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Abstract—P.1203 is a recent standardized model for assessing
the Quality of Experience (QoE) of HTTP Adaptive Video
Streaming (HAS). However, its complex definition does not allow
for a straightforward identification of the underlying assump-
tions. To overcome this issue, this work investigates the impact
of the well-known QoE factors of HAS, namely, initial delay,
stalling, and adaptation, on the output QoE score of the model.
Therefore, parameter studies are conducted using a reference
implementation of P.1203, and the model response to variations
of the input QoE factors are compared to results of previous QoE
studies in order to get a deeper understanding of the standardized
model and its inherent weighting of the QoE factors of HAS.

                                                  
                                            

I. INTRODUCTION

Nowadays, video streaming is the most dominant applica-
tion in the Internet. According to [1], global IP video traffic
had a share of 73% of the Internet traffic in 2016. This share
will presumably account for up to 82% in 2021. The popularity
of video web portals like YouTube, Netflix, or Amazon Video
constantly grows. The number of Netflix subscribers has
increased from around 60 million subscribers in 2015 [2] to
around 117 million subscribers in March 2018 [3]. In the
meantime, the Netflix users watch around one billion hours
of video content per week [3]. To avoid customer churn, it is
the goal of streaming service providers and Internet Service
Providers (ISP) to satisfy their customers in terms of service
quality and experience.

The perceived streaming experience by the end users can
be quantified with the concept of the Quality of Experience
(QoE). In terms of video streaming, the QoE states to what
extent users are annoyed or delighted with the provided
streaming [4]. The currently prevailing streaming technology –
HTTP Adaptive Streaming (HAS) – allows to adapt the video
bit rate to the network conditions. The goal is to ensure a
smooth streaming when end users face throughput fluctuations,
e.g., in mobile networks. Thereby, initial delay and stalling,
i.e., playback interruptions, can be reduced, which are severe
QoE degradations of video streaming. However, due to the
bit rate adaptation, the visual quality of the video might vary,
which introduces an additional QoE factor [5].

Typically, subjective user studies have to be conducted to
assess the QoE of an end user for a given HAS session. Since
subjective user studies are expensive, time-consuming, and
inconvenient, QoE models offer a simple and practical way to

predict the QoE. Usually, the models are derived by analyzing
and extrapolating the data of already performed subjective
studies. Most often the participants rated their subjective QoE
on an ordinal Absolute Category Rating (ACR) [6] scale,
which ranges from 1 (bad) to 5 (excellent). Further, all ratings
are aggregated as Mean Opinion Score (MOS), which is the
mean of the subjective ratings. QoE models take monitored
application-layer and/or network-layer streaming parameter
as input and commonly return a MOS value that should
correspond to the mean user experience. Next to a multitude of
proposed QoE models for HAS, recently, a QoE model was
standardized by ITU-T as P.1203 [7]. However, its complex
definition does not allow for a straightforward identification
of the underlying assumptions, e.g., on the importance or
contribution of QoE factors to the overall QoE score.

To overcome this issue, the impact of the well-known QoE
factors of HAS, namely, initial delay, stalling, and adaptation
of the visual quality, on the standardized QoE model P.1203
is studied in this work. Therefore, parameter studies are
conducted using a reference implementation of P.1203, and
the resulting QoE scores, which are output by the model, are
investigated. The model response to variations of the input
QoE factors are compared to results of previous QoE studies
in order to get an understanding of the standardized model
and its inherent weighting of QoE factors.

This paper is structured as follows. Section II outlines
related works on the QoE of HAS, as well as QoE models
and QoE monitoring approaches. Section III presents the
standardized QoE model P.1203 and Section IV outlines the
study concept for evaluating the impact of QoE factors on the
resulting QoE score. Section V shows the parameter study and
discusses the findings with respect to results of previous QoE
studies. Finally, Section VI concludes.

II. RELATED WORK

Quality of Experience (QoE) is a concept to quantify the
subjectively perceived quality by an end user when utilizing
an application or a service. [4] defines QoE as “the degree of
delight or annoyance of the user of an application or service.
It results from the fulfillment of his or her expectations with
respect to the utility and/or enjoyment of the application or
service in the light of the users personality and current state”.

The various QoE influence factors can be separated into four
distinct categories, namely context, user, system, and content
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level. The context level attends to the social and cultural
background of the user, as well as to the environment in which
the application or service is used, and the purpose for which
it is used. The psychological factors like memories of earlier
application usage or user expectations are considered on the
user level. The system level covers the technical influence
factors, e.g., the applied devices and its screen characteristics,
the transmission network, and the utilized implementation of
the application itself. Finally, in terms of video streaming,
the content level specifies the employed video codec, format,
resolution, type of video, etc.

The QoE of video streaming is a widely investigated re-
search topic, in particular, the specific QoE influence factors
and the generation of QoE models. The main goal of appli-
cation providers and Internet Service Providers (ISPs) is to
satisfy the user with an optimal level of QoE when delivering
video streams, and hence, minimize the risk of customer churn.
To ensure a high level of user experience, network operators
need to know the most important influence factors and their
impact on the QoE. [8] reviews methodologies to evaluate
the QoE of video streaming. Similarly, [9] gives a tutorial on
popular QoE assessment approaches for video streaming. The
state of the art on the QoE of HAS is summarized in [5]. [10]
surveyed metrics, tools, and measurement methodologies to
predict the QoE of video streaming, and [11], [12] not only
focused on QoE factors and assessment, but also took QoE
management into account. A detailed summary on QoE models
and monitoring approaches can also be found in [13]. Most
related works agree that stalling, initial delay, and adaptation
of the visual quality are considered to be the most important
QoE factors. These factors will be discussed in detail in
Section V, when their impact on the standardized QoE model
P.1203 is investigated.

III. P.1203

The International Telecommunication Union (ITU) released
recommendation P.1203 for the standardized quality assess-
ment of HAS in November 2016 [7]. P.1203 is a set of
documents that describes models and tools for the quality
assessment of progressive video download and adaptive au-
diovisual streaming services for TCP-type video streaming.

The standard is already in used. [14] collected the de-
crypted stream, the encrypted stream, and meta information
for the videos. Then, they utilized P.1203 to evaluate the
played videos by using the decrypted streams and afterwards
applied machine learning in order to build a model for the
analysis of encrypted streams. In [15], the authors evaluate
the performance of P.1203 by applying it on collected data
from YouTube and other OTT services. The study reveals that
the collected subjective MOS aligns reasonably well with the
predicted MOS by P.1203.

The output of the model is a predicted MOS on the ACR
scale. The output is shaped by information on the audio
and video media encodings as well as by application-layer
parameters like the number of stallings, the length of the

stalling events, the interarrival time of the stalling events, the
initial delay, and the number of quality switches.

Depending on the amount of information obtained before
streaming and the complexity of the streaming media, there
are four different modes of operation (mode 0-3). The amount
of available information increases with the mode number,
i.e., in mode 3 the complete bitstream-based media streaming
information is available, while mode 0 should be applied when
there is only the information available that could be retrieved
throughout the streaming due to meta-information.

Fig. 1: Recommendation ITU-T P.1203 [7].

Figure 1 depicts the architecture of P.1203 [7]. Overall,
there are three modules, namely the audio quality estimation
module (Pa), the video quality estimation module (Pv), and the
quality integration module (Pq). The module Pq depends on
the modules Pa and Pv and returns the overall integral MOS
(O.46) at the end. As a result of the modules, the six outputs
O.21, O.22, O.23, O.34, O.35, and O.46 are generated.

The module Pa outputs not a single MOS score, but a vector
of MOS scores. For the sampling interval of one second,
the audio quality is estimated based on the current audio
information. For Pa, the used mode inflicts no difference upon
the prediction of the MOS scores. Eq. 1 shows the formula for
the calculation of a single MOS score for a one second interval.
For the calculation of the MOS scores, the current audio bit
rate in kbps and the employed audio codec are utilized.

O.21 = MOSfromR(100−(a1A ·ea2A·Bitrate+a3A)) (1)

The coefficients a1A, a2A, and a3A differ based on the
selected audio codec. Finally, the function MOSfromR scales
the obtained quality value to get a MOS score in the range of
1.05 and 4.9.

Just like the module Pa, Pv also returns a vector of
MOS scores. The structure of the module Pv is displayed
in Figure 2 [7]. The module consists of the four submodules
quantization module, temporal module, upscaling module, and
integration module. The integration module combines the
returned values from the three other modules to generate the
MOS for a one second interval. Eq. 2 shows the formula for
the computation of D of the integration module, where Dq
is the result of the quantization module, Dt the result of the
temporal module, and Du the result of the upscaling module.
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Fig. 2: Structure of the video quality estimation module Pv [7].

The obtained D value is then utilized to calculate the MOS for
the interval. If Du and Dt are 0, the MOS equals the returned
MOS of the quantization module. Otherwise, the function
MOSfromR transforms the D value into the ACR scale.

D = max(min(Dq +Du+Dt, 100), 0) (2)

O.22 =

{
MOSq, if Du = 0 and Dt = 0,
MOSfromR(100−D), otherwise. (3)

Finally, the quality integration module computes the impact
on the QoE due to stalling and the impact on the audiovisual
quality on the basis of the audio quality and video quality
estimation module. Further, the module uses machine learning
to predict a MOS for the audiovisual quality estimation.

The audiovisual quality per output sampling interval O.34
is depicted in Eq. 4, where av1, av2, av2, and av4 are fixed
coefficients, O.21 is the output vector of the audio quality
estimation module, and O.22 is the output of the video quality
estimation module.

O.34 =max(min(av1 + av2 ·O.21(t)+

av3 ·O.22(t) + av4 ·O.21(t) ·O.22(t), 5), 1)
(4)

The final audiovisual coding quality is stated by O.35.
The computation of O.35 is displayed in Eq. 5. The variable
negBias is used as a negative bias. The variables oscComp and
adaptComp consider the amplitude of video quality switching,
the difference between the maximal video quality and the
minimal video quality, the quality change rate, and the longest
time on a quality layer. These variables are estimated by using
the output of O.22. The O.35baseline is a weighted average
of the temporary audiovisual quality O.34, weighted by the
current playback time and the video duration.

O.35 = O.35baseline − negBias− oscComp− adpatComp
(5)

The stalling indicator is expressed by the variable SI. Its
computation is shown in Eq. 6. The variable is required for
the computation of O.23 and O.46. The indicator is based
on the number of stalling events numStalls, the total stalling
length totalBuffLen, and the average interarrival time of the
stalling events avgBuffInterval. If there are less than two
stalling events in a video streaming session, avgBuffInterval
becomes 0. Again, the parameters s1, s2, and s3 are coefficients
provided by the recommendation. The variable ranges between
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(a) Audiovisual quality (O.35).
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(b) Stalling impact (SI).
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(c) Random Forest score based
on audiovisual quality (RF).
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(d) Random Forest score based
on stalling impact (RF).

Fig. 3: Composition of intermediate quality scores.

0 and 1, where 1 corresponds to no QoE degradation caused
by stalling and 0 corresponds to the opposite.

SI = e−numStalls/s1 · e−
totalBuffLen

T ·s2 · e−
avgBuffInterval

T ·s3

(6)

The algorithm used for the machine learning of the audio-
visual quality is a Random Forest classifier. The built model
that comes with the recommendation documents consists of
20 trees. Each tree has a maximal depth of 6 and the model
consists of 14 features. The features are extracted by analyzing
the vectors from O.21 and O.22, as well as using the stalling
information. The generated features are then passed on to the
Random Forest. Each decision tree returns a MOS score as
output. The overall MOS is obtained by taking the average of
all MOS scores.

Figure 3 illustrates the composition of the intermediate
quality scores, which are used to obatin the final MOS score.
The final MOS score for the video streaming session is
computed in Eq. 7. The final audiovisual quality O.35 and
the stalling indicator are accounted and the result is weighted
with 75%, while the prediction of the Random Forest machine
learning is weighted with 25%.

O.46 = 0.75 · (1+ (O.35− 1) ·SI)+0.25 ·RFprediction (7)

Figure 4 visualizes the impact of each intermediate score.

IV. STUDY CONCEPT

As the definition of the metric is quite complex, the remain-
der of the paper aims at finding basic relationships between
the QoE factors and the output MOS score. Each evaluation
focuses solely on a single investigated QoE factor and the
corresponding predicted MOS.
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Fig. 4: Predicted MOS by P.1203.

The study is performed with a reference implementation
of P.1203 provided on Github [16], [17]. No real videos
are used for the evaluation, i.e., it is a parameter study.
Further, the study does not consider the audio quality O.21,
and consequently uses the best possible audio quality (5)
throughout the study. The considered video duration is 240 s,
which is in the application range of P.1203 (60 - 300 s) [7],
and, from both playback options of the standard, a large
screen is assumed for video playback, which means that no
adjustment for handhelds was added.

To only investigate a single QoE factor, other modules,
which are not affected by that QoE factor, are assigned fixed
values for simplicity, corresponding to the maximum quality
output of the module. For example, for the evaluation of
the initial delay and stalling, the best visual quality (5) is
assumed for O.22 in order to neglect any QoE degradation of
the visual quality. Similarly, there is neither initial delay nor
stalling present when evaluating the visual quality O.22 or the
audiovisual quality O.35, respectively. For the investigation of
the visual quality, constant bit rates (mode 0) and QP values
(mode 3) are assumed throughout the video duration, which
are then used to obtain the visual quality O.22. Moreover,
upscaling due to differences in encoding and screen size and
temporal degradations due to lower frame rate than 24 fps are
not considered.

Of course, the simple relationships, which are presented
next in Section V do not reflect the entire complexity of
P.1203. As can be seen in Figure 3, there are always several
variables involved in shaping a single output. Thus, it has to
be noted that there are joint effects of QoE factors, which are
not investigated in this evaluation. Additionally, some modules
have limited their output range (e.g., Pa and Pv output only in
the range of 1.05 to 4.9), so this evaluation might show a too
optimistic MOS prediction. Still, the evaluation is well suited
to identify qualitative relationships between the QoE factors
of HAS and the predicted MOS.

V. EVALUATION

This section presents the impact of the QoE factors of HAS
on the output of the P.1203 QoE model. The considered QoE
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Fig. 5: Impact of initial delay.

factors include initial delay, stalling, and visual quality. Only
one factor was changed at a time, while the other factors were
kept at maximum quality. Thus, the impact of a single QoE
factor on the predicted MOS can be investigated qualitatively.

A. Initial Delay

Initial delay resembles the period of time that passes be-
tween the video start triggered by the user and the actual
video start. The decoding of the video data and the playback
of the video is not started until the buffer has been filled with
a sufficient amount of video data. Thus, the initial delay is
always present when using video streaming.

Figure 5 shows the impact of initial delay on the predicted
MOS. P.1203 supports video clips with initial delay up to 10 s
[7]. It can be seen that initial delay has only a very small linear
influence on the resulting QoE score. This is in accordance
with current QoE results, as some studies have reported a
minor QoE impact. [18] found that the length of the initial
delay influenced the QoE. However, they revealed that initial
delays of a length up to 16 seconds have an insignificant
impact on the QoE. It was confirmed by [19] that initial delays
were also considered less important for mobile video users and
less critical for having a high QoE. In [20], the authors showed
that the impact of the initial delay on the QoE decreases for
high resolutions.

B. Stalling

Stalling describes the video playback interruption due to
buffer underrun. If the throughput can not afford the video bit
rate, the buffer drains. When the buffer level is beneath the
threshold, where insufficient data for playback is available, the
video playback has to be stopped until the buffer is refilled
with a certain amount of video data. Stalling is considered the
main factor of QoE degradation [5], because it is processed
differently by the human sensory system [21].

Figure 6a shows the impact of the number of stalling
events on the predicted QoE. The number of stalling events
is analyzed by using a fixed total stalling time of 15 seconds
and either a deterministic (i.e., regular) or an exponential (i.e.,
memoryless) interarrival time of stalling events. The regular
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Fig. 6: Impact of stalling.

stalling events occur every T/(N+1) seconds, where T is the
duration of the video in seconds and N the number of stalling
events. The exponential interarrival times are random with
mean T/(N+1) seconds, such that exactly N arrivals lie within
the specified video duration. The supported range of P.1203 is
5 stalling events with a maximum event length of 15 s and a
maximum total stalling time of 30 s. Moreover, no stalling is
allowed to occur in the first 5 s of the video playback [7].

The black plot depicts the deterministic stalling and the
brown plot shows the mean QoE and 95% confidence intervals
for different exponential stalling patterns. The shape of both
plots is rather linear, which does not correspond to the expo-
nential QoE degradation that was reported by [22]. However,
it includes the results of [23], which discovered that irregular
stalling patterns degrade the QoE more severely than periodic
stalling patterns. Still, the difference between both curves is
small. Recently, [24] found that the degradation of stalling was
worse when the presentation quality was higher. This effect
could also be found in the P.1203 model.

Figure 6b depicts the impact of the total stalling time.
The evaluation considers only two stalling events, which are
regularly distributed and have the same length. The stalling
events occurs exactly at one third and two thirds the video
duration, i.e., at 80 and 160 s. The considered total stalling
times range from 2 to 100 seconds. Note that P.1203 officially
supports only a total stalling time of up to 30 s [7]. It can be
seen that P.1203 shows a linear relationship between the total
stalling time and the predicted QoE score. This is generally in
line with previous results of [22], which found that the QoE
level decreases with an increasing stalling duration. However,
the overall impact in P.1203 is small, in particular, it is smaller
than the effect of the number of stalling events.

C. Visual Quality

With HAS, the videos are commonly encoded with several
different bit rates and resolutions. When adapting the bit
rate, the user perceives a change in the visual quality, which
eventually has an impact on the QoE.

Figure 7 shows the impact of the visual quality on the
predicted MOS score. Figure 7a investigated the mode 0 of
P.1203 when only metadata are available. In this case, the
prediction is based on the bit rate of the segments. The
considered bit rates range from 10 to 5000 kbps. Typically, the
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Fig. 7: Impact of visual quality.

higher the bit rate, the higher the visual quality, which is also
reflected in P.1203. P.1203 considers a bit rate of 4500 kbps
sufficient to achieve an excellent visual quality. Lower bit
rates result in lower predicted MOS. However, it can be seen
that the QoE score is only significantly reduced for bit rates
below 500 kbps. Interestingly, also with very low bit rates the
predicted MOS is still good (≥ 3.5) if the streaming is smooth.

Figure 7b considers mode 3 of P.1203, in which com-
plete bitstream-based media streaming information has to be
available. In this case, the QoE prediction is based on the
quantization parameter of the video encoding, which ranges
from 0 (no compression, high visual quality) to 51 (strong
compression, low visual quality). The QoE score decreases
fast down to the lowest MOS score of 1 when the quantization
parameters increases. The results for both mode 0 and mode 3
correspond to results from related works that the QoE changes
according to the visual quality [25], [26].

Figure 8 investigates the impact of the number of quality
switches, i.e., the adaptation frequency, for different intensities
of adaptation, i.e., adaptation amplitudes. The evaluation is
based on specified O.22 patterns with the same average visual
quality. Note that P.1203 computes the number of quality
switches by analyzing the difference between consecutive O.22
samples. If the absolute value of the difference is greater
than 0.2, a quality switch is noted. The evaluated patterns
are generated by specifying a baseline visual quality level,
which is 3 on the O.22 scale. This baseline pattern results in
a predicted MOS of 4 because no stalling is added. A high
quality level and a low quality level are generated by adding
or subtracting the adaptation amplitude from the baseline
quality level on the O.22 scale, respectively. Four adaptation
amplitudes were selected that range from 0.2 (black) to 1.6
(yellow). All patterns contain an odd number of regular quality
changes (1 to 9) and change the quality between the high and
the low quality level, such that the average quality level on
the O.22 scale is equal to the baseline pattern. The plot shows
that the number of quality changes only has a minor impact
on the predicted QoE. In contrast, the adaptation amplitude is
more important. These findings are in line with [27], [28].

VI. CONCLUSION

This work investigated the impact of variations of different
QoE factors of HAS on the QoE score of the standardized QoE
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model P.1203. Although the computation of the QoE score is
quite complex, it was found that well-known results of pre-
vious QoE studies are qualitatively represented in the model.
However, the quantitative effect of each QoE factor might be
implemented differently compared to other QoE studies. More
detailed investigations are planned in future work, especially
to better understand the combined effects of QoE factors
on the standardized model, and the underlying assumptions
with respect to the inherent weighting and importance of the
different QoE factors of HAS. This helps to further improve
the usability of the QoE model P.1203 and to properly interpret
the predicted QoE scores.
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