based

on this, the number of utilized servers is minimized and the

other servers can be put to standby state. This can significantly

reduce the power consumption and save energy. To conclude,

it could be seen that the presented heuristic algorithms show

a decent performance in terms of service response time, but

still need improvements in terms of resource utilization.

VI. CONCLUSION

In the NFV paradigm, the usage of SFCs is promising to

reduce the complexity of heterogeneous service deployment.

Nevertheless, the distribution of VNFs over different hosts

increases the overall latency and server utilization. In this

work, we evaluate four algorithms to efficiently place SFCs

in the context of an edge network. These algorithms aim to

decrease the service response time or resource utilization. To

evaluate the performance of these placement algorithms, we

use the event-based EdgeNetworkCloudSim simulator.
Regarding service response time, the result show that STO

performs better than the other algorithms in all types of

service. This demonstrates that, the use of ILP model is able

to compute an optimal solution. Especially, the probability

of placing all VMs of a chain in one server is higher than

CEN and ORC algorithms, which results in reduced service

response time. However, the processing time of the optimizer

is a considerable drawback as the placement problem is NP-
hard. Despite of producing higher service response time than

STO, ORC algorithm always tries to shorten the length of

the chain. This algorithm can be an alternative for STO in

a large network topology where the processing time of STO

might be high. The CEN algorithm produces highest service

response time, since it only places VMs as close as possible

to the user without the consideration of the chain itself and

the communication of the VMs within.
The second objective of the ILP model is to minimize

server utilization. Herein, the placement of SFC is optimized

to utilize the least number of server. Out result shows that, with

the optimized placement, 10 concurrent SFCs only require a

half of all server resources. In contrast, the heuristics and STO

utilize all datacenters to handle the same number of concurrent

SFCs. This insight shows that while the evaluated heuristics

perform well in terms of service response times, they need to

be improved to have the ability to reduce power consumption

and carbon footprint of datacenters.
Future work may extend this study to evaluate these place-

ment algorithms in different network topologies with more

detailed investigation of bandwidth or energy consumption.

REFERENCES

[1] Cisco Systems, “Cisco visual networking index: Forecast and method-
ology, 2016-2021,” White Paper, 2016.

[2] M. Fiedler, T. Hoßfeld, and P. Tran-Gia, “A generic quantitative rela-
tionship between quality of experience and quality of service,” IEEE
Network Special Issue on Improving QoE for Network Services, 2010.

[3] ITU-T Rec. G1030, “Estimating end-to-end performance in ip networks
for data applications,” ITU-T Recommendation, Nov. 2005.

[4] M. Chios, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, and H. Deng, “Network functions
virtualisation: an introduction, benefits, enablers, challenges and call for
action,” White Paper available at http://portal.etsi.org, 2012.

[5] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, 2015.

[6] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, 2015.

[7] J. Halpern and C. Pignataro, “Service function chaining (sfc) architec-
ture,” Internet Requests for Comments, RFC, Tech. Rep. 7665, Oct 2015.

[8] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in SDN for Future Networks and Services
(SDN4FNS). Trento, Italy: IEEE, Nov 2013.

[9] M. Seufert, B. K. Kwam, F. Wamser, and P. Tran-Gia, “Edgenetwork-
cloudsim: Placement of service chains in edge clouds using network-
cloudsim,” in IEEE Conference on Network Softwarization (NetSoft
2017). Bologna, Italy: IEEE, Jul 2017, pp. 1–6.

[10] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
Conference on Network Function Virtualization and Software Defined
Network (NFV-SDN). San Francisco, CA, USA: IEEE, Jan 2015.

[11] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba, “On orches-
trating virtual network functions,” in 11th International Conference on
Network and Service Management. Barcelona, Spain: IEEE, Nov 2015.

[12] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Barcellos, and L. P. Gas-
pary, “Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions,” in IFIP/IEEE International
Symposium on Integrated Network Management (IM). Ottawa, Canada:
IEEE, May 2015, p. 98106.

[13] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in IEEE 3rd International Conference on
Cloud Networking (CloudNet). Luxembourg: IEEE, Dec 2014.

[14] K. Yang, H. Zhang, and P. Hong, “Energy-aware service function
placement for service function chaining in data centers,” in Global
Communications Conference (GLOBECOM), 2016 IEEE. Washington,
DC, USA: IEEE, Dec 2016, p. 16.

[15] N. Huin, A. Tomassilli, F. Giroire, and B. Jaumard, “Energy-efficient
service function chain provisioning,” Journal of Optical Communica-
tions and Networking, vol. 10, no. 3, pp. 114–124, 2018.

[16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016.

[17] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[18] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing envi-
ronments and applications,” in 24th IEEE International Conference on
Advanced Information Networking and Applications (AINA). Perth,
WA, Australia: IEEE, Apr 2010, pp. 446–452.

[19] S. K. Garg and R. Buyya, “Networkcloudsim: Modelling parallel appli-
cations in cloud simulations,” in Fourth IEEE International Conference
on Utility and Cloud Computing. Victoria, Australia: IEEE, Dec 2011.

[20] C.-H. Hsieh, J.-W. Chang, C. Chen, and S.-H. Lu, “Network-aware
service function chaining placement in a data center,” in 18th Asia-
Pacific Network Operations and Management Symposium (APNOMS).
Kanazawa, Japan: IEEE, Oct 2016, p. 16.

[21] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement of
vdpi functions in nfv infrastructures,” International Journal of Network
Management, vol. 25, no. 6, 2015.

[22] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtualized
deep packet inspection functions in sdn,” in MILCOM IEEE Military
Communications Conference. San Diego, USA: IEEE, Nov 2013.

[23] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement
of virtualized network functions,” in 10th International Conference on
Network and Service Management (CNSM). Rio de Janeiro, Brazil:
IEEE, Jan 2014, pp. 418–423.

[24] R. Bruschi, P. Lago, and C. Lombardo, “In-network programmability
for next-generation personal cloud service support (input),” Procedia
Computer Science, vol. 97, pp. 114–117, 2016.

[25] A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach
to universal topology generation,” in Ninth International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems. Cincinnati, OH, USA: IEEE, Aug 2001, pp. 346–353.

235

