
Study on the Accuracy of QoE Monitoring for
HTTP Adaptive Video Streaming Using VNF

Lam Dinh-Xuan, Michael Seufert, Florian Wamser, Phuoc Tran-Gia
Chair of Communication Networks,

Institute of Computer Science, University of Würzburg
Am Hubland D-97074, Würzburg, Germany

Email: lam.dinh-xuan|seufert|florian.wamser|trangia@informatik.uni-wuerzburg.de

Abstract—The fast growth of video streaming offers a potential
market for video providers, which can significantly increase their
revenues. In order to provide users a good experience, HTTP
adaptive video streaming has been introduced to adapt the video
quality to the network conditions. Nevertheless, it is still difficult
for the network operators to assess the actual video quality on the
device of the users and therefore they may not react to improve
the service on the network.

In this work, we propose a Virtual Network Function (VNF) to
monitor the Quality of Experience (QoE) for online video service
in the network. To conduct the study, on the one hand, we design
a VNF monitoring to measure the video quality and estimate the
QoE at the client machine. On the other hand, we place the
function in two locations nearby and far away from the user to
analyze the impact of geographical placement of the VNF on its
performance. Our findings show that with respect to function
placement, the VNF has high accuracy in estimating the QoE if
it is deployed at the edge network close to the user. However, the
VNF does not perform well when it operates far away from the
users, e.g., at data centers. These insights help network vendors
to more closely monitor the quality of the videos streamed to
their customers.

I. INTRODUCTION

The variety of Internet video providers (e.g., YouTube,
IPTV, Netflix) as well as user-generated video content are
responsible for an impressive increase in video traffic in the
data networks. In [1], Cisco predicts that nearly a million
minutes of video content will cross the network in every
second. The rapid growth of video streaming provides video
providers with a great opportunity to increase their revenues,
but also presents the challenges of managing the high volume
of video traffic and the larger number of subscribers. As users
expect a good service, they may stop watching the video if
there are interruptions during playback. Consequently, to offer
a high QoE perceived by the users, the network providers
must be aware of how good the video is provided to the
users. To tackle this problem, an in-network video monitoring
mechanism is necessary. This not only provides the providers
with information about the video quality that prevails on
the user’s device, but also gives them the ability to improve
the service, for example by making decisions to migrate the
content to the edge in order to reduce latency.

In order to monitor the video quality in the network,
the video flows must be analyzed at packet level. This can

be achieved by using the Network Function Virtualization
(NFV) paradigm [2]. The basic idea of NFV is to separate
software from its underlying physical hardware. By using vir-
tualization technology, the Virtual Network Functions (VNF)
can be consolidated on commodity servers. This helps the
providers to quickly deploy a service on multiple hardware
platforms [3], [4]. In addition, VNFs can be instantiated, oper-
ated, and/or migrated automatically on one or more commodity
servers in an NFV architecture [5] without having to install
new hardware. These benefits provide us with a solution for
the development and implementation of a VNF for video
monitoring at different locations on the network apart from
using a dedicated physical device.

In this study, we examine the accuracy of the monitoring
function, depending on its placement in the network. We then
use a predefined mapping function to estimate the video QoE
based on the number of stalling events calculated from our
function. To this end, we carry out a study in several steps.
First, we design a VNF as a plain software that exploits a
Python library, namely Scapy1 to capture the video flows at
network interface. We then design an algorithm to estimate the
video buffer and detect the stalling events based on timestamps
of streamed packets. In the second step, we set up a local
testbed with two scenarios to assess the impact of the function
placement on its accuracy. In both scenarios, we validate the
accuracy of the function by comparing its estimate to the actual
video quality that is monitored at the client web browser.
The result is the accuracy of the estimate depending on the
placement of the VNF in the network, which is our main
contribution of the paper.

The remainder of the paper is structured as follows. In
Section II, we present the background of the study and
highlight related works. Our estimation algorithm, research
methodology and measurement setup are described in Sec-
tion III. The main outcomes of the study are presented in
Section IV, and Section V concludes this work.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce HTTP adaptive video
streaming and we then highlight an overview of related works.

1http://www.secdev.org/projects/scapy/

 999

A. Background
HTTP Adaptive Video Streaming (HAS) was developed to

overcome the traditional inefficient streaming technology such
as Real-Time Streaming Protocol or progressive download.
The main idea of HAS is breaking a video into one or
more consecutive non-overlapping periods that are seamlessly
streamed to client web browser over HTTP [6]. These periods
are so-called video segments or chunks that are described
in a manifest file named Media Presentation Description
(MPD). By streaming separated video chunks to the client, the
streaming server can adapt the quality of each video chunk to
the network condition.

The MPD is transmitted to the client after a video request
via HTTP. This file contains information about all video
segments, such as segment length, resolutions, frame bit rates,
etc. Before the client playing back the video on a player,
at least the first segment is fully downloaded to the client,
while downloads of subsequent segments can still be ongoing.
All the downloaded segments are stored in the client’s video
buffer. These buffered data are consumed during the video
playback and filled up when a new segment is fully down-
loaded. If the video buffer is empty during the playback, an
interruption of the video playback occurs, i.e., stalling. In HAS
systems, the video bit rate may be reduced to avoid stalling
events when the network condition degrades.

B. Related Work
The deployment location is one of the most important VNF

configurations. Where to place the VNF to meet the require-
ments of resources, high performance, network efficiency is an
emerging topic in research. In [7], Clayman et al. contribute a
Placement Engines software installed in the orchestration layer
of an NFV architecture. This algorithm decides where to place
the virtual routers to meet an adaptive resource utilization.
The placement problem of virtual Deep Packet Inspection
(vDPI) functions is presented in [8] for SDN and in [9]
for NFV. By solving the placement problem using genetic
algorithms for SDN and Integer Linear Program for NFV with
cost constraints, respectively. The authors conclude that an
appropriate placement of vDPI depends on functional targets,
operation cost, and the number of instances as well.

Concerning to video monitoring, in [10], Wamser et al.
model the YouTube stack at three levels of transport, appli-
cation, and user. These models may help service providers
to understand the functionality of YouTube from controlling
video data flows to user perceived Quality of Experience.
In [11] and [12], the authors introduce the YoMo application
for YouTube monitoring with respect to user perceived QoE.
A QoE model for video streaming based on stalling frequency
and length is reported in [13]. The approach of monitoring
YouTube video based on DPI is presented in [14], [15], these
studies are similar with ours in the method of using DPI to
parse video flows. Nevertheless, the authors focus more on
QoE monitoring rather than deployment location. In our study,
we however concern to the accuracy of the VNF for video
monitoring depending on different placements.

III. METHODOLOGY AND MEASUREMENT SETUP

In this section, we first present the description of our
estimation algorithm and two scenarios. We then highlight our
research methodology and describe the measurement setup for
both scenarios.

A. Video Estimation Algorithm

In [16], Seufert et al. describe the QoE influencing factors of
HAS, which are initial delay, stalling, and quality adaptation.
To achieve the goal of monitoring QoE for the video, we
design an algorithm to estimate these parameters based on
the extracted HTTP payload of video flows. Figure 1 shows
the concept of our algorithm.

Seg #2 Seg #3 Seg #5

s1

Seg #1

playStart

Server

Client

measurement time

Seg #4

s2 s3 s4 s5

������ ������ �����

stalling
threshold

initial
delay

video playback

stallingDur

vi
de

oB
uf

f

remainBuff

tra
ns

po
rt

le
ve

l
ap

pl
ic

at
io

n
le

ve
l

Fig. 1. Graphical View of Estimating Video Quality Algorithm

The diagram can be divided into two levels. At transport
level, packets are captured and parsed to feed all necessary
information for the algorithm such as IP address, TCP header
and the payload of application layer protocols. The video flows
are then detected by filtering a set of pre-defined keywords
contained in the payloads of HTTP. The video resolutions
and segments length are recorded by matching the requested
segments with the MPD file. Thereafter, all downstream pack-
ets composing a segment are grouped and analyzed based
on their common TCP acknowledgment number. From the
figure, the solid vertical arrows represent the timestamps tdi
of downloaded segment i, the solid rectangles depict the
corresponding segment length s(i) extracted from MPD.

At application level, playStart is timestamps when
the video starts to play out, playStart ≈ td1. In fact,
through measurements on client, we observed that the video
starts playback almost immediately after the first segment
is fully downloaded. videoBuff is the amount of video
stored in buffer memory for playing out which is illustrated
by a solid zig-zag line. It decreases during video playback
and is filled up when a new segment is fully downloaded.
When the videoBuff is empty then it reaches stalling
threshold, the video playback is interrupted and stalling occurs.
remainBuff is amount of video remaining in the memory
before it is filled up by a new segment. It is a trigger to
determine whether a stalling event occurs or there remains
video buffer in the memory. stallingDur is duration of a
stalling event.

In the following we present a simplified algorithm for
estimating video buffer and stalling events.

 1000

Algorithm Estimating Video Buffer and Stalling Events
Estimate video starting time
playStart = td1
Calculate first available playback time
avlPlayBackTime = s(1)
for Next segment do

Estimate the amount of played out video
playOut = tdi − playStart
Estimate the remaining video buffer
remainBuff = avlPlayBackTime− playOut
if remainBuff <= 0 then

Record one stalling event
stalingDur(i) = tdi − tends(i−1)

else
Record estimated video buffer at segment i
videoBuff(i) = remainBuff

end if
avlPlayBackTime = avlPlayBackTime+ s(i)
tends(i) = tdi + s(i)

end for

We first estimate the video starting time playStart when
the first segment is fully downloaded. The available playback
time avlPlayBackTime is cumulatively summed by seg-
ment length s(i) when a new segment is downloaded. When a
new segment comes, we assume that playOut is the amount
of played out video calculated by the download timestamps of
the segment and the starting timestamps playStart of the
video. With playOut value we can estimate the remaining
video buffer remainBuff by its difference with the available
playback time. The number of stalling events and length
are then recorded for QoE estimation which is presented in
Section IV-B. Finally, videoBuff is saved in log files that
are used to visualize the behavior of video buffer under the
impact of network condition and function placement.

B. Scenarios

The Edge Server (ES) scenario and Data Center (DC)
scenario are depicted in Fig. 2.

Client
Edge

Server
Data

Center

Fig. 2. Overview of Scenarios

From the figure, video content is assumed to be stored in
a data center. In ES scenario, our function is deployed on an
edge server to monitor all the video flows passing through
from the streaming server to the client. The edge server is
an essential instance of the Edge Computing paradigm, which
refers to the enabling technologies allowing computation to be
performed at the edge of the network close to the users [17]. In
the DC scenario, we deploy the monitoring function nearby the
data center. In this scenario, the function can utilize a high data
rate traffic from data center network. However, it is placed far

from the client, which may cause some performance problems
due to the degradation of network conditions on the path to the
client. In both scenarios, we deploy the same VNF monitoring.

C. Methodology
Our study copes with the need to monitor video streaming

in the network. To implement the VNF monitoring, we use a
dedicated testbed including a network emulator and a middle-
box to compose the two scenarios. The VNF is installed on
the middle-box to sniff the video flows and outputs necessary
video information to feed our algorithm. We assume that
in between the server and the edge is a long distance with
various network segments and routers. The degradation of the
network can be considered as the combination of high round
trip time and congestion. We therefore shape the video traffic
by using NetEm [18]. This Linux-based software can adjust
different network parameters to evaluate the impact of network
QoS on the service or application in general. To validate the
video quality estimated by the function, we compare it to
actual video quality obtained from the client. This actual video
quality is measured by using a Javascript-based web API.

D. Measurement Setup
The measurement setup for the ES scenario is schematically

depicted in Fig. 3, and consists of one NetEm server and three
PCs. One PC is used to install our VNF monitoring named
MoniV, another PC is used for the Client that browses the
videos via a testbed network, and we use a Control PC that
is connected remotely to the testbed via a dedicated control
network to avoid interference with the experiments.

MoniV

Control PC

Internet

metacafe.comNetEm

SSH
 Protocol

Client

SSH
 Protocol

SSH
Protocol

Fig. 3. Overview of the Testbed in Edge Server Scenario

The NetEm is running on a SUN FIRE X4150 server. This
server uses Ubuntu 12.04 LTS while other PCs use Ubuntu
14.04 LTS as operation systems. The testbed is connected to
the Internet via a research network. To achieve high reliability
in timestamps calculation, in both scenarios we synchronized
the clocks of Client and MoniV machines to the same NTP
server. For the DC scenario, we use all the same devices and
only change the positions of the MoniV and the NetEm. Thus,
the MoniV is placed near the data center in this scenario. At
the implementation, a Python measurement script is used to
start the monitoring function at the MoniV, then we use the
Selenium Webdriver2 to automatically browse the video on the
Client after adjusting the pre-defined link capacity parameters
on the NetEm. This ensures the network to be configured
before the client starting to play the video.

2http://www.seleniumhq.org

 1001

We choose metacafe.com3 as the video streaming source,
as they provide unencrypted HAS streaming. This provides us
an easy way to extract the video information. We implement
measurements on 10 different videos which have various types
of content and lengths, but offer the same three levels of
resolution, i.e, 240 p (428× 240), 360 p (570× 320), and
720 p (1280× 720). Since we want to investigate the accuracy
of the function in all possible behaviors of video playback. We
shape traffic on the NetEm which may cause some possible
influences on the video quality as shown in Tab. I.

TABLE I
SHAPED LINK CAPACITIES ON NETEM

Link Capacity Possible impacts on video playback
512 kbit/s Stalling occurs sporadically
1mbit/s No stalling with small video buffer
10mbit/s No stalling with large video buffer

IV. RESULTS

Based on the methodology and the testbed setup presented
in Section III, we have implemented several measurements
between September and October 2016 at the University of
Würzburg. To secure the stability of the monitoring function,
we tested on 10 different videos with 5 replications each.

For the sake of intuitively comparing video buffer estimated
by the function and obtained from client in two scenarios, we
present in following the measurement results of one typical
video which has total length of 75 s. To increase statistical
significance of the measurements for this video, we produced
30 replications at every link capacity configuration as shown
in Tab. I. After the experiment, we collected 180 log files
given by the sniffing task of the function in both scenarios
and a corresponding number of video buffer sampling logs on
the client. To minimize missing the state of video buffer, we
did sampling on the client every 100ms. Using the algorithm
detailed in Section III-A, we conducted the estimation task
with all extracted log files. To calculate and compare the
estimated and actual video buffer on the client, we use the
timestamps of the first downloaded segment extracted from
sniffing logs as the time reference for video playback start.

A. Accuracy of Video Buffer and Stalling Estimation under
Stable Network Conditions

Figure 4 and Figure 5 show the behavior of video buffer
at different link capacities in the ES and DC scenarios. In all
sub-figures, the x axes indicate the video playback time while
the y axes show the video buffer. The dashed lines depict the
estimated video buffer provided by the function and the solid
lines show the actual video buffer extracted from the client
browser. From the figures, it is obvious that the video buffer
is smaller at lower bandwidth.

Considering our estimation function in comparison with the
actual video buffer extracted from the client browser, it can
be seen from Fig. 4 that our function has high accuracy in
estimating the video buffer as well as detecting the stalling

3http://metacafe.com

Video Playback Time (second)
0 20 40 60 80

V
id

eo
 B

uf
fe

r (
se

co
nd

)

0

10

20

30

40

Client Video Buffer
Estimated Video Buffer

(a) Link capacity of 10 mbit/s

Video Playback Time (second)
0 20 40 60 80

V
id

eo
 B

uf
fe

r (
se

co
nd

)

0

10

20

30

40

Client Video Buffer
Estimated Video Buffer

(b) Link capacity of 512 kbit/s

Fig. 4. Video Buffer over Playback Time in ES Scenario

Video Playback Time (second)
0 20 40 60 80

V
id

eo
 B

uf
fe

r (
se

co
nd

)

0

10

20

30

40

Client Video Buffer
Estimated Video Buffer

(a) Link capacity of 10 mbit/s

Video Playback Time (second)
0 20 40 60 80

V
id

eo
 B

uf
fe

r (
se

co
nd

)

0

10

20

30

40

Client Video Buffer
Estimated Video Buffer

(b) Link capacity of 512 kbit/s

Fig. 5. Video Buffer over Playback Time in DC Scenario

events in the ES scenario. Due to the placement of the function
near the client, the difference in arrival time of video flows
is negligible at both machines, even at a low bandwidth of
512 kbit/s. Similarly, Figure 5a also shows a good estimation
at high bandwidth of 10mbit/s in the DC scenario. Although
the function is placed far from the client, it can still estimate
approximately the buffer of video playing on the client. This
is because the bandwidth in this scenario is high, such that
the packet arrival times at both machines are almost the
same, which provides us a good estimation with small error.
However, Figure 5b shows a bad fit in the DC scenario for a
bandwidth of 512 kbit/s. As the function is located near the
streaming server, it can utilize a high data rate and receive
packets of the segments shortly after the client requests them.
Due to the bandwidth limitation of the link after the VNF,
the reception of these packets at the client is delayed. This
induces the estimation error since the function calculates the
video buffer based on timestamps of downloaded segments.

Figure 6 shows the cumulative distribution function (CDF)
of root mean squared error (RMSE) between the estimated and
actual video buffer at different bandwidth in two scenarios.
The figure points out that 90% of estimated samples in ES
scenario have errors less than 1 s compared to baseline values.

Root Mean Squared Error (second)
0 2 4 6 8 10 12 14

C
D

F

0

0.2

0.4

0.6

0.8

1

ES(10 mbit/s)
ES(512 kbit/s)
DC(10 mbit/s)
DC(512 kbit/s)

Fig. 6. RMSE Between Estimated and Actual Video Buffer

 1002

In the DC scenario, the accuracy of the function is accept-
able as only 20% of estimated samples have error more than
2 s at bandwidth of 10mbit/s. This demonstrates that at high
link capacity, our function can still estimate approximately the
buffer of the video playing on the client. Conversely, at lower
link capacity of 512 kbit/s, the function estimates the video
buffer with high error where most of the estimated values have
error larger than 4 s.

Table II shows the mean errors with 95% of confidence
interval between the estimated and actual buffer of the other
videos with various lengths. However, we only present in
this table the results of measurements at the bandwidth of
512 kbit/s due to at higher bandwidth, the mean errors are
negligible similar to our above conclusion. The table indicates
that through different videos, our function can still estimate
the videos buffer with high accuracy in ES scenario. In DC
scenario, the mean errors are higher and various over different
videos due to the differences in the number of segments and
frame bit rates among themselves.

TABLE II
MEAN ERROR OF VIDEO BUFFER AT BANDWIDTH OF 512 kbit/s

Video ID Length ES Scenario DC Scenario
11419867 201 s 0.84 s +− 0.033 2.81 s +− 0.051
11420085 126 s 0.65 s +− 0.039 2.94 s +− 0.059
11419885 95 s 0.46 s +− 0.037 2.54 s +− 0.071
11419888 71 s 0.57 s +− 0.041 2.21 s +− 0.085
11419938 126 s 0.52 s +− 0.035 2.78 s +− 0.065
11420011 67 s 1.13 s +− 0.068 2.57 s +− 0.078
11420017 158 s 0.54 s +− 0.029 4.47 s +− 0.047
11420019 305 s 0.99 s +− 0.036 2.94 s +− 0.058
11420073 202 s 0.52 s +− 0.029 3.12 s +− 0.051

In [13], Hoßfeld et al. contribute a study of QoE for
YouTube video using subjective crowd test. They investigated
the impact of stalling parameters, i.e., frequency and length on
the users’ perceived QoE. The authors proposed exponential
fitting functions to quantify the QoE impact of stalling as

f1(N) = 3.26 · e−0.37·N + 1.65 (1)

f3(N) = 2.99 · e−0.96·N + 2.01 (2)

where f1(N) and f3(N) are the functions of MOS given
by the number of stalling events N with stalling length of
1 s and 3 s, respectively. It can be seen from the equations
that the MOS only depends on the number of stalling events
and length. In previous measurements, we observe that there
is only constant time shifting in estimated video buffer and
our monitoring function can estimate exactly the number of
stalling events and length. Thus, our VNF is able to accurately
estimate the QoE in both scenarios.

B. QoE Estimation under Unstable Network Conditions
In the following, we consider another scenario where net-

work condition is unstable, i.e., packet reordering. In this
scenario, packets belonging to one video segment may arrive
at the client out of order. Packet reordering is also reported
in several studies, e.g., in [19], Leung et al. describe five
major causes of packet reordering. In [20], Gao et al. argue

that the packet reordering occurs with probabilities usually
more than 30% in concurrent multipath transfer system. The
network heterogeneity and the use of multiple links in wireless
networks also causes packet reordering which is described
in [21].

To investigate the impact of packet reordering on the VNF
monitoring for QoE, we have done several measurements with
the same testbed. Specifically, in both scenarios we configured
the NetEm to immediately dequeue 25% of the packets,
the others are delayed by 500ms and the link was set to
512 kbit/s. Figure 7a shows the CDF of RMSE between the
estimated and actual video buffer. It can be seen that the error
is similar to our previous measurements shown in Fig. 6.

Root Mean Squared Error (second)
0 2 4 6 8 10 12 14

C
D

F

0

0.2

0.4

0.6

0.8

1

ES Scenario
DC Scenario

(a) CDF of RMSE

Scenarios
ES DC

M
O

S

1

2

3

4

5
Estimated on Client
Estimated on VNF

(b) QoE Estimation

Fig. 7. The Accuracy of VNF at 512 kbit/s with Packet Reordering

However, in these measurements, the function additionally
fails to correctly estimate the number of stalling events.
Figure 7b depicts the QoE estimation based on number of
stalling events. The x axis shows the measurements in two
scenarios, the y axis indicates the estimated MOS values
calculated by Equation (1). The MOS can take the following
values: (1) bad; (2) poor; (3) fair; (4) good; (5) excellent.
The darker bars describe MOS values calculated from the
actual number of stalling events counted at the client, while
the other MOS values are estimated by the function. The
MOS values are averaged over 30 replications with 95% of
confidence interval. The figure shows that in the DC scenario,
the function estimates a smaller number of stalling events,
which is represented by the high average MOS value of 4.07.
Meanwhile the MOS calculated in ES scenario and on the
client are smaller than 3. It can be concluded that, in the case
of packet reordering, the function does not work properly if it
is placed far away from the client.

V. CONCLUSION

The rapid growth of video streaming offers video providers
with a great opportunity to increase their revenues, but
also presents challenges for the network providers. Network
providers are typically not aware of the actual quality expe-
rienced by users of video streaming services. As a result,
it is difficult for providers to adapt in the network when
the QoE is low due to network impairments. To solve this
problem, a monitoring mechanism in the network is needed
to estimate the QoE perceived by the users. NFV has become
an emerging network technology, which promises to quickly
deploy a service at several hardware platforms and can also be
utilized for QoE monitoring in the network. Nevertheless, NFV

 1003

is still on early stage and its performance and reliability need
more research efforts to be commercialized. In particular, the
placement of a VNF is one of the most important influencing
factors for its performance.

In this paper, we proposed a VNF monitoring for QoE of
video streaming in the network and evaluated its accuracy
depending on different placements. We developed a function
using a DPI-like method to estimate the video buffer based
on download timestamps of video segments. Our function
can also detect stalling events and estimate their duration,
which serves as input parameters for QoE models. We then
set up a dedicated testbed with two scenarios to evaluate the
influence of different geographical placements of the VNF
on its accuracy. The measurement results are validated by
extracting and comparing the actual video quality from the
client’s web browser. Our results for stable network conditions
show that in the ES scenario, where the function is placed near
the client device, we can estimate the video buffer and stalling
events with high accuracy. In contrast, when the function is
placed near the streaming server in the DC scenario, we can
accurately estimate the video buffer only at high link capacity
of 10mbit/s in our measurements. At lower link capacities,
the buffer estimation has a constant time shift. In case of
unstable networks with packet reordering, additional errors in
estimating the stalling occur in the DC scenario and lead to
an inaccurate QoE estimation. Based on these findings, we
believe that in an NFV architecture, the VNF for monitoring
video QoE can only achieve high accuracy if it is placed near
the clients. For future work, we will extend our study to be
able to monitor encrypted video traffic, which is nowadays
widely used, e.g., by YouTube.

ACKNOWLEDGMENT

This work was partly funded in the framework of the EU
ICT project INPUT (H2020-2014-ICT-644672) and the DFG
grant QoE-DZ (TR257/41). The authors alone are responsible
for the content.

REFERENCES

[1] C. Systems, “Cisco visual networking index: Forecast and methodology,
2015-2020,” White Paper, 2016.

[2] M. Chios, D. Clarke, P. Willis, A. Reid, J. Feger, M. Bugenhagen,
W. Khan, M. Fargano, C. Cui, and H. Deng, “Network functions virtuali-
sation: an introduction, benefits, enablers, challenges and call for action,”
White Paper available at https://portal.etsi.org/nfv/nfv white paper.pdf,
2012.

[3] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, 2015.

[4] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, 2015.

[5] E. G. N. 002, “Network functions virtualisation (nfv); architectural
framework,” Group Specification available at http://www.etsi.org, 2014.

[6] T. Stockhammer, “Dynamic adaptive streaming over http: Standards
and design principles,” in Proceedings of the Second annual ACM
Conference on Multimedia Systems. Santa Clara, CA, USA: ACM,
Feb 2011.

[7] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, “The
dynamic placement of virtual network functions,” in 2014 Network
Operations and Management Symposium (NOMS). Krakow, Poland:
IEEE, May 2014.

[8] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of virtualized
deep packet inspection functions in sdn,” in MILCOM 2013 IEEE
Military Communications Conference. San Diego, CA, USA: IEEE,
Nov 2013.

[9] M. Bouet, J. Leguay, T. Combe, and V. Conan, “Cost-based placement of
vdpi functions in nfv infrastructures,” International Journal of Network
Management, vol. 25, no. 6, 2015.

[10] F. Wamser, P. Casas, M. Seufert, C. Moldovan, P. Tran-Gia, and
T. Hoßfeld, “Modeling the youtube stack: from packets to quality of
experience,” Computer Networks, 12 2016.

[11] B.Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “Yomo: A
youtube application comfort monitoring tool,” in New Dimensions in
the Assessment and Support of Quality of Experience for Multimedia
Applications, Tampere, Finland, 6 2010.

[12] B. Staehle, M. Hirth, F. Wamser, R. Pries, and D. Staehle, “Yomo: A
youtube application comfort monitoring tool,” University of Wuerzburg,
Tech. Rep. 467, 3 2010.

[13] T. Hoßfeld, M. Seufert, M. Hirth, T. Zinner, P. Tran-Gia, and R. Schatz,
“Quantification of youtube qoe via crowdsourcing,” in IEEE Interna-
tional Symposium on Multimedia (ISM2011). California, USA: IEEE,
Dec 2011.

[14] R. Schatz, T. Hoßfeld, and P. Casas, “Passive youtube qoe monitoring
for isps,” in The Sixth International Conference on Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS-2012). Palermo,
Italy: IEEE, Jul 2012.

[15] P. Casas, R. Schatz, and T. Hoßfeld, “Monitoring youtube qoe: Is your
mobile network delivering the right experience to your customers?”
in 2013 IEEE Wireless Communications and Networking Conference
(WCNC). Shanghai, China: IEEE, Apr 2013.

[16] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia,
“A survey on quality of experience of http adaptive streaming,” IEEE
Communications Surveys and Tutorials, vol. 17, Mar 2015.

[17] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[18] S. Hemminger, “Network emulation with netem,” in Australia’s National
Linux conference, Canberra, Australia, apr 2005.

[19] K. C. Leung and D. Yang, “An overview of packet reordering in
transmission control protocol (tcp): Problems, solutions, and challenges,”
IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 4,
2007.

[20] C. Gao, Z. Ling, and Y. Yuan, “Packet reordering analysis for concurrent
multipath transfer,” International Journal of Communication Systems,
vol. 27, no. 12, 2014.

[21] D. Kaspar, K. Evensen, A. F. Hansen, P. Engelstad, P. Halvorsen, and
C. Griwodz, “An analysis of the heterogeneity and ip packet reordering
over multiple wireless networks,” in IEEE Symposium on Computers
and Communications(ISCC). IEEE, 2009.

 1004

