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ABSTRACT

We address the problem ofWeb QoEmonitoring, in particular Speed

Index (SI), from the Internet Service Provider (ISP) perspective, rely-

ing on in-network, passive measurements. Given the wide adoption

of end-to-end encryption, we resort to machine-learning models

to infer the SI of individual web-page loading sessions, using as

input only packet-level data. Our study targets the analysis of SI in

mobile devices, including smartphones and tablets. To the best of

our knowledge, this is the first paper addressing the inference of SI

from encrypted network traffic in mobile devices.

CCS CONCEPTS

• Networks → Network performance evaluation; Network

measurement; •Computingmethodologies→Machine learn-
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1 INTRODUCTION

Web browsing is a paramount Internet service for the end user. The

performance of a web service as perceived by the end user can be

measured by the corresponding web-browsing Quality of Experi-

ence, or Web QoE. From a practical perspective, reliably measuring

Web QoE is challenging, especially when the interested party has

no access to the application, such as the ISP. The literature on Web-

QoE analysis proposes a wide range of objective metrics capturing

the performance of web pages, including metrics such as Page Load

Time (PLT), Speed Index (SI), Above the Fold Time (AFT), etc. How-

ever, these metrics require access to the application layer, which is

hidden from the eyes of the ISP by the wide deployment of end-to-

end traffic encryption. Therefore, we explore the potential of using

machine learning (ML) to infer Web-QoE metrics from encrypted

network traffic, for the specific scenario of mobile web browsing.

By using controlled page-load experiments, where network data is

simultaneously collected with ground-truth Web-QoE metrics such

as SI, we build a labeled dataset and train supervised ML models to
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infer these QoE-related metrics based on network-traffic features,

computed from the stream of collected bytes.

2 SPEED INDEX INFERENCE

The proposed solution to the mobile-Web-QoE-monitoring prob-

lem consists of training supervised machine-learning models to

map network-traffic features, extracted from the encrypted net-

work web-page traffic, into relevant Web-QoE metrics. The ap-

proach is data-driven, and thus needs datasets containing both the

collected traffic traces – the input –, and the targeted Web-QoE

metric – the ground truth. To fully control the generation of such

datasets, we conceived a measurement testbed based on multiple

private instances of WebPageTest (WPT), a well-known and widely

used open-source web-performance analysis tool. Different from

previous studies [1–6], which have focused exclusively on desk-

top browsers and desktop devices (or in some exceptional cases,

browser-emulated mobile devices), our measurement testbed con-

sists of three different, non-emulated types of devices, including

smartphones, tablets, and desktop (Chrome is used as browser),

using WPT agents for Android and Linux. Instead of leveraging

in-device WPT traffic-shaping capabilities, devices are connected to

the open Internet through independent network emulators, which

allows for more realistic network-access performance configura-

tions in terms of bandwidth, latency, packet loss, etc., and avoids

further loading the CPU of the devices. This allows for hetero-

geneity in the generated measurements. Configurations used in the

study include access-downlink bandwidth up to 10 Mbps, packet

loss rates up to 10%, and RTTs up to 100 ms.

We generated a fully balanced dataset of more than 30.000 web

page loading sessions (i.e., the loading of a single page), targeting

the top 500 websites according to Alexa top-sites list, from a single

vantage point in Europe. The same web pages are visited multiple

times for each device type, under the same access-network setups.

Without loss of generality, we focus on the inference of one par-

ticular Web-QoE metric, the SI, which is today one of the most

accepted metrics reflecting Web QoE. In particular, we collect the

so-called RUM Speed Index (RUMSI) metric, which is a passive

approximation to the SI, computed from the analysis of web-page

resource timings.

We treat the inference of the RUMSI metric as a regression prob-

lem. To define input features, we follow the rationale behind the

computation of the SI metric itself, which considers the whole

progress of the page loading. We define the Cumulative-Bytes-

Downloaded features CBD(i)ΔT s as the (normalized) cumulative

number of bytes downloaded from the first collected byte at time t0
(time to first byte, TTFB) up to time t = t0+i×ΔT , with i = 1, . . . ,m.

The CBD features track the download progress of the page bytes,

using a time resolution ΔT . We takem = 100 samples, and consider
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(a) Smartphone. (b) Tablet. (c) Multi-device.

Figure 1: RUMSI inference performance, using per device models (a, b) and multi-device models (c).

model dev MAE-mAE (ms) MRE-mRE (%) PLCC

DT
S 1021 – 372 34 – 14 0.770

T 1082 – 298 31 – 11 0.731

ET10
S 788 – 354 28 – 13 0.859

T 804 – 314 25 – 11 0.867

RF10
S 813 – 383 29 – 14 0.856

T 867 – 357 27 – 12 0.852

RF100
S 764 – 360 27 – 13 0.876

T 815 – 334 26 – 12 0.866

Bagging
S 820 – 380 29 – 14 0.855

T 874 – 362 27 – 13 0.853

Boosting
S 1067 – 598 42 – 23 0.834

T 1206 – 642 43 – 24 0.813

XGB
S 1068 – 601 42 – 23 0.831

T 1207 – 652 43 – 24 0.811

Table 1: RUMSI-inference performance usingMLmodels for

(S)martphone and (T)ablet data.

three different temporal resolutions to compute features, using ΔT
= 50 ms, 100 ms, and 500 ms, for a total of 300 CBD features. Us-

ing different resolutions helps in capturing different phenomena

in the traffic-downloading progress, and allows to track different

page-load durations, in this case up to 5, 10, and 50 seconds, re-

spectively. We consider 11 additional input features, related to the

complete page-loading session; these include: full session dura-

tion (first to last packet), downlink/uplink session duration (first to

last packet in downlink/uplink direction), total number of packets

downlink/uplink/full, total bytes downlink/uplink/full, and session

mean throughput downlink/uplink.

3 MOBILE RUMSI INFERENCE

Using the generated dataset and the described network-traffic fea-

tures, we train multiple regression models to infer the RUMSI met-

ric. We first consider per-device models, and then evaluate a multi-

device model, trained on both smartphone and tablet measurements.

Table 1 reports the RUMSI inference performance attained by seven

different ML models, most of them based on decision trees, for

smartphone and tablet devices. These models include single deci-

sion tree (DT), multiple types of ensembles using different numbers

of trees, such as extremely randomized trees (ET), random forests

(RF), bagging trees, and boosting – including XGB optimizations.

We assess their performance using 10-fold cross validation and

three standard performance metrics for regression problems, in-

cluding the absolute error (AE), the relative error (RE), and the

linear correlation (PLCC). We take both mean (M) and median (m)

values for the error metrics, to filter out significantly large errors.

Figures 1(a), 1(b) additionally depict the distribution of the inference

errors.

RF100 achieves the best inference performance for both smart-

phone and tablet, with a median absolute error of 360 ms on smart-

phone and 334 ms on tablet, and a median relative error around

13% for both devices. Absolute inference errors are below 500 ms

for more than 60% of the sessions, and more than 80% of the session

RUMSI values are inferred with an error below 1 second. Similar

performance is realized by smaller ensembles – e.g., RF10, ET10,

and bagging, using 10 instead of 100 trees. Given the training-speed

improvements attained by the ET10 model, we take it as the under-

lying model in subsequent evaluations.

Figure 1(c) reports the inference performance achieved by multi-

device (MD) models, split by device-type, using both ET10 and

RF100 as underlying ML approaches. A single MD model is trained

on data from both smartphone and tablet devices. Results for MD

models are almost identical to those attained by per-device models,

with a slight degradation for smartphone and a slight improvement

for tablet. This suggests that proper inference generalization can be

achieved by considering device heterogeneity in the training step.

We have extended the analysis to cover mobile applications,

both relying on WebView-based apps and on native apps, obtaining

similar performance.
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