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Abstract—Virtualization paradigms like cloud computing, soft-
ware defined networking (SDN), and network functions virtual-
ization (NFV) provide advantages with respect to aspects like flex-
ibility, costs, and scalability. However, management and orches-
tration of the resulting networks also introduce new challenges.
The placement of services, such as virtual machines (VMs),
virtualized network functions (VNFs), or SDN controllers, is a
multi-objective optimization task that confronts operators with
a multitude of possible solutions that are incomparable among
each other. The goal of this work is to investigate mechanisms
that enable automated decision making between such multi-
dimensional solutions. To this end, we investigate techniques from
the domain of multi-attribute decision making that aggregate
the performance of placements to a single numeric score. A
comparison between resulting rankings of placements shows that
many techniques produce similar results. Hence, placements that
achieve good rankings according to many approaches might be
viable candidates in the context of automated decision making.
In order to illustrate the functionality of the different scoring
mechanisms, we perform a case study on a single network graph
and a fixed number of objectives and service instances. Addition-
ally, we present aggregated results from broad evaluations on the
Internet Topology Zoo and a larger number of objectives as well
as varying numbers of service instances. These allow making
more reliable statements about the mechanisms’ performance
and agreement.
Index Terms—Cloud Service, Placement, Orchestration, Multi-

Objective Optimization, Pareto Frontier

I. INTRODUCTION

Network and cloud operators benefit from virtualization

paradigms in terms of costs, flexibility, scalability, and vendor

independence. In contrast to the prevalent deployment of dedi-

cated computing resources for services like firewalls, load bal-

ancers, SDN controllers, or cloud applications, these services

can nowadays be virtualized and hosted on commercial off-

the-shelf (COTS) hardware deployed anywhere in the network.

However, management and orchestration techniques are

required in order to achieve and maintain a high degree of

flexibility and assert that QoS and QoE constraints are met.

In particular, the placement of service instances within the

network can have a significant impact on both, user and oper-

ator satisfaction. Since goals like low latency among service

instances and low latency between services and end users can

be competing, finding suitable placements corresponds to a

multi-objective optimization task.

In addition to the increased complexity of algorithms that

can solve such problems, the solutions they return can not

always be compared with each other due to different domains

and units of the objectives. Especially in the context of

automated and dynamic service migration and instantiation,

however, algorithms need to choose one distinct solution.

The contribution of this work is the investigation of the level

of agreement between the rankings of multiple automated deci-

sion making algorithms. This is done in a three step approach.

First, four methods for determining the relative importance

of different objectives are selected and compared with each

other. In contrast to approaches that determine such weights

a priori, the methods used in this work take into account

characteristics of the solutions that are returned by the multi-

objective optimization algorithm. Second, four mechanisms for

aggregating the performance of a multi-dimensional solution

into a single score are selected. Finally, the rankings of

solutions that result from different combinations of weighting

and aggregation techniques are characterized. On the one

hand, analyzing solutions that consistently achieve high ranks

according to many approaches might lead to more efficient

methods for identifying viable placements. On the other hand,

the comparison can help to derive guidelines for choosing the

appropriate ranking mechanism for a particular problem.

In a case study, we demonstrate the particular behavior

of the investigated mechanisms for an exemplary network

and three objective functions, i.e., three optimization goals.

Furthermore, we extend our work from [1] by an extensive

analysis of 58 real-world network topologies from the Internet

Topology Zoo [2], a total of five objective functions, and

varying numbers of service instances that are placed. By

aggregating the results of these analyses, we can compare the

different weighting and ranking methods in terms of aspects

like agreement and consistency across problem instances.

The remainder of this work is structured as follows. After an

overview of related work in Section II, the data set is presented

alongside the resulting problem instances in Section III. The

selected methods for assessing the weight of each objective

dimension are introduced and compared in Section IV. These

methods are then used as input for aggregation algorithms

that assign a single score to each placement. In Section V,

the four selected aggregation algorithms are discussed and

compared with respect to the rankings of placements they

produce. Finally, Section VI concludes the work.
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II. RELATED WORK

Resouce management in clouds [3], in particular, the place-

ment of cloud services in data centers has become an in-

creasingly important problem. Typically, many parameters and

metrics regarding resource utilization and performance have to

be taken into account within the cloud and the network. Thus,

different methodologies are proposed in literature to place the

virtual machines efficiently. In the context of placing virtual

network functions (VNF), [4] investigates a weighted sum

approach, while [5] uses a linear program to find an optimal

placement. Also [6], [7] propose linear programs for chains

of VNF, while [7] adds a Pareto analysis to investigate the

trade-offs between the different dimensions.

Related problems, which have been discussed recently, are

the placement of virtual machines in distributed architec-

tures [8] as well as the placement of SDN controllers. Both

are also multi-objective optimization problems, which have

to take into account a large set of parameters and metrics.

Weighted sums (e.g., [9]) and linear programs (e.g., [10]) are

widely used. Additionally, the Pareto frontier is analyzed when

different alternatives are incomparable. Due to state explosion,

the problem of obtaining the Pareto frontier is frequently tack-

led heuristically [11], [12]. However, no automated decisions

can be taken from Pareto frontiers. Based on our work in [1],

we present an extended evaluation of several mechanisms that

can be used to approach this problem.

Therefore, we will transform the Pareto frontiers into a

ranked list of alternatives. To compare the rankings when the

underlying order of alternatives is unknown, we will mainly

rely on correlation coefficients and techniques based on prob-

abilistic ranking models. In [13], the rank correlation between

the pairs of ranking is calculated using either Spearman’s

ρ or Kendall’s τ . [14] proposes a measure of agreement
between rankings based on removal of disputable elements.

A basic model for order statistics was developed by Thur-

stone [15], and [16] constructed an equivalent model based

on choice probabilities. Mallow [17] presented simplified and

analytically tractable models induced by paired comparison.

[18] investigates concordance between different judges (i.e.,

rankings) based on Mallow’s model to detect outlier rankings.

[19] proposes to compare the distribution of ranks by box

plots and derive a degree of discordance based on the inter-

quartile range. The goodness of fit of simple ranking models

is investigated in [20], and metric based ranking models are

discussed in [21]. A classification of probabilistic ranking

models can be found in [22].

III. DATA SET DESCRIPTION

In order to investigate the practical feasibility of the differ-

ent weighting and ranking methods that are discussed in this

work, realistic input data is required. To this end, we use 58

different network graphs from the Internet Topology Zoo [2]

and use the freely available POCO tool [23] to exhaustively

evaluate all possible service placements with respect to a total

of up to five objective functions. While results are consistent

among different networks, some characteristics depend on

statistics like the number of nodes and the diameter of the

graph. On the one hand, we present detailed results and

statistics for the Internet2 OS3E topology which is chosen as

an exemplary representative. This allows for accurate insights

into the functionality of the different weighting and scoring

mechanisms. On the other hand, we provide aggregated results

and statistics regarding the whole data set in order to identify

topology-independent relationships between the various mech-

anisms.

A. Internet2 OS3E

Table I provides an overview of the Internet2 graph as

well as the resulting problem instance. In order to keep

the solution space small enough to visually illustrate the

effects and behavior of the presented methods, only four

service instances are placed in the network and the number of

objectives is limited to three. Although this results in a total

of 46, 376 distinct placements, only ten of those are Pareto
optimal and thus relevant during the decision making process.

In the context of larger search spaces, e.g., when placing more

services or dealing with networks that have more nodes, an

exhaustive evaluation of all possible placements might not be

feasible due to time and resource constraints. For such cases,

a trade-off between accuracy and runtime can be achieved

by employing heuristic approaches that can approximate the

Pareto frontier [11].

TABLE I: Information regarding the Internet2 OS3E topology

and the corresponding problem instance used in the case study.

Property Value
Number of nodes 34

Number of placed

services
4

Number of distinct
placements

46, 376

Number of Pareto
optimal placements 10

Objective functions

Mean latency to end users πavg latency

Maximum latency to end users πmax latency

Imbalance between service instances πimbalance

As mentioned in the previous paragraph, three different

objective functions are taken into account when assessing the

performance of each placement. These include two latency-

related measures, namely, the mean and average latency be-

tween services and end users. We use the longitude and latitude

information that is provided for each node to calculate the

Euclidean distance between nodes and approximate the latency

of each link. For multi-hop paths, the latency is defined as

the sum of latencies of all involved links. Furthermore, the

load imbalance between service instances is defined as the

difference between the number of end users assigned to the

instance with the highest and lowest amount of end users,

respectively. Several statistical properties of these objective

functions are presented in Table II. Additionally, Figure 1 dis-

plays the cumulative distribution function of objective values

that are attained across all placements.
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Due to the fact that the latency measures are continuous,

they yield significantly more distinct values, resulting in

smooth CDF curves. In contrast, the imbalance is always

an integer value which is constrained by the number of

nodes in the topology. Hence, individual steps are visible in

the plot. Since the average latency between end users and

services is calculated from 34 individual latencies, outliers

are smoothed out and the resulting variance is relatively low.

The values of the maximum latency objective have a higher

variance and fewer distinct values since the maximum does

not necessarily change between similar placements that share

multiple controller locations.

TABLE II: Various statistics of the objective functions that are

used in the case study.

Objective Number of distinct values Mean Variance
πavg latency 45, 311 0.195 0.001

πmax latency 244 0.491 0.013

πimbalance 29 0.305 0.019

Objective Value

C
D
F

π
π
π

Fig. 1: Empirical CDFs of objective values that are attained

in the example scenario.

B. Internet Topology Zoo

For the evaluation of networks from the Internet Topology

Zoo, we chose networks whose size n ranges between 25
and 50 nodes. This ensures that the exhaustive evaluation

of all possible placements with POCO can be performed

within a reasonable time frame. Using each of the resulting

58 topologies, we calculated placements of k ∈ {3, 4, 5}
service instances and evaluated them with respect to a total of

five objectives, resulting in a total of 174 problem instances.

In addition to the abovementioned imbalance and latency

measures, the average and maximum latency between each

pair of service instances is also taken into account. These

objectives are referred to as πavg inter-latency and πmax inter-latency,
respectively. In the following, we present various aggregated

statistics of the set of problem instances that are discussed in

this work.

Similarly to Table II, Figure 2 presents the distribution of the

number of distinct values that are attained by each objective

function per problem instance. In this context, a problem

instance is characterized by the number of placed instances, k,
and the network graph. Qualitatively, the statistics across all

problem instances are similar to those in the Internet 2 graph,

i.e., the continuous average latency measures have the largest

number of distinct values. They are followed by the objectives

that consider the maximum latency, which are also continuous.

Finally, the imbalance is integer-valued and restricted by the

number of nodes in the network, n. Hence, it attains the lowest
amount of distinct values.

π
π
π

π
π

Fig. 2: Empirical CDFs of the number of distinct function

values per problem instance for each objective function.

In addition to the number of distinct values, the variance

plays an important role when quantifying the relative impor-

tance of an objective. For all problem instances, Figure 3

displays the distribution of the variance of each objective

across all possible placements for a problem instance. Al-

though the average latency measures attain the highest number

of distinct values, they show the lowest variance. The reason

for this characteristic is that the averages are formed from

many individual latencies and do not differ much between

placements. Furthermore, the variance of the average inter-

instance latency is higher than that of the average latency

between end users and services. This stems from the fact that

πavg inter-latency is based on fewer individual latencies and can
take on extreme values when all instances are placed close

to each other in a cluster or are distributed at the edge of the

network, respectively. As discussed in Section III-A, objectives

that quantify the maximum latency have a higher variance

due to the wider range of attained values (cf. Figure 1).

Similarly, the imbalance measure is based on the maximum

load difference between service instances and takes on a

large number of values, resulting in a high variance. For all

objectives, the 90% quantiles of the variance distribution are

below 0.05.

To further motivate the need for mechanisms that map a

multi-obective result vector to a single score, the distributions
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of the number of Pareto-optimal placements for different num-

bers of placed service instances, k, are illustrated in Figure 3b.
For a given number m of Pareto-optimal placements on the x-

axis, the value on the y-axis represents the fraction of problem

instances whose five dimensional Pareto frontier includes up

to m elements. The different numbers of service instances,

k, are denoted by differently colored curves. The number
of placed service instances has a direct impact on the total

number of distinct placements, which can be calculated as the

binomial coefficient
(
n
k

)
. Hence, the size of the Pareto frontier

also increases due to the increase of incomparable pairs of

objective vectors, in particular. While a human decision maker

might compare and choose from a couple of alternatives in an

objective space with few dimensions, comparing one thousand

and more different solutions in a practical time frame seems

unlikely.

π
π
π

π
π

(a) Variance per objective
function across all problem
instances investigated in this

work.

(b) Number of Pareto optimal
placements for different numbers
of service instances that are

placed.

Fig. 3: Empirical CDFs of the variance per objective and the

size of the Pareto frontier.

IV. WEIGHTING METHODS

In order to aggregate the performance of a placement that

is evaluated with respect to multiple objective functions into

a single value, the mechanisms that are analyzed in this work

require weights for each considered dimension. Hence, we first

discuss methods for obtaining these weights based on the set

of placements and the corresponding objective values.

In the following, the weight of the j−th objective is denoted
as wj and weights are normalized, i.e.,

∑m
j=1 wj = 1 in case

of m objective functions. Additionally, objective values are

also normalized prior to applying the weighting mechanisms.

The observed values for n placements and m objective dimen-

sions are stored in an n ×m matrix A which is transformed

into the normalized matrix R according to Equation 1.

rij =
amaxj + aminj − aij

amaxj + aminj

(1)

In this equation, aminj = mini aij and amaxj = maxi aij
refer to the minimum and maximum values of the j-th
objective, respectively.

A. Uniform Weighting

As a baseline naı̈ve approach, we use a weighting mecha-

nism that does not take into account any observed data and

assigns equal weights to every objective, i.e., wuni
j = 1

m .

B. Entropy-Based Weighting

In information theory, (the Shannon) entropy is used as a

means to quantify the amount of information that is stored

in a message [24]. The key idea behind the entropy-based

weighting method consists of assigning higher weights to

objective dimensions that carry more information, i.e., those

that have a higher number of distinct values and low individual

occurrence probabilities for each value. Based on [25], the

weights are calculated in three steps. First, observed values

are normalized for each dimension (cf., Equation 2).

pij =
rij∑n
i=1 rij

, j ∈ {1, . . . ,m} (2)

Then, the entropy is determined by means of

ej = − 1

lnn

n∑
i=1

pij ln pij , j ∈ {1, . . . ,m}. (3)

Finally, the weight is calculated as

went
j =

1− ej∑m
i=1(1− ei)

, j ∈ {1, . . . ,m}. (4)

C. Weighting Based on the Coefficient of Variation

Intuitively, objectives whose values cover a wide range of

different values tend to have a higher impact on the total result-

ing performance of a placement than objectives that attain only

few values or values that are very close to each other. Hence,

we investigate the suitability of the coefficient of variation

for quantifying the relative importance of an objective. The

coefficient of variation is defined as the ratio between the

standard deviation and the mean of observed values. Thus,

the weights are calculated according to Equation 5. σj and μj
refer to the standard deviation and mean of the j-th objective,
respectively.

wcvj =

σj
μj∑m
i=1

σi
μi

, j ∈ {1, . . . ,m} (5)

D. Weighting Based on the Standard Deviation

Similarly to the weighting approach that is based on the

coefficient of variation, this mechanism uses the standard

deviation in order to calculate the relative weights.

wsd
j =

σj∑m
i=1 σi

, j ∈ {1, . . . ,m} (6)

146146

                                                                                                                                               



π π π

Fig. 4: Relative weights of objectives according to different

weighting mechanisms for Internet2 OS3E topology.

E. Comparison

In order to allow for a comparison between the different

weighting mechanisms, Figure 4 presents the weights of indi-

vidual objectives according to the four weighting approaches

for the Internet2 OS3E topology. The x-axis denotes the three

objectives, the height and color of the bars represent the weight

and weighting method, respectively.

While the weights that are returned by the different mech-

anisms differ in terms of absolute values, the relative order of

objectives is consistent. Having the lowest variance and the

narrowest interquartile range, the latency between end users

and services is assigned the lowest weights. As discussed in

Section III, the maximum-based measure has a higher variance

and thus also results in higher weights when compared to its

average-based counterpart. The highest weights are assigned

to the imbalance measure. This can be explained by the high

variance that is observed for the imbalance objective.

A comparison of the absolute weights that are assigned by

the weighting methods shows that the mechanisms that are

based on standard deviation and the coefficient of variation

return similar values. This phenomenon can be explained by

the fact that objective values are normalized prior to applying

the weighting methods. Thus, the normalization using the

mean that is applied in the context of the latter does not

have a large impact on the final weights. Finally, the entropy-

based weighting approach yields the widest range of weights,

i.e., between less than 0.1 and more than 0.6. This indicates
a higher sensitivity towards the objectives’ variance, which

seems to be the main influence factor on the resulting weight

for all weighting methods that take into account observed

objective values.

Figure 5 shows the weight coefficients for each weighting

method applied to the problem instances of the Topology Zoo

and five dimensions. Figure 5a shows weights for uniform

weighting, Figure 5b for entropy-based weighting, and the

bottom plots show the resulting weights based on coefficient

of variation (Figure 5c) and standard deviation (Figure 5d),

respectively. The x-axis of each plot represents the IDs of

the different problem instances. Each bar shows the weights

of each dimension according to the investigated weighting

method. From bottom to top, the weights of average latency

(black), maximum latency (dark brown), imbalance (light

brown), average inter-latency (orange), and maximum inter-

latency (yellow) are stacked. For better visibility, the legend

was omitted for Figures 5b–5d, but is the same as in Figure 5a

for all plots.

The uniform weighting assigns each dimension the same

weight, which can be seen in Figure 5a. The entropy-based

weighting in Figure 5b gives high scores to the maximum

inter-latency, which receives a weight of around 0.5 for most

of the topologies. As in the case study of the Internet2 OS3E

topology, the high variance of the maximum inter-latency (cf.

Figure 3a) is responsible for the high weights. The second

highest scores are given either to average inter-latency or

imbalance, which are highly fluctuating depending on the

particular problem instance. Maximum latency and average

latency receive the smallest weights due to the small variance.

As already observed for the Internet2 OS3E topology, also

for the Topology Zoo problem instances the weighting based

on coefficient of variation resembles much the weighting

based on standard deviation, and both weight distributions are

less skewed than entropy-based weights. While the weight-

ing based on coefficient of variation generally gives higher

weights to maximum inter-latency and lower weights to aver-

age latency, the resulting weights of the standard deviation

method are closer to the uniform weighting. In this case,

maximum inter-latency, average inter-latency, and imbalance

have weights of around 0.25 each, and maximum latency and

average latency share the remaining 0.25 almost equally.

To sum up, the weighting method has a significant impact.

Aside from uniform weighting, the other weighting algorithms

emphasize the characteristics of the dimensions differently,

which results in divergent weightings. This is not only ob-

served for the case study of the Internet2 OS3E graph, but

also for the problem instances of the Topology Zoo. Espe-

cially, the entropy-based weighting results in the most skew

weights and shows a high variability for different topologies.

In contrast, weighting based on coefficient of variation and

standard deviation results in less skew and consistent weights

over all graphs.

V. RANKING METHODS AND RESULTS

A. Ranking Methods

To aggregate the scores aij of the different attributes j of the
placement i to an overall ranking score ρi, four well-known
multi-attribute decision methods will be considered.

First, we consider Simple Additive Weighting (SAW) [26],

which computes the overall score by adding the normalized

attribute scores rij =
amin
j

aij
multiplied by the weights wj .

ρSAWi =
∑
j

wj · rij

A similar ranking method is Multiplicative Exponent

Weighting (MEW) [27], which calculates the overall score as

the product of the normalized attribute scores rij =
amin
j

aij
,
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(a) Uniform weighting (b) Entropy-based weighting (c) Weighting based on
coefficient of variation

(d) Weighting based on
standard deviation

Fig. 5: Relative weights of objectives according to different weighting mechanisms for the Topology Zoo. The legend of

Figure 5a applies to all plots.

which are given the respective weight as exponent.

ρMEW
i =

∏
j

r
wj

ij

The Technique for Order Preference by Similarity to Ideal

Solution (TOPSIS) [26] normalizes the attributes rij =
aij∑
i
a2
ij

, and computes the distances to an optimal placement

with all best weighted normalized attribute values vminj =
mini(wjrij), and to a worst placement composed of all worst
weighted normalized attribute values vmaxj = maxi(wjrij).
Then, the separation between the optimal and the worst

placement is computed by

smini =

√∑
j

(wjrij − vminj )2

smaxi =

√∑
j

(wjrij − vmaxj )2

The resulting ranking ρi is the relative closeness to the ideal
solution:

ρTOPSISi =
smaxi

smini + smaxi

VIKOR [28] relies on the best and worst attribute values,

aminj and amaxj . Then, for each placement, scores are calcu-

lated by two strategies:

Si =
∑
j

wj
aminj − aij

aminj − amaxj

, Ri = max
j

(
wj

aminj − aij

aminj − amaxj

)

The final ranking score for each placement is then computed

with a parameter γ, 0 ≤ γ ≤ 1, for the weight of each
strategy, and the best and worst values of Si and Ri, i.e.,

Smin = mini Si, Smax = maxi Si, R
min = miniRi,

Rmax = maxiRi:

ρV IKORi = γ
Si − Smin

Smax − Smin
+ (1− γ)

Ri −Rmin

Rmax −Rmin

We set γ = 0.5 to give equal weight to both strategies.
Together with the four weighting methods presented in

Section IV, this gives 16 different ranking methods, i.e.,

weighting-ranking combinations, for the multi-objective place-

ment problem. Due to the vast amount of distinct placements,

we will apply the 16 methods only to the subset of Pareto-

optimal placements, i.e., the set of placements in which no

attribute can outperform any other attribute.

B. Case Study for Internet2 OS3E Topology

First, the performance of the weighting-ranking combina-

tions is investigated for the Internet2 OS3E topology and three

dimensions, i.e., rankings of the ten Pareto-optimal points are

compared. Table III lists the highest and lowest correlations

between different combinations in terms of Kendalls’s τ and
Spearman’s ρ rank order correlation coefficients. It can be
seen that generally high correlations can be achieved between

all ranking algorithms. In contrast, small negative correlation

can be seen only for VIKOR with uniform weights. Thus,

this might give some evidence that the investigated algorithms

mainly agree on the inherent order of the elements.

TABLE III: Highest and lowest correlations between different

combinations of weighting and ranking methods on Internet2

OS3E topology.

Method 1 Method 2 τ ρ

(went, ρSAW ) (went, ρMEW ) 1.00 1.00

(went, ρSAW ) (went, ρTOPSIS) 1.00 1.00

(went, ρSAW ) (went, ρV IKOR) 1.00 1.00

(wsd, ρMEW ) (wsd, ρTOPSIS) 1.00 1.00

(went, ρMEW ) (went, ρTOPSIS) 1.00 1.00

(went, ρMEW ) (went, ρV IKOR) 1.00 1.00

(wuni, ρMEW ) (wuni, ρTOPSIS) 1.00 1.00

(went, ρTOPSIS) (went, ρV IKOR) 1.00 1.00

(wsd, ρSAW ) (wuni, ρV IKOR) −0.11 −0.16

(went, ρSAW ) (wuni, ρV IKOR) −0.11 −0.15

(went, ρMEW ) (wuni, ρV IKOR) −0.11 −0.15

(went, ρTOPSIS) (wuni, ρV IKOR) −0.11 −0.15

(went, ρV IKOR) (wuni, ρV IKOR) −0.11 −0.15

Another metric for measuring the agreement between rank-

ings was proposed by Gordon [14]. Gordon’s α is defined as
the number of objects, which are contributing to the agreement

between the rankings: α := N − δ. Thus, it can be computed
as the difference between the length of the ranking N and

the minimum number of objects δ, which have to be removed
to ensure a perfect agreement between the reduced rankings.

148148

                                                                                                                                               



Gordon’s α confirms the high correlation coefficients, as there
are many pairs of rankings with a perfect agreement of

α = N = 10, see Table IV. The lowest value of α is 4, which
shows that still the ranking order is not completely inverted

by any weighting-ranking combination.

TABLE IV: Highest and lowest Gordon α scores for

weighting-ranking combinations on Internet2 OS3E topology.

Method 1 Method 2 α

(went, ρSAW ) (went, ρMEW ) 10

(went, ρSAW ) (went, ρTOPSIS) 10

(went, ρSAW ) (went, ρV IKOR) 10

(wsd, ρMEW ) (wsd, ρTOPSIS) 10

(went, ρMEW ) (went, ρV IKOR) 10

(wuni, ρMEW ) (wsd, ρTOPSIS) 10

(went, ρTOPSIS) (went, ρV IKOR) 10

(went, ρSAW ) (wuni, ρV IKOR) 4

(wuni, ρSAW ) (wsd, ρV IKOR) 4

(wsd, ρMEW ) (wuni, ρV IKOR) 4

(wuni, ρMEW ) (wuni, ρV IKOR) 4

(wsd, ρTOPSIS) (wuni, ρV IKOR) 4

(wuni, ρTOPSIS) (wuni, ρV IKOR) 4

Probabilistic ranking models give another approach to com-

paring the obtained rankings. Luce [16] constructs proba-

bilities for a ranking ρ = (i1, i2, . . . , iN ) from conditional

probabilities. Thus, after r − 1 stages, pir is defined as the
probability that the element ir is the most preferred element
from the set of remaining elements B = {ir, . . . , iN}. By
repeating the choice, this gives the probability of the rating ρ
as:

P (ρ) =
N−1∏
r=1

pir∑
j∈B pj

The highest Luce probabilities are obtained by a ranking,

which was created by the combinations (wuni|wsd, ρMEW )
and (wuni|wcv|wsd, ρTOPSIS). This means, this ranking gives
high ranks to the elements, which are most preferred by

all weighting-ranking combinations. Note that this ranking

is also the modal ranking in the resulting set of rankings.

All four entropy based algorithms output the same ranking,

which reaches the second highest Luce probabilities. Towards

the other end, the SAW and VIKOR algorithms and the

standard deviation (sd) and coefficient of variation weighting

(cv) output rankings with low probabilities (with the above

mentioned exceptions).

Mallow’s Φ-model is based on paired comparison of the
ranked elements. It can be formulated as

Pρ0,θ(ρ) =

(∑
ρ

θX(ρ0,ρ)

)−1
· θX(ρ0,ρ), 0 ≤ θ < ∞,

in which X(ρ0, ρ) is Kendall’s τ distance, i.e., the number of
disagreements between ρ0 and ρ. ρ0 is an a priori set location
parameter (e.g., the modal ranking or an averaged ranking),

and θ is a measure of variation, which will be fitted from the

rankings with a table given in [18]. Following the methodology

presented by Feigin and Cohen in [18], the model also allows

to detect outlier rankings. Using the averaged ranking as

location parameter and fitting θ accordingly, the highest proba-
bility is obtained by the ranking of (wcv, ρMEW ). The second
highest probabilities are achieved by the modal ranking, which

already accounted for the highest Luce probabilities. Again

the entropy rankings have the third highest probability. This

means that these three rankings are closest to the averaged

ranking, which was chosen as location parameter. Using the

modal ranking as location parameter, the order of the first

and second rating would change, but the entropy rating would

still receive the third highest probability. The outlier detection,

which mainly depends on the fitting of θ, indicates that
(wcv, ρMEW ) is an outlier ranking with a too high probability,
and (wuni, ρSAW ) and (wuni, ρV IKOR) are outliers with a
too low probability close to 0. In particular, this means that

the disagreements for (wuni, ρSAW ) and (wuni, ρV IKOR) are
exceptionally high compared to the averaged or modal ranking.

Following the approach described in [19], Figure 6 shows

a boxplot of the ranks of the different placements sorted by

median. It can be seen that there are small boxes for the first

five placements, which means that there is a large agreement

among the different weighting-ranking combinations. Only for

the last five placements, there is some disagreement among

the different rankings. Still several outliers can be observed,

however, taking a detailed look at the data, most outlier ratings

stem from uniform weighting of the attributes. Thus, this

weighting method seems to be inappropriate for ranking the

placements.

Placement

R
a
n
k

Fig. 6: Pareto optimal placements and their ranks according

to the presented ranking mechanisms.

To sum up, the different ranking methods showed a high

agreement, especially for the top-ranked placements. This

means, among the investigated methods, no weighting-ranking

combination stands out and most of them are well suited to

combine the Pareto-optimal placements into a single score.

Nevertheless, the results suggest that the use of uniform

weights can lead to outlier rankings, which do not reproduce

the majority rankings.
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(b) Spearman correlation coefficient ρ

Fig. 7: Average correlation coefficients between rankings of different weighting-ranking combinations for all topologies.

C. Broad Evaluation on the Topology Zoo

The presented case study is generalized by applying the

methodology to the 174 problem instances of the Topology

Zoo and five dimensions. The aggregated performance over

all instances provides better insights on the performance

of each of the weighting-ranking combinations. Figure 7a

shows the average Kendall τ correlation coefficient for all

pairs of weighting-ranking combinations. Figure 7b shows the

corresponding Spearman ρ correlation coefficients. In both

figures, the color at area (i, j) indicates the average correlation
coefficient between combination i and combination j over
all problem instances according to the color scale on the

right. A perfect correlation is indicated by a yellow area (e.g.,

(i, i) ∀ i), while darker colors show a lower correlation. A

correlation coefficient of 0 is shown in brown, while dark
brown to black colors represent negative correlations.

It can be seen that both average correlation coefficients

give similar results for all pairs of combinations. The darker

colors of row/column 1, 5, 8, and 13 indicate that the rankings
generated by SAW generally have little or even negative

correlations with the other rankings. The average Kendall and

Spearman correlations are especially low for combination 1,
i.e., (wuni, ρSAW ). Moreover, it can be seen that uniform
weighting (1 – 4) results in lower average correlations. The

highest correlations can be observed among the combinations

with entropy-based weighting (5 – 8), which means that those

combinations generally output similar rankings.

Figure 8 shows the aggregated performance of all

weighting-ranking combinations according to the Luce proba-

bilities. For each combination, it shows the number of problem

instances for which its ranking had the highest Luce probabil-

ity. It can be seen that combination 10, i.e., (wcv, ρMEW ),
outputs the ranking with the highest Luce probability on

almost half of the problem instances. In general, it can be

seen that the ranking of combinations with MEW (2, 6,
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Fig. 8: Number of topologies for which weighting-ranking

combination output the ranking with highest Luce probability.

10, 14) often has the highest Luce probability. According

to that evaluation, SAW (1, 5, 9, 13) performs second best.

The other ranking methods perform much worse. Regarding

the weighting algorithm, weightings based on coefficient of

variation (9–12) and entropy (5–8) perform best. They often

output rankings with high Luce probabilities, while uniform

weighting and weighting based on standard deviation give

rankings with low probabilities.

All in all, the problem instances of the Topology Zoo reveal

findings similar to those from the case study with the Internet2

OS3E topology. Uniform weightings are likely to produce
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rankings, which show little correlations to the rankings of other

weighting-ranking combinations. Also the usage of the SAW

ranking algorithm provides lower correlation coefficients, but

the resulting rankings have the highest Luce probabilities on

some problem instances. A worse performance is observed

for the TOPSIS and VIKOR algorithms, which could not

output rankings with high Luce probabilities. Instead, with re-

spect to these probabilities, all MEW combinations, especially

(wcv, ρMEW ), should be considered for ranking the Pareto-
optimal placements.

VI. CONCLUSION

In this work, we applied multi-objective decision making

methods to the problem of selecting the best placement for

a cloud service from a set of Pareto-optimal placements.

Therefore, we investigated four methods to determine the

relative importance of individual objectives (i.e., uniform,

entropy-based, coefficient of variation-based, and standard

deviation-based weighting), and four methods for aggregating

the performance of solution sets that are returned by multi-

objective optimization algorithms (i.e., simple additive weight-

ing, multiplicative exponent weighting, TOPSIS, and VIKOR).

We demonstrated, both for a single case study and for a broad

evaluation on a large set of problem instances, that most com-

binations of weighting and aggregation algorithms perform

sufficiently good for the investigated problem and have a high

level of agreement, especially on the top-ranked placements.

Only the usage of uniform weights was shown to cause outlier

rankings, which, nevertheless, can provide a complementary

view on the ranked placements. The best weighting-ranking

combination was multiplicative exponent weighting based on

coefficient of variation (i.e., (wcv, ρMEW )), which outputs
rankings with the highest Luce probabilities for the largest set

of problem instances. In case of all approaches, the weights

and ranks for a given set of placements can be efficiently

calculated by implementing the presented equations. However,

operators might need to employ heuristic approaches for large

problem instances in order to find feasible placements in a

timely manner. Eventually, the goal will be to derive guidelines

for choosing the appropriate ranking mechanism for Pareto-

optimal placements in the cloud service placement problem.
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