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Abstract. The load on cellular networks is constantly increasing. Es-
pecially video streaming applications, whose demands and requirements
keep growing, put high loads on cellular networks. A solution to mitigate
the cellular load in urban environments is offloading mobile connections
to WiFi access points, which is followed by many providers recently. Be-
cause of the large number of mobile users and devices there is also a
high potential to save energy by WiFi offloading. In this work, we de-
velop a model to assess the energy consumption of mobile devices during
video sessions. We evaluate the potential of WiFi offloading in an urban
environment and the implications of offloading connections on energy
consumption of mobile devices. Our results show that, although WiFi is
more energy efficient than 3G and 4G for equal data rates, the energy
consumption increases with the amount of connections offloaded to WiFi,
due to poor data rates obtained for WiFi in the streets. This suggests
further deployment of WiFi access points or WiFi sharing incentives to
increase data rates for WiFi and energy efficiency of mobile access.

Key words: WiFi Offloading, Energy Efficiency, Cellular Networks,
Mobile Access, Video on Demand, Modelling, Performance Evaluation

1 Introduction

Cellular networks are facing an ever-increasing growth of data traffic combined
with immense demands for service and quality. Especially video streaming, being
a popular, data-intensive, and quality-sensitive service, contributes to this load
as it accounts for 55% (1.38 exabytes) of all mobile traffic by the end of 2014.
As the number of mobile devices is increasing, also mobile traffic is expected to
grow. The demanding video streaming will reinforce its position and its share is
expected to rise up to 72% (17.45 exabytes) in 2019. [8]

A new trend to handle these huge demands of mobile users and to reduce the
load on cellular networks is WiFi offloading [29]. Thereby, users connect to WiFi
access points instead of cellular base stations. Thus, the traffic flows through well-
dimensioned fixed networks, which is more efficient for providers both in terms of
cost and energy. In addition, end users can benefit from higher throughput and
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avoid exceeding their data plan. Due to the growing WiFi infrastructure (e.g., in
cities like Berlin [3], London [1], or Singapore [4]) and independently operated
free public WiFi hotspots (e.g, provided by cafes, shops, libraries), which can
be found in hotspot databases like WeFi1, offloading is increasingly available. In
2014, already 45% of the total mobile data was offloaded onto the fixed network
through WiFi or small-cells, and this ratio is expected to increase up to 54% in
2019 [8].

In this work, we investigate the energy efficiency of WiFi offloading for video
streaming, which is among the most popular and demanding Internet services.
We present a framework for the simulative evaluation of video streaming energy
consumption for mobile users. The simulation framework is based on citywide
connectivity measurements and uses a simple streaming model, which allows for
an assessment of the resulting data transmission bursts. We evaluate the energy
consumption of these bursts for WiFi offloading based on different WiFi sharing
percentages, i.e., percentage of accessible WiFi hotspots, and different cellular
technologies. Thus, we are able to assess in which cases the energy consumption
of video streaming can be improved by WiFi offloading or not.

Our results show that for equal data rates WiFi connections consume less en-
ergy, than cellular connections. Independent of the access technology the energy
consumption decreases exponentially with the data rate. As the data rates for
WiFi measured in the streets of an urban city center are rather low compared
to 3G and 4G, offloading connections for video sessions to WiFi increases the
energy consumption of mobile devices. However, minimal energy consumption
is obtained for WiFi connections with high throughput. This suggests deploying
WiFi access points or providing incentives for WiFi sharing to obtain high data
rates while reducing energy consumption of mobile devices.

The paper is structured as follows. Background and research on WiFi offload-
ing and mobile video streaming are outlined in Section 2. Section 3 presents the
measurement setup, the resulting data set, and the simulation framework. The
results, which were obtained through the simulation framework, are described
in Section 4 and Section 5 concludes.

2 Background and Related Work

WiFi offloading has been widely adopted in commercial services and is also in
the focus of research works. Ubiquitous Internet access via WiFi is offered by
specialized WiFi-sharing communities (e.g., Fon2) but also by big telecommu-
nication operators (e.g., BT3) to provide their users fast access bandwidth and
reduce the load on mobile networks. Incentives and algorithms for Internet access
sharing are investigated in [18] and many works focus on the deployment of ar-
chitectures for ubiquitous WiFi access in metropolitan areas [24, 28, 9]. Systems
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for sharing WiFi passwords via online social network apps with trusted friends
are described in [17, 10, 25]. Offloading in heterogeneous networks is modeled
and analyzed in [26]. [16] presents available features for mobile traffic offloading,
and [12, 19, 7] show that multipath TCP can be utilized for handovers between
WiFi and mobile networks. [11] outlines approaches, which enable mobility and
multihoming. Finally, WiFi onloading [23] is an opposed concept, which uti-
lizes different peaks in mobile and fixed networks to onload data to the mobile
network to support applications on short time scales.

The mobile network quality (WiFi/cellular) must be known to determine the
energy consumption of individual connections. A number of studies focuses on
analyzing the mobile network performance in terms of RTT and throughput of
the user [30, 27, 22]. The expected performance for different network technologies
can be derived from these data.

Energy models for smartphones were derived in a number of publications [5,
31, 13] for different devices and network technologies. Still, due to the steady
progress in hardware development and changes in the network infrastructure and
configuration, the transferability of these models is limited. Balasubramanian et
al. [5] analyzed the influence of different network interfaces on the energy cost
of different data transmissions. Power models for WiFi, 2G, and 3G connections
including the connection setup and tear-down cost are analyzed, with the goal
of developing an algorithm reducing the energy wasted in ramp and tail states.
Zhang et al. [31] describe an approach to reduce the effort for creating power
models for smartphones. This is demonstrated on the HTC One (hardware sim-
ilar to the Nexus One), from which a detailed power model including the 3G
power states is derived. Huang et al. [13] present a detailed analysis of the power
characteristics of 4G networks in the US. Using the data from a dedicated user
study, the different network states, their duration and power consumption are
derived. From these models the energy cost of loading different web-pages is
derived.

Comparative measurements conducted on the Nexus 5 still show a different
picture. The ramp and tail states measured in 2014 are considerably shorter
compared to [13]. Also, the measured data rates are considerably higher. Hence,
in this work the results of independent measurements are used that were con-
ducted on the Nexus 5, resulting in realistic power models for an operational 4G
network in 2014.

3 Measurement and Model

In order to derive locations of mobile users in an urban area and the location and
throughput of WiFi access points, we use different data sets and models. In the
following the data sets derived by mobile network measurements and existing
data sets are described. Further on, the video on demand traffic model and the
applied energy model for mobile devices is described.

3
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Fig. 1: Throughput of mobile connections for different access technologies.

3.1 Data Sets

To derive the throughput of mobile connections, we use the network performance
data set, as described in [6]. The data was gathered in and around Darmstadt,
Germany, using the NetworkCoverage App4 [14]. For details please refer to [6,
14]. The measurement consist of 4436 4G connections, 1043 3G, 23 2G, and 173
WiFi connections. The WiFi measurements were conducted mainly outdoors and
reflect the variability of WiFi access rates.

Figure 1 shows the cumulative distribution function of the down-link through-
put for different mobile access technologies. WiFi access is distinguished between
hotspots by a major German provider (i.e., Deutsche Telekom) and other WiFi
access points. Less than 10% of connections with Telekom hotspots achieve a
throughput higher than 103kbps. Since we investigate the potential of shared
WiFi access points, we only consider the throughput of the other WiFi access
points, which have a throughput higher than 103kbps in 60% of the cases. 3G and
4G connections have highest throughput, where about half of the 3G connections
get more than 104kbps and almost 90% of the 4G connections.

To derive the location of WiFi access points in Darmstadt, a data set is used,
consisting of 1527 AP locations measured in the inner city of Darmstadt. The
measured APs are a mix of open and private APs, and hence are expected to
match common usage patterns. In [20] the locations of the access points were
interpolated from the observed WiFi beacons at street level.

In order to determine the location of end-users in the Darmstadt city area a
street map of Darmstadt from OpenStreetMap [2] is used. As locations for end-
users we use the way points provided in the street map that describe buildings,
facilities, local businesses or sights. The way points are interconnected and used
to define streets. The way points are all set up by users contributing to the
OpenStreetMap platform.
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3.2 Video on Demand Traffic Model

To evaluate the energy efficiency of mobile video requests the traffic bursts gen-
erated in a video session have to be analyzed. For that purpose the arrivals and
volumes of the traffic bursts need to be known. Current video streaming plat-
forms and clients use an algorithm based on thresholds of the playback buffer to
stream the video data with HTTP Range requests. This algorithm tries to main-
tain a certain level of the playback buffer that ensures smooth video playback
and prevents the video from stalling, while keeping the amount of downloaded
video data low.

To derive the bit rate and duration of videos streamed by mobile devices
we use the results from [21] where the video formats in mobile networks were
characterized by analysing 2000 videos streamed from the video on demand
platform YouTube. The format selected depends on the YouTube player of the
terminal used. The authors find that terminals using Android and iOS select
format itag36 in more than 80% of the streams. Figure 2 shows the cumulative
distribution of video bit rates of the codec and durations for mobile videos in
itag36. The majority of the videos have a bit rate between 220 and 250 kbps.
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Fig. 2: Bit rate and duration of YouTube videos in itag36 format [21].

We generate video requests by a Poisson process with rate λ. For each video
request i we determine the duration di and mean bit rate bi according to the
empiric cumulative distributions from [21]. The volume of the video equals vi =
di · bi. We define two thresholds α and β in unit of seconds for the playback time
buffered. If the buffered playback time drops below threshold α video data is
downloaded and the buffer is filled. If the playback time buffered exceeds β the
download of video data is paused and the traffic burst ends. At the time video i
is requested ti = ti1 , the first traffic burst i1 is downloaded. The video playback
starts after the playback time buffered exceeds threshold α the first time. The
throughput ρij received for burst j of request i is determined randomly according

5
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Fig. 3: Playback buffer in case of ρij > bi.

to the access technology and its cumulative distribution function derived from
the network performance data set described in Sec. 3.1. The time a traffic burst
ij+1 is downloaded depends on the throughput ρij received for the preceding
traffic burst ij.

1. Case ρij ≤ bi:
If ρij ≤ bi the throughput is not high enough to increase the playback buffer.
That means threshold β will not be reached, and the rest of the video data
will be downloaded within burst ij omitting burst ij+1. In this case, the
volume of burst ij equals the volume of the remaining video data:

vij =

{
vi j = 1,

vi −
∑j−1

k=1 vik j > 1.
(1)

This also covers the case where the buffer runs dry and the video stalls,
requiring a new pre-buffering phase for alpha seconds buffered video.

2. Case ρij > bi:
If ρij > bi the burst download can be divided in 3 phases with durations ∆t,
∆t′ and ∆t′′, c.f., figure 3.
In the first phase, the video is pre-buffered, while the playback of the video
is not yet started. This phase only exists for the first burst. Video data is
downloaded with rate d
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∆t′ =
(β − α) · bi
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Fig. 5: Energy cost for receiving data on
the respective interface of the Google
Nexus 5 (excl. cost for ramp and tail).

were adjusted using the linux tool tc with a hierarchical token bucket (HTB) on
the server. Hence, no bursty traffic was used for calibration.

The power models as derived from the measurements of Google’s Nexus 5 are
given in Figure 4. The plot shows the lowest cost for WiFi connections, followed
by the 3G and 4G connection. The derived model is valid for the typical data
rates achieved on the respective interface.

Figure 4 includes the idle power consumption of the network interface, but
not the idle power consumption of the mobile phone. The different offsets and
slopes are caused by the different hardware components on the mobile phone. The
average energy consumption per byte for a transfer of traffic with size S during
time interval T is calculated by
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sumption. The power consumption of an exemplary connection is given in Fig-
ure 6. The first 2 vertical markers indicate the begin and end of the ramp state
(connecting to the network), while the second pair of markers indicate the end
of the data transfer and end of the data connection, resembling the tail of the
cellular connection.

0 5000 10000 15000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time [ms]

P
o

w
e
r 

[m
W

]

Fig. 6: Exemplary data transfer using the Nexus 5 on 3G. Indicated are the
begin and end of the ramp state and begin and end of the tail state

The resulting formula for a continuous data burst ij with volume vij is

Eij = Eramp +Etail+
vij
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ij+1 is smaller than the ramp and tail durations tramp and ttail, the bursts are
combined and the ramp and tail energies Eramp and Etail are added only once to
the energy calculated for request i. This corresponds to the time-out for bearer
release in cellular networks.

3.4 Simulation Model

As in [6] we consider an area with a set of way points W and a set of access points
A. The location of the way points and access points is specified by longitude and
latitude. Each access point α ∈ A has a fixed transmission range r and is shared
with probability pshare.

For given transmission range r we define a function χr : A × W 7→ {0, 1},
where χr returns 1, only if a way point w ∈ W is in transmission range of an
access point a ∈ A, else 0.

As set of way points W and set of access points A we use the way points
from OpenStreetMap in the inner city area of Darmstadt and the interpolated
access points described in Sec. 3.1.

The procedure of one run simulating n mobile requests is described in the
following. A subset As ⊂ A of shared access points is randomly chosen according
to the sharing probability pshare. For each mobile request 1 ≤ i ≤ n a random
way point wi ∈ W is determined. The mobile request i can be offloaded, if a
shared WiFi access point is in range, i.e. ∃a ∈ As|χr(wi, a) = 1. With

off(i) =

{
1, ∃a ∈ As|χr(wi, a) = 1 ,

0, else .
(8)

the WiFi offloading potential is calculated by the amount of offloaded requests:
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Fig. 7: Amount of mobile connections offloaded to WiFi dependent on sharing
probability for different access point transmission ranges.

4 Simulation Results

In the following we describe simulation results to show the WiFi offloading po-
tential in an urban environment dependent on the WiFi sharing probability. The
results can be used by operators to assess the feasibility of establishing WiFi of-
floading according to their cellular network coverage, or to estimate the amount
of users that share their access point, which is necessary to get a good WiFi
coverage.

The results show mean values with 95% confidence intervals of 10 runs with
different random number seeds and n = 106 mobile requests in each run. We
investigate the impact of the WiFi sharing probability on the WiFi offloading
potential. As the transmission range of WiFi access points depends on the envi-
ronment, the number of active connections and its configuration, we show results
for different transmission ranges. Figure 7 shows the amount of mobile connec-
tions offloaded to WiFi
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the energy consumption of the mobile access technologies we generate 105 video
requests for each access technology and calculate the energy consumption. Fig-
ure 8 shows the cumulative distribution of the consumed energy in Joule for
mobile access technologies 3G, 4G and WiFi. Using 4G as access technology,
generally less energy is consumed on the end-device as using 3G. The minimum
energy consumption is achieved using WiFi access technology. However, WiFi
consumes more energy than 3G in more than 60% of the requests and WiFi
consumes more energy than 4G in more than 80% of the requests. This depends
on the fact that the energy consumption decreases exponentially with the data
rates and that the data rates obtained for WiFi in the measurements are very
poor compared to 3G and 4G. Hence, although WiFi is more energy efficient
than 3G and 4G for equal data rates, it consumes more energy in this case due
to lower data rates.
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Fig. 8: Energy consumption for differ-
ent mobile access technologies.
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To investigate the impact of WiFi offloading on the energy consumption of
mobile devices, we conduct a parameter study on the sharing probability and set
the WiFi transmission range to 25m in the following. We generate 105 requests
and determine the access technology according to the WiFi offloading simulation
described in Sec. 3.4. Figure 9 shows the energy consumption for different WiFi
sharing probabilities. The energy consumption generally increases with the WiFi
sharing probability. The amount of requests that consume less than 10 Joule
decreases about one third if the WiFi sharing probability is increased from 1%
to 100%. This depends on the fact that the throughput received for WiFi is rather
small in the underlying measurements. For high sharing probabilities there is a
saturation effect, because the increase of WiFi coverage diminishes due to the
fact that WiFi access points overlap.

Our results show that poor WiFi conditions lead to a higher energy consump-
tion of mobile devices, which offload their video sessions to WiFi. However, the
minimum energy consumption for mobile video requests is achieved using WiFi

12
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access technology by receiving a good connection with high throughput. This
suggests a high density of WiFi access points to reduce energy consumption of
mobile devices and load on cellular networks by WiFi offloading. Here we fo-
cus on outdoor users. In the end most video traffic is consumed indoors, where
strong WiFi rates and poor cellular rates occur. Considering this, the potential
of saving energy by WiFi offloading is even higher according to our results that
show low energy consumption for WiFi connections with high throughput.

5 Conclusion

The increasing number of mobile users and the growing popularity of video
streaming puts high loads on cellular networks. To cope with this demand, mo-
bile connections can be offloaded to WiFi networks. Especially in urban environ-
ments a high coverage of WiFi access points can be beneficial to stream video
sessions to mobile devices while keeping their energy consumption low. To in-
vestigate the impact of WiFi offloading on the energy consumption of mobile
devices during video streaming, we develop a generic model for traffic bursts in
current video on demand services and model the energy consumption of current
mobile devices for different access technologies. We use existing measurements
to derive the throughput of mobile access technologies 3G, 4G, and WiFi in an
urban area and develop a simulation model that generates mobile video requests.
Applying our models, we assess the energy consumed by mobile video request
based on the access technology and received bandwidth. Our results show that
slightly increasing WiFi coverage has a high potential to take load off the cel-
lular network. Due to lower throughput compared to 3G and 4G, derived in
the provided data sets, the energy consumption increases with the amount of
video connections offloaded to WiFi. However, minimal energy consumption is
achieved by connections offloaded to WiFi that receive a high throughput. This
could be achieved by a high coverage of WiFi access points.
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SmartenIT and FP7/#318398, eCOUSIN) and the DFG as part of the CRC 1053
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