
A Wrapper for Automatic Measurements with
YouTube’s Native Android App

Michael Seufert∗, Bernd Zeidler∗, Florian Wamser∗, Theodoros Karagkioules†,
Dimitrios Tsilimantos†, Frank Loh∗, Phuoc Tran-Gia∗, Stefan Valentin†
∗University of Würzburg, Institute of Computer Science, Würzburg, Germany

{seufert | bernd.zeidler | florian.wamser | frank.loh | trangia}@informatik.uni-wuerzburg.de
†Huawei Technologies, France Research Center, Paris, France

{theodoros.karagkioules | dimitrios.tsilimantos | stefan.valentin}@huawei.com

Abstract—YouTube is one of the most popular and demanding
services in the Internet today. Thereby, a large portion of this
traffic is generated by YouTube’s mobile app. While past studies
have shown how to monitor browser-based streaming on desktop
PCs (e.g., YoMo) or mobile devices (e.g., YoMoApp), streaming in
the native app has not been monitored yet. This paper presents an
automated framework for monitoring the streaming in YouTube’s
native app for Android. The concept is based on a wrapper
application and the Android Debug Bridge (adb), and can be
also extended to automatic measurements with other apps. For
YouTube, it allows to collect application-layer streaming data,
such as current playtime, buffered playtime, video encoding, and
quality switches. These data can be complemented with network
measurements on the mobile access link to obtain a holistic view
on mobile YouTube streaming on Android devices. In addition
to describing the software design and testbed setup, this paper
discusses an experimental measurement. This study analyzes the
streaming in the native YouTube app and compares it to the
streaming from the mobile YouTube website via YoMoApp.

I. INTRODUCTION

The mobile YouTube app brings one of today’s most
popular and volume-dominant services on the Internet to
mobile devices. Out of the hundreds of millions of hours
watched and billions of views generated on YouTube every
day, more than half of the service requests come from mobile
devices1 and their perceived service quality might suffer from
fluctuating network conditions in constrained and stressed
mobile networks. Still, the goal of video streaming services
and (mobile) network operators is to increase their revenue
by achieving a high Quality of Experience (QoE), which is
a concept used to describe the subjectively perceived quality
of end users with an Internet service [1], [2]. While video
streaming services, such as YouTube, can influence the video
content preparation (e.g., coding format, video bit rate) and
the adaptation of the video quality (i.e., HTTP Adaptive
Video Streaming (HAS)), network operators employ QoE-
aware traffic management within the constrained networks to
meet SLAs for data transmissions, to reduce their costs by
sophisticated utilization of the network resources, and to reach
a high end user satisfaction.

To evaluate the current situation in the network, which is
the basis of all traffic management, network operators rely on

1https://www.youtube.com/yt/about/press/ – All webpages referenced in this
paper were accessed on May 8, 2018.

QoE monitoring to assess the satisfaction of end users and use
the monitored information for traffic management decisions.
Typically, they distribute hardware middleboxes or virtual net-
work functions in their networks, which investigate the traffic,
extract relevant features, and estimate the QoE. However,
the recent trend towards end-to-end encryption reduces the
visibility of monitoring approaches in the network. Instead,
solutions are required, which estimate the QoE from features
that were extracted from the encrypted packet data, e.g., [3].
To build accurate QoE estimators for streaming apps, such as
YouTube, a deep understanding of the underlying network- and
application-layer characteristics of the app is required.

Therefore, this paper presents an automated framework
for monitoring the streaming in the native Android YouTube
app in a testbed. The concept relies on a wrapper app based
on the Android Testing Support Library and the Android
Debug Bridge (adb), making it customizable to other Android
apps. For YouTube, it allows to collect all application-layer
streaming data like current and buffered playtime, stalling,
video coding format, and quality switches. These data are
complemented with network measurements on the mobile
access link to obtain a holistic view on mobile YouTube
streaming on Android devices, making it the first approach that
can provide such detailed insights. The presented wrapper app
is available on GitHub2. In an exemplary study, the streaming
of the YouTube app is analyzed in three different network
conditions with two different videos to show the applicability
of the presented QoE measurement concept. Moreover, the
streaming with the YouTube app is compared to the streaming
from the mobile YouTube website via YoMoApp [4], [5]. A
larger data set measured from two different vantage points with
different devices and video content is available3, but will not
be discussed in this work due to space limitations. In future
works, data sets generated with our measurement framework
will be further evaluated to build accurate QoE estimators for
YouTube streaming, which work on encrypted network traffic.

The remainder of this paper is structured as follows.
Section II introduces related works on network and QoE mea-
surements for video streaming. Section III presents the novel
monitoring approach. Section IV describes the testbed and
measurement setup, and the results are presented in Section V.
Finally, Section VI concludes this paper.

2https://github.com/lsinfo3/yomo-wrapperapp
3http://qoecube.informatik.uni-wuerzburg.de

II. RELATED WORK

Several tools have been proposed in literature to measure
the performance of Internet applications, such as [6], [7]. With
special attention to the measurement of video streaming apps,
[8]–[10] monitored streaming with a browser plug-in, and were
able to measure several QoE metrics, such as initial delay,
stalling, and adaptation. In [11], the authors present a system
for on-line monitoring of YouTube QoE in cellular networks
using in-network measurements only. [12] implemented an
evaluation tool for YouTube QoE in Android mobile devices.
However, this application did not take adaptive video streaming
into account. In [13], a mobile application was presented to
actively measure and analyze mobile app QoE on network
and application layer. In [14], the authors introduce a tool
to measure and analyze mobile app QoE, based on active
measurements on network and application layers.

YoMoApp (YouTube Performance Monitoring Application)
[4], [5], is a unique Android application, which passively,
non-intrusively monitors application- and network-level KPIs
of YouTube adaptive video streaming on mobile devices, and
can collect subjective QoE feedback of users. The monitored
KPIs and collected ratings can be used to analyze the QoE of
mobile YouTube video sessions. Therefore, an Android Web-
View browser element is embedded to display the YouTube
mobile website, on which YouTube HTML5 video streaming
is possible. Monitoring functions are added, which query the
HTML5 〈video〉 object to obtain player state/events, buffer, and
video resolution. Additionally, network statistics (e.g., RAT,
transmitted bytes) and context parameters can be monitored in
the native Android part of YoMoApp, and optional subjective
QoE feedback can be obtained after a streaming session.

III. QOE MONITORING OF THE NATIVE ANDROID

YOUTUBE APP

QoE monitoring of YouTube adaptive video streaming at
a mobile device is difficult because internal data of the client
app cannot be easily accessed. Custom made apps, such as
YoMoApp [4], [5], worked around and streamed from the
mobile YouTube website with a browser, where it is possible
to measure all relevant QoE parameters. Still, researchers
are unsure if there is a difference of the streaming from
the mobile YouTube website via YoMoApp and the native
YouTube app due to multiple versions and frequent updates of
the YouTube streaming environment (i.e., different streaming
for different devices/operating systems/app versions). As the
original app is prevailing, it is highly desirable to perform
QoE measurements directly with the native app on regular
mobile devices. Therefore, a measurement approach for the
Android YouTube app is presented using an Android debug
interface and a wrapper app. The approach leverages that many
relevant streaming information is displayed in the YouTube
app. This includes the current video playback time and video
duration in the progress bar, and a special feature of the
YouTube app called “stats for nerds”, which allows the user
to display advanced streaming information, e.g., buffer size,
video format, or network speed estimation (cf. Figure 1 and
Table I).

To extract these data from the app, first of all, a direct
communication to the device has to be established. The An-

Fig. 1: Screenshot from YouTube app during measurement
with “stats for nerds” and timestamp above the seek bar.

TABLE I: YouTube “stats for nerds” debug information.

Key Presumable meaning Example

csdk Android SDK version ”csdk”:”25”
c Platform type ”c”:”android”
cbrand Phone brand ”cbrand”:”Google”
cbrver App version ”cbrver”:”12.34.55”
cplayer Player type ”cplayer”:”ANDROID EXOPLAYER”
cplatform Player platform ”cplatform”:”mobile”
cmodel Phone model ”cmodel”:”Pixel XL”
cver App version ”cver”:”12.34.55”
cbr App package name ”cbr”:”com.google.android.youtube”
cosver OS version ”cosver”:”7.1.1”
cos OS name ”cos”:”Android”
videoid Video id ”videoid”:”N2sCbtodGMI”
cpn 〈meaning unknown〉 ”cpn”:”IahGa5wh6X9rUhD-”
fmt Video format id (itag) ”fmt”:”244”
afmt Audio format id (itag) ”afmt”:”140”
bh Buffered playtime ”bh”:34900
bwe Bandwidth estimate ”bwe”:4740424
conn Number of connections ”conn”:3
bat Battery charge ”bat”:”0.330:1”
df Ratio of dropped frames ”df”:”0/166”
timestamp Timestamp ”timestamp”:”2017-09-22T06:36:08.005Z”
glrenderingmode Player rendering mode ”glrenderingmode”:”RECTANGULAR 2D”
innertube.build Build information ”innertube.build.changelist”:”169439144”,

”innertube.build.experiments.source version”:
”169565248”,”innertube.build.label”:
”youtube 20170920 0 RC5”,
”innertube.build.timestamp”:”1505939237”,
”innertube.build.variants.checksum”:
”28e1cc6b7674123a48c07976d04819f9”

e 〈meaning unknown〉 (aka fexp) ”e”:”23700451,23700497,23700647,
23701914,23701958,23702322,23702700,
23702708,23702739,23702753,23702894,
23703156,23703299,23703890,23704018,
23704045,23704248,23704263,23704600,
9405973,9415293,9422596,9431754,
9435797,9444108,9444635,9449243,
9450141,9456940,9463607,9463830,
9464088,9467503,9470292,9476026,
9476327,9477614,9478727,9480475,
9481734,9482942,9484344,9484377,
9485000,9488038,9488474,9489124”

logged in User log-in state ”logged in”:”1”

droid Debug Brigde (adb)4 is a software interface for Android,
which can be used to connect Android devices to a PC via
USB, and thus, does not interfere with the Internet connection
of the device via Wi-Fi or cellular network. With adb, the PC
can act as a controller and can send commands to the Android
device in order to trigger events. Most importantly, the input
command simulates an input event on the Android device like
a key press, a touch event, or a swipe motion. The basic syntax
for a touch event, as an example, is adb shell input tap x y .
With x and y, a position on the screen is defined using the exact
pixel coordinates. Using this command, the controlling PC can
emulate every user interaction with the Android device. In the
context of the Android YouTube App, this approach is capable
to interact with the app and the streaming just like a user can
do, e.g., search for a specific video, start or pause the video
playback, or change the video resolution. This allows to control
the measurement in the YouTube app. During the streaming,
the “Copy to clipboard” button can be tapped periodically,
in order to copy the “stats for nerds” values to the system
clipboard from where it can be stored to a file with the help
of an additional app. Later the file can be transferred to the
controlling PC via adb. To access the user interface, on which
the video progress bar is displayed, Android provides a tool
for dumping the structure and contents of the active window in

4https://developer.android.com/studio/command-line/adb

form of an XML file, called uiautomator5. Using the command
adb exec-out uiautomator dump /dev/tty allows the controlling
PC to retrieve the activity content of the currently active
application, which contains the video progress bar, as well
as the current playback time and video duration.

As extensive communication with the controlling PC via
adb, e.g., frequently triggering touch events or dumping the
contents of the active window, can cause delay and reliability
issues, most of the controlling algorithm should be moved
to the mobile device. Only basic commands should be ex-
changed during the measurement, such as starting the mon-
itoring and interacting with the application, while the actual
QoE monitoring should be performed autonomously on the
device. Therefore, the chosen approach relies on the Android
Testing Support Library6, which provides an extensive testing
framework for automated user interface testing of Android
applications. While the original purpose of the framework
is testing in-development applications, it can be applied to
any third-party application as a controlling “wrapper app”.
Thereby, the framework sends an additional app to the Android
device, which can “wrap” around any other app on the device
and interact with it. Note that it is not necessary to change
the controlled application, which makes this approach also
applicable for researching other Android applications.

Using the wrapper app also provides the ability to perform
actions directly on UI elements inside of an application instead
of relying on position controlled touch events. Additionally,
information about the UI can be collected directly on the
device. Elements can be accessed using simple filters utilizing
descriptions, IDs, or content text. This does not only decouple
the control mechanism from the screen resolution and exact
position of UI elements, but also allows the controlling PC
to check if an action has been executed correctly. Concurrent
operations can be coordinated by testing the availability of the
required buttons, avoiding any colliding calls to UI elements.
Moreover, the wrapper app operates autonomously on the
phone, and communication with the controlling PC is only
needed for higher level instructions.

In case of measuring the native Android YouTube app, the
wrapper app subsequently launches the YouTube app, opens
the settings menu, disables autoplay, enables “stats for nerds”,
sets the starting quality (if required), starts the video playback,
and opens the “stats for nerds” UI. During the video playback,
two sets of information are passed to the controller. First, the
video progress is obtained by querying the description of the
“SeekBar” object in the YouTube UI. It is transmitted directly
to the controller over a TCP connection, running through
an adb forward. On the controlling PC, the video progress
information is logged to a file. The progress information can
be sampled roughly in intervals of 500 ms. Second, the “stats
for nerds” data is obtained. Therefore, an additional Android
app is used, which dumps the contents of the clipboard into a
file on the phone. Every second, the wrapper app performs a
click action on the “stats for nerds” UI “Copy to clipboard”
button, and invokes the installed clipboard app over a broadcast
intent. The resulting “stats for nerds” logfile is copied to the
PC after the measurement.

5https://developer.android.com/training/testing/ui-automator
6https://developer.android.com/topic/libraries/testing-support-library/

Fig. 2: Schematic representation of the testbed

IV. STUDY DESCRIPTION

The goal of the study was to prove the applicability of
the proposed measurement approach. Therefore, a testbed was
set up and the streaming of two different videos with the
native YouTube app was measured in three different network
scenarios. The measured streaming data of the YouTube app
are evaluated both in terms of network usage and resulting
Quality of Experience. Moreover, the streaming of the native
YouTube app is compared to the streaming of YoMoApp [4],
[5], an Android app designed for monitoring YouTube video
streaming, which uses the mobile YouTube website in a
WebView browser for streaming. The results can give insights
if both approaches can reliably measure the same YouTube
service, or if and how the streaming differs for different
services (native app, mobile website) offered by YouTube.
Therefore, both apps are used to stream the same videos in
the same testbed under the same network conditions.

The testbed employed in the measurements is installed
at the University of Würzburg and consists of a Linux PC,
currently running Ubuntu 14.04.4 LTS, a Google Pixel running
Android 7.1.1, and a Wi-Fi dongle, and is shown in Figure 2.
During the measurement, the phone is connected to the PC over
a USB connection, as well as to a Wi-Fi access point set up
on the PC via the Wi-Fi dongle. The USB connection provides
power and a means to control the phone using adb. The Wi-Fi
connection connects the phone to the Internet via the Internet
link of the PC. Thus, the Wi-Fi connection is utilized by the
phone to stream the video, but can be controlled and monitored
by the PC. Therefore, two additional programs are utilized
in the measurement process on the PC. These are the Linux
internal tc with netem for shaping the traffic on the Internet
link of the PC, and tcpdump for monitoring the network traffic
of the smartphone on the wireless link.

To allow for a varied set of measurements, both the used
videos and the traffic shaping plans can be configured easily
through a file with special syntax. This file specifies the
YouTube video ID and defines selected quality level, band-
width limit, latency, and packet loss for each measurement.
These values can be applied for the whole video, or can be
altered during the streaming using a measurement itinerary.
Another persistent configuration file is used for setting the
measurement conditions at each testbed site. It contains tech-
nical information that may vary between sites, such as network
interface name, phone ID, measurement configuration, and
communication ports. The main controlling script reads these
configuration files and adjusts the testbed accordingly.

During the experiments performed in this study, three
network scenarios have been used, i.e., Unlimited, Varying,
and Limited. The Unlimited scenario did not apply any traffic
shaping. As the testbed is connected via university network to

TABLE II: Network scenario Varying.

Measurement Time Bandwidth Delay Packet Loss

start - 120 s - - -
120 s - 160 s 5000 kbps 11 ms 1.00%
160 s - 200 s 4000 kbps 13 ms 1.25%
200 s - 240 s 3000 kbps 15 ms 1.50%
240 s - 280 s 2000 kbps 20 ms 1.75%
280 s - 320 s 1500 kbps 25 ms 2.00%
320 s - 360 s 2000 kbps 20 ms 1.75%
360 s - 400 s 3000 kbps 15 ms 1.50%
400 s - end 4000 kbps 13 ms 1.25%

the optical fiber network of the German National Research
and Education Network (DFN), high throughputs of up to
around 20 Mbps could be achieved. The Limited scenario used
tc with hierarchical token bucket for limiting the bandwidth to
500 kbps during the whole measurement. The Varying scenario
featured changing network conditions in terms of bandwidth
limitations, delay, and packet loss. It follows a reference
network profile7 defined by the DASH Industry Forum with
some modifications with respect to the timing intervals, and
is presented in detail in Table II. Two videos were used
with different characteristics, which were not monetized, i.e.,
no advertisement clips were shown with the video. Video 1
(YouTube ID D8YQn7o AyA, duration 17:54 min) was the
German TV broadcast of the penalty kicks of the UEFA
EURO 2016 quarter finals between Germany and Italy, which
was available in all quality levels up to 2160p, and Video 2
(YouTube ID Y-rmzh0PI3c, duration 12:10 min) was the an-
imated movie “Cosmos Laundromat - First Cycle” from the
Blender Foundation, which was available in quality levels up
to 1080p. Note that for all measurements, the quality level was
not specified during the streaming, i.e., the automatic quality
level selection feature of YouTube was used.

V. RESULTS

A measurement produces three output files: a tcpdump of
the network traffic, a “stats for nerds” log, and a playtime
log. The tcpdump log is a textual representation of a packet
capture trace (pcap) of all TCP/QUIC traffic of the YouTube
app including a Unix timestamp, information about IP address
and port of the source and destination, packet length, protocol
version, sequence numbers, and flags for each packet. It
also includes the DNS requests and responses, such that IP
addresses can be mapped to domain names. The recognized
domain names can be used to identify network ranges of
YouTube video servers (e.g., googlevideo.com) or ads servers
(e.g., doubleclick.net). Thus, information about the content in
each flow are given, even if the flow itself is encrypted.

The “stats for nerds” log also contains a Unix timestamp
and several comma-separated key-value-pairs of data in quo-
tation marks. They are listed in Table I with their presumed
meaning and an example. It can be seen that information about
the phone and the player are logged, as well as playback
information, such as the video and audio itag (fmt, afmt),
the buffered playtime in milliseconds (bh), and the number
of played out frames, which is the denominator in the ratio
of dropped frames (df). The itag of the video format can
be looked up to obtain information about the video codec,
the resolution, and the frame rate. Thereby, the number of

7http://dashif.org/wp-content/uploads/2016/06/
DASH-AVC-264-Test-Vectors-v1.0.pdf

played out frames could be converted into the current video
playtime. The video playtime can also be directly obtained
from the displayed progress bar of the video player. These
data are periodically stored in the progress log, which simply
lists the current Unix timestamp in milliseconds, the current
video playtime, and the video duration.

A. Postprocessing of the Measured Data

Postprocessing is an important step after the measurements.
It validates the data and extracts relevant parameters from raw
data by preparing and processing the logfiles.

1) Playtime Fitting with Linear Function: The playtime
log has to be postprocessed as it only contains discrete
playtime values (integer seconds). These values correspond
to the measured data at a given time value. The discrete
values of the logfile represent the playtime as a step function,
which does not reflect the continuous playback. Therefore, a
linear fitting is applied to the raw data to obtain a continuous
playtime function. The linear fitting is required to have a
slope of 1, as the video playtime should advance one second
during one second of real time (unit rate constraint). Figure 3
shows a measured playtime function and its rectified version.
In Figure 3a, the red dots show the integer raw data and the
blue line presents the corresponding linear fit. The linear fitting
gives the estimated values for the playtime, which can be used
for further analyses, and can be used to obtain the rectified
playtime function, which is depicted in Figure 3b and returns
the current video playtime at any given timestamp. In case
of playback interruptions, i.e., stalling, the methodology has
to be only slightly modified. A stalling period is detected as
a time period with constant playtime. Due to the step nature
of the raw playtime function and the periodic polling with an
interval of 500 ms, a stalling threshold of 1 s is introduced. If
the derivative of the playtime function is 0 for a period larger
than that threshold, the period is considered a stalling period.
For each period of playback, the linear fitting with slope 1 can
be applied, which is depicted in Figure 3c. After piecewise
reconstruction, Figure 3d shows the corresponding rectified
playback function, which allows to obtain exact timestamps
for begin and end of stallings (yellow).

2) Labeling: In addition to the timestamps of playback
start, stalling start, and stalling end, the timestamps of quality
changes can be obtained directly from the “stats for nerds”
log file by observing changes of the format itags (fmt/afmt).
To label network-related events, the tcpdump network log
is postprocessed. First, all DNS requests and responses are
extracted, as well as the start and end times, durations, and
sizes of all included flows, which are described by a four-
tuple of source and destination IP addresses and ports. The
DNS requests/responses are evaluated to identify video server
IP addresses or network ranges based on known video domain
names (e.g., googlevideo.com). The timestamp of the first
packet to a video server is labeled as the initial request,
which allows to obtain the initial delay of the streaming
session, i.e., the difference between the timestamps of the
playback start and the initial request. Moreover, the buffering
phases, i.e., the periods in which video data are downloaded,
can be identified from inspecting the video flows. Thereby,
video flows are defined as flows, whose source IP address
belongs to a video server. To set the end of a buffering

0 2 4 6 8 10
Time [s]

0

2

4

6

8

10
Pl

ay
tim

e
[s

]
Logged Playtime
Fitted Playtime

(a) Fitting of playtime log.

1.5051687352 1.5051687402 1.5051687452
Timestamp [ms] 1012

0

2

4

6

8

10

Pl
ay

tim
e

[s
]

Rectified Playback

(b) Rectified playback.

0 20 40 60
Time [s]

0

10

20

30

40

50

60

Pl
ay

tim
e

[s
]

Logged Playtime
Fitted Playtime

(c) Detection of stalling, piecewise
fitting of playtime log.

1.5051699045 1.5051699345 1.5051699645
Timestamp [ms] 1012

0

10

20

30

40

50

60

Pl
ay

tim
e

[s
]

Rectified Playback
Stalling

(d) Rectified playback and stalling.

Fig. 3: Fitting of logged playtime and rectified playback.

phase, a threshold of 1 s is used, i.e., the timestamp of the
buffering end event is set in case no video packets arrive
in the following second. To obtain the buffered playtime,
the cumulative download function, i.e., the total amount of
downloaded video data, is used. The downloaded playtime
at any time can be computed from the cumulative download
function after externally downloading the video in the used
format itags with youtube-dl and inspecting segment sizes
and contained playtime with ffprobe. The buffered playtime
can then be computed as downloaded playtime minus current
playtime. Note that also the “stats for nerds” log contains the
buffered playtime (bh) and can be used for validation, but the
network method provides a finer granularity.

B. Comparison of Streaming in YouTube App and YoMoApp

The streaming of the YouTube app was analyzed in the
testbed for three different network scenarios, i.e., Unlim-
ited, Varying, and Limited, and two selected videos, i.e.,
Video 1 (D8YQn7o AyA) and Video 2 (Y-rmzh0PI3c). It is
compared to the streaming from the YouTube mobile website
via YoMoApp. Each combination of network scenario, video,
and application was measured ten times in the same testbed in
January 2018. Thereby, for each combination, the repetitions
showed a very similar streaming behavior, implying that the
testbed is able to produce representative results. Figure 4 shows
plots of exemplary streaming sessions of Video 1 for each
network condition. In each plot, the x-axis shows the time
from the start of the measurement. The left y-axis and black
line depict the download throughput per second in Mbps, the
brown dashed horizontal line indicates the average throughput,
and the right y-axis and orange curve show the cumulative
download volume in MB. The six plots are arranged in three
columns, which represent the three network conditions, and
two rows. The streaming with YouTube app is depicted on top,
and the corresponding streaming with YoMoApp on bottom.

In the Unlimited scenario of Video 1, the YouTube app
shows an initial phase, in which it constantly downloads data
with throughputs of around 18 Mbps (black). After around
30 s and almost until the end of the video, there is a regular
pattern of short download bursts of around 1 s in intervals
of roughly 10 s for both videos. Thus, the download rate is
significantly reduced, which results in a well visible “bend”
of the cumulative download volume (orange) between the two
phases. Thereby, the first phase can be considered a “filling
phase”, in which the video buffer shall be filled until a certain
level of buffered playtime. A best effort download is used,
and thus, the download rate in this phase is only limited by the

network. In the second “steady state” phase, the download rate
is reduced to maintain a constant level of buffered playtime,
such that new video data are only downloaded when the
buffered playtime drops below a threshold. For both measured
videos, this threshold was 120 s. This means that one burst
contains the data for a playtime of 10 s, and thereby, the
download rate approximates the video bit rate. This can be
followed from the unit rate constraint of the video playback
(one second of playtime is played out in one second of real
time), i.e., to maintain a constant buffer, the fill rate (download
rate) of the buffer is equal to the depletion rate of the buffer
(video bit rate). The reason to reduce the download rate might
be to not stress servers with best effort downloads, and the
level of the constant buffer might be selected in order to
trade-off the risk of network degradations with the amount
of unnecessarily downloaded video data in case of video
abortion. The total downloaded data is 367.3 MB, the average
throughput is 3.011 Mbps, and the download ratio is 36.10%,
i.e., downloads were active in 36.10% of the time on average.
Video 2 shows a very similar behavior. Only due to a lower
video bit rate, the duration of the filling phase is shorter
and the total downloaded data (108.1 MB), average throughput
(1.302 Mbps), and download ratio (23.67%) are smaller.

The beginning of the Varying scenario is similar to Unlim-
ited, and thus, the streaming of Video 1 also starts with a filling
phase and reaches the steady state phase. When the bandwidth
limitations start, the bursts become longer, as more time is
needed to download the required video data of one burst. After
240 s (cf. Table II), the download rate is obviously lower than
the video bit rate, which can be seen in the orange curve, and
the streaming returns to filling phase, in which it is constantly
downloading with a rate limited by the network conditions.
During that time the buffered playtime decreases to roughly
72 s. When the bandwidth increases, the desired buffer level
of 120 s is again reached, and the streaming switches to steady
state phase. The total amount of downloaded data and average
throughput were similar to Unlimited, only the download ratio
is higher than Unlimited (79.64%). Video 2 shows a similar
behavior, but due to the lower video bit rate, the second filling
phase is later and shorter. Again only the download ratio is
higher compared to Unlimited (43.59%).

In the Limited condition, the streaming of Video 1 shows a
similar behavior to Unlimited with a target buffered playtime
of 120 s, however, a much longer filling phase can be observed
(ca. 180 s) due to the bandwidth limitation. During this phase,
two changes of itag (quality adaptation) occur. The quality
is eventually switched down to a much lower video bit rate,

0 200 400 600 800 1000 1200
Time [s]

0

5

10

15

20

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 [M
bp

s]

YouTube - Unlimited

0

100

200

300

400

C
um

ul
at

iv
e

D
ow

nl
oa

d
Vo

lu
m

e
[M

B]

0 200 400 600 800 1000 1200
Time [s]

0

5

10

15

20

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 [M
bp

s]

YouTube - Varying

0

100

200

300

400

C
um

ul
at

iv
e

D
ow

nl
oa

d
Vo

lu
m

e
[M

B]

0 200 400 600 800 1000 1200
Time [s]

0

0.2

0.4

0.6

0.8

1

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 [M
bp

s]

YouTube - Limited

0

10

20

30

40

50

C
um

ul
at

iv
e

D
ow

nl
oa

d
Vo

lu
m

e
[M

B]

0 200 400 600 800 1000 1200
Time [s]

0

5

10

15

20

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 [M
bp

s]

YoMoApp - Unlimited

0

100

200

300

400

C
um

ul
at

iv
e

D
ow

nl
oa

d
Vo

lu
m

e
[M

B]

0 200 400 600 800 1000 1200
Time [s]

0

5

10

15

20

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 [M
bp

s]

YoMoApp - Varying

0

100

200

300

400

C
um

ul
at

iv
e

D
ow

nl
oa

d
Vo

lu
m

e
[M

B]

0 200 400 600 800 1000 1200
Time [s]

0

0.2

0.4

0.6

0.8

1

D
ow

nl
oa

d
Th

ro
ug

hp
ut

 [M
bp

s]

YoMoApp - Limited

0

10

20

30

40

50

C
um

ul
at

iv
e

D
ow

nl
oa

d
Vo

lu
m

e
[M

B]

Fig. 4: Throughput (black), average throughput (dashed brown), and cumulative download volume (orange) of representative
streaming sessions of Video 1 (D8YQn7o AyA) with YouTube app (top) and YoMoApp (bottom) in all investigated scenarios.

which results in a much lower downloaded volume, but also
in a reduced visual quality (see QoE results below). The
total amount of downloaded data is 33.18 MB, the average
download throughput is 254 Kbps, and the download ratio
is 64.20%. Video 2 again shows a very similar behavior
with a shorter filling phase. The total downloaded data is
18.20 MB, the average download throughput is 217 Kbps, and
the download ratio is 56.04%.

Comparing the streaming of the mobile YouTube website
with YoMoApp, some differences are visible. In the Unlimited
scenario of Video 1, YoMoApp shows only regular and large
download bursts of around 2 MB every 18 s. After 335 s the
interval doubles to around 36 s and a slight bend can be
recognized in the orange curve. In this steady state phase,
YoMoApp maintains a buffered playtime threshold of 310 s,
which is much higher than in the YouTube app. The total
downloaded volume is 67.85 MB, which is much smaller than
in YouTube app, and indicates that a lower video bit rate and
lower visual quality was streamed. The average throughput is
530 Kbps, and the download ratio is 14.94%, both also smaller
than for YouTube app. For Video 2, the total downloaded
volume is 35.11 MB, the average throughput is 402 Kbps, and
the download ratio is 14.35%. However, the streaming phases
could not be identified. Instead, the streaming showed the same
large bursts interleaved with small bursts of around 500 KB.
This might suggest that also the large bursts of 2 MB that could
be seen for both videos are actually composed of four small
bursts. However, there might also be a more complex relation
between the video content, video bit rate, segment length,
and burst size. In the Varying scenario of both videos, the
bandwidth limitation is also visible and causes longer and more
frequent bursts. Eventually, the streaming reaches the steady
state phase with longer intervals between large bursts. While
the download volume and average throughput are similar, the
download ratios are higher reaching 25.40% for Video 1, and
22.02% for Video 2. In the Limited scenario, the streaming of
YoMoApp shows an almost constant download with average

download ratio 69.97% for Video 1 and 81.40% for Video 2.
The download rate is limited by the network condition only
and is a best effort download with an average throughput of
333 Kbps for Video 1 and 395 Kbps for Video 2. Interestingly,
a higher amount of data is downloaded than with YouTube app
(43.03 MB for Video 1 and 34.87 MB for Video 2).

The results confirm that both streaming services provided
by YouTube are not very similar. The streaming in the
YouTube app clearly shows two phases. There is a filling phase
with enduring best effort download (download rate limited
by network) until a certain threshold of buffered playtime
is reached, and a steady state phase, in which a constant
buffer is maintained by a regular on/off-downloading pattern
with small bursts of data (download rate limited by video
bit rate). In contrast, streaming from the mobile YouTube
website with YoMoApp rather showed a best effort download
in larger intervals with larger bursts, although phases with
different download rates exist as well. Most prominently, the
total amount of downloaded data is much lower in YoMoApp
in Unlimited and Varying scenario, which indicates that the
YouTube app offers a higher visual quality of the streamed
video. In the Limited scenario, YoMoApp streamed with a
constantly active download and downloaded only a slightly
lower amount of data than in the other scenarios. As the
YouTube app significantly reduced the amount of downloaded
data below the amount of YoMoApp, YoMoApp might provide
a higher visual quality in this scenario. In the following, the
QoE-related parameters are investigated in more detail.

Figure 5 shows several QoE-related parameters of the
streaming sessions for each of three network scenarios. All
bars represent the mean values with 95% confidence intervals
over the ten repetitions for each combination on top. Thereby,
orange bars show results of the native YouTube app, and
brown bars results of YoMoApp. The darker and lighter colors
represent Video 1 and Video 2, respectively. Figure 5a shows
the initial delay of the streaming session, i.e., the time from the

Unlimited Varying Limited
0

10

20

30

40
In

iti
al

 D
el

ay
 [s

]

YouTube Video 1
YoMoApp Video 1
YouTube Video 2
YoMoApp Video 2

(a) Initial delay.

Unlimited Varying Limited
0

0.5

1

1.5

2

2.5

3

Q
ua

lit
y

C
ha

ng
es

YouTube Video 1
YoMoApp Video 1
YouTube Video 2
YoMoApp Video 2

(b) Number of quality changes.

Unlimited Varying Limited
0

10

20

30

40

To
ta

l S
ta

llin
g

Le
ng

th
 [s

] YouTube Video 1
YoMoApp Video 1
YouTube Video 2
YoMoApp Video 2

(c) Total stalling length.

-20 0 20 40 60
Time [s]

0

5

10

15

20

Pl
ay

tim
e

[s
]

278
(144p)

247
(720p)

302
(720p)

ita
g

(R
es

ol
ut

io
n)

Buffered Playtime
Current Playtime

(d) Video 1 buffer and playback
in Limited scenario (YouTube).

Fig. 5: Evaluation of Quality of Experience results.

video request to the begin of the playback. In the Unlimited
scenario, YouTube app shows a mean initial delay of 4.93 s for
Video 1 and 4.03 s for Video 2. Similar values can be seen for
the Varying scenario (4.64 s for Video 1 and 3.95 s for Video 2),
which has the same network conditions as Unlimited in the
first 120 s, i.e., no bandwidth limitation. In case of the Limited
condition, the mean initial delays increase up to 32.29 s for
Video 1 and 6.91 s for Video 2. Taking a closer look at the
“stats for nerds” log, it could be seen that the initially requested
itag for Video 1 was 302 in Unlimited and Varying scenarios,
which had a total video size of 344.3 MB, and it was itag 247
in the Limited scenario, which had a total size of 203.2 MB.
Note that both itags 302 and 247 use VP9 coding format in a
webm container and have a resolution of 720p8 but the average
encoding bit rates obviously differ (2.689 Mbps for itag 302,
1.587 Mbps for itag 247). Video 2 was initially downloaded in
all scenarios in itag 247 with a total size of only 95.02 MB and
average bit rate of 1.092 Mbps, and this smaller average video
bit rate might be responsible for the shorter initial delays.

Figure 5b presents the mean number of quality changes,
and Figure 5c shows the mean total stalling length, respec-
tively. It can be seen that no quality change or stalling occurred
in Unlimited and Varying scenarios. Thereby, Video 1 was
requested all the time in itag 302, and Video 2 was requested
all the time in itag 247. However, quality changes and stallings
occurred in the Limited scenario. Video 1 always showed
one quality change and two stalling events. Stalling shows
that the selected video bit rate (itag) cannot be supported by
the limited network conditions, and consequently, YouTube
requests a lower quality. Figure 5d shows the first seconds of
an exemplary streaming of Video 1 in Limited condition. The
current playtime (brown) and the available playtime (black) are
plotted on the left y-axis, while the orange dashed line shows
the displayed itag and resolution on the right y-axis. The x-axis
depicts the time from the playback start in seconds, so negative
times indicates the initial delay. In this network condition,
YouTube initially requested itag 247 and changed to request

8https://godoc.org/github.com/rylio/ytdl

itag 302 after around 5 s, still during the initial delay. Note that
this quality change is not counted in Figure 5b as it cannot
be perceived by the users. Interestingly, this quality change
constitutes an increase of video bit rate. The reason is that the
bandwidth is initially estimated as 18 Mbps (bwe, cf. “stats
for nerds” log), probably based on the previous measurements
with that device. It takes more than 40 s until the estimation is
corrected to 500 Kbps. The reason could be that the estimation
is only updated after a download burst is finished.

When YouTube started the playback, only 2.5 s of playtime,
which might be the initial delay threshold, could be played
out in itag 302. The downloaded data was not sufficient, and
caused the first stalling event, which is illustrated by the yellow
area. When another 5 s of playtime, which might be the stalling
threshold, were downloaded, the playback resumes at 32 s until
37 s. At this point, YouTube realized that the limited network
condition did not support the high bit rate of the segment,
so YouTube switched to itag 278, which has a total size of
12.78 MB, a much lower average bit rate of 100 Kbps, and the
lowest video resolution of 144p. The reason for the late switch
might be that YouTube app uses a fixed number of connections,
which might initially all download parts of the high quality
video. After the bandwidth estimation was corrected, YouTube
app possibly still had to wait until a download burst was
finished and its connection was available to download the new
itag. After the download of another 5 s of playtime, playback
continued at 46 s and the low bit rate of this itag could be
supported by the network for the remainder of the session.
This streaming behavior was consistent over all ten runs.

Also for Video 2, the initial itag is 247 and the final itag
is 278 with total size of 5.561 MB and average bit rate of
64 Kbps. However, either one or two quality changes occur.
Four times, there was a first quality change after 20 s either to
itag 244 (480p, three times) or 243 (360p, once), and a second
quality change to itag 278 after another 17 s (for all itag 244)
or 14 s (for itag 243). Six times, there was only one quality
change to itag 278 either after 20 s (two times) or 42 s (four
times) of playtime. The exact timing of the quality switches
in both videos can be explained by the segment borders of
YouTube’s HAS system, i.e., segments contain a fixed amount
of playtime to enable switches at certain points in the video.
Only in the case of switching to the lowest quality after 20 s,
stalling could be avoided. For the other eight measurements of
Video 2, YouTube did not manage to switch to the lowest
quality before stalling occurred (one stalling event). These
results suggest that stalling events in YouTube app occur when
the bandwidth estimation is wrong and a too high video quality
was selected. Thereby, the bandwidth estimation might also
consider historical streaming data. Moreover, stalling events
are closely related also to quality changes, as they might
constitute the “initial delay” of the download of a new itag.

Compared to the YouTube app, the mean initial delays of
YoMoApp are much shorter with 0.20 s for Video 1 and 0.59 s
for Video 2 in Unlimited and Varying scenario. Considering
the total download volume, this can be explained by the much
lower bit rate requested in YoMoApp. The YoMoApp logs
show that, in Unlimited and Varying scenario, Video 1 is
always streamed in 360p, and Video 2 in 240p, but the itags
cannot be accessed in YoMoApp. In the Limited scenario the
initial delays are 9.01 s for Video 1 and 9.61 s for Video 2 due

to the bandwidth limitation to 500 Kbps. However, YoMoApp
also starts the streaming of Video 1 with 360p. After one to
four quality switches to 240p or 144p, the final resolution of
240p is reached. In contrast, Video 2 is streamed in 240p all
the time. Thus, both videos can maintain a higher resolution
than the resolution to which YouTube app converged (144p),
while avoiding stalling in all scenarios.

In general, it can be seen that the streaming of YouTube
app and the mobile YouTube website with YoMoApp deliver
different streaming QoE. In case of sufficient bandwidth,
YouTube app streams a much higher video bit rate, which
results in a higher time on higher quality layer, and thus,
an improved QoE [2], [15]. When the bandwidth is limited,
stallings can occur with the YouTube app, to some extend
caused by wrong bandwidth estimation and new initial delays
when the quality level (video bit rate) is changed and a new
itag is requested. Moreover, a very conservative behavior was
observed as YouTube eventually switched to the lowest quality
layer for the remainder of the session. YoMoApp, in contrast,
better coped with the bandwidth limitation. It adapted the
quality better and could maintain a higher quality level without
any stalling, which results in a higher QoE [2].

VI. CONCLUSION

This paper presented a novel QoE measurement concept
for the native Android YouTube app, which is based on a
wrapper app and the Android Debug Bridge. In a testbed with
a controlling PC, user interactions within the YouTube app can
be emulated and displayed information can be logged. As the
concept is based on the Android Testing Support Library, it
can be easily extended to research also other Android apps.

After postprocessing of the logged raw data and the
captured network trace, all playback- and network-related
parameters of the YouTube streaming could be monitored.
These include the timestamps of initial request, playback
start, starts and ends of stalling, starts and end of buffering
phases, and quality changes. Moreover, current playback time,
buffered playback time, video and audio encoding formats, and
other parameters of YouTube’s “stats for nerds” feature could
be monitored. Thus, the presented concept allows to obtain
valuable insights into the streaming and the resulting QoE of
YouTube users on Android devices, which can be used, e.g., to
develop accurate QoE estimators for encrypted video traffic.

In an exemplary measurement study, the streaming in the
YouTube app was compared to the streaming from the mobile
YouTube website with YoMoApp. The presented analyses
show that the novel measurement approach allows to gain
excellent insights in the streaming with the native Android app
both on application and network level. It allows to drill down
on numbers and performance measures to reach a detail level
that is unprecedented by previous measurement approaches. It
could be seen that both streaming services offered by YouTube
for mobile devices (Android app and mobile website) show
significantly different streaming behaviors. The YouTube app
clearly showed an initial filling phase and a steady state
phase with regular small bursts to maintain a certain level
of buffered playtime, while YoMoApp rather showed a best
effort download in larger intervals with larger bursts. Also
the QoE results for both streaming services were different, as
the YouTube app provided a higher QoE in case of sufficient

bandwidth. However, YoMoApp could cope better with limited
bandwidth, because YouTube app showed a wrong bandwidth
estimation, which was based on historical streaming data.

To measure mobile YouTube streaming on network and
application layer, the wrapper app approach should be pre-
ferred, as it can automatically measure the popular native
Android YouTube app and provides very detailed insights into
the streaming both on network and application layer. However,
the wrapper app approach can only be used in a testbed because
it requires adb/USB connection to a controlling PC. In contrast,
YoMoApp can be used by real users in the field to measure
the YouTube streaming from the mobile website. Although
the streaming might be different to the native YouTube app,
YoMoApp additionally allows to collect subjective ratings,
which is beneficial for the QoE research of video streaming.

REFERENCES

[1] P. Le Callet, S. Möller, and A. Perkis (eds), “Qualinet White Paper on
Definitions of Quality of Experience,” COST Action Qualinet, Tech.
Rep., 2013.

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, 2015.

[3] D. Tsilimantos, T. Karagkioules, A. Nogales-Gómez, and S. Valentin,
“Traffic Profiling for Mobile Video Streaming,” in International Con-
ference on Communications (ICC), 2017.

[4] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: a Tool for Analyzing QoE of YouTube HTTP Adaptive
Streaming in Mobile Networks,” in European Conference on Networks
and Communications (EuCNC), 2015.

[5] M. Seufert, N. Wehner, F. Wamser, P. Casas, A. D’Alconzo, and
P. Tran-Gia, “Unsupervised QoE Field Study for Mobile YouTube Video
Streaming with YoMoApp,” in Conference on Quality of Multimedia
Experience (QoMEX), 2017.

[6] C. Kreibich, N. Weaver, B. Nechaev, and V. Paxson, “Netalyzr: Illumi-
nating the Edge Network,” in Internet Measurement Conference (IMC),
2010.

[7] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao, “Mobilyzer:
An Open Platform for Controllable Mobile Network Measurements,” in
Conf. on Mobile Systems, Applications and Services (MobiSys), 2015.

[8] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A
YouTube Application Comfort Monitoring Tool,” in Wrkshp. of Quality
of Experience for Multimedia Content Sharing (QoEMCS), 2010.

[9] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the
Quality of Experience of HTTP Video Streaming,” in Symposium on
Integrated Network Management (IM), 2011.

[10] H. Nam, K.-H. Kim, D. Calin, and H. Schulzrinne, “YouSlow: A
Performance Analysis Tool for Adaptive Bitrate Video Streaming,”
ACM SIGCOMM Computer Communication Review, vol. 44, 2014.

[11] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A System for On-
line Monitoring of YouTube QoE in Operational 3G Networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, 2013.

[12] G. Gómez, L. Hortigüela, Q. Pérez, J. Lorca, R. Garcı́a, and M. C.
Aguayo-Torres, “YouTube QoE Evaluation Tool for Android Wireless
Terminals,” EURASIP Journal on Wireless Communications and Net-
working, vol. 164, 2014.

[13] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “QoE Doctor: Diagnosing Mobile App QoE with Auto-
mated UI Control and Cross-layer Analysis,” in Internet Measurement
Conference (IMC), 2014.

[14] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,
“Concept and Implementation of Video QoE Measurements in a Mobile
Broadband Testbed,” in Network Traffic Measurement and Analysis
Conference (TMA), 2017.

[15] M. Seufert, T. Hoßfeld, and C. Sieber, “Impact of Intermediate Layer
on Quality of Experience of HTTP Adaptive Streaming,” in Conference
on Network and Service Management (CNSM), 2015.

