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Abstract—Recent advances in transformer-based architectures
have shown promise in several machine learning tasks. In the audio
domain, such architectures have been successfully utilised in the
field of speech emotion recognition (SER). However, existing works
have not evaluated the influence of model size and pre-training data
on downstream performance, and have shown limited attention
to generalisation, robustness, fairness, and efficiency. The present
contribution conducts a thorough analysis of these aspects on
several pre-trained variants of wav2vec 2.0 and HuBERT that we
fine-tuned on the dimensions arousal, dominance, and valence of
MSP-Podcast, while additionally using IEMOCAP and MOSI to
test cross-corpus generalisation. To the best of our knowledge, we
obtain the top performance for valence prediction without use of
explicit linguistic information, with a concordance correlation co-
efficient (CCC) of. 638 on MSP-Podcast. Our investigations reveal
that transformer-based architectures are more robust compared
to a CNN-based baseline and fair with respect to gender groups,
but not towards individual speakers. Finally, we show that their
success on valence is based on implicit linguistic information,
which explains why they perform on-par with recent multimodal
approaches that explicitly utilise textual information. To make our
findings reproducible, we release the best performing model to the
community.

Index Terms—Affective computing, speech emotion recognition,
transformers.

I. INTRODUCTION

AUTOMATIC speech emotion recognition (SER) is a
key enabling technology for facilitating better human-to-

machine interactions [1]. SER research is dominated by two
conceptual paradigms: discrete emotions [2] and emotional di-
mensions [3]. The first investigates emotional categories like
happy or sad, while the latter focuses on the dimensions of
arousal, valence, and dominance [3].
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A SER system achieves this through the linguistic (what
has been said) or the paralinguistic (how it has been said)
stream [1], [4], [5]. The linguistic stream is better suited for
valence recognition [6], [7] and can draw from recent advances
in automatic speech recognition (ASR) and natural language
processing (NLP) [8], but might be limited to a single language.
Paralinguistics works better for arousal and dominance [6], [7]
and has the potential to generalise across different languages.
Both paradigms can be combined in bimodal architectures [4],
which require to execute several different models. Instead, we
aim towards a model that only implicitly utilises the linguistic
information stream during deployment, and does not require
access to ASR and NLP frontends.

Although the field has seen tremendous progress in the
last decades [1], three major challenges remain for real-world
paralinguistics-based SER applications: a) improving on its
inferior valence performance [7], [9], b) overcoming issues
of generalisation and robustness [10], [11], and c) alleviating
individual- and group-level fairness concerns, which is a pre-
requisite for ethical emotion recognition technology [12], [13].
Previous works have attempted to tackle these issues in isolation,
but combining them is not straightforward.

In recent years, the artificial intelligence (AI) field is under-
going a major paradigm shift, moving from specialised archi-
tectures trained for a given task to general-purpose foundation
models that can be adapted to several use-cases [14]. Such mod-
els have seen tremendous success in computer vision [15], [16],
NLP [17], and computer audition [18], [19], including SER [20],
[21]. Among others, wav2vec 2.0 [18] and HuBERT [19] have
emerged as foundation model candidates for speech-related
applications. We evaluate several publicly-available pre-trained
variants of those models for dimensional SER, and show that
they can achieve state-of-the art results for valence. We further
analyze the influence of the model architecture, the pre-training
data, how well the models generalise, their robustness, fair-
ness, and efficiency. Moreover, we make our best performing
model publicly available [22]. To our best knowledge this is the
first transformer-based dimensional SER model released to the
community. For an introduction on how to use it, please visit:
https://github.com/audeering/w2v2-how-to.

The remainder of this paper is organised as follows. Sec-
tion II discusses related work, Section III presents the models,
databases, and evaluation methods. Section III-D shows the
results and investigates why transformer models are able to
close the valence gap and improve performance with respect
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TABLE I
STATE-OF-THE-ART 4-CLASS EMOTION RECOGNITION PERFORMANCE ON

IEMOCAP USING TRANSFORMER-BASED ARCHITECTURES RANKED BY

UNWEIGHTED AVERAGE RECALL (UAR) / WEIGHTED AVERAGE RECALL (WAR).
THE TABLE ENCODES WHETHER THE BASE (B) OR LARGE (L) ARCHITECTURE

WAS USED AS WELL AS WHETHER THE PRE-TRAINED MODEL WAS

FINE-TUNED FOR SPEECH RECOGNITION (FT-SR). THE COLUMN FT-D MARKS

IF THE TRANSFORMER LAYERS WERE FURTHER FINE-TUNED DURING THE

DOWN-STREAM CLASSIFICATION TASK

to robustness and fairness. Section V investigates efficiency
improvements, before Section VI summarises the results, and
Section VII concludes the paper.

II. RELATED WORK

The focus of our work is the recognition of emotional dimen-
sions. However, most related studies target emotional categories.
Since the approaches are closely related, we consider both in this
section.

In Table I, we provide a summary of recent works based on
wav2vec 2.0 and HuBERT on the IEMOCAP dataset [29], on
which most prior works have focused. Results are ranked by un-
weighted average recall (UAR) / weighted average recall (WAR)
on the four emotional categories of anger (1103 utterances),
happiness (+ excitement) (1636), sadness (1084), and neutral
(1708), which is the typical categorical SER formulation for
IEMOCAP. Most of the works apply leave-one-session-out cross
validation (5 folds), except [24], using leave-one-speaker-out
cross validation (10 folds), and [20], who do not explicitly
mention which folds they used. Even though authors have used
different head architectures and training procedures in their
studies, we can draw some general observations:

1) Fine-tuning pre-trained weights yields a 10% boost.
2) Additional ASR fine-tuning does not help with SER (e. g.

row 15 vs row 19 −3.2%).

3) The large architecture is typically better than the base one
(e. g. row 17 vs row 22 +3.0%), but differences can be
quite small (e. g. row 19 vs row 20 +.5%).

4) HuBERT outperforms wav2vec 2.0 (e. g. row 22 vs row
20: +2.1%).

5) When performing a fine-tuning of the transformer layers,
a simple average pooling in combination with a linear
classifier built over wav2vec 2.0 or HuBERT as proposed
by [20] seems sufficient and shows best performance in
the ranking. However, some of the more complex models
like the cross-representation encoder-decoder model pro-
posed by [28] only report results without fine-tuning the
pre-trained model during the down-stream task.

While the aforementioned studies have focused on emotional
categories, there also exist several ones which concentrate on
dimensions. The most comparable to ours is that of [30], who
fine-tuned wav2vec 2.0 / HuBERT on arousal, dominance, and
valence. Their results show that pre-trained models are partic-
ularly good in predicting valence. When additionally joining
audio embeddings from the fine-tuned models and text repre-
sentations obtained with a pre-trained BERT model, they got
a concordance correlation coefficient (CCC) for valence of.
683 on the MSP-Podcast corpus [31]. Furthermore, they were
able to distill the multi-model system to an audio-only model
using student-teacher transfer learning, while still reaching a
concordance correlation coefficient (CCC) of. 627 (a massive
improvement compared to the previous state-of-the-art perfor-
mance of only. 377 [32]). However, this improvement was the
result of cross-modal transfer learning, and it remains unclear
whether speech-based architectures are by themselves able to
reach such performance level – a fact we further explore in our
work.

The presented results demonstrate the great potential of
wav2vec 2.0 and HuBERT for emotion recognition. However,
the influence of pre-training data quantity and domain remains
unclear. For instance, even though the large model shows consis-
tently better performance, it is unclear if that can be attributed
to the additional layers or to an 60 fold increase of training
data compared to the base model. Likewise there is little under-
standing on the impact of language, as previous work focused
in pre-training on English speech data. In this contribution, we
present a systematic comparison of different models pre-trained
under various conditions (e. g. including noisy speech) and
evaluate them on several datasets (in-domain and cross-corpus).

Moreover, it is important to show that SER models work well
under noisy conditions. [10], [11], [33], [34] have shown that
previous SER models suffer from robustness issues. We sys-
tematically investigate robustness of transformer-based models
against a variety of augmentations that do not change the human
perception of the underlying emotion [33].

Finally, we consider fairness an important, but challenging
topic for machine learning models. Discussions in the speech
processing community focus mainly on group fairness, e. g. gen-
der [35]. For SER models, only a few evaluations are available.
[36] found a decrease in CCC for females compared to males for
arousal in MSP-Podcast (v1.3) of. 234. Besides group fairness,
this contribution investigates individual fairness by estimating
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TABLE II
TRANSFORMER-BASED MODELS INCLUDED IN THIS STUDY AND DETAILS ON

THE DATA USED DURING PRE-TRAINING. MODELS COMPRISED OF TWO

ARCHITECTURE DESIGNS (WAV2VEC 2.0 AND HUBERT), EACH WITH TWO

DIFFERENT VARIANTS (BASE AND LARGE). FOR EACH MODEL, WE LIST

INCLUDED DATASET(S), TOTAL NUMBER OF HOURS (H), NUMBER OF

LANGUAGES (ENG IF ONLY ENGLISH), AND COVERED DOMAINS (READ

SPEECH, TELEPHONE CONVERSIONS, PARLIAMENTARY SPEECH, YOUTUBE)

the influence of the speaker on the model performance, which
is a known problem for speaker verification models [37].

III. EXPERIMENTAL SETUP

A. Pre-Trained Models

Throughout the paper, we discuss results obtained with
transformer-based models pre-trained on large amounts of unla-
belled data. We investigate two main variants: wav2vec 2.0 [18]
and HuBERT [19]. The network architecture of both models
is the same. As input, it expects a raw waveform normalised
to have zero mean and unit variance, which is fed into a feature
encoder consisting of 7 convolutional layers that extracts feature
vectors over time, with a dimensionality of 512 and a step size of
20 ms. These features are projected to a higher dimension (768
or 1024 hidden units, see below) and then fed into the encoder.
The encoder is a series of transformer layers, each of them
consisting of a multi-head self-attention module and several
fully-connected layers. In order to inject temporal information,
the output of a convolutional layer is added at the input of the
encoder.

The only difference between the main variants is the way they
are pre-trained on unlabelled data. In wav2vec 2.0, the features
of a certain ratio of time steps are masked, by replacing them
with a learnt fixed feature vector at the input of the encoder. A
contrastive loss between the encoder outputs and a quantised
version of the input features is then minimised [18]. In order
to avoid learning too simple representations, the quantisation
is done using a codebook, whose diversity loss is minimised
as well. In contrast, HuBERT minimises a cross-entropy loss
for the masked time steps, where the targets are not trained
simultaneously with the model. The pre-training is performed in
several steps, where in the first step, clusters obtained by k-means
clustering of MFCCs are employed as targets and in later steps,
clusters of the outputs of certain transformer layers are taken
into account [19]. In following these strategies, the models try

Fig. 1. Proposed architecture built on wav2vec 2.0 / HuBERT.

to learn the structure of speech, resulting in a reduced need for
labelled task-specific training data.

Both wav2vec 2.0 and HuBERT exist in two forms: a base
architecture with 12 transformer layers of 768 hidden units each
(95 M parameters), and a large architecture with 24 transformer
layers of 1024 hidden units each (317 M parameters). Apart
from that, we further distinguish them by the data used for pre-
training. We included the four models found in previous work
(cf. Section II), which are pre-trained on English audiobooks,
namely wav2vec2-base (w2v2-b), hubert-base-ls960 (hubert-
b), wav2vec2-large (w2v2-L), hubert-large-ll60 k (hubert-L);
the wav2vec2-large-robust model (w2v2-L-robust), addition-
ally trained on telephone speech; the wav2vec2-large-100k-
voxpopuli model (w2v2-L-vox), trained only on parliamentary
speech in multiple languages; and the wav2vec2-xls-r-300 m
model (w2v2-L-xls-r), trained on more than 400 k hours across
all domains and multiple languages. Compare Table II for
citations and an overview of the included data. We did not
include models fine-tuned on speech recognition as previous
work showed that this does not lead to better performance. Also
note that we refer to their fine-tuned versions when we report
results (cf. Section III-B).

B. Architecture

Inspired by [20] we apply average pooling over the hidden
states of the last transformer layer and feed the result through a
hidden layer and a final output layer (see Fig. 1). For fine-tuning
on the downstream task, we use the ADAM optimiser with CCC
loss, which is the standard loss function used for dimensional
SER [9], [32], [41], and a fixed learning rate of 1e−4. We run
for 5 epochs with a batch size of 32 and keep the checkpoint
with best performance on the development set.

During training, we freeze the CNN layers but fine-tune the
transformer ones. According to [20], such a partial fine-tuning
yields better results. When using the term fine-tuning, we will
henceforth refer to this partial fine-tuning. These models are
trained using a single random seed, for which the performance
is reported.

We compare results to a 14-layer Convolutional Neural Net-
work (CNN14) as a standard baseline we have been using for
SER in previous work [9], [42]. It follows the architecture
proposed by [43] for audio pattern recognition. Different to
the transformer-based models, which operate on the raw audio
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signal, this takes log-Mel spectrograms as input. CNN14 has
6 convolutional blocks with two layers each, each followed by
max pooling. Convolution layers have a 3× 3 kernel and a stride
of 1× 1, whereas max pooling layers use a stride of 2× 2. After
the last convolution layer, features are pooled using both mean
and max pooling, and subsequently fed into two linear layers.
Dropout with a probability of 0.2 is applied after every each
convolution block. Log-Mel spectrograms are computed with
64 Mel bins, a window size of 32 ms, and a hop size of 10 ms.
Note that the CNN14 model is not pre-trained, i. e. it is always
trained from scratch in our experiments. We train for 60 epochs,
with a learning rate of. 01, and a batch size of 64 using stochastic
gradient descent (SGD) with a Nesterov momentum of. 9. We
select the model that performs best on the validation set.

C. Datasets

We used the MSP-Podcast corpus [31] (v1.7) to run multitask
training on the three dimensions of arousal, dominance, and
valence for speech from podcast recordings. The original labels
cover a range from 1 to 7, which we map into the interval of 0
to 1. Its train split contains 62 hours of recordings. In-domain
results are reported on the test-1 split, which contains 21 hours
of audio provided by 12,902 samples (54% female / 46% male)
from 60 speakers (30 female / 30 male). The samples per speaker
vary between 42 and 912.

We report cross-domain results IEMOCAP (Interactive Emo-
tional Dyadic Motion Capture) dataset [29], which contains 12
hours of scripted and improvised dialogues by ten speakers (5
female / 5 male). It provides the same dimensional labels as
MSP-Podcast, but in a range of 1 to 5, which we map to the
interval 0 to 1. Since we use the dataset only during evaluation,
we do not apply the usual speaker cross-validation, but treat the
corpus as a whole. It includes 10,039 samples (49% female /
51% male).

Finally, we report cross-corpus results for valence on the test
set of the Multimodal Opinion Sentiment Intensity (MOSI) [44]
corpus. The dataset is a collection of YouTube movie review
videos spoken by 41 female and 48 male speakers. They are
annotated for sentiment on a 7-point Likert scale ranging from
−3 to 3, which we map to the interval 0 to 1. The test set contains
1 h audio recordings given as 685 samples (51% female / 49%
male), annotated for sentiment. As the gender labels are not part
of the distributed database, we re-annotated them ourselves [45].

While sentiment is a different concept than valence, as the for-
mer corresponds to an attitude held towards a specific object and
the latter more generally characterises a person’s feeling [46],
there is evidence that sentiment annotations can be decomposed
to two constituents: intensity and polarity [47], which roughly
correspond to arousal and valence. We therefore expect some
correlation between (predicted) valence and (annotated) senti-
ment scores.

D. Evaluation

Machine learning models for speech emotion recognition are
expected to work under different acoustic conditions and for dif-
ferent speakers. To cover this, we evaluate them for correctness,
robustness, and fairness [48].

Correctness measures how well predictions match the ground
truth. The concordance correlation coefficient (CCC) provides
an estimate of how well the predicted distribution matches the
ground truth one [49], and is the typical measure for evaluating
dimensional SER models [50].

Robustness (cf. Section IV-H) measures how model perfor-
mance is affected by changes to the input signals such as adding
background noise. Applying changes to the input signals must
be carefully done for SER, as they might affect the ground
truth label [33], [51]. We focus on testing the robustness of the
models against data augmentations that do not change the human
perception of the underlying emotion. We select the following
five augmentations from [33] to enable direct comparison with
previous results: Natural soundscapes adds a randomly selected
sample from the natural class of the ESC-50 dataset [52] with
a signal-to-noise ratio (SNR) of 0 dB, 10 dB or 20 dB; Human,
non-speech adds a randomly selected sample from the human
class of the ESC-50 dataset with a SNR of 0 dB, 10 dB or
20 dB; Interior/domestic adds a randomly selected sample from
the interior class of the ESC-50 dataset with a SNR of 0 dB,
10 dB or 20 dB; Speed up segment selects a random segment of
10% to 20% length within the utterance and increases its speed
by 1.25; Fade-in/fade-out decreases or increases the amplitude
of the signal by 2% every second.

Fairness (cf. Section IV-I) evaluates if the model predictions
show biases for certain protected attributes like race, gender,
or age [53]. We focus on gender due to the lack of sufficient
available information and/or datasets for other attributes. For
regression problems, there is no clear definition how to measure
fairness, but most approaches try to achieve an equal average
expected outcome for population A and B [54]. We measure fair-
ness by estimating the gender fairness score as the difference in
the correctness metric (CCC) between female and male groups.
A positive gender fairness score indicates a better performance
of the model for female speakers.

IV. EVALUATION

We begin our investigation with a thorough evaluation of
transformer-based models. We show that valence is the primary
beneficiary of pre-training as it enables the models to implicitly
learn linguistic information during the fine-tuning of the trans-
former layers. Utilising a comprehensive testing scheme, we
attempt to identify how different aspects of foundation models
impact performance and generalisation. We place particular
emphasis on robustness and fairness, which are critical con-
siderations for SER systems targeted to real-world applications.

A. Can Foundation Models Close the Performance Gap for
Valence?

Answer: The best models achieve a similar performance for
arousal and dominance as non-transformer architectures [32],
but improve the CCC score for valence by. 26 and close the
performance gap for valence.

Details: In Fig. 2, we show in-domain and cross-domain CCC
performance for different wav2vec 2.0 and HuBERT models as
well as for the CNN14 baseline.
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Fig. 2. CCC scores for arousal, dominance, valence (MSP-Podcast / IEMOCAP), and sentiment (MOSI). All models have been trained for emotional dimension
prediction using multitasking only on MSP-Podcast, and subsequently evaluated on its test set (in-domain), as well as to the test set of MOSI and the entire
IEMOCAP dataset (cross-corpus).

We first focus on arousal and dominance. For MSP-Podcast
(in-domain) and IEMOCAP (cross-domain), all transformer-
based models score very similar, with w2v2-L-robust showing
the overall best performance by reaching a CCC score of.
745/.634 (arousal/dominance) on MSP-Podcast, and. 663/.518
on IEMOCAP. For MSP-Podcast, results are similar compared
to the CCC scores of. 745/.655 achieved by [32] and. 757/.671
achieved by [30].

For valence, we see a larger fluctuation of CCC scores for
different transformer models ranging from. 359 for w2v2-L-xls-r
to. 636 for hubert-b, both on MSP-Podcast. Overall, w2v2-L-
robust shows again the best overall performance by reaching a
CCC score of. 635 on MSP-Podcast, .448 on IEMOCAP, and.
539 for predicting sentiment on MOSI. For MSP-Podcast, results
are better compared to the CCC score of. 377 achieved by [32]
and similar to. 627 by [30] achieved with a model distilled from
an audio + text based teacher.

B. Does Explicit Linguistic Information Further Improve
Performance?

Answer: Adding linguistic information does not improve pre-
dictions for arousal and dominance, and only in some cases
for valence. However, especially models pre-trained on multiple
languages seem to benefit when tested on English speech.

Details: To evaluate whether adding linguistic information
improves the predictions, the following experiment is con-
ducted: a regression head is pre-trained, using as input pooled
BERT embeddings in addition to the pooled states of the fine-
tuned transformer models.

BERT (Bidirectional Encoder Representations from Trans-
formers) is a transformer model for natural language, pre-trained
on English language corpora consisting of more than 3 billion
words [55]. The BERT embeddings have a dimensionality of
768 and are extracted from the transcriptions generated by the

wav2vec2-base-960 h speech recognition model1. The fusion is
done by concatenating the representations of both modalities.
As regression head, exactly the same architecture as for the
fine-tuning of wav2vec 2.0 and HuBERT models is employed.
For training, the weights of both models are frozen. The training
is done with multi-target CCC-loss for a maximum of 100
epochs, with early stopping based on CCC development set
performance.

In Fig. 3, we report deviations from the results achieved with
the fine-tuned acoustic models alone (cf. Fig. 2). We can see
that a fusion with embeddings from the text domain helps with
valence, but not with arousal and dominance, where performance
actually deteriorates. This is in line with our previous findings,
where we also found that introducing linguistic information
sometimes hampered performance for those two dimensions on
MSP-Podcast [9]. What is interesting, though, are the relatively
large differences between the models, and that, especially, our
best models hubert-L and w2v2-L-robust do not improve. The
models that benefit most are the two multi-lingual models w2v2-
L-vox and w2v2-L-xls-r, showing that models pre-trained on
multiple languages gain from a fusion with text features from
the test set domain language.

C. Do the Models Implicitly Learn Linguistic Information?

Answer: The models implicitly capture linguistic information
from the audio signal. The extent in which they learn sentiment
during fine-tuning depends on the data used for pre-training (e. g.
multi-lingual data makes it more difficult). Generally, we see that
valence performance correlates with a model’s ability to predict
sentiment.

Details: Previous findings suggest that during fine-tuning,
the models implicitly learn linguistic information. To asses

1https://huggingface.co/facebook/wav2vec2-base-960h

https://huggingface.co/facebook/wav2vec2-base-960h
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Fig. 3. Text and audio fusion results for arousal, dominance, and valence prediction on MSP-Podcast. Embeddings from the already fine-tuned models are
concatenated with BERT embeddings extracted from automatic transcriptions, whereupon a two-layer feed-forward neural network is trained. We show the
difference to results with the fine-tuned (ft) models from Fig. 2.

Fig. 4. CCC performance for valence on the original and synthetic files on MSP-Podcast. We see that models with a high performance on the original files are
more sensitive to sentiment (cf. left and center section). To prove that a fine-tuning of the transformer layers is required to learn linguistic content, we additionally
show the correlation for models where the transformer layers were frozen (frz) during training (cf. Section IV-D).

how sensitive the models are to linguistic content, we gen-
erated a synthesised version of a subset of the test set from
the transcriptions of MSP-Podcast.2 In Fig. 4, we finally show
CCC performance for valence on the original and synthesised
files for all models. We see that performance gaps between
the models in Fig. 2 are directly linked with their ability to
predict sentiment. Models reaching a high performance on the
original files also do so on their synthetic versions and vice
versa. However, to learn linguistic content, a fine-tuning of
the transformer layers is essential. If we predict the synthetic
test set with models where the transformer layers were frozen
during training (cf. Section IV-D), correlation drops to almost
zero.

This finding is also important for works doing in-domain
training on IEMOCAP, as parts of the conversations are scripted
which results in a leakage of text information that may result
in overoptimistic results [56] when that text information is
exploited by transformer models. Furthermore, our models may
inherit similar biases as those found in NLP models [57].

D. How Important is a Fine-Tuning of the Transformer
Layers?

Answer: Fine-tuning the transformer layers is necessary to
obtain state-of-the-art performance, in particular for the valence
dimension. The highest gain is observed for hubert-L and w2v2-
L-robust, which are the models that benefit the least from a fusion
with text.

Details: So far, we have fine-tuned all transformer layers
along with the added output layer. However, practitioners often
choose to use a pre-trained model as a frozen feature extractor,

2Partial audio transcripts are available with MSP-Podcast v1.9 and cover 55%
of the test-1 split from v1.7 we used for our experiments.

and subsequently train just an output layer on the generated
embeddings. Nevertheless, prior studies have shown that it is
necessary to fine-tune several or all layers on the target task to
get good downstream performance [20], [42], [43], [58]. In this
sub-section, we experiment with training only the last output
layer and keeping all others frozen. This is compared to our
previous experiments where we jointly fine-tune the last layer
and the transformer layers.

Fig. 5 shows the difference between CCC values for the fine-
tuned and frozen models. We observe performance gains when
fine-tuning in all cases, demonstrating that fine-tuning of the
transformer layers is necessary. Moreover, the models that see
the biggest performance gain are hubert-L and w2v2-L-robust.
In Section IV-B, these models were found to benefit less from
additional text information. These findings indicate that a fine-
tuning of the transformer layers enables the models to capture
the linguistic information needed to perform well on valence.

E. Do the Models Generalise Better Across Different
Domains?

Answer: Transformer-based models generalise better than a
non-transformer baseline.

Details: As we see a similar trend for different transformer-
based models between in-domain and cross-corpus results in
Fig. 2, we focus on the best-performing one (w2v2-L-robust).
The drop in CCC between in-domain and cross-corpus results
for w2v2-L-robust on IEMOCAP is 11% for arousal, 21% for
dominance, and 30% for valence on IEMOCAP, and 15% for
sentiment on MOSI. For CNN14, the drop in CCC is 34% for
arousal, and 52% for dominance, while for valence, we do not
estimate the drop in cross-domain performance as the in-domain
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Fig. 5. Difference of fine-tuned (ft) to frozen (frz) CCC performance for arousal, dominance, and valence prediction on MSP-Podcast. The fine-tuned results are
from Fig. 2, where transformer and output layers are jointly trained. For the frozen results, we keep all transformer layers frozen and simply train the output head.
Results show that fine-tuning the transformer layer is worth the computational cost it incurs.

CCC is already very low. The drop in CCC is smaller for w2v2-
L-robust for arousal and dominance, indicating that transformer-
based models generalise better. For valence, we cannot derive
a final conclusion, but the trend we see for sentiment in MOSI
seems very promising.

F. Does More Data During Pre-Training Lead to Better
Performance?

Answer: For arousal and dominance, all tested models perform
equally well, whereas with respect to valence / sentiment the
data used for pre-training has a strong effect. Mixing data from
several domains leads to a considerable improvement for w2v2-
L-robust compared to w2v2-L, which is only trained on clean
speech. However, hubert-L, which uses the same pre-training
data as w2v2-L, still performs as good as w2v2-L-robust. For
models pre-trained on multi-lingual data, we see a performance
drop when tested on English speech.

Details: To understand what influence the size and domain of
the pre-training data have on downstream performance, we in-
cluded several wav2vec 2.0 models with same large architecture
but different pre-training (see Table II).

The results in Fig. 2 show only differences in terms of CCC
between the transformer models for valence and sentiment, not
for arousal or dominance. Previous studies uniformly report that
HuBERT outperforms wav2vec 2.0 which is replicated by our
results with w2v2-L showing a smaller CCC than hubert-L for
the valence task on MSP-Podcast and IEMOCAP, and for the
sentiment task on MOSI. The increase in performance for w2v2-
L-robust is therefore most likely explained by the additional 3 k
hours of telephone conversations used for pre-training. However,
by comparing w2v2-L-vox and w2v2-L-xls-r, it also becomes
clear that more data does not necessarily lead to better results.
Though both models are trained on significantly more data than
hubert-L and w2v2-L-robust (100 k and 463 k vs 63 k hours),
they perform clearly worse. Notably, both were pre-trained on
multiple languages. Since the databases we use for evaluation
contain only English speakers, this could be a disadvantage to
models that are exclusively pre-trained on English.

G. Does a Larger Architecture Lead to Better Performance?

Answer: A larger architecture does not lead to better perfor-
mance per se. Larger architectures using different data during
pre-training might perform worse than smaller architectures.

Details: We cannot directly answer what influence the size
of the architecture has on performance, as we do not have
transformer models with different architectures pre-trained on
the same data in our evaluation (Fig. 2). We can draw some
indirect conclusions, though. The size of the architecture, i. e.
base vs large, seems not to be the decisive point: the small models
w2v2-b and hubert-b have comparable performance to the large
models w2v2-L, w2v2-L-vox, and w2v2-L-xls-r for arousal and
dominance, both in- and cross-domain. For valence, the small
models outperform w2v2-L, w2v2-L-vox, and w2v2-L-xls-r in
most cases for MSP-Podcast and MOSI, and achieve a similar
performance on IEMOCAP.

H. Are the Models Robust Against Changes to the Input
Signals?

Answer: The tested models are reasonably robust against
changes to the input signals, with w2v2-L-robust showing the
highest and hubert-b the lowest robustness.

Details: Fig. 6 summarises the average CCC scores of the
models averaged over all augmentations described in Section
IV-H. All models show a drop in CCC compared to the CCC
scores for the clean data from Fig. 2. w2v2-L-robust has now
the highest CCC score for all datasets and all dimensions. The
average change in CCC for w2v2-L-robust is−0.068. The model
with the highest average change in CCC is hubert-b (−0.108).
The model with the lowest average change in CCC is CNN14
(−0.047), which is mostly due to its results for IEMOCAP for
which it shows no impairment of its relatively low performance
by augmentations.

Table III shows changes in CCC for single augmentations
for each dataset and dimension for the best performing model
w2v2-L-robust. The performance of the model is only sligthly
affected (absolute change in CCC score below. 05) for added
background sounds with a SNR of 20 dB or a fade-in/fade-out
of the signal. When speeding up parts of the signal or adding
background sounds with more severe SNRs the change in CCC
can be up to −.278. The model investigated on the same aug-
mentations by [33] shows an equal drop in unweighted average
recall (UAR) when adding background sounds with 0 dB, 10 dB,
20 dB SNR of at least −.30. w2v2-L-robust is more robust
when adding background sounds with a moderate SNR. It shows
a drop in CCC of up to to −.28 for 0 dB SNR, but only a
drop in CCC of up to −.036 for 20 dB SNR. Whereas the
model investigated by [33] is similar affected by adding human,
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Fig. 6. CCC scores for arousal, dominance, valence (MSP-Podcast/IEMOCAP), and sentiment (MOSI) when augmenting the test data. The scores are averaged
over all eleven different augmented versions of the test data.

TABLE III
CHANGE IN CCC FOR W2V2-L-ROBUST PREDICTIONS ON AUGMENTED DATA COMPARED TO ITS PREDICTIONS ON CLEAN DATA

non-speech, interior/domestic, or natural sounds as background
sounds, w2v2-L-robust is the most affected when adding human,
non-speech sounds (average drop in CCC of −.103), and the
least when adding interior/domestic sounds (average drop in
CCC of −.055).

I. Are the Models Fair Regarding the Gender of the Speaker?

Answer: Models are more fair for arousal and dominance than
for valence. For valence, most models show a higher CCC for
females than for males.

Details: Fig. 7 shows gender fairness scores for the speakers in
MSP-Podcast, IEMOCAP, and MOSI. As introduced in Section
III-D, the gender fairness score is expressed by the difference
in CCC between female and male speakers with positive values
indicating higher values of the underlying metric for females.
For MSP-Podcast, nearly all models show a slightly worse
female CCC for arousal and dominance. For IEMOCAP, nearly
all models show a slightly better female CCC for arousal and
dominance.

For valence in MSP-Podcast and IEMOCAP, most models
show a better CCC for female speakers than male ones – with
the exception of CNN14. For sentiment in MOSI, the CNN14

model shows a bias towards better performance for male speaker,
whereas all other models show very small biases in the different
direction.

Averaging over all databases and dimensions the model with
the best gender fairness score is w2v2-L with. 007, followed by
w2v2-L-vox with. 015, w2v2-L-xls-r with. 018, w2v2-L-robust,
with. 019, hubert-b with. 025, hubert-L with. 027, and w2v2-b
with. 029 up to CNN14 with −.043.

J. Is Performance Equal Across All Speakers?

Answer: Performance for the best foundation models is similar
between most speakers in MSP-Podcast, but can deteriorate to
low CCC values for some speakers.

Details: The performance of speech processing is depen-
dent on individual speaker characteristics [37]. This has led
several prior SER works to target personalisation to different
speakers [59], [60], [61]. To investigate this phenomenon for
transformer-based models, we examine the per-speaker perfor-
mance, where instead of computing a global CCC value over all
test set values, we compute one for each speaker. As discussed
(cf. Section III-C), the MSP-Podcast test set consists of 12902
samples from 60 speakers; however, the samples are not equally
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Fig. 7. Gender fairness scores for arousal, dominance, valence (MSP-Podcast / IEMOCAP), and sentiment (MOSI). The gender fairness score is given by
CCCfemale − CCCmale. A positive value indicates that the model under test performs better for female speaker and a negative value that it performs better for male
speaker. A model with desired equal performance would have a gender fairness score of 0.

Fig. 8. Speaker-level performance (CCC) on MSP-Podcast for the different models. We only use speakers with at least 200 test set samples for robust CCC
estimates. All models show low CCC for at least one speaker on all 3 tasks. Speakers have been ordered according to the mean CCC over all dimensions and
models.

distributed across them (minimum samples: 41, maximum sam-
ples 912). In order to make our subsequent analysis more robust,
we only keep speakers with more than 200 samples, resulting in
19 speakers. We use bootstrapping, where we randomly sample
(with replacement) 200 samples from each speaker to compute
the CCC. This process is repeated 1000 times, and we report the
mean value.

Our results are presented in Fig. 8. For visualisation purposes,
we ordered speakers based on the average CCC value over all
models and across arousal, dominance, and valence. For arousal
and dominance models perform well for most speakers, and
show similar performance. For speakers 7 and 931 all models
show a low CCC, whereas for speaker 931 the CNN14 model
performs worse than the others. For valence, CCC values per
speaker differ between models replicating the findings of Fig. 2.
The best model (w2v2-L-robust) performs relatively similar for

most of the speaker groups and shows only a drop for speaker
7, a similar result as for valence and dominance.

Different models broadly, but not perfectly, agree on ‘good’
and ‘bad’ speakers, with pairwise Spearman correlations ranging
from. 960 to. 725 for arousal,. 972 to. 825 for dominance,
and. 947 to. 333 for valence. This could be a manifestation of
the underspecification phenomenon plaguing machine learning
architectures [62], as models which have similar performance on
the entire test set, nevertheless behave differently across different
subsets of it.

K. Why Do Foundation Models Generalise So Well?

Answer: Even without pre-training, the latent space provided
by the transformer architecture generalises better than CNN14,
as it abstracts away domain and speaker. Pre-training marginally
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Fig. 9. CCC performance of randomly-initialized wav2vec 2.0 model (w2v2-L-w/o-pretrain) on in-domain and cross-corpus arousal, dominance, valence /
sentiment prediction. We compare the performance with that of CNN14 and w2v2-L-robust. We observe that valence and sentiment benefit massively from
pre-training, without which wav2vec 2.0 performs worse than a classic CNN approach.

improves arousal and dominance performance but is critical for
valence.

Details: So far, we were able to confirm the superiority of
transformer-based models. However, even though pre-training
seems important, it remains unclear to what extent the trans-
former architecture itself contributes to that success. To shed
more light into this, we trained wav2vec 2.0 from a random ini-
tialisation. As our architecture, we chose the large wav2vec 2.0
architecture, which is also used by the best performing model
w2v2-L-robust. In the following, we will refer to this model as
w2v2-L-w/o-pretrain.

We trained the model for 50 epochs and selected the best
checkpoint according to the performance on the development
set (epoch 17).3 In Fig. 9, we compare in- and cross-domain
performance with CNN14 and w2v2-L-robust. We see that es-
pecially valence / sentiment detection benefits massively from
pre-training (both in-domain and cross-domain), and that with-
out pre-training wav2vec 2.0 performs in most cases worse than
CNN14.

In the introduction of wav2vec 2.0, [18] postulate that pre-
training helps learn more general representations that abstract
away from speaker or background information. However, it is
not entirely clear if these benefits are a result of pre-training or
are a consequence of the specific inductive biases introduced by
the architecture. To investigate this, we compare embeddings ex-
tracted with CNN14, w2v2-L-w/o-pretrain, and w2v2-L-robust,4

which are shown in Fig. 10. The embeddings are projected to
two dimensions using t-SNE [63] and different information is
chromatically superimposed.

3Even though we used the same data (MSP-Podcast) for fine-tuning, we
expected it would take longer for the model to convert if we start from scratch.
Also, this time we trained all encoder layers (including the CNN ones). Apart
from that we followed the methodology described in Section III-B.

4We use average pooling on the output of the last CNN layer for CNN14 and
the last transformer layer for wav2vec 2.0.

Fig. 10. Visualization of embeddings extracted with different models over-
layed with meta information for a combined dataset of MSP-Podcast and
IEMOCAP. We observe that the latent space of wav2vec 2.0 offers a better
abstraction from domain, gender, and speaker compared to the CNN14 baseline –
even without pre-training. However, only a pre-trained model is able to separate
low from high valence. To reduce the dimensionality of the latent space, we
applied T-SNE [63].

For CNN14, two main clusters almost perfectly separate the
two data sources MSP-Podcast and IEMOCAP, whereas several
smaller blobs represent gender groups and individual speakers.
In fact, speaker and domain are more pronounced than valence
information. Hence, similar emotional content can translate into
entirely different latent representations. In contrast, the latent
space of both wav2vec 2.0 models shows no clusters for domain,
gender, or speaker. The architecture itself seems to introduce
specific inductive biases which are well-suited to learning ro-
bust representations. Nevertheless, only the pre-trained model
(w2v2-L-robust) shows a smooth transition from low to high
valence scores, showing that pre-training is still necessary for
good downstream performance. Moreover, the strong speaker
dependency presented in Section IV-J shows that the two di-
mensional t-SNE visualisations help comparing generalisation
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Fig. 11. Mean and standard deviation of development set performance on
MSP-Podcast across three training runs. Compared to CNN14, w2v2-b converges
earlier and shows less fluctuation.

abilities between models, but are not necessarily sufficient for
deriving conclusions w. r. t. generalisation over different factors.

V. EFFICIENCY

For our last experimental evaluation, we focus on efficiency.
We concentrate on three facets: optimisation stability, computa-
tional complexity, and data efficiency.

A. Does Pre-Training Help With Training Stability
and Convergence?

Answer: A pre-trained model reduces the number of epochs
needed to converge and improves performance stability across
training runs with different seeds.

Details: To balance the effects of randomness (either in the
initialisation of network weights or the data sampling), it is a
common strategy to perform several runs with different random
seeds. Starting from pre-trained weights, however, we expect
less volatility [64], [65]. Fig. 11 shows the mean and standard
deviation over the performance on the development set across
three trials for CNN14 and w2v2-b. CNN14 shows a constant
jittering across all 60 epochs, whereas w2v2-b converges faster
and we can reduce the number of epochs to 5.

B. How Many Transformer Layers Do We Really Need?

Answer: We can reduce the number of transformer layers to 12
without a degradation in performance. With less than 12 layers
we begin to see a negative effect on valence.

Details: In Section IV-G, we mentioned that w2v2-b and
hubert-b outperform some of the large models. From that, we
concluded that the size of the architecture seems less important,
but it is rather the data used for pre-training that determines
success. If this is really the case, we should be able to partially
reduce the size of a model without losing performance.

[66] investigated different layer pruning strategies and iden-
tified top-layer dropping as the best strategy offering a good
trade-off between accuracy and model size. Inspired by their
findings, we set up an experiment where we successively re-
moved transformer layers from the top of the original pre-trained
model before fine-tuning. In Fig. 12, we report the effect on
CCC for w2v2-L-robust (our overall best performing model).
Results show that half of the layers can be removed without a
loss in performance. We denote the resulting 12-layer model as
w2v2-L-robust-12. Only with 10 or less layers we actually begin
to see a drop for valence / sentiment on IEMOCAP and MOSI.
For arousal and dominance, we still achieve good performance
with only 8 layers.

C. Can We Reduce the Training Data Without a Loss
in Performance?

Answer: A reduction of training samples without loss in
performance is only possible for arousal and dominance.

Details: Reducing the amount of training data offers another
way to speed up model building. To find out what effect the
removal of training samples has, we conducted an experiment
where we fine-tuned several versions of the same pre-trained
model with different fractions of the training set (MSP-Podcast).
We leave development and test set untouched.

Fig. 13 shows CCC for arousal, dominance, valence / senti-
ment on MSP-Podcast, IEMOCAP and MOSI. For efficiency,
we start from the reduced 12-layer architecture and therefore
compare results to w2v2-L-robust-12 (cf. Section V-B). There
is no noteworthy degradation for arousal and dominance when
keeping close to the entire training set. The only exception is
dominance on IEMOCAP, where we achieve best results with
just 75% of the data. For these dimensions, however, perfor-
mance already saturates at 25% yielding a loss of less than. 02
on MSP-Podcast, whereas for IEMOCAP, even 12.5% of the
training samples seem sufficient to stay within a margin of. 05.

Once again, it is a different story for valence. For MSP-
Podcast, we see a constant improvement that only begins to
decrease when reaching 75% of the data. For MOSI, we even
see a boost in CCC of almost. 1 for the remaining 25%. However,
in light of our findings from Section IV-C, this does not come
as a surprise. Providing more linguistic diversity makes it more
likely a model can detect associations between key words and
emotional context. What is a surprise, though, is that on IEMO-
CAP, using just 7.5% of the data, results in a drop of less than. 05.
A possible explanation is that the vocabulary of IEMOCAP does
not resemble that of MSP-Podcast and that, therefore, the impact
of linguistic information is limited. This would also explain why
the differences in valence performance are less pronounced for
IEMOCAP (cf. Fig. 2).

VI. SUMMARY

We explored the use of (pre-trained) transformer-based archi-
tectures for speech emotion recognition. In the previous sections,
we dealt with several questions in isolation. We now attempt a
unified summary by collectively considering all findings.

Effect of pre-training: pre-training is essential to get good per-
formance (Section IV-F), especially for the valence dimension.
This is particularly evident when training wav2vec 2.0 from a
random initialisation (Section IV-K): the model performs sub-
stantially worse on all three dimensions, and its embeddings are
unable to capture valence information. In addition, pre-training
serves as a form of regularisation which helps stabilise the
training (Section V-A), thus resulting in models which require
less iterations, and less data to train on (Section V-C). However,
we were unable to determine a clear relationship of the form
‘more pre-training data leads to better performance’. In fact,
downstream performance can be negatively impacted by the
introduction of more data, as seen by the comparison between
w2v2-L-vox and w2v2-L-xls-r, which differ only in the fact that
w2v2-L-xls-r has been trained on more (and more diverse) data,
yet performs worse on all three dimensions.
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Fig. 12. CCC scores for arousal, dominance, and valence / sentiment for w2v2-L-robust and pruned versions. The legend shows the number of bottom layers
kept during fine-tuning. We see that half of the layers can be removed without any loss in performance.

Fig. 13. CCC scores for arousal, dominance, and valence / sentiment for w2v2-L-robust on sparse training data. The legend shows the fraction of data used for
fine-tuning. Please note that steps are not linear.

Generalisation: transformer-based models show very good
cross-corpus generalisation (Section IV-F), robustness (Section
IV-H), and appear invariant to domain, speaker, and gender
characteristics (Section IV-K). These are all very important traits
for any model that is intended for production use in realistic
environments. However, they seem to stem primarily from the
architecture rather than the pre-training as they are also evident in
models initialised from random weights (Section IV-K). We also
showed that several self-attention layers can be removed without
hampering downstream performance (Section V-B), though they
might still be necessary for successful pre-training.

Fairness: fairness remains a challenging topic for contem-
porary machine learning architectures. Community discussions
primarily concern the issue of group fairness. In the present,
we investigate this for the only group variable available in
our datasets: gender (Section IV-I), where we observe that
transformer-based architectures are more fair than the CNN14

baseline. However, we argue that individual fairness is im-
portant for SER. This refers to how models perform across
different speakers; a feat which proves challenging even for
the top-performing models investigated here (Section IV-J). We
consider this an important topic which has not been sufficiently
investigated for SER, though it is long known to impact other
speech analysis models [35], [37].

Integration of linguistic and paralinguistic streams: finally,
one of our most intriguing findings is that transformers seem
capable of integrating both information streams of the voice sig-
nal. This is evident in how well-performing valence prediction
models retain their effectiveness for synthesised speech lacking
emotional intonation (Section IV-C) and fail to benefit from
fusion with explicit textual information (cf. Section IV-B). Inter-
estingly, this is only possible when fine-tuning the self-attention
layers (Section IV-D), as keeping them frozen results to com-
plete failure for synthesised speech (Section IV-C). This draws
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attention to an under investigated aspect of fine-tuning, namely,
how it qualitatively affects the nature of internal representations.
Common understanding sees it as a mechanism through which
to obtain better performance, but our analysis shows that it
leads to a fundamental change in how the underlying signal
is represented (moving from almost no sensitivity to linguistic
content to increased reactivity to it). This mechanism may be
crucial in the pursuit of paralinguistic and linguistic integration
which is key to a holistic understanding of human communica-
tion. However, this integration might prove problematic in cases
where the two modalities disagree, e. g. in cases of irony [67].
Our results also highlight that good valence performance might
be language dependent as models pre-trained on a variety of
languages perform worse for valence compared with comparable
models pre-trained only for English (Section IV-A).

VII. CONCLUSION

Transformers have already revolutionised a very diverse set of
artificial intelligence tasks, including speech emotion recogni-
tion. The present contribution goes beyond previous works that
already established their effectiveness for SER by conducting
a thorough evaluation and analysis of prominent transformer-
based speech models for dimensional emotion recognition.
We obtain state-of-the-art valence recognition performance on
MSP-Podcast of. 638 without using explicit linguistic infor-
mation, and manage to attribute this exceptional result to im-
plicit linguistic information learnt through a fine-tuning of the
self-attention layers. We release our best performing model
(w2v2-L-robust-12) to the community [22].5 Transformer ar-
chitectures are more robust to small perturbations, fair on the
(gender) group- if not on the individual-level, and generalise
across different domains. Our findings demonstrate that a new
era is dawning in speech emotion recognition: that of pre-trained,
transformer-based foundation models, which can finally lead to
the coveted integration of the two dominant information streams
of spoken language, linguistics, and paralinguistics.

REFERENCES

[1] B. Schuller, “Speech emotion recognition: Two decades in a nutshell,
benchmarks, and ongoing trends,” Commun. ACM, vol. 61, no. 5, pp. 90–
99, 2018.

[2] P. Ekman, “An argument for basic emotions,” Cogn. Emotion, vol. 6,
no. 3/4, pp. 169–200, 1992.

[3] J. A. Russell and A. Mehrabian, “Evidence for a three-factor theory of
emotions,” J. Res. Pers., vol. 11, no. 3, pp. 273–294, 1977.

[4] B. T. Atmaja, A. Sasou, and M. Akagi, “Survey on bimodal speech
emotion recognition from acoustic and linguistic information fusion,”
Speech Commun., vol. 140, pp. 11–28, 2022.

[5] Z. Zeng, M. Pantic, G. I. Roisman, and T. S. Huang, “A survey of affect
recognition methods: Audio, visual, and spontaneous expressions,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 31, no. 1, pp. 39–58, Jan. 2009.

[6] R. A. Calvo and S. D’Mello, “Affect detection: An interdisciplinary review
of models, methods, and their applications,” IEEE Trans. Affect. Comput.,
vol. 1, no. 1, pp. 18–37, Jan. 2010.

[7] J. Kossaifi et al., “SEWA DB: A rich database for audio-visual emotion and
sentiment research in the wild,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 3, pp. 1022–1040, Mar. 2021.

5https://github.com/audeering/w2v2-how-to

[8] S. Sahu, V. Mitra, N. Seneviratne, and C. Y. Espy-Wilson, “Multi-modal
learning for speech emotion recognition: An analysis and comparison of
ASR outputs with ground truth transcription,” in Proc. Annu. Conf. Int.
Speech Commun. Assoc., Graz, Austria: ISCA, 2019, pp. 3302–3306.

[9] A. Triantafyllopoulos, U. Reichel, S. Liu, S. Huber, F. Eyben, and B. W.
Schuller, “Multistage linguistic conditioning of convolutional layers for
speech emotion recognition,” 2021, arXiv:2110.06650.

[10] C. Oates, A. Triantafyllopoulos, I. Steiner, and B. W. Schuller, “Robust
speech emotion recognition under different encoding conditions,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., Graz, Austria: ISCA, 2019,
pp. 3935–3939.

[11] A. Triantafyllopoulos, G. Keren, J. Wagner, I. Steiner, and B. W. Schuller,
“Towards robust speech emotion recognition using deep residual networks
for speech enhancement,” in Proc. Annu. Conf. Int. Speech Commun.
Assoc., Graz, Austria:ISCA, 2019, pp. 1691–1695.

[12] A. Batliner, S. Hantke, and B. W. Schuller, “Ethics and good practice
in computational paralinguistics,” IEEE Trans. Affect. Comput., vol. 13,
no. 3, pp. 1236–1253, Third Quarter 2022.

[13] J. Cheong, S. Kalkan, and H. Gunes, “The hitchhiker’s guide to bias and
fairness in facial affective signal processing: Overview and techniques,”
IEEE Signal Process. Mag., vol. 38, no. 6, pp. 39–49, Nov. 2021.

[14] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[15] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf. Mach.
Learn., Vienna, Austria (virtual), 2020, pp. 1597–1607.

[16] K. Han et al., “A survey on vision transformer,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 1, pp. 87–110, Jan. 2022.

[17] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., Long Beach, CA, USA, 2017, pp. 5998–6008.

[18] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in
Proc. Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2020,
pp. 12449–12460.

[19] W.-N. Hsu et al., “HuBERT: Self-supervised speech representation learn-
ing by masked prediction of hidden units,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 29, pp. 3451–3460, 2021.

[20] Y. Wang, A. Boumadane, and A. Heba, “A fine-tuned wav2vec 2.0/Hubert
benchmark for speech emotion recognition, speaker verification and
spoken language understanding,” 2021, arXiv:2111.02735.

[21] S. Latif, R. Rana, S. Khalifa, R. Jurdak, J. Qadir, and B. Schuller,
“Survey of deep representation learning for speech emotion recognition,”
IEEE Trans. Affect. Comput., Sep. 21, 2021, doi: 10.1109/TAFFC.2021.
3114365.

[22] J. Wagner, A. Triantafyllopoulos, H. Wierstorf, M. Schmitt, F. Eyben,
and B. W. Schuller, “Model for dimensional speech emotion recognition
based on wav2vec 2.0,” Zenodo, 2022, doi: 10.5281/zenodo.6221127.

[23] D. N. Krishna, “Using large pre-trained models with cross-modal attention
for multi-modal emotion recognition,” 2021, arXiv:2108.09669.

[24] J. Yuan, X. Cai, R. Zheng, L. Huang, and K. Church, “The role of phonetic
units in speech emotion recognition,” 2021, arXiv:2108.01132.

[25] S. wen Yang et al., “Superb: Speech processing universal performance
benchmark,” in Proc. Interspeech, 2021, pp. 1194–1198, doi: 10.21437/In-
terspeech.2021-1775.

[26] L. Pepino, P. Riera, and L. Ferrer, “Emotion recognition from speech
using wav2vec 2.0 embeddings,” Proc. Annu. Conf. Int. Speech Commun.
Assoc., 2021, pp. 3400–3404.

[27] L.-W. Chen and A. Rudnicky, “Exploring wav2vec 2.0 fine-tuning for
improved speech emotion recognition,” 2021, arXiv:2110.06309.

[28] M. R. Makiuchi, K. Uto, and K. Shinoda, “Multimodal emotion recognition
with high-level speech and text features,” 2021, arXiv:2111.10202.

[29] C. Busso et al., “IEMOCAP: Interactive emotional dyadic motion capture
database,” Lang. Resour. Eval., vol. 42, no. 4, pp. 335–359, 2008.

[30] S. Srinivasan, Z. Huang, and K. Kirchhoff, “Representation learning
through cross-modal conditional teacher-student training for speech
emotion recognition,” 2021, arXiv:2112.00158.

[31] R. Lotfian and C. Busso, “Building naturalistic emotionally balanced
speech corpus by retrieving emotional speech from existing podcast
recordings,” IEEE Trans. Affect. Comput., vol. 10, no. 4, pp. 471–483,
Fourth Quarter 2019.

[32] M. Li et al., “Contrastive unsupervised learning for speech emotion
recognition,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Process.,
Toronto, ON, Canada, 2021, pp. 6329–6333.

[33] M. Jaiswal and E. M. Provost, “Best practices for noise-based
augmentation to improve the performance of emotion recognition
”in the wild”,” 2021, arXiv:2104.08806.

https://github.com/audeering/w2v2-how-to
https://dx.doi.org/10.1109/TAFFC.2021.3114365
https://dx.doi.org/10.1109/TAFFC.2021.3114365
https://dx.doi.org/10.5281/zenodo.6221127
https://dx.doi.org/10.21437/Interspeech.2021-1775
https://dx.doi.org/10.21437/Interspeech.2021-1775


10758

[34] R. Pappagari, J. Villalba, P. Żelasko, L. Moro-Velazquez, and N.
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