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Abstract—Crowdsensing offers a cost effective way to collect
large amounts of sensor data. However, in contrast to fixed
sensor deployments, the spatial distribution of the sensors can
hardly be influence, as the sensors are carried by participants of
the crowdsensing system. This in turn raises the question about
the performance of such systems with respect to the detection
probability and detection time of spatial events. In order to
address this question, we analyze the performance of such a
crowdsensing system by means of simulation. We use the traffic
infrastructure of a small size city in Germany and simulate the
inhabitants’ movement patterns with the well established SUMO
mobility generator. Our results show that even if only a small share
of inhabitants participates in crowdsensing, events, which have
locations that are correlated with the population density, can be
easily and quickly detected using such a system. On the contrary,
events whose locations are uniformly randomly distributed are
much harder to detect using a crowdsensing approach.

                                                     
                              

I. INTRODUCTION

People have been collecting sensor measurements in urban

areas for decades to derive environmental models or to adapt

their behavior to changing situations, like traffic routing with

respect to the current traffic volumes. In the past, this process

of data collection, data analysis, and deduction of models or

action guidelines was time consuming and the overall coverage

of the sensing information was rather limited due to the required

number of dedicated sensing equipment. However, the rise of

novel concepts like smart cities creates an increasing demand

for fine grained and up-to-date environmental information,

which cannot be fulfilled with traditional approaches that solely

build on a small number of highly specialized (offline) sensing

equipment.

One possibility to tackle this challenge is the usage of a large

number of cheap Internet of Things (IoT)-based sensing nodes.

Recently many vendors started to offer cheap hardware boards

that combine Internet connectivity, low power consumption, and

simple programmability. These boards can again be used as

basis for customized sensing nodes that continuously deliver

real-time environmental data. Another option to collect large

amounts of environmental data is crowdsensing. With the

still increasing number of smartphones, smart devices, and

wearables, a lot of people carry a diverse set of sensory equip-

ment, including, for example, microphones, cameras, brightness

sensors, and gyroscopes. Due to the connectivity features of the

devices, the sensor information can be made available in almost

real time and can often be further combined with location infor-

mation, e.g., based on the devices’ GPS receiver. Crowdsensing

tries to leverage this source of sensing data by directly involving

people in the collection of environmental data. Especially due

to the low investment costs, as no additional sensor hardware

needs to be deployed, crowdsensing is a promising source for

sensor information in smart cities.

However, one major drawback of crowdsensing is the missing

control of the spatial distribution of the sensor nodes. The sen-

sor nodes, i.e., the smart devices, are carried by the participating

citizens and the density of the sensory network is consequently

highly correlated with the population density. Considering the

daily routines of the crowdsensing participants, e.g., going to

work in the morning and returning home at night, both the

population density as well as the geographical density of the

sensor network even change during the day. With respect to

this limitation, the question arises how good the actual sensor

coverage of a crowdsensing approach is, and if crowdsensing

can be used to reliably detect spatial events, respectively.

In this work, we address this question by using a simulative

evaluation of a real-life scenario, in which inhabitants of a small

city contribute to a crowdsensing system in order to detect

different types of spatial events, which can be correlated or

uncorrelated with the density of people. For all event types, we

analyze the detection probability, i.e., the share of events that

is detected by the crowdsensing users, and also the detection

time, i.e., the time between the appearance of the event and

its detection. The traffic infrastructure in our example is based

on OpenStreet data for the city of Würzburg, Germany and

the movement patterns of the crowdsensing participants are

generated using the Simulation of Urban Mobility (SUMO) [1].

Our results show that even if only 1% of the 125 000 inhabitants

of the city contributes to the crowdsensing system, correlated

events can be detected with a very high probability and within

a short time after their occurrence. In contrast, uncorrelated

events are harder to detect using a crowdsensing based approach

and only about 30% of them can be detected in a reasonable

about of time.

The remainder of the paper is structured as follows. Section II

reviews related work and puts our work in context. Section III

details on the methodology, including the generation of the

events, the mobility model used for the citizens, and the event

detection. Section IV presents and discusses the outcome of our

simulation experiments with respect to the detection time and
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detection probability. Finally, Section V concludes our paper

and points our directions for future research.

II. RELATED WORK

In this section, we first cover general concepts that are

relevant in the context of crowdsensing. These include the

architecture of such systems, incentives for user participa-

tion, goal functions of platform providers, and use cases.

Afterwards, we discuss related work that deals with mobile

crowdsensing (MCS) in particular, i.e., location specific tasks,

spatial coverage, and user mobility. Furthermore, we provide

an overview of hybrid systems that merge sensed data from

mobile users and fixed sensors.

A. Crowdsensing Systems

The widespread availability of smartphones that are equipped

with different sensors as well as cameras paves the way for large

scale crowdsensing This enables use cases such as temperature

and traffic monitoring [2], WiFi localization [3] as well as

characterization [4].

In order to cope with the amount and frequency of infor-

mation exchange within crowdsensing systems in an efficient

manner, several works [5], [6] propose architectural frameworks

that standardize the common steps of sensing, transmission,

aggregation, processing, and forwarding to applications. Ad-

ditionally, protocols [7] and applications [3] that address the

overhead in terms of energy consumption in the context of MCS

lower the barrier for end-user participation.

Crowdsensing service providers strive to optimize two main

goals, namely minimizing the cost for sensing and maintaining

high quality, reliable data [2]. Furthermore, a high user parti-

cipation is required for keeping sensed information up-to-date.

Therefore, many research initiatives also deal with the topic

of incentives [8]. In most cases, these incentives are monetary

and are tuned in order to favor honest reports while minimizing

expenditures for the provider. Such techniques include reverse

auction approaches [9] as well as reputation systems that

quantify users’ trustworthiness [10]. In this work, however, we

assume that users provide honest reports.

B. Mobility and Location Awareness

Similarly to this work, where events occur at specific locati-

ons and whose detection requires the presence of nearby users,

several works deal with the challenges of location-specific

tasks. For example, the authors of [11] address the location

uncertainty that arises from users who hide their location due

to privacy concerns.

While in our work, users do not stray from their regular path

to detect events, the authors of [12] propose the notion of a time

budget which can be spent on detours for crowdsensing tasks.

Both of the aforementioned works note that the corresponding

optimization problems for achieving minimal costs are NP hard

and propose heuristic and approximation algorithms to cope

with large scale problem instances.

In [13], hybrid sensor deployments are discussed. In this

context, crowdsensed data is combined with readings from

fixed sensors and cameras to increase the performance in

terms of precision and coverage. To reap the benefits of such

hybrid systems as well as systems that feature only fixed

sensors, the spatial placement of the fixed sensors needs to be

optimized [14], [15] and a suitable notion of coverage should

be chosen [16]. In our particular case, less frequented areas of

the city would be candidates for sensor locations that enable

quick event detection despite a low population density.

Finally, not all possible participants might be required to

meet the constraints of a particular crowdsensing service.

Therefore, the provider might recruit only a subset of users

to minimize the costs. Simulation studies with algorithms that

solve the corresponding optimization problem [17] as well as

case studies [18] demonstrate that such user selection strategies

can significantly reduce the payments while maintaining a high

service quality. Hence, these techniques could also be used

in our event detection context during busy hours when the

population density in urban areas allows almost instantaneous

detection. Furthermore, social interaction between humans can

be used to reduce network overhead by exchanging and aggre-

gating data locally before sending it to the service provider [19].

III. METHODOLOGY

The performance evaluation of mobile crowdsensing focuses

on the event detection scenario, i.e., events appear at random

times and random locations on a map and have to be detected

by the sensors. Ignoring the shielding caused by obstacles, a

regular placement of fixed sensors can cover the whole map,

which leads to an immediate detection of all events. However,

depending on the sensors’ detection range, a large number of

fixed sensors is needed, which causes high capital and operati-

onal expenditures. In this work, the potential savings and trade-

offs of mobile crowdsensing are investigated. It is assumed

that users do opportunistic crowdsensing, i.e., they move on

the map and passively sense their environment. They are not

instructed to move to or sense a particular area and might even

be completely unaware of the sensing, e.g., if sensing is a

background process on their smartphone. They are considered

as mobile sensors and, similar to fixed sensors, have a given

detection range. Their coverage is determined by their activity

and mobility, such that there is a probabilistic availability of

sensor measurements in terms of time and location.

The performance evaluation is conducted by means of a

discrete event simulation. In the following, the details of the

simulation are presented.

A. Event Appearance

In this performance evaluation, 800 000 events are simulated

and the time of appearance of each event is independently

and uniformly distributed over one day. The event location is

determined randomly according to one of three methods:

First, uncorrelated events are considered whose location

of appearance is uncorrelated to the density of people, e.g.,

rain or lightning strikes. In this case, the event location is

uniformly distributed over the map. Second, events might also

be correlated to the density of people, e.g., accidents or traffic
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jams. Therefore, the location of correlated events is distributed

identically to the density of people. Finally, partially correlated

events are events, which depend on people only to some extent,

e.g., fire. They are modeled by introducing a percentage p, such

that p% of the events are correlated events, i.e., the location is

distributed according to population density, and (100-p)% are

uncorrelated events, i.e., the location is uniformly distributed.

B. User Mobility

To generate movements of users, the Simulation of Urban

Mobility (SUMO)1 [1] is used. SUMO is a free and open

traffic simulation suite implemented by Deutsches Zentrum

für Luft- und Raumfahrt (DLR, German Aerospace Center).

It allows the modeling of intermodal traffic systems including

road vehicles, public transport, and pedestrians. Thereby, the

highly customizable tool can create mobility traces for arbitrary

cities (e.g., based on OpenStreetMap data) and purposes (e.g.,

traffic light control, emission calculation).

For this study, a pedestrian mobility trace was generated

with SUMO for the small city of Würzburg, Germany with

a population of 125 000. A map of Würzburg of size 8.75 km x

6.05 km was obtained from OpenStreetMap and imported into

SUMO as a road network. The mobility simulation spawns a

new pedestrian every second, who undertakes a single trip on

the map, and then vanishes. For each pedestrian, two edges of

the SUMO network, i.e., roads, are selected uniformly random

as the start and end of the trip with a maximum distance

of 2 km. SUMO performs a fastest-path routing to determine

the intermediate edges. Based on the trip definition and a

pedestrian model with default parameters2 (e.g., maximum

speed 5.4 km/h), the position of the pedestrian is computed at

every second and added to the mobility trace file. The resulting

mobility trace covers a period of 30 h, i.e., a whole day plus

some margins before and after the evaluated time frame.

To account for diurnal activity patterns, the spawning of

pedestrians is thinned out based on the typical hourly vehicle

volume of streets3 [20], which was normalized and depicted in

Figure 1. This means that the peak rate of one new pedestrian

per second is reached only for hours with peak traffic volume.

For the remaining hours, pedestrians can only spawn with

a probability corresponding to the relative traffic volume as

presented in Figure 1. The resulting mobility trace contains

the positions of 43 447 unique pedestrians with an average trip

length of 1305.24 m. Figure 2 shows the empirical cumulative

distribution function (ECDF) of the duration of the simulated

trips. Apart from some deviations in the marginal areas, an

almost uniform distribution can be observed with an average

walking duration of 1379.88 s (ca. 23 min). Thus, according to

Little’s law, during peak hours, 1379 pedestrians participate in

crowdsensing on average, which is roughly 1% of the city’s

population.

1http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931 read-41000/
2http://sumo.dlr.de/wiki/Vehicle Type Parameter Defaults
3https://nacto.org/publication/urban-street-design-guide/design-controls/

design-hour/
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Fig. 1: Normalized pedestrian rate with respect to peak rate.

Adapted from the typical hourly vehicle volume of streets [20].
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Fig. 2: Distribution of trip duration.

C. Event Detection

Every participating pedestrian is considered a mobile sensor

and can detect events. Therefore, the detection range of the

mobile sensors has to be modeled. In this study, the map is

divided into a regular grid of small cells of width 50 m. The

simple assumption is used that an event can be detected if a

mobile sensor is in the same cell as the event. Moreover, the

detection time of an event can be computed, i.e., the time from

the appearance of an event until a mobile sensor covers the

event cell. Note that the detection time is 0 if a mobile sensor

is co-located in the same cell during the appearance of an event.

IV. RESULTS

The performance of mobile crowdsourcing to detect events

can be quantified in terms of detection time and detection

probability. Figure 3 shows the ECDF of the detection time. The

orange curve represents uncorrelated events with a uniformly

distributed location. It can be seen that around 3% of the events

are detected immediately with a detection time of 0, which

happens when a mobile sensor is already present when an event

appears. The ECDF increases fast in the first quartile, but the

increase eventually slows down. 57.92% of the events have a

detection time larger than 180 min or are never detected. This is

not surprising as the map has areas with only a few roads or no

roads at all, which significantly lowers the number of potential

visitors. Thus, it is difficult or even impossible to detect events

that appear in these cells using crowdsensing. In our trace about

53% of all cells we not visited by any mobile sensor at all. The

black curve presents the ECDF of the detection time in the case
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Fig. 4: Detection probabilities for partially correlated events

and different maximum detection time thresholds.

of correlated event locations, which are distributed identically to

the population density of the mobile trace. The detection times

are generally much lower compared to uncorrelated events.

23.8% of the events are detected immediately, and generally,

the events are detected much faster. The median is 92 s and

only very few events (0.06%) have a detection time larger than

180 min or are never detected.

In real life, events will not be detectable for an infinite

amount of time, because they disappear (e.g., a traffic jam

dissolves) or become irrelevant (e.g., occasional rain turns into

a heavy shower). These events have to be detected within

a certain time (e.g., until the next traffic report or weather

forecast on a radio channel) to provide useful information. In

practice, this maximum detection time might be determined by

the type of detected event. However, considering the shapes

of the detection time distributions, it can be observed that

the detection of uncorrelated events is much more sensitive

to setting a maximum detection time than the detection of

correlated events.

Figure 4 investigates the trade-offs between the detection

probabilities and different maximum detection time thresholds,
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Fig. 5: Distribution of detection time for events with maximum

detection time of 30 minutes.

which are represented by differently colored lines. The x-

axis indicates the percentage p of correlated events, while

(100-p)% of the events are uncorrelated. As the generated

partially correlated events are linearly combined from the

set of uncorrelated and correlated events and the detections

of single events are independent, a linear increase from the

detection probability of uncorrelated events dpuncorr in case

of p = 0 (only uncorrelated events) to the detection probability

of correlated events dpcorr for p = 100 (only correlated events)

can be observed for each line. This means that the detection

probability dpp of partially correlated events with percentage p

can be computed as

dpp = p% · dpcorr + (100− p)% · dpuncorr.

The yellow line represents a maximum detection time thres-

hold of 3 h. The detection probabilities of 42.03% for uncorre-

lated events and 99.39% for correlated events could already be

observed at the right margin of Figure 3. When decreasing the

maximum detection time threshold down to 1 min (black) to

consider very fast event detection only, the detection probabi-

lities fall. However, 7.20% of uncorrelated events and 43.43%

of correlated events can still be detected within one minute.

This shows that the maximum detection time threshold, which

in practice depends on the type of detected event, has a big

impact on the performance of mobile crowdsensing.

In the remainder of this work, a maximum detection time of

30 min is assumed. This means, if the detection time is larger

than 30 min, an event is considered not detected or missed.

In Figure 4, the brown line represents the chosen threshold of

30 min. It can be seen that it makes a good compromise of low

detection times and high detection probabilities, which range

from 29.22% for p = 0 (only uncorrelated events) to 94.02%

for p = 100 (only correlated events).

Figure 5 shows the resulting distributions when considering

only detected events with a maximum detection time of 30 min,

i.e., the detection time distribution from Figure 3 truncated at

30 min. It can be seen that still the detection times are shorter

for correlated events, which is the expected outcome, but the
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Fig. 6: Hourly detection probability.

shapes of the ECDFs are more similar. The probabilities of

immediate detection are 10.6% for uncorrelated and 25.3% for

correlated events, respectively.

As noted above, the allowed maximum detection time of

30 min has a big impact on the detection probability. Figure 6

depicts the hourly detection probability, i.e., the detection

probability of an event that appeared during a certain hour of

day. Two interesting observations can be made. First, as also

indicated by Figure 3, the detection probabilities of correlated

events (black) are high and reach a maximum of 98.7%. Even

the minimum detection probability of 84.1% during nighttime

is considerably high and shows the applicability of crowd-

sensing for such events. For uncorrelated events (orange), the

detection probabilities are much smaller between 19.5% and

36.4%. Thus, for these events mobile crowdsensing has to

be complemented by fixed sensors to achieve a serviceable

detection probability. The second observation is that the hourly

detection probability resembles the crowdsensing participation

in Figure 1. This shape is more visible for uncorrelated events

as it is superimposed with the generally high detection pro-

bability for correlated events. Still, this means that increasing

the participation in crowdsensing leads to higher detection

probabilities for all kinds of events.

Figure 7 investigates the hourly median detection time, i.e.,

it shows the median detection time of an event that appeared

during that hour of day. The median detection time for uncor-

related events is shown in Figure 7a. It can be seen that the

shape resembles the inverse of the crowdsensing participation

in Figure 1. The highest median detection times of up to

8.6 min occur during nighttime, as expected, when few people

are actively sensing. The median detection times decrease for

hours with high crowdsensing participation down to 2.6 min at

7 am and 8 am.

Figure 7b shows the median detection time for correlated

events. It has a shape similar to Figure 7a but at a much lower

level. At peak hours, the median detection time is 15 s, as many

events are immediately detected. The highest median detection

time at 1 am is 5.2 min, which is still very low considering the

low participation in crowdsensing during that hours. It has to

be noted that the detection time distributions have a long tail,

which could be seen in Figure 3. Thus, despite low median
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Fig. 7: Hourly median detection time.

detection times, a considerable amount of events will face much

larger detection times or not be detected at all. Nevertheless,

most events can be detected very fast by mobile crowdsensing.

V. CONCLUSION

As mobile devices like smartphones or wearables can be ea-

sily used as portable sensors, mobile crowdsensing has recently

gained increasing attention from research and industry. Espe-

cially in case of opportunistic crowdsensing, when participants

move and passively sense their environment, possibly unaware

of the sensing process, mobile crowdsensing is an economic

alternative to installing fixed sensors in smart cities. However,

although it might reduce CAPEX and OPEX for fixed sensors,

there is a possible reduction of sensor coverage and accuracy

due to probabilistic user mobility.

In this work, a simulative performance evaluation of mobile

crowdsensing was conducted to investigate these trade-offs for

the event detection scenario. A mobility trace of the city of

Würzburg with random walks of pedestrians over the course of

a single day was used. Thereby, a crowdsensing participation

of roughly 1% of the population was simulated. The events

appeared uniformly random during 24 h and their locations were

distributed over the map of Würzburg, either correlated to the

population density, partially correlated, or uncorrelated, i.e.,

uniformly random. It was shown that the trade-offs between

detection time and detection probabilites could be adjusted

by different maximum detection time thresholds, although in

practice this threshold might be determined by the type of

detected event. For the remainder of this work, a maximum

detection time of 30 min was assumed.

Uncorrelated events faced long detection times and a rather

low detection rate of 29.22%. As the map has areas without
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roads, which are never visited by the mobile sensors, events

that appear in these cells cannot be detected by mobile crowd-

sensing. Setting a higher maximum detection time of 180 min

can increase the detection rate up to 42.03%, however, the

events might disappear or become irrelevant in the meantime.

Thereby, the detection of uncorrelated events was much more

sensitive to setting a maximum detection time than the detection

of correlated events. Correlated events generally showed much

shorter detection times and high detection rates of 94.02%. As

no events appear in areas without people, high detection rates

could be observed even during nighttime. As partially correlated

events consisted of p% correlated and (100−p)% uncorrelated

events, the results for a given percentage p can be interpolated

from the marginals.

The results showed that, for correlated events, crowdsensing

can achieve almost total coverage of the city. Moreover, it

was confirmed that increasing the participation in crowdsensing

leads to higher detection rates for all kinds of events. It has to

be noted that most detected events could be detected very fast.

However, the distribution showed a long tail, which means that

a considerable amount of events faced large detection times or

could not be detected at all by mobile crowdsensing, especially

for uncorrelated events.

In future work, the performance evaluation of the event

detection scenario can be improved by considering more re-

alistic mobility traces that also include vehicular mobility.

Moreover, the impact of other distributions of event locations

can be studied. As the coverage of pure mobile crowdsensing

is not perfect yet, hybrid systems of fixed sensors and mobile

crowdsourcing will be included and investigated. This adds

a monetary dimension as the trade-offs between needs and

costs for fixed sensors have to be evaluated. Also users can be

paid for sensing sparsely frequented or missing locations/times,

which marks the transition from opportunistic to participatory

crowdsensing. Finally, new scenarios, such as periodic sensing

and continuous sensing, will be tackled.
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