
Streaming Characteristics of Spotify Sessions

Anika Schwind, Florian Wamser, Thomas Gensler, Phuoc Tran-Gia

Insitute of Computer Science, University of Würzburg

Würzburg, Germany

{anika.schwind | florian.wamser | trangia}@informatik.uni-wuerzburg.de

Michael Seufert, Pedro Casas

AIT – Austrian Institute of Technology

Vienna, Austria

{michael.seufert.fl | pedro.casas}@ait.ac.at

Abstract—Internet Service Providers need a thorough under-
standing of a service to maximize the Quality of Experience
(QoE) of their customers by network management. Instead of
quantifying the user satisfaction with long and cost-intensive
subjective user studies, the QoE can often be estimated with
the help of dedicated measurements of application and network
parameters. We designed a QoE measurement tool for the
popular audio streaming service Spotify that runs inside a Docker
software container. The container is able to run headlessly as
active measurement probe and emulates a user who is streaming
audio files via Spotify. While streaming, network and application
parameters are collected that have a high correlation to the user’s
QoE. The results of the measurements are used to characterize
audio streaming in Spotify on application and network layer, and
to evaluate important QoE factors.

I. INTRODUCTION

To understand and properly manage services delivered

through their networks, Internet Service Providers (ISPs) need

metrics to quantify the experience and satisfaction of their

customers. Therefore, the concept of Quality of Experience

(QoE) was developed, which focuses on the subjective user

experience using a service or application. The QoE indicates

the degree of delight or annoyance of a user of an application

as perceived subjectively [1], and depends on various factors

in the network or in the application. Such QoE-related perfor-

mance indicators, which can be mapped to QoE using a QoE

model, can be monitored on application layer, which requires

a modification of the client application or the end user device.

On network layer, Deep Packet Inspection (DPI) or statistical

analyses of network and flow statistics (e.g., machine learning)

can be applied to estimate the perceived QoE factors.

While video streaming services like YouTube and their

QoE have been thoroughly investigated in previous research

(e.g., [2], [3]), music streaming services like Spotify and their

corresponding QoE have not been considered yet. Similar

to video streaming, music streaming is increasingly popular

and can be run in different versions and on various devices.

However, the service usage is inherently different, as music

streaming is often a long-lasting background service, which

runs in parallel to other foreground services. Thus, it is less

interactive and its traffic often has to compete with the fore-

ground services of the user. Still, the service is continuously

consumed and QoE degradations can be well perceived. Thus,

in order to maximize the satisfaction of their customers with

music streaming, operators need to understand this service in

detail, especially regarding the traffic and the resulting QoE.

Since QoE is highly dependent on the actual application

and user perception, usually extensive, multi-disciplinary sub-

jective user studies are required to understand all influence

factors. In order to avoid those long and cost-intensive user

studies, the QoE can often be estimated with the help of dedi-

cated measurements of application and network parameters. A

complementary approach that has come into focus for ISPs is

active measurements using dedicated measurement tools and

mobile broadband testbeds. An active measurement software

allows to emulate the user and to monitor both, QoE factors

on application layer and network statistics.

In this work, audio streaming via Spotify is characterized on

application layer as well as on network layer, and QoE factors

are analyzed and discussed. Therefore, an active measurement

concept is presented, which allows to headlessly stream audio

files using the Spotify web application in a virtualized Docker

environment, while monitoring performance parameters on ap-

plication and network side that have a high correlation to QoE.

The measurements show that the buffering is triggered only

depending on the currently buffered playback time without

prebuffering subsequent tracks in a queue. In addition, the

network traffic of audio streaming via Spotify has a segment

interarrival time of 10 s, and thus, is very consistent and can be

easily modeled. Furthermore, we compare the streaming and

buffering behavior under different limitations and map them

to the corresponding QoE values.

In Section II, related work is summarized and discussed.

Section III introduces and describes the QoE monitoring ap-

proach. Afterwards, in Section IV, audio streaming via Spotify

is characterized on application and network layer and QoE

factors are discussed under different bandwidth limitations.

The paper is concluded in Section V.

II. RELATED WORK

In this section we summarize existing and related work on

audio streaming and its QoE. We start from the substantial

body of work on streaming, which mainly focuses on video

streaming, describe its basic idea, and transition to audio

streaming. Afterwards, QoE approaches are outlined, which

provide an introduction to QoE monitoring and QoE modeling

in this context.

A. Streaming Techniques

As with Spotify, streaming generally refers to the simul-

taneous transmission and playback of video or audio data.

The challenge is to deliver the data in a timely manner.

In [2], [4], current video streaming approaches and their

challenges are exhaustively listed. In particular, fluctuating

and unreliable network conditions can be overcome using

buffer-based adaptive streaming in conjunction with client- and

chunk-based HTTP requests. In [5], the streaming approach of

YouTube is described and characterized. First works dealing

with audio streaming are [6]–[9]. They often discuss VoIP calls

in this context, but this case is different from ours because

VoIP requires real-time constraints.

Technically, at least in the past, Spotify used a combination

of client-server access and peer-to-peer protocol for streaming.

A detailed description can be found in [9]. In [10], the

P2P-based streaming network of Spotify is measured. The

performance of the Spotify backend and its distributed key-

value storage system is investigated in [11].

B. Quality of Experience for Audio Streaming

Quality of Experience (QoE) is the subjective user assess-

ment of a service or application on the Internet. The related

works in this area are focused either on the streaming quality

or the user aspect. These works target the user behavior in

Spotify [12], user requirements [13], or algorithms for gener-

ating music playlists, which provides the user with a coherent

listening experience [14]. While QoE for video streaming

mainly depends on initial delay, playout interruptions, and

visual streaming quality [2], [5], there is only one work that

explicitly refers to Spotify and audio QoE factors [15]. In

this work, the impact of temporal impairments on the QoE of

music streaming is investigated in subjective lab experiments.

In addition to subjective studies, testbeds can be used, in which

performance indicators with high correlation to the actual QoE

are measured directly on the application and network layer on

a large scale under realistic conditions [16]–[18]. Our work

follows this approach and presents an active QoE measurement

tool for Spotify.

III. MEASUREMENT CONCEPT

To characterize a Spotify audio streaming session and to

quantify QoE related factors of Spotify, a measurement tool

was designed, which collects data on application as well as

on network layer. Here, a user is emulated using a Docker

container, who streams audio in mobile networks. The con-

tainer can be run without user interaction at simple network

measurement nodes, i.e., downsized, headless Linux PCs as

widely used in mobile broadband testbeds [17]. Docker was

used to enable a simplified distribution on the measurement

nodes and to create a uniform, reproducible measurement

environment so that reliable measurements can be made. As it

is not possible to collect application layer parameters directly

from the Spotify player, the Spotify API was used to query

information about the audio stream. In the following section,

the measurement setup and technical details about the Docker

Docker Container

1. Start API listener

2. Opens Spotify and starts audio
playback on web player

3. Logs

 Page load times

 Network traffic

 Requests API information
every second

 Playback time

 Buffered playback time

 Used audio quality

Server

Measurement data

Fig. 1: Setup of the measurement tool

container and the polling server are described. Afterwards, the

monitored parameters on application and network layer are

presented.

A. Technical Implementation

The Docker container is based on the debian:stretch1 distri-

bution, whose current version is Debian 9.3. The web browser

automation tool Geb2 is used within the Docker container

to simulate a user requesting an audio file in Spotify in

a Firefox browser. To play out audio files even when no

sound card is available, PulseAudio3 is used. Network traffic

information is measured during the whole experiment by using

Firefox’s HTTP logging functionality4. If enabled, Firefox

automatically logs all HTTP-related information from the

browser, for example, all request and response headers, and

stores the information in a file. On application layer, the audio

streaming in the docker container is monitored with the help

of a polling server. The server is running Apache Tomcat and

queries the Spotify API5 to retrieve and log the selected QoE

relevant performance indicators of the application.

The whole measurement setup is illustrated in Figure 1.

First, Geb is used to open a Firefox browser. By starting the

browser, a special web page on the polling server is called

to activate the API requests from the server. From now on,

the current and buffered playtime are queried and logged by

the polling server every second. At the same time, the Docker

container continues its workflow by opening the login page of

the Spotify web player in Firefox and logging into a Spotify

account. Afterwards, a dummy track is started in the Spotify

web player. This action clears the cache of the account, so that

the actual track, which will be analyzed, starts at its beginning

and all segments have to be downloaded. After playing out

the dummy track for 5 s, the actual song is started and fully

played. Then, the user is logged off from Spotify and the

container is terminated. During the whole experiment, all page

load times are recorded. In addition, the network traffic during

the streaming is logged. All resulting measurement logs can

1https://hub.docker.com/ /debian/
2http://www.gebish.org/
3https://www.freedesktop.org/wiki/Software/PulseAudio/
4https://developer.mozilla.org/docs/Mozilla/Debugging/HTTP logging
5https://beta.developer.spotify.com/documentation/web-api/

TABLE I: Monitored performance indicators

Application layer Current playtime per second
Buffered playback time per second
Initial delay
Page load times

Network layer Audio bitrate
Segment sizes
Segment interarrival times
Segment download times

be used to characterize the streaming sessions of Spotify and

quantify important QoE factors, as shown in Section IV.

B. Monitored Data - QoE Key Performance Indicators

While an audio file is streamed within the Docker container

via Spotify, several performance indicators are monitored,

which are presented in Table I.

On application layer, the current playtime as well as the

buffered playtime per second is logged during the streaming of

the audio file. In addition, the initial delay – the time between

the request of the audio playback (click on the play button) and

the start of the playback – is monitored. Besides the streaming

parameters, also all page load times are logged from the login

page of Spotify until the end of the audio playback.

To monitor the network traffic during the experiment, Fire-

fox’s HTTP logging is used. These data includes the headers of

all sent requests and responses. They can be used to calculate

the bitrate of the audio file or the size of the audio segments

as well as their interarrival times or download durations.

IV. SPOTIFY STREAMING CHARACTERISTICS

This section presents the characteristics of a Spotify audio

streaming session. Therefore, we used different versions of

Spotify and monitored the streaming with the polling server.

This allows to describe the session on application layer by

evaluating the playback and buffer behavior of an audio stream

and showing details of the used audio file. Afterwards, network

layer parameters of a streaming session in the web player are

shown. Here, general network characteristics of Spotify audio

streaming are described and a detailed time schedule with three

phases is presented. Table II summarizes the findings.

The encoding, and thus, the quality of the streamed audio

file, depends on the used player and account (standard or

premium user)6. As a standard user, Spotify is free to use

but includes advertisements. To avoid advertisements, it is

possible to pay a specific fee to upgrade to a premium account.

For the web player and the desktop application, there are two

qualities available, while the Android and iOS application offer

a third, very low quality level in addition. Adaptivity of the

used quality depending on the given network conditions is only

available for the Android and iOS app. Here, it is more likely

that the users are connected to the mobile network and moving,

and thus, face fluctuating bandwidth during the streaming.

In this case, the adaptivity can help to align the streaming

6https://support.spotify.com/using spotify/system settings/
high-quality-streaming/

quality, i.e., bitrate, with the current network conditions, i.e.,

bandwidth. To stream an audio file via Spotify, regardless of

the used player, a persistent HTTP connection over TCP is

used. The audio file is a DASH fragmented MP4 [19]. Using

this standard, the audio file is split into a header file and several

fragments, which can be downloaded one after the other.

A. Application Layer Parameters

On application layer, the focus of the analysis is set on

the playback and buffer behavior of Spotify audio stream-

ing sessions using the web player in Firefox within our

measurement container. Thereby, the streaming behavior was

consistent for different audio files (cf. Table III). In the

following, the numeric results of the streaming of one audio

file are shown, which is the song Alles neu by Peter Fox

(track No. 1). Each audio file has a Spotify-wide track ID,

which is “5hqxBvQJ3XJDSbxT9vyyqA” for this track. The

total duration of this audio file is 260.09 s which leads to a

size of 4.46 MB for a standard user streaming via the Spotify

web player (encoding: AAC, bitrate: 128 kbit/s).

In all plots of Figure 2, the x-axis indicates the time in

seconds after the start of the audio playback while the y-

axis specifies the progressed or buffered time in seconds,

respectively. In Figure 2a, the current playtime of the audio

file is illustrated as black graph. As it is constantly increasing,

no interruptions occurred during the playback. The stepwise

orange graph shows the downloaded playtime during the audio

playback. Thus, the space between the downloaded playtime

and the playback time represents the buffer and is marked with

an oval. The buffer can be seen in more detail in Figure 2b,

marked in gray.

The playback of an audio file only starts after the initial

buffering of the first segment containing 10 s playtime. For this

track and setting, this first segment has a size of 139.53 KB.

Whenever the buffer decreases to the threshold of 10 s, new

data is downloaded to a maximum of 20 s playtime, which ex-

plains the stepwise increase of the downloaded playtime graph.

Thus, during the whole playback, the buffer stays between 10 s

and 20 s, and in the worst case, a network outage of 10 s can be

tolerated. In case of insufficient bandwidth, stalling will only

occur at segment borders if the download takes longer than

10 s, and the stalling lasts until the segment was downloaded

completely. At the end of the track the buffers decreases to

zero without prebuffering the subsequent track. Only when

the playback of the track is finished the first segment of the

subsequent track is requested. By applying these thresholds of

10 s, Spotify trades off the tolerance against network outages to

limit the amount of unnecessarily downloaded data that would

be wasted when the streaming is aborted by the user.

If the playback is manually paused, as indicated by the

dotted lines in Figure 2a, the playback time does not increase

anymore. After already requested segments were downloaded,

the downloaded playtime stops increasing. As no additional

segments are requested, the buffer stays constant on a level

between 10 s and 20 s. This behavior and the respective

thresholds could be observed for all investigated audio tracks.

TABLE II: Audio streaming characteristics on application layer

Audio settings Encoding Web player: standard user: AAC 128 kbit/s, premium user: AAC 256 kbit/s

Desktop app: standard user: Ogg Vorbis 160 kbit/s, premium user: Ogg Vorbis
320 kbit/s
Android/iOS app: normal quality: Ogg Vorbis 96 kbit/s, high quality: Ogg
Vorbis 160 kbit/s, extreme quality: Ogg Vorbis 320 kbit/s (premium user)
Adaptivity: only for Android and iOS app

Container format DASH fragmented MP4, 10 s segments

Transmission protocol HTTP persistent connection over TCP

Streaming characteristics Initial buffering 10 s playtime (std: 0, fixed),

(unlimited bandwidth) Buffering
[10; 20], avg: 15 s, linear between subsequent requests due to application layer
download algorithm

Buffer threshold Minimum buffer: 10 s

Pause behavior Buffer stays at the same level (10 s-20 s). no further download requests

0 50 100 150 200 250
0

50

100

150

200

250

time in seconds

p
ro

g
re

s
s
/d

o
w

n
lo

a
d

e
d

 t
im

e
 i
n

 s
e

c
o

n
d

s

initial
buffering

downloaded playtime

paused playback

playback
time

buffer

(a) Streaming characteristic

35 40 45 50 55
35

40

45

50

55

60

65

70

75

time in seconds

p
ro

g
re

s
s
/d

o
w

n
lo

a
d

e
d

 t
im

e
 i
n

 s
e

c
o

n
d

s

new data

buffer

download
threshold

(b) Download threshold (c) Segment requests

Fig. 2: Playtime, buffer, and request characteristic of a Spotify audio streaming session

B. Network Layer Parameter

Audio files streamed via Spotify are DASH fragmented MP4

with a 96 Bytes header. Each segment covers a playback dura-

tion of 10 s. To have a closer look at the used bitrates within the

Spotify web player, Table III shows the bitrate characteristics

of different audio tracks streamed using a standard account

within our measurement container. On average, the download

bitrate of all tracks is between 136 and 141 kbit/s. Considering

these six tracks, an average segment has a size of 169.2 KB

(1.353 Mbit). Having a look at the variance and the standard

deviation, the values are very low except for track No. 1. In

this special case, the first segment was much smaller than

the others (139.53 KB compared to an average segment size

for this song of 171.49 KB). This could be caused by the

comparatively quiet intro at the beginning of the track.

As each segment covers a fixed playtime of 10 s, the number

of segments per track depends on its duration. The number of

segments per track is calculated as length of track in seconds

divided by 10 and rounded up. For example, track No. 4 has

a duration of 204.5 s, and thus, is split in 21 segments. There

is one exception: If the last segment would be very small, as

for track No. 1 with a duration of 260.09 s, the number of

segments is rounded off, here to 26 segments.

Figure 2c shows the sequence of requesting and down-

loading new segments. A new segment is requested when

the buffered playback time falls below 10 s. The download

time (marked in brown) starts immediately and ends as soon

as the whole segment is downloaded. For track No. 1, the

average download time of one segment was 28.4 ms using a

Internet connection with more than 700 Mbit/s. The next 10

seconds, the playback continues without the download of a

new segment until the buffer threshold is reached again. In

total, the download of the whole track takes 794 ms which

is about 0.31% of the total duration of the track (260 093 ms

corresponding to 4.33 min).

Three Phases: The streaming of an audio file using Spotify

can be divided into three phases: beginning, steady phase,

and depletion phase. By requesting the start of the stream,

first, header information with an average size of 1 781 Bytes

is downloaded. The average is calculated using the six tracks

specified in Table III with a standard deviation of 31.9 Bytes.

Immediately after this, the segment with the first 10 s playtime

is requested and downloaded twice. The playback of the audio

file only starts after the second download is finished. This is

quite surprising and we could not figure out the reason for this

behavior. As soon as the playback starts, the next segment of

10 s playtime is requested and consequently a buffer of almost

20 s is reached (20 s - download time of about 20 ms). In total,

the beginning phase includes four requests with a total size of

506.7 KB on average.

After that, the steady phases starts. Here, the buffer is kept

constant containing between 10 s and 20 s playtime. As soon

as the buffer falls below the download threshold of 10 s, the

next segment is requested. Thus, the interarrival time of the

segments is 10 s if the playback runs without interruption.

TABLE III: Download bitrate characteristics of multiple tracks

No. Track-ID Avg kbit/s Min kbit/s Max kbit/s Variance Standard deviation

1 5hqxBvQJ3XJDSbxT9vyyqA 137.14 111.62 141.85 29.79 5.46

2 6tvQzeCPwOytDlBYCIOY0n 140.11 135.39 144.48 4.62 2.15

3 5ELRhUPf1f2Qc1x7hTFQ9l 138.60 118.97 143.06 5.60 2.37

4 0AQl7UJ5IKRZRzCxQFOwwo 136.53 133.15 138.28 0.81 0.90

5 7hhpH9L5L6jBTimrATV7fS 137.86 134.97 141.66 3.52 1.88

6 3lmebIvU89RA5336bjBIaQ 139.61 132.36 145.61 5.75 2.39

When all segments are downloaded, the depletion phase starts.

Here, no further segments have to be requested and the buffer

decreases until the audio playback is finished.

In case of a subsequent track in the playing queue, the

transition to the next song does not behave differently, but

the procedure mentioned above is just repeated. Hence, no

prebuffering is made by the Spotify streaming algorithm, only

the header information of the next track is downloaded before

the end of the current track. The request of the first segment

of the next audio file is sent when the previous track is fully

played and the buffer is empty.

It can be seen that the network traffic of an audio streaming

via Spotify is very consistent and shows a deterministic inter-

arrival time of the segments of 10 s. Thus, the traffic caused by

the Spotify streaming sessions should be identifiable although

the network traffic is encrypted. The streaming behavior also

can be easily simulated using the time schedule described in

the three phases above.

C. Influence of Bandwidth Limitations

To analyze the influence of the given network capacity

on the streaming behavior, measurements were run under

different bandwidth limitations. Here, again track No. 1 was

used, streaming from a premium user account using the

measurement container. The average bitrate of this track is

270.27 kbit/s with a minimum of 211.64 kbit/s and a maximum

of 279.21 kbit/s. The track was streamed using ten different

bandwidth capacities in the range from 220 kbit/s to 460 kbit/s

and with no bandwidth limitation (unlimited). For each setting,

a minimal number of ten measurements were conducted and

are considered in the following evaluations.

Previous user studies [2], [15] showed that initial delay

and stalling, i.e., the interruption of the playback due to

buffer depletion, are the most important influence factors,

which affect the QoE of audio streaming. Thus, these two

factors were analyzed in more detail by comparing them under

different bandwidth capacities in Figure 3. The x-axes show

the bandwidth limitation, while the y-axes present the initial

delay and the total stalling time in seconds, respectively. Each

bar represents the average value of the ten different mea-

surements under the same conditions and the corresponding

95 % confidence interval is shown on top. The y-axes on the

right of each figure indicate the mean opinion score (MOS).

The red stars represent the MOS values corresponding to

the occurred initial delays and total stalling times, and were

calculated using the model presented in [15]. Note that this

model considers the two factors (initial delay and stalling)

separately. The model does not provide an overall MOS value,

which considers the combination of both factors, although, in

practice, both degradations would occur at the same time when

the bandwidth is limited.

Having a look at the initial delays, they range from an

average of 28.77 s for a bandwidth limit of 220 kbits/s down to

0.65 s for unlimited bandwidth. It can be seen that a bandwidth

capacity of 460 kbits/s or higher corresponds to a good user

satisfaction (MOS≈4). However, even for a long initial delay

of 28.77 s, the user satisfaction is still fair (MOS≥3).

Although one would expect that no stallings occur when the

set bandwidth capacity is higher than the maximum bitrate of

the track of 279.21 kbit/s, even for higher capacities stalling

occurred. According to [15], audio streams with more than

2 s total stalling time were always perceived as disturbing

(MOS≤2). Thus, Spotify streaming with a bandwidth capacity

of 400 kbits/s or lower is not accepted by the users. With

a capacity of 430 kbits/s or higher (3G), leading to a total

stalling time of less than 0.7 s, the users rate the streaming as

good (MOS≈4). As the impairment from stalling is modeled

with an exponential function, even short stalling has a high

impact on the user experience. Thus, a sharp jump of the

MOS values can be noticed from an average MOS of 2.21

for a bandwidth limitation of 400 kbit/s to an average MOS of

3.83 for 430 kbit/s.

It can be seen that stalling has a higher influence on the

user’s satisfaction than the initial delay. To have a high user

satisfaction, a bandwidth capacity of nearly twice as high as

the played bitrate is necessary. Nevertheless, as mentioned

above, the model is not optimal to calculate the QoE as it does

not consider the combined effect of initial delay and stalling.

In real world scenarios, like in our measurements, initial delay

and stalling will occur combined and thus, have to considered

together in the MOS calculation.

V. CONCLUSION AND OUTLOOK

In this paper, we characterized Spotify audio streaming

sessions on application as well as on network layer. Therefore,

an active measurement tool was designed, which allows to

headlessly stream audio files via Spotify from a browser

in a virtualized Docker environment, while monitoring per-

formance parameters that have a high correlation to QoE.

Using this tool, the Spotify audio streaming sessions were

characterized, for example, by analyzing the different audio

encodings used for different Spotify players and accounts.

We found that the download of audio segments is only

triggered according to a threshold of the buffered playback

220 250 280 310 340 370 400 430 460 unlimited

Bandwidth in kbit/s

0

5

10

15

20

25

30

35
In

it
ia

l
d

e
la

y
 i
n

 s
e

c
o

n
d

s

1

2

3

4

5

M
e

a
n

 o
p

in
io

n
 s

c
o

re

(a) Initial delay

220 250 280 310 340 370 400 430 460 unlimited

Bandwidth in kbit/s

0

20

40

60

80

100

120

S
ta

lli
n

g
 t

im
e

 i
n

 s
e

c
o

n
d

s

1

2

3

4

5

M
e

a
n

 o
p

in
io

n
 s

c
o

re

(b) Total stalling time

Fig. 3: Comparison of occurred stallings and initial delays for different bandwidth limitations

time without prebuffering for subsequent tracks in a queue. For

every stream, the network traffic is consistent, when sufficient

bandwidth is available, as the interarrival time of segments is

constantly 10 s. In addition, we explained the three phases of

audio streaming: beginning, steady phase, and depletion phase.

Finally, we investigated the streaming behavior of Spotify

sessions under different bandwidth limitations. Here, we com-

pared the initial delay as well as the total stalling time and

mapped it to the corresponding QoE using the QoE model of

[15]. We found out that Spotify streaming needs a bandwidth

capacity nearly twice as high as the played bitrate to reach a

high user satisfaction.

In future work, large scale measurements in a mobile

broadband network will be conducted to verify the results in

the mobile network. In addition, the measurement tool will be

extended to also cover other Spotify players like the Android

or the desktop app. Furthermore, a detailed subjective user

study on the QoE of audio streaming has to be done which

also takes other QoE factors like page load times into account.

ACKNOWLEDGMENT

This work was partly funded in the framework of the

EU ICT project MONROE (H2020-2014-ICT-644399, through

open call project Mobi-QoE). The authors alone are responsi-

ble for the content.

REFERENCES

[1] P. Le Callet, S. Möller, and A. Perkis, Eds., Qualinet White Paper on

Definitions of Quality of Experience (2012). Lausanne, Switzerland:
European Network on Quality of Experience in Multimedia Systems and
Services (COST Action IC 1003), 2012.

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A Survey on Quality of Experience of HTTP Adaptive Streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[3] P. Juluri, V. Tamarapalli, and D. Medhi, “Measurement of Quality of
Experience of Video-on-Demand Services: A Survey,” IEEE Communi-

cations Surveys & Tutorials, vol. 18, no. 1, pp. 401–418, 2016.
[4] M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Energy efficient mul-

timedia streaming to mobile devices—a survey,” IEEE Communications

Surveys & Tutorials, vol. 16, no. 1, pp. 579–597, 2014.
[5] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and

T. Hoßfeld, “Modeling the YouTube Stack: from Packets to Quality of
Experience,” Computer Networks, vol. 109, no. 2, pp. 211–224, 2016.

[6] B. W. Wah, X. Su, and D. Lin, “A survey of error-concealment schemes
for real-time audio and video transmissions over the internet,” in
Proceedings of the International Symposium on Multimedia Software

Engineering. IEEE, 2000, pp. 17–24.

[7] A. Mahanti, D. L. Eager, M. K. Vernon, and D. Sundaram-Stukel,
“Scalable on-demand media streaming with packet loss recovery,” ACM

SIGCOMM Computer Communication Review, vol. 31, no. 4, pp. 97–
108, 2001.

[8] X. Chen, C. Wang, D. Xuan, Z. Li, Y. Min, and W. Zhao, “Survey
on QoS management of VoIP,” in Proceedings of the International

Conference on Computer Networks and Mobile Computing (ICCNMC).
IEEE, 2003, pp. 69–77.

[9] G. Kreitz and F. Niemela, “Spotify–large scale, low latency, P2P music-
on-demand streaming,” in Proceedings of the 10th IEEE International

Conference on Peer-to-Peer Computing (P2P). IEEE, 2010, pp. 1–10.
[10] M. Goldmann and G. Kreitz, “Measurements on the spotify peer-assisted

music-on-demand streaming system,” in Proceedings of the IEEE Inter-

national Conference on Peer-to-Peer Computing (P2P). IEEE, 2011,
pp. 206–211.

[11] R. Yanggratoke, G. Kreitz, M. Goldmann, R. Stadler, and V. Fodor,
“On the performance of the spotify backend,” Journal of Network and

Systems Management, vol. 23, no. 1, pp. 210–237, 2015.
[12] B. Zhang, G. Kreitz, M. Isaksson, J. Ubillos, G. Urdaneta, J. A.

Pouwelse, and D. Epema, “Understanding user behavior in spotify,” in
Proceedings of the 32nd IEEE International Conference on Computer

Communications (INFOCOM). IEEE, 2013, pp. 220–224.
[13] L. Arhippainen and S. Hickey, “Classifying music user groups and

identifying needs for mobile virtual music services,” in Proceedings

of the 15th International Academic MindTrek Conference: Envisioning

Future Media Environments. ACM, 2011, pp. 191–196.
[14] S. Chen, J. L. Moore, D. Turnbull, and T. Joachims, “Playlist prediction

via metric embedding,” in Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining.
ACM, 2012, pp. 714–722.

[15] A. Sackl, S. Egger, and R. Schatz, “Where’s the Music? Comparing
the QoE Impact of Temporal Impairments Between Music and Video
Streaming,” in 5th International Workshop on Quality of Multimedia

Experience (QoMEX), Klagenfurt, Austria, 2013.
[16] A. Schwind, M. Seufert, Ö. Alay, P. Casas, P. Tran-Gia, and F. Wamser,

“Concept and implementation of video qoe measurements in a mobile
broadband testbed,” in IEEE/IFIP Workshop on Mobile Network Mea-

surement (MNM’17), Dublin, Ireland, 6 2017.
[17] O. Alay, A. Lutu, R. Garcı́a, M. Peón-Quiròs, V. Mancuso, T. Hirsch,

T. Dely, J. Werme, K. Evensen, A. Hansen, S. Alfredsson, J. Karlsson,
A. Brunstrom, A. S. Khatouni, M. Mellia, M. A. Marsan, R. Monno, and
H. Lonsethagen, “Measuring and assessing mobile broadband networks
with monroe,” in Proceedings of the 17th IEEE International Symposium

on A World of Wireless, Mobile and Multimedia Networks (WoWMoM),
June 2016, pp. 1–3.

[18] S. Galetto, P. Bottaro, C. Carrara, F. Secco, A. Guidolin, E. Targa,
C. Narduzzi, and G. Giorgi, “Detection of video/audio streaming packet
flows for non-intrusive QoS/QoE monitoring,” in IEEE International

Workshop on Measurement and Networking (M&N). IEEE, 2017, pp.
1–6.

[19] T. Siglin, “Unifying Global Video Strategies: MP4 File Fragmentation
for Broadcast, Mobile and Web Delivery,” Transitions, Inc., Tech. Rep.,
2011.

