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ABSTRACT

A quarter of the world population will be using smartphones
to access the Internet in the near future. In this context, un-
derstanding the Quality of Experience (QoE) of popular ser-
vices in such devices becomes paramount for cellular network
operators, who need to offer high quality levels to reduce
the risks of customers churning for quality dissatisfaction.
In this paper we study the problem of QoE provisioning in
smartphones, presenting the results obtained from subjec-
tive lab tests performed for five popular apps: YouTube,
Facebook, Web browsing through Chrome, Google Maps,
and WhatsApp. The analysis addresses the impact of the
access downlink bandwidth on the QoE of these apps when
accessed through smartphones. The results presented in this
paper provide a sound basis for better understanding the
QoE requirements of popular services and mobile apps, as
well as for dimensioning the underlying provisioning net-
work. To the best of our knowledge, this is the first paper
providing such a comprehensive analysis of QoE in mobile
devices.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Miscellaneous;
C.4 [Performance of Systems]: Measurement Techniques

Keywords

QoE; Smartphones; Subjective Lab Tests; Mobile Apps

1. INTRODUCTION
Smartphones are becoming the most typical mobile device

to access Internet today. Recent projections [2] show that by
2016, a quarter of the world population will be using smart-
phones to access the most popular services such as YouTube,
Facebook and WhatsApp. According to Cisco’s global mo-
bile data traffic forecast [1], smartphones will be responsible
for more than three-quarters of the mobile data traffic gen-
erated by 2019. In the light of these trends, cellular network
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operators are becoming more and more interested in under-
standing how to dimension their access networks and how
to manage their customers’ traffic to capture as many new
customers as possible. In this scenario, the concept of Qual-
ity of Experience (QoE) has the potential to become one of
the main guiding paradigms for managing quality in cellular
networks. Closely linked to the subjective perception of the
end-user, QoE enables a broader, more holistic understand-
ing of the factors that influence the performance of systems,
complementing traditional technology-centric concepts such
as Quality of Service (QoS). Indeed, QoE is today an impor-
tant differentiator between providers, but most of the times,
operators do not really grasp the key aspects related to QoE
in their networks.

In this paper we claim that understanding QoE in mo-
bile devices is paramount for cellular network operators,
and present the results obtained from subjective lab tests
performed for popular end-user services accessed through
smartphones. In particular, we consider the following five
well-known applications in mobile devices: YouTube dy-
namic and non-dynamic video streaming, Facebook, Google
Maps (Gmaps from now on), Web browsing through Google
Chrome, and WhatsApp. The evaluations performed in
these subjective tests consider the impact of the most rel-
evant QoS-based characteristics of the access network: the
downlink bandwidth. The main contribution of our study
is to shed light into the problem of QoE-based network pro-
visioning for mobile devices, offering a comprehensive anal-
ysis of the QoE undergone by users when the underlying
access network presents different QoS characteristics or per-
formance levels.

The standard approach to assess the performance of net-
works and services from a QoE end-user perspective is to
conduct controlled lab experiments [19–21]. The key bene-
fits of such an approach rely on the full control the experi-
menter has on the overall evaluation process. Indeed, con-
tent and context are fully known and controlled, and users
are directly briefed and observed on the spot, providing as
such tangible and solid results.

The remainder of the paper is organized as follows: Sec. 2
presents an overview of the related work on QoE for web and
cloud-based services, focusing on the specific case of mobile
devices. Sec. 3 describes the experimental setup used in the
QoE subjective tests. Sec. 4 presents the main results of the
study, including the impact of the downlink bandwidth on
the level of satisfaction and overall experience of the end-user
when accessing the aforementioned applications through a
smartphone. Sec. 5 discusses and concludes this work.
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Figure 1: Experimental setup used in the study. De-
vices are connected to the Internet through indepen-
dent, controlled WiFi connections.

2. RELATED WORK
The study of the QoE requirements for web-based services

and cloud-based applications as the ones we target in this
paper has a long list of fresh and recent references. A good
survey of the QoE-based performance of mobile networks
when accessing many different web and cloud services is pre-
sented in [7]. The main limitation of previous work when
considering the analysis of performance in cellular networks
is that the considered access devices are not smartphones,
but rather traditional laptops with mobile broadband con-
nections.

The specific case of QoE in YouTube deserves particu-
lar attention, due to the overwhelming popularity and om-
nipresence of the service. Studies have both considered
the “standard” HTTP video streaming flavour of YouTube,
as well as the more recent Dynamic Adaptive Streaming
(DASH) version. Previous papers [9, 10] have shown that
stalling (i.e., stops of the video playback) and initial delays
on the video playback are the most relevant Key Perfor-
mance Indicators (KPIs) for QoE in standard HTTP video
streaming. In the case of adaptive streaming, a new KPI
becomes relevant in terms of QoE: quality switches. In par-
ticular, authors in [12] have shown that quality switches have
an important impact on QoE, as they increase or decrease
the video quality during the playback. A comprehensive sur-
vey of the QoE of adaptive streaming can be found in [13].

When it comes to our specific analysis of QoE in mo-
bile networks and mobile devices, references become scarcer,
showing that there is still an important gap to fill. In
[15], authors study the characteristics of YouTube traffic on
smartphones connected to a cellular network, showing that
these devices have a non-negligible impact on the charac-
teristics of the downloaded traffic. Closer to the subject of
this paper, authors in [16] describe a subjective QoE eval-
uation framework for mobile Android devices in a lab en-
vironment. In [17], authors study the QoE of YouTube in
mobile devices through a field trial, exclusively considering
the non-adaptive version of the YouTube player. Authors
in [18] recently introduced Prometheus, an approach to es-
timate QoE of mobile apps, using both passive in-network
measurements and in-device measurements, applying ma-
chine learning techniques to obtain mappings between QoS
and QoE. Additional papers in a similar direction tackle the
problem of modeling QoE for Web [4] and video [5].

Table 1: Operational expected RTT and downlink
bandwidth values for different access technologies.

Access Technology RTT (ms) Downlink Bandwidth

LTE < 50 20 Mbps

HSPA+ < 50 10 Mbps

HSPA < 150 4 Mbps

UMTS < 200 384 kbps

EDGE < 350 160 kbps

GPRS < 650 40 kbps

Finally, WhatsApp is a very new service and its study has
been so far quite limited. Some recent papers have partially
addressed the characterization of its traffic, including a QoE
perspective [14].

3. EXPERIMENTAL METHODOLOGY
The subjective study consists of 52 participants interact-

ing with the aforementioned services while experiencing dif-
ferent downlink bandwidth profiles in the background data
connection. Figure 1 depicts a high-level diagram of the
experimental testbed employed in the subjective tests. An-
droid smartphone devices are used in the study (Samsung
Galaxy S4, OS Android 4.4 KitKat). Devices are connected
to the Internet through separate WiFi access networks. The
downlink traffic between the different evaluated services and
the devices is routed through a modified version of the very
well known NetEm network emulator [23] so as to control
the different access network profiles under evaluation.

Different bandwidth profiles are instantiated at the net-
work emulators, changing downlink bandwidth from 0.5 Mbps
to 16 Mbps. These profiles are selected from operational
experience, particularly following typical operational values
reported in Table 1 for different access network technologies
(LTE, 3G/2G, etc.). The list includes both research results
(e.g., [6]) as well as operational knowledge coming from cel-
lular operators, collaborating with the project which drives
this work, the ACE project1. Access RTT is kept at 10 ms
when downlink bandwidth is varied, which corresponds to
optimal performance in LTE and evolved networks.

articipants were instructed to perform independent tasks
for each of the five considered applications. For YouTube,
they were requested to watch two-minutes HD YouTube
videos, considering both the usage of the standard (i.e.,
non-DASH) and the DASH versions of the YouTube player.
Table 2 reports the YouTube videos used (YouTube video
IDs), which include four mainly nature-themed clips and a
movie trailer. Videos correspond to 4K ultra-HD videos (i.e.,
2160p), which are down-scaled to HD resolution (i.e., 720p)
due to the device’s display capabilities (i.e., screen size and
resolution). To better understand the obtained results, the
table also reports the average video bit rate of the corre-
sponding videos, which is in all cases around 1.6 Mbps. In
the case of Facebook, participants were instructed to access
the application with a specific user account, browse the time-
line of this user, and browse through specific photo albums
created for this user. In the WhatsApp tests, participants
worked in couples and exchanged specific video files of fixed
size (i.e., 5 MB), and the participant downloading the video

1The ACE project - FTW Vienna, http://ace.ftw.at/
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Table 2: Video content and bitrate.

YouTube Video ID Average Video bitrate

6pxRHBw-k8M 1.5 Mbps

iNJdPyoqt8U 1.5 Mbps

kObNpTFPV5c 1.7 Mbps

QS7lN7giXXc 1.7 Mbps

suWsd372pQE 1.6 Mbps

file was the one providing a QoE evaluation, based on the
experienced time. Web browsing tasks consisted of reading
and browsing through a popular and complex News website
(http://edition.cnn.com/). Finally, Gmaps tasks consisted
of exploring different city maps using the Gmaps applica-
tion, in satellite view, which consumes more bandwidth.

Tests were performed in a dedicated lab for subjective
studies, compliant with the QoE subjective studies stan-
dards [19–21]. All traffic flows are captured and exported
to standard pcap traces for off-line traffic analysis, using
high-performance Endance DAG cards. Regarding partic-
ipants’ demographics, 29 participants were female and 23
male, the average age was 32 years old, with 40 participants
being less than 30 years old. Around half of the participants
were students and almost 43% were employees, and 70% of
the participants have completed university or baccalaureate
studies.

Regarding QoE feedback, participants were instructed to
rate their overall experience (rate the overall quality) ac-
cording to a continuous ACR Mean Opinion Score (MOS)
scale [19], ranging from “bad” (i.e., MOS = 1) to “excellent”
(i.e., MOS = 5). MOS ratings were issued by participants
through a custom questionnaire application running on sep-
arate laptops, which pops up immediately after a condition
was tested. Participants also provided feedback on the ac-

ceptability of the application, stating whether they would
continue using the application under the corresponding con-
ditions or not. For the specific case of YouTube, three addi-
tional questions were asked to participants: (i) initial play-

back delay annoyance (did you perceive the initial loading
time of the video as disturbing?); (ii) stalling annoyance

(did you perceive stalling as disturbing?); (iii) video image

quality (rate the image quality of the video). Each testing
session runs for a total time of two hours. Participants were
compensated with vouchers for their participation, which
proved to be sufficient for achieving correct involvement in
the tasks.

4. QOE IN MOBILE DEVICES
In this section we present and discuss the results obtained

in the conducted tests. Constant downlink bandwidth pro-
files are tested for the five studied services. In the case of
YouTube, the Downlink BandWidth (DBW) takes the val-
ues 1 Mbps, 2 Mbps, and 4 Mbps (recall that the average
video bitrate of the tested videos is around 1.6 Mbps). Face-
book is tested with DBW = 0.5 Mbps, 1 Mbps, 2 Mbps, and
8 Mbps. The profiles for Web browsing are almost identi-
cal to those used in Facebook, expect that the last condi-
tion corresponds to an optimal DBW = 16 Mbps. Gmaps
is tested with a fully logarithmic scale: 1 Mbps, 2 Mbps,

1 2 4
1

1.5

2

2.5

3

3.5

4

4.5

5

DBW (Mbps)

M
O

S

standard

DASH

1 2 4
0

10

20

30

40

50

60

70

80

90

100

DBW (Mbps)

A
c
c
e
p
ta

n
c
e
 r

a
te

 (
%

)

accept

do not accept

(a) Overall quality (MOS). (b) Acceptance rate.

Figure 2: QoE in YouTube standard (i.e., non-
DASH) and DASH. Overall quality and acceptabil-
ity for different downlink bandwidth configurations.

4 Mbps, 8 Mbps, and 16 Mbps. Finally, the WhatsApp
DBW profile takes the values 0.5 Mbps, 1 Mbps, 2 Mbps,
4 Mbps, and jumps to 16 Mbps to verify the occurrence of
QoE-saturation, which we shall explain next.

A final remark regarding interpretation of results: the
reader shall note that the maximum MOS ratings declared
by the participants are never 5 but somewhere between 4.2
and 4.6. This is a well known phenomenon in QoE studies
called rating scale saturation, where users hardly employ the
limit values of the scale for their ratings [7]. So from now
on, we shall consider as optimal quality a MOS score close
to 4.5.

4.1 QoE in YouTube Mobile
Figure 2 reports the overall quality and acceptability re-

sults obtained for the YouTube tests. Recall that in the
YouTube scenario, we compare the standard, non-adaptive
version of the YouTube player (videos are selected to play in
HD quality) against the DASH-capable one. In the DASH
case, videos are also requested in HD quality, but the server
adapts the subsequent video quality resolutions to the band-
width estimated by the player.

Figure 2(a) compares the overall QoE experienced by the
participants using both player versions. It is quite impres-
sive to appreciate how the DASH approach results in a
nearly optimal QoE for all the tested conditions (from 1
Mbps to 4 Mbps), whereas the fixed HD quality approach re-
sults in poor QoE for downlink bandwidth below 4 Mbps. As
expected for the standard player, heavy stalling occurs for
the 1 Mbps condition, taking into account that the average
video bitrate is 1.6 Mbps. Indeed, as we have shown in [22],
the DBW should be in the order of 30% higher than the
average video bitrate to avoid stalling when non-adaptive
streaming is used. This dimensioning rule also explains the
results obtained for the 2 Mbps condition, as some stalling
still occurs. No stalling seems to occur for the DASH ver-
sion. The main difference is that DASH changes the video
quality without incurring in playback stalling, whereas the
fixed quality configuration definitely results in video stalling.

Figure 2(b) reports the results in terms of acceptability
of the participants. This is one of the key features that an
operator has to consider, because low acceptance rate may
sooner or later turn into churn. As observed, acceptance
rate is as low as 23% for the standard streaming at 1 Mbps,
whereas it’s close to 99% in the case of DASH.

To complement the picture for YouTube QoE in mobile
devices, Figure 3 depicts the results obtained in terms of (a)
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Figure 3: QoE for YouTube Mobile, considering DASH and non-DASH. Videos are UHD 4k, but due to the
device capabilities they are re-scaled to 720p, resulting in an average video bit rate of around 1.6 Mbps for
all the considered videos.
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Figure 4: QoE in Facebook. Overall quality and
acceptability for different DBW

annoyance caused by the initial delay (time to first frame
displayed), (b) annoyance caused by stalling (stop of the
video playback), and (c) video image quality. In Figs. 3(a)
and 3(b), a MOS = 5 means not disturbing at all, whereas
a MOS = 1 means unbearable (very annoying). Both the
initial delay and the stalling impact on QoE follow the same
pattern as the overall QoE for the non-adaptive application.
However, stalling has a much stronger impact on the user’s
level of annoyance, confirming what has been already seen
in previous studies for desktop and laptop like devices. It is
very interesting the fact that the usage of DASH also reduces
significantly the initial delay, suggesting that the quality of
the video chunks assigned by the server and the player is
estimated from active measurements prior to the playback,
rather than on top of the video traffic itself.

The most interesting and remarkable results is presented
in Figure 3(c), which reports the perceived image quality
of the video. According to previous studies [12], quality
switches induced by DASH have an important impact on
QoE. However, in the case of smartphones, where displays
are smaller than laptops or desktop devices, quality switches
do not seem to have an important impact on the perception
of the user. While these results are directly linked to the spe-
cific quality-switching patterns induced by the tested DBW
conditions, they show some potentially remarkable contri-
bution to assess QoE for YouTube in smartphones when us-
ing DASH. As a summary, using DASH reduces both the
chances of stalling and the initial video playback delays, at
no apparent perceived image quality cost.
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Figure 5: QoE in Web browsing (news website).
Overall quality and acceptability for different DBW.

4.2 QoE in Facebook Mobile
Figure 4 reports the results obtained in the Facebook tests

for different DBW configurations, considering both (a) the
overall quality and (b) the acceptance rate. A DBW of 500
kbps is not high enough to reach full user satisfaction in
Facebook mobile for Android devices, as participants de-
clared a fair quality with an acceptance rate of about 80%.
Still, a DBW of 1 Mbps results in good overall quality, with
almost full acceptance of the participants. Excellent QoE
results are attained for 8 Mbps, which shows that even if
a 2 Mbps DBW allocation is high enough to reach full ac-
ceptance (cf. Figure 4), the overall experience of the user
can still marginally improve. These DBW thresholds explain
the boundaries between user satisfaction and resources over-
provisioning. Interestingly, these QoE DBW requirements
are more restrictive than those we found in [3] for laptops
about 2 years ago, evidencing how the Facebook app is be-
coming more network resources demanding.

4.3 QoE in Mobile Web Browsing
Figure 5 reports the overall quality and acceptability re-

sults obtained for the News website browsing tests. Note
first how the quality increases in a logarithmic fashion with
increasing values of the DBW. Good experience (MOS ≈ 4)
is obtained for a DBW of 2 Mbps, and only slight QoE dif-
ferences are obtained when increasing the bandwidth to up
to 16 Mbps, going to MOS ≈ 4.15. Going in the DBW de-
creasing direction, the slowest tested condition still results
in fair quality (MOS ≈ 3.5) and high acceptance rate, close
to 90%.
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Figure 6: QoE in Gmaps. Overall quality and ac-
ceptability for different DBW.

4.4 QoE in Gmaps Mobile
Figure 6 reports the overall quality and acceptability re-

sults obtained for the Gmaps tests. Figure 6(a) shows that
a DBW of 4 Mbps results in near optimal QoE (MOS ≈

4.5), and from this value on, QoE saturation already occurs.
This means that no major QoE improvements are then ob-
tained for additional bandwidth provisioning. A DBW of 2
Mbps provides good quality results and almost full accep-
tance, but a DBW of 1 Mbps rapidly brings Gmaps into bad
user experience.

4.5 QoE in WhatsApp
Figure 7 shows the QoE results for different DBW values.

Users tolerate WhatsApp downloads with a good overall ex-
perience and high acceptability as long as the DBW is above
2 Mbps, but user experience heavily degrades for slower con-
nections, resulting in very bad quality for a DBW of 500
kbps. In this case, a DBW threshold of 2 Mbps permits to
approximately discriminate between good and bad experi-
ence. Given the file size used in the tests (5 MB), there is
a clear saturation effect after 4 Mbps, as QoE does not in-
crease for higher DBW values. Finally, even if the obtained
results are partially biased by both the specific file size used
in the tests and the participants task briefing, obtained re-
sults are similar to those we obtained in [8] for the specific
case of Dropbox file sharing, suggesting that the main take
aways are potentially more generic than expected when con-
sidering file downloads, either in mobile devices or in fixed
ones.

5. CONCLUDING REMARKS
Smartphones are becoming the Internet-access devices by

default, and we claim that network operators must under-
stand how to manage and dimension their networks in order
to correctly provision popular services accessed in smart-
phones, avoiding wasting additional unnecessary resources
while keeping end users happy, and most importantly, reduc-
ing the chances of churning due to quality dissatisfaction.

We have presented an overview on the QoE of different
services and applications with different network-level QoS
requirements for the specific case of smartphone devices.
Our results are highly relevant to future 5G design and LTE
evolution in better understanding the mapping between net-
work performance and customer experience. Indeed, they
are very practical and have a direct impact on the operation
and management of mobile networks.

Obtained results suggest that a downlink bandwidth of 4
Mbps is high enough to reach near optimal results in terms of
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Figure 7: QoE in WhatsApp. Overall quality and
acceptability for different DBW.

overall quality and acceptability for the evaluated services
when accessed in smartphones. As a consequence, cellu-
lar network operators should target such a downlink band-
width as their short term goal for dimensioning their access
networks. Given this relatively low requirement, resources
could be re-allocated or scheduled to manage the network
more easily and with a more efficient cost-benefit trade-off,
avoiding over-provisioning while keeping high QoE. The im-
plications for the end-user are straightforward: you do not
need a super high speed cellular contract with your operator
if your target is on the studied applications. So in partic-
ular, an expensive LTE contract is not necessary to have a
near optimal experience today.

We have also shown that dynamic applications such as
YouTube DASH are much better suited to smartphone sce-
narios, providing the same level of experience as the non-
adaptive version of the YouTube application in terms of im-
age quality, but with much lower QoS-based requirements
in terms of downlink bandwidth. This is a major finding, as
DASH has been shown to degrade the video image quality
and the associated user experience when considering stan-
dard, laptop or PC devices. The main difference with smart-
phones is their inherent small size displays, which to some
extent filter out the impact of quality switches. A direct
implication of this finding is that cellular network opera-
tors willing to monitor the QoE of its YouTube customers
must know which type of technology is used by the YouTube
app in the smartphone to understand the QoE from down-
link bandwidth measurements. Indeed, the QoE could be
either excellent or very bad for the same measured average
downlink bandwidth of 1 Mbps, depending if adaptive or
non-adaptive technology is in place.

Finally, we are very aware that our results only tackle
one side of the problem: the experience of the customers,
from a very simple perspective: the downlink bandwidth.
We agree with other researchers in that a more holistic
perspective incorporating QoE, energy-consumption, data
(re)transmission, and radio resource impact (among others)
should be considered. This paper provides some initial com-
ponents of such a holistic analysis.
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