
YoMoApp: a Tool for Analyzing QoE of YouTube
HTTP Adaptive Streaming in Mobile Networks

Florian Wamser⇤, Michael Seufert⇤, Pedro Casas†, Ralf Irmer‡, Phuoc Tran-Gia⇤, Raimund Schatz†

⇤University of Würzburg
{florian.wamser | seufert | trangia}

@informatik.uni-wuerzburg.de

†FTW
Telecommunication Research Center Vienna

{casas | schatz}@ftw.at

‡Vodafone Group
Research and Development
ralf.irmer@vodafone.com

Abstract—The performance of YouTube in mobile networks
is crucial to network operators, who try to find a trade-off
between cost-efficient handling of the huge traffic amounts and
high perceived end-user Quality of Experience (QoE). This
paper introduces YoMoApp (YouTube Performance Monitoring
Application), an Android application, which passively monitors
key performance indicators (KPIs) of YouTube adaptive video
streaming on end-user smartphones. The monitored KPIs (i.e.,
player state/events, buffer, and video quality level) can be used
to analyze the QoE of mobile YouTube video sessions. YoMoApp
is a valuable tool to assess the performance of mobile networks
with respect to YouTube traffic, as well as to develop optimizations
and QoE models for mobile HTTP adaptive streaming. We test
YoMoApp through real subjective QoE tests showing that the
tool is accurate to capture the experience of end-users watching
YouTube on smartphones.

I. INTRODUCTION

YouTube is one of the most popular services in today’s
Internet. It has more than 1 billion users and every day people
watch hundreds of millions of hours of YouTube videos. Half
of those YouTube views are on mobile devices [1]. On the
one hand, mobile operators want to handle the huge amount
of video traffic as efficiently as possible (high revenue per
bit), on the other hand, they want to deliver a high Quality
of Experience (QoE) to satisfy their customers. Therefore,
it is very important for mobile operators to understand the
performance of their networks with respect to YouTube traffic.

In order to measure the network performance in terms
of QoE, different concepts are proposed in literature. First,
operators can conduct subjective studies and ask the users
about the perceived service quality. Subjective studies can
directly assess the QoE in terms of mean opinion scores
(MOS), but their design and execution is complex and costly.
Second, operators can perform active measurements with client
devices to probe the network. However, these samples can only
provide an estimation of the network performance and cannot
cover all contingencies. Finally, passive measurements can be
conducted either in the network or at the client device. In-
network measurements (e.g., YOUQMON [2]) have a more
global scope and cover more users, but the resulting QoE has
to be estimated from traffic characteristics and/or deep-packet
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inspection. Moreover, the recent trend towards HTTPS (e.g.,
YouTube, Vimeo) is about to inhibit its applicability. Client-
side measurements (e.g., YoMo [3], [4]), on the other hand,
are more extensive as end users are directly involved, but
they can provide an individual and accurate view on objective
key performance indicators (KPIs). Those KPIs provide more
elaborate information about the perceived service quality and
can be mapped to QoE by means of QoE models [5].

In this paper, we introduce YoMoApp (YouTube Perfor-
mance Monitoring Application), a measurement application for
client-side measurement of YouTube video streaming on mo-
bile Android devices. The application uses the YouTube mobile
website and the YouTube HTML5 API to exactly replicate the
well-known YouTube service, which employs HTTP adaptive
streaming (HAS) technology based on resolution adaptation.
However, it additionally monitors and stores multiple KPIs
of the video streaming via the YouTube API (i.e., player
state/events, buffer, and video quality level), which allow to
analyze the QoE of adaptive video streaming sessions.

YoMoApp is a highly valuable application for passive
client-side measurements of the YouTube performance in
mobile networks, an approach, which is becoming highly
popular among cellular operators. In addition, the tool can
be used for developing new QoE models for HAS in mobile
devices, enabling multiple QoE-based monitoring applications
for YouTube traffic, such as dynamic traffic engineering [6],
troubleshooting, load balancing and caching, and many more.

This paper describes the measurement concept and the
implementation of the application in detail. Moreover, a sub-
jective study was conducted in which YoMoApp was used to
monitor the performance of YouTube video streaming sessions
under different network conditions. The measured KPIs for
HTTP adaptive video streaming and the quality ratings of the
participants are investigated in order to validate the measure-
ment application through subjective QoE tests.

The remainder of the paper is structured as follows. First,
related papers on QoE for HTTP video streaming in mobile
devices are summarized in Section II. Second, the design
and implementation of YoMoApp is described in detail in
Section III. The subjective lab study conducted with YoMoApp
and the analysis of the measured KPIs and the QoE feedback
of the participants are presented in Section IV. Finally, Sec-
tion V concludes the paper by discussing future applications
of YoMoApp.
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II. RELATED WORK

Due to its paramount relevance, QoE in HTTP video
streaming is a well-known and largely investigated topic. Pre-
vious papers [7], [8] have shown that stallings (i.e., stops of the
video playback) and initial delays on the video playback are the
most relevant KPIs for QoE in HTTP video streaming. While
authors in [9] have shown that initial delays are generally
tolerated by most users, stallings have a huge impact on user
experience; indeed, a small number of stalling events severely
degrades the QoE [7].

In the case of adaptive streaming, a new KPI becomes
relevant in terms of QoE: quality switches. While authors in
[10] found that quality adaptation could dramatically reduce
stalling when bandwidth decreases in a mobile environment,
authors in [11] have shown that quality switches have an
important impact on QoE, as they increase or decrease the
video quality during the playback. Authors in [12] found that
it is sufficient to consider the time spent on each quality layer
to properly estimate the QoE of a video session, and not
the number of quality switches as one might expect. A more
comprehensive survey of the QoE of adaptive streaming can
be found in [5].

When it comes to our specific analysis of YouTube QoE
in mobile networks and mobile devices, references become
scarcer, showing that there is still an important gap to fill.
In [13], authors study the characteristics of YouTube traffic
on smartphones connected to a cellular network, showing that
these devices have a non-negligible impact on the character-
istics of the downloaded traffic. Closer to the subject of this
paper, authors in [14] describe a subjective QoE evaluation
framework for mobile Android devices in a lab environment.
Authors conduct a basic QoE-based study on the non-adaptive
YouTube streaming using very low bit rate videos and without
considering the impact of the download throughput. In [15],
authors study the QoE of YouTube in mobile devices through
a field trial, exclusively considering the non-adaptive version
of the YouTube player. In [2], we introduced an on-line mea-
surement system to monitor the QoE of YouTube in cellular
networks relying exclusively on network-layer measurements.
Similarly, in [16], authors introduce Prometheus, an approach
to estimate QoE of mobile apps, using both passive in-network
measurements and in-device measurements, applying machine
learning techniques to obtain mappings between QoS and QoE.

III. YOMOAPP - MEASUREMENT CONCEPT AND
DESCRIPTION OF THE MONITORING APPLICATION

The goal is to provide a methodology for monitoring
application-layer KPIs of YouTube that have a high correlation
with the actual QoE of mobile app users. According to [7],
[12], the main influence parameters of the YouTube QoE are
stallings and video quality. In order to obtain these parameters,
we monitor the buffer filling levels and the resolution of the
YouTube videos.

The approach is as follows. The original YouTube app
is fully replicated in functionality and design, see Fig. 1.
To this end, existing libraries from YouTube are used that
are available for YouTube developers. An Android web view
browser element was embedded for the YouTube video play-
back, such that HTML5 video playback is possible including

Name Description
buffered List of time ranges of the media

content that have been buffered
height/
width

Height and width of the video’s
display area in CSS pixels

played Object indicating all the ranges of
the video that have been played

currentTime Current video playtime
youtubeId Object indicating YouTube identi-

fier of the video content
totalVideo-
Frames

Total number of frames that would
have been displayed if no frames
are dropped

dropped-
Video-
Frames

Total number of frames dropped
predecode or dropped because the
frame missed its display deadline

corrupted-
Video-
Frames

Total number of corrupted frames
that have been detected

Timestamp Timestamp of the data query
Name A pre-defined device name
Session
timestamp

A session timestamp to identify the
YouTube session.

Fig. 1 & TABLE I: Screenshot of the app and selected parameters
from the HTML5 hvideoi object [18], Media Source Extensions [19],
and device, which can be investigated by the app.

adaptive streaming according to the MPEG Dynamic Adaptive
Streaming over HTTP (DASH) approach [17] of YouTube.
Then, functions are injected, which ultimately perform the
monitoring of the application parameters in the newly created
app. The monitoring is done at runtime via JavaScript, which
queries the embedded HTML5 hvideoi object. In Table I,
the utilized parameters are listed. Note that the obtained
parameters can be displayed in YoMoApp for validation (see
Fig. 1), but are usually hidden. The measurement methodology
in the app follows four consecutive steps:

Step #1: HTML Detection - In this step, the YouTube
web page is detected and the HTML video player element is
identified. YouTube consists of many web pages and elements.
Thus, the name and id of the relevant video elements must
be determined. The detection is done via the injection of
JavaScript code to the running Android WebView browser
element of the app. The JavaScript code analyzes the HTML
Document Object Model (DOM) tree for the hvideoi element.

Step #2: Request the Data - Here, the specified parameters
are queried such as the current playtime or the current available
video content. This is realized by injecting JavaScript code that
requests the application parameters from the detected video
player element in Step #1 every second.

Step #3: Calculation - On the basis of the retrieved param-
eters, the buffer filling level can be calculated. The parameter
buffered is subtracted from currentTime, which results in the
current buffer level. Likewise, the video resolution is obtained
based on height and width of the video player.

Step #4: Data Transfer - The last step, which is im-
plemented in the app, is to transfer the data to an external
database located in the Internet. For this purpose an external
library is used, which compresses the data and stores them
as structured objects. The data can be transmitted at different
time instances: a) when closing the app, b) manually by the
user, c) at predetermined intervals. The time of transmission
is always stored together with the data. The data must also
be cached locally, since the connection from the phone to the
Internet server is often not reliable.
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Fig. 2: Illustration of monitored parameters for an exemplary video
streaming: current video playtime (green) and buffered video playtime
(blue). Events are displayed as vertical lines: page load (blue),
playback start (green), quality switch (black), playback end (red).
Stalling is depicted as orange box. The horizontal black lines indicate
the currently played out video quality/resolution.

Fig. 2 shows the data of an exemplary run in their processed
form. Postprocessing of the data is recommended because the
usage of JavaScript can sometimes introduce inconsistencies
and obvious errors, e.g., missed player events, non-equidistant
data queries, missing/incorrect values. However, after remov-
ing unusable runs and the recovery of missing events (e.g.,
stalling events can be estimated from buffer filling level),
YoMoApp proved to perform accurate measurements on a
sufficiently small time scale (⇠1 s).

IV. USING YOMOAPP IN SUBJECTIVE QOE TESTS

To demonstrate the applicability of YoMoApp to analyze
the QoE of YouTube in mobile devices, we conducted a
subjective study in which participants watched YouTube videos
in smartphones instrumented with the YoMoApp tool and rated
the resulting watching experience. To induce different QoE
levels, the downlink traffic from YouTube servers to the mobile
devices was throttled through an intermediate instrumented
router imposing different bandwidth profiles.

A. Study Setup and Simple Traffic Characterization

The subjective study was performed in a dedicated lab
for subjective analysis, compliant with the recommendations
provided by the QoE subjective studies standards [20], [21],
[22]. 52 people participated in the study (29 female, 23
male), the average age was 32 years old, with 40 participants
being less than 30 years old. Around half of the participants
were students and almost 43% were employees, and 70% of
the participants completed university or baccalaureate studies.
Participants were compensated with vouchers, which proved to
be sufficient for achieving reliable and thoughtful involvement.

Android smartphone devices (Samsung Galaxy S4, OS
Android 4.4 KitKat) were used in the tests. The devices were
connected to the Internet through independent WiFi access
points. The downlink traffic was routed through a modified
version of the NetEm network emulator [23] to impose differ-
ent access network bandwidth profiles to the video streaming.
Three different bandwidth profiles were used: (i) constant
downlink bandwidth: 1 Mbps, 2 Mbps, and 4 Mbps; (ii) fluc-
tuating downlink with variable bandwidth (“var”): downlink
bandwidth is periodically increased from 1 Mbps to 3 Mbps for
periods of 5 seconds, 3 times per minute. The resulting average
downlink bandwidth is 1.5 Mbps; (iii) downlink bandwidth
outages (“out”): downlink bandwidth drops from 4 Mbps to
0 Mbps for periods of 10 seconds, twice per minute. In this
case, the resulting average downlink bandwidth is 2.7 Mbps.

All traffic flows were captured and exported to standard pcap
traces for off-line analysis and traffic characterization using
high-performance Endance DAG cards.

The specific task imposed to participants was to watch
two minute long YouTube adaptive streaming videos using
YoMoApp for the five different downlink bandwidth condi-
tions, and rate the resulting watching experience (i.e., overall
experience, impact of initial playback delay and stalling,
video image quality) afterwards on continuous ACR MOS
scales [20]. Each of the five conditions was linked to one
of the five videos indicated in Table II, which included four
mainly nature-themed clips and a movie trailer. All videos
are available as 4K ultra-HD videos (i.e., 2160p), but the
maximum video quality observed in the tests was HD (i.e.,
720p) due to the devices’ display capabilities (i.e., screen size
and resolution).

To better understand the impact of the traffic shaping on the
resulting YouTube traffic flows, Fig. 3 depicts the download
throughput as measured at the network level using the collected
pcap traces. Fig. 3a depicts the observed throughputs when
no shaping is done, which we shall refer to as the “free”
scenrio (in fact, download bandwidth is limited to 25 Mbps
due to technical constraints, i.e., the physical connection
maximum speed). For the sake of brevity, only the first three
videos are depicted in Fig. 3a and 3b (see Table II). A very
similar traffic pattern is observed for the three videos in the
free scenario: there is an initial big video block which is
downloaded as fast as possible to fill-in the playout buffer (see
the average maximum throughput at about 25 Mbps), and then
subsequent smaller blocks downloaded at periodic intervals.
The observed throughputs when throttling the traffic follow
the expected shapes with a constant download throughput at
4 Mbps, 1 Mbps, and 2 Mbps, respectively. Interesting is the
fact that the 4 Mbps condition is high enough to free the
traffic-shaper queue, as observed for video 1 in Fig. 3b after
about two minutes download. The measured average download
throughputs for both the free scenario and the subjective tests
are included in Table II.

Fig. 3c depicts the cumulative distribution function of the
instantaneous download throughput measured for each video
at each condition using a time window of one second to
compute each throughput sample. As expected, the distribution
is centered at 1 Mbps for both the 1 Mbps condition and the
variable condition (which also shows a mode at 3 Mbps due
to the bandwidth increases), and no 0-throughput samples are
observed, showing that the throttling was very aggressive in
these conditions. The 2 Mbps condition shows some empty
gaps in the throttling (i.e., 0-throughput samples), which are
caused by an initial quality switch and a subsequent download
delay as observed in Fig. 3b. Finally, the 4 Mbps condition and
the outage condition have both a clear mode at 4 Mbps, with
a large number of 0-throughput samples, caused by enough
bandwidth allocation in the former condition, and by the
bandwidth outages in the latter.

B. Analysis of Stallings and their Impacts on User Experience

Stalling, i.e., the interruption of playback due to a playout
buffer under-run, is considered the worst quality degradation
of video streaming [7]. Stalling occurs when the available
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(a) Download throughput in free scenario.
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(b) Download throughput in the tests.
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Fig. 3: Download throughput as measured at the network level. The plots depict the throughput for a free scenario in which traffic is not
shaped, as well as the throughput observed for three of the tested traffic-shaping conditions (4 Mbps, 1 Mbps, and 2 Mbps).

TABLE II: Video content and download throughputs as measured in
the lab experiment.

Video Nr. YouTube Video ID Avg. Th. (condition) Avg. Th. (free)

1 6pxRHBw-k8M 2.8 Mbps (4 Mbps) 4.6 Mbps
2 iNJdPyoqt8U 1.0 Mbps (1 Mbps) 5.8 Mbps
3 kObNpTFPV5c 1.8 Mbps (2 Mbps) 5.0 Mbps
4 QS7lN7giXXc 2.3 Mbps (out) 5.0 Mbps
5 suWsd372pQE 1.3 Mbps (var) 3.9 Mbps
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Fig. 4: Monitoring of stallings and their impact on user experience. In
(b), participants rated the disturbance of the stallings on a continuous
scale ranging from 1 (very disturbing) to 5 (not disturbing at all).

network bandwidth is lower than the video bit rate. The playout
buffer is filled slower by the download than it is emptied by
the playback, which will eventually lead to stalling. During
a stalling event, the playback is paused until the buffer is
filled with a sufficient amount of video data to continue
the playback. [7] found an exponential relationship between
stalling parameters and MOS and that users tolerated at most
one stalling event of up to three seconds length. Thus, it is
important to monitor the stalling during the video playback.

Fig. 4a shows the cumulative distribution function of the to-
tal stalling length for each tested condition. It can be observed
that for the constant bandwidth conditions, almost no stalling
occurs. For 4 Mbps, 93.48% of the streaming sessions have no
stalling, the remaining sessions have less than 1 s of stalling.
A maximum of 2 s of stalling was measured for the 2 Mbps
condition, with 95.12% of the sessions showing no stalling
at all. For the 1 Mbps condition, 85.00% of the streaming
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Fig. 5: Monitoring of video quality switches and the resulting image
QoE. In (b), participants rated the image quality on a continuous scale
ranging from 1 (bad) to 5 (excellent).

sessions do not include stalling. However, one outlier with
22 s stalling was observed. For the variable condition (“var”),
stalling occurs in 14.63% of the conditions ranging up to a total
stalling length of 34 s. 78.57% of the outage condition (“out”)
streams contained stalling. The average total stalling length in
this condition is 25 s, and the maximum total stalling length
is 41 s.

In Fig. 4b, the MOS and 95% confidence intervals of
the respective stalling ratings are presented. Participants were
asked to which extend they perceived the interruptions caused
by stalling as disturbing. The MOS values for the disturbance
of stalling are ranging from 1 (very disturbing) to 5 (not
disturbing at all). For 1 Mbps, 2 Mbps, 4 Mbps and variable
condition, stalling is not considered disturbing having mean
opinion scores of at least 4.41. This corresponds to the
measured total stalling time, which indicated very short stalling
events, if any at all. Only for the outage condition, stalling
is perceived as disturbing having a MOS of 2.83. Again, this
corresponds to the frequently long total stalling times measured
by YoMoApp.

C. Analysis of Quality Switches

HTTP adaptive streaming trades off stalling for video
quality. It adapts the downloaded video quality (i.e., video
bit rate) to the currently available network conditions, thereby
avoiding stalling to the greatest possible extend. In YouTube,
which is considered in this work, this is implemented by
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adaptively changing the resolution of the streamed video.
However, quality switches, i.e., the change of the video bit
rate, occur during streaming and can be perceived by the users.
In the following, the monitored quality of the video streaming
will be investigated.

Fig. 5a shows the percentage of time on each quality
layer per condition, i.e., the percentage of time which each
video resolution was played out during the streaming. In the
1 Mbps condition, all available resolutions were used with
the following overall shares: 240p (0.23%), 360p (92.89%),
480p (5.85%), 720p (1.02%). The 2 Mbps condition shows a
larger percentage of 480p quality (88.84%), and in the 4 Mbps
condition a significant share of 720p quality (67.15%) can
be played out. Additionally, the outage condition has similar
quality shares to the 4 Mbps conditions, which is not surprising
considering that it is a 4 Mbps on/off pattern. The variable
condition contains a large percentage of the lowest resolution
(240p, 80.86%), which indicates that the YouTube adaptation
is very conservative when the network conditions fluctuate
considerably.

Fig. 5b shows how the image quality of each condition was
rated by the participants (MOS and 95% confidence intervals).
It can be observed that the image quality is rated good for all
conditions having a MOS of at least 4.17 for all conditions.
This means that resolution adaptation does not have a big
impact on the subjectively perceived image quality, which
could be due to the small display size of the used smartphone.
Similar findings can also be found in [12]. Nevertheless, the
increasing levels of quality played out for 1 Mbps, 2 Mbps, and
4 Mbps correspond to the increasing image quality ratings by
the participants.

V. CONCLUSION

In this paper, we presented YoMoApp, an Android applica-
tion, which exactly replicates the behavior of the well-known
YouTube service including its design and its HAS technology.
YoMoApp passively monitors and stores QoE-relevant KPIs
of the YouTube adaptive video streaming, such as player
state/events, buffer, and video quality level (resolution). Thus,
the monitored data can be used to analyze the QoE of mobile
YouTube, which is of special importance to mobile operators
as it is among the most popular and most volume-demanding
services in today’s Internet.

A subjective study was conducted to test the implementa-
tion and associate its monitored data with the subjective ratings
of the participants. The measured total stalling lengths and
time on each quality layer could explain the subjective ratings,
which indicates that the application works as expected. As
such, YoMoApp proves to be a valuable tool for analyzing
the QoE of YouTube streaming sessions on mobile devices.
This passive client-side measurement approach can be applied
to assess the momentarily performance of mobile networks as
well as the impact of traffic management policies/mechanisms
on mobile YouTube QoE.

In future work, YoMoApp will be used to investigate the
streaming sessions in more technical detail. The monitored
video sessions will be analyzed for initial delays, number and
lengths of stalling events, and quality switches. These data
will provide more insights into how the network conditions
affect mobile YouTube streaming. Moreover, further subjective

studies on mobile devices will be conducted to correlate the
monitored streaming and adaptation parameters to subjective
quality ratings. This allows to quantify the impact of the
streaming and adaptation parameters on the subjective quality
and to develop improved QoE models for mobile HAS.
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