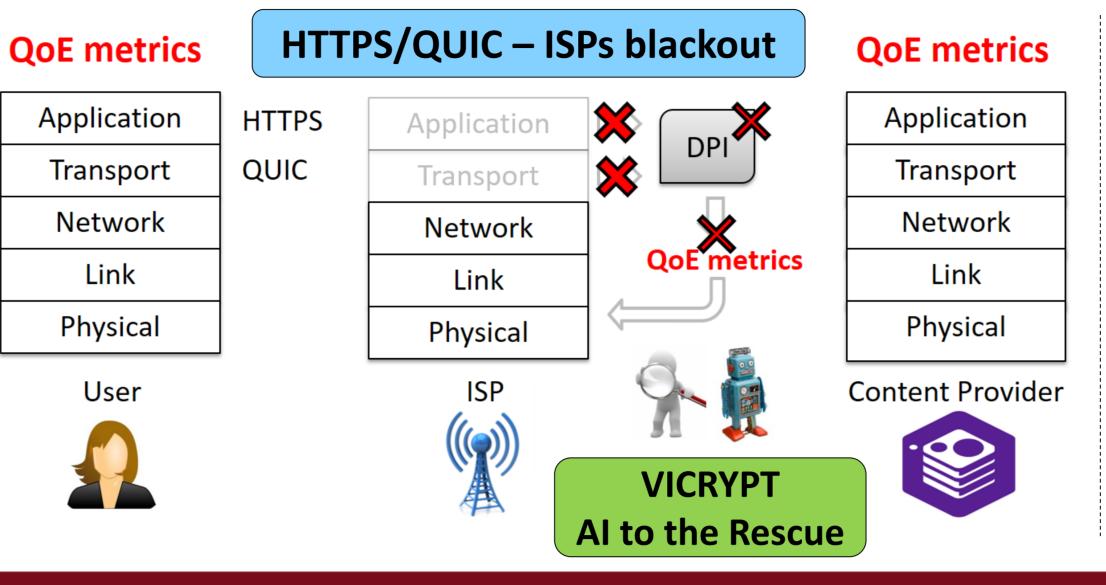

VICRYPT: Real-time, Fine-grained Prediction of Video Quality from Encrypted Streaming Traffic

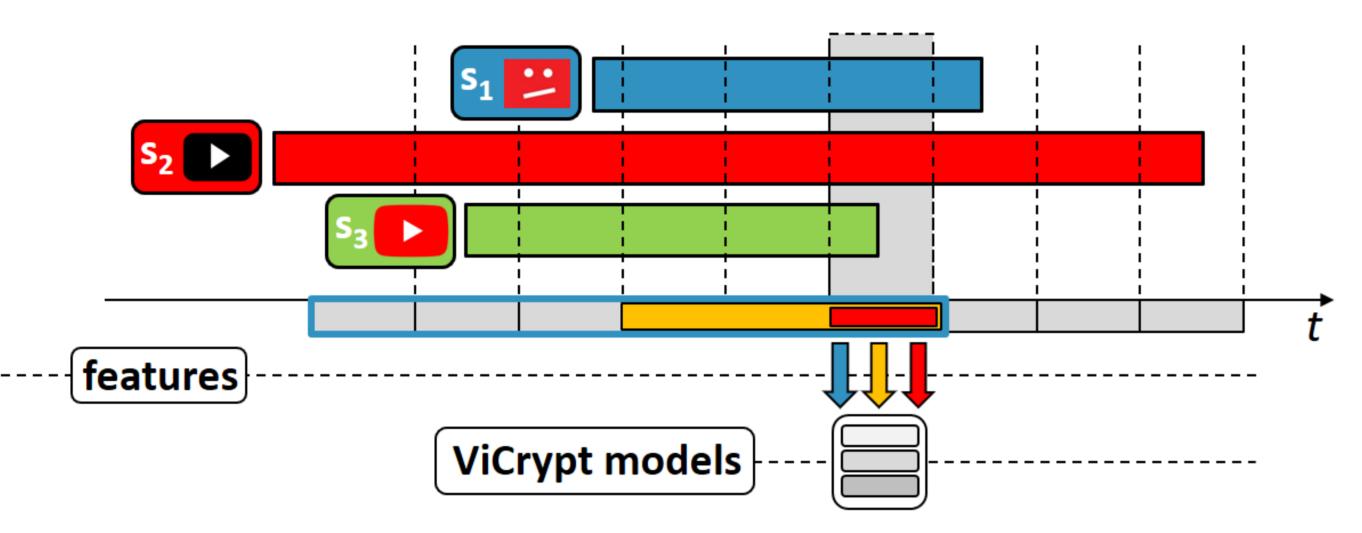
S. Wassermann (1), M. Seufert (2), P. Casas (1), L. Gang (3), K. Li (3)


(1) AIT Austrian Institute of Technology, Vienna, Austria

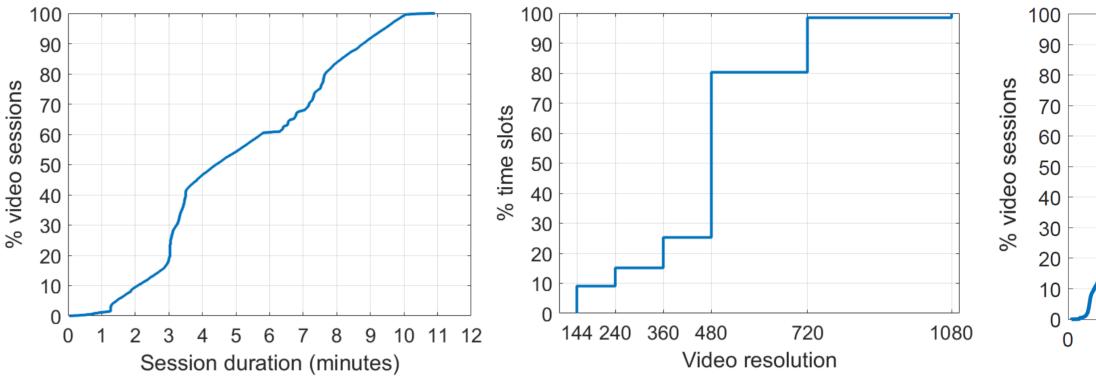
- (2) University of Würzburg, Würzburg, Germany
- (3) Huawei Technologies, Shenzhen, China

QOE-BASED NETMON (QOE-MON)

MOTIVATION & CHALLENGE

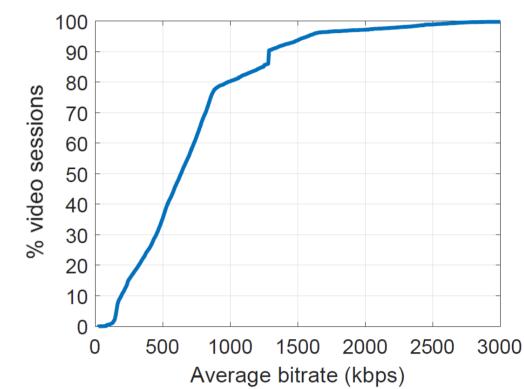

VICRYPT: ML–BASED QOE–MON

HUAWE


- Real-time (1-sec resolution) prediction of **KQIs** for video streaming
- Video chunk detection NOT NEEDED features are packet size/time based
- ML models for prediction of instant, per-sec:
 - re-buffering events
 - video resolution
 - video bitrate

STREAM-BASED PREDICTION OF VIDEO KQIs

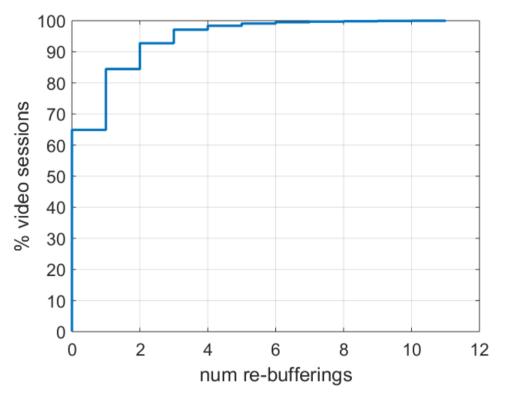
YouTube DATASET FOR TRAINING & VALIDATION

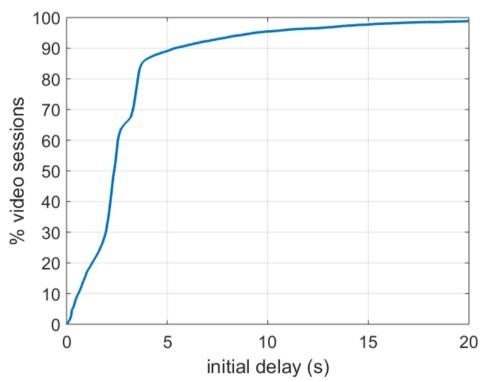


- Video stream-based analysis, using multiple sliding windows, capturing different temporal phenomena (current time, short-term trend, session-aggregated
- Analysis is done in real time: for every video session and for every new time slot of 1 second, we consider the following set of 207 features:
 - Features extracted from current time slot (C) 69 features
 - Short-memory (trend) based features, extracted from last T (3) slots (CT) 69 features
 - Cumulative based features, extracted from all past traffic for this video session (CS) – 69 features
- Feature computation is done continually, in constant-memory

- Data generation through semi-controlled testbeds
- 15.000+ YouTube video sessions streamed and recorded in late 2018/early 2019
- Different ISPs, different geographic locations (Austria, Italy, Germany, China)
- Home/corporate WiFi networks, LTE networks
- QUIC and TCP sessions
- Bandwidth limitations: 20Mbps, 5Mbps, 3Mbps, 1Mbps, 300kbps + fluctuations
- JavaScript-based monitoring script to measure

ONLINE PREDICTION OF VIDEO BITRATE


AUSTRIAN INSTITUTE

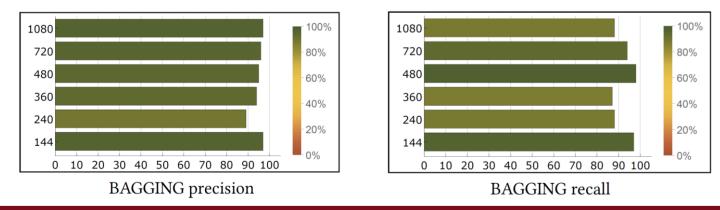

Julius-Maximilians-

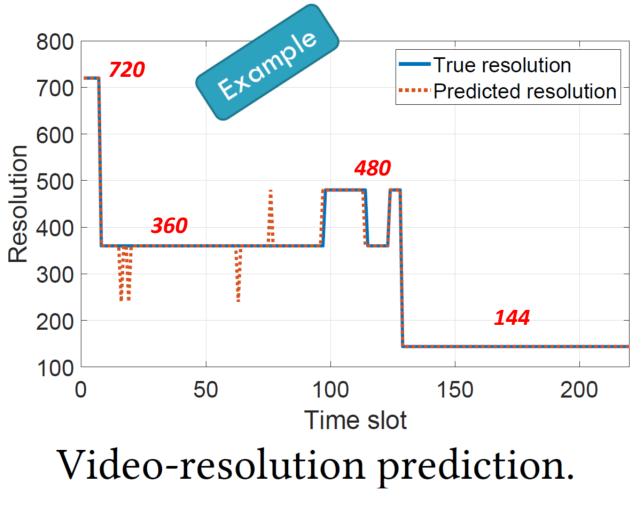
UNIVERSITÄT

WURZBURG

OF TECHNOLOG

boundaries, *using sketches*

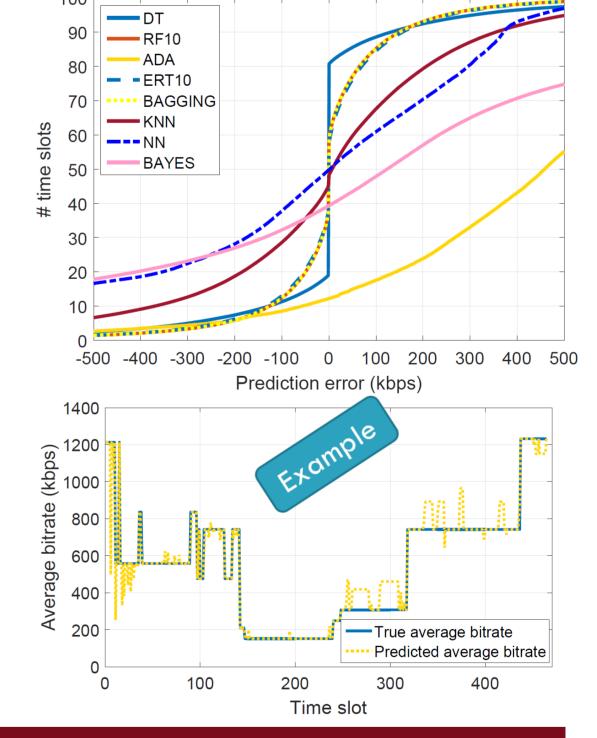

ground truth at the player


ONLINE PREDICTION OF VIDEO RESOLUTION

- Training multiple ML models over more then 4.6M individual, 1 sec. slots (5-fold cross validation) – here using all 207 inputs
- **Classification task:** per second video resolution, **6-classes:** 144p, 240p, 360p, 480p, 720p, 1080p

	Training time (min)	Accuracy (%)		
DT	43	92		
RF10	2	92		
ADA	125	68		
ERT10	1	90		
BAGGING	37	95		
BAYES	1	42		
KNN	9	73		
NN	507	58		
SVM	194	54		

Benchmarking of different ML models

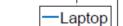


• **Regression task:** estimation of per second average video bitrate

	5-CV time (minutes)	MAE (kbps)	RMSE (kbps)	MRE (%)	PLCC
DT	31	94	246	18	0.88
RF10	36	89	179	18	0.93
ADA	126	492	573	130	0.59
ERT10	7	93	182	19	0.93
BAGGING	22	89	179	17	0.93
BAYES	3	2,540	6,530	545	-0.14
KNN	6	229	353	42	0.70
NN	305	333	489	70	0.20
SVM	143	10 ²³	$2 \cdot 10^{23}$	$2 \cdot 10^{23}$	0.12

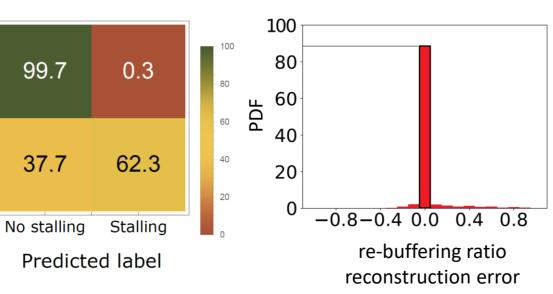
- ERT10 & BAGGING realize **MAE below 100kbps**, and **RMSE below 190kbps** (penalizes larger errors)
- 80% of the slots are estimated with errors below 100kbps
- Predictions are *highly correlated* with the target (PLCC = 0.93)

ONLINE PREDICTION OF STALLING


COMPUTATIONAL TIME & IMPACT OF FEATURE SELECTION

10⁶

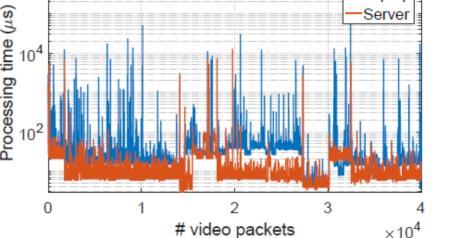
Binary classification task: playback stalled/not-stalled at every new slot

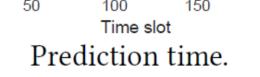

No

- Evaluation of *full feature set update time* (done at every new incoming packet) and *prediction time* (done for every 1s slot), using an upper bound with all 207 features
- Iaptop (i5 CPU, 8GB RAM) vs. server

-Server

	Accuracy (%)	Recall (%)	Precision (%)	5-CV time (minutes)		
DT	96	64	68	57	No stalling	
RF10	97	55	88	3	True labe	
ADA	95	29	61	154		
ERT10	97	54	88	1	Stalling	
BAGGING	97	65	87	63		
BAYES	50	86	9	1		
KNN	96	48	71	10		
NN	94	0	0	600		
SVM	84	62	21	36		
ISO10	86	13	8	4	~	
LOF	86	11	6	46	(1) pr	




Time slot

- per-slot re-buffering estimation errors are high, stalling slots under-estimated...
- ...but estimation of re-buffering ratio is perfect for almost 90% of the videos

(Xeon Silver, 48 cores, 128GB RAM)

- server: avg. duration of full feature set update is 13 μ s, prediction time below 1.4ms
- Laptop: avg. feature update takes 37 μ s, prediction time below 16ms Features update time at each new packet.

Features	Accuracy (%)	Features	MAE [kbps]	RMSE [kbps]	MRE [%]	PLCC	Features	Accuracy (%)	Recall (%)	Precision (%)
All	92	All	93	182	19	0.93	All	97	54	88
F_C	70	F_C	275	407	55	0.58	F_C	96	10	30
F _T	73	F_T	253	377	51	0.64	F_T	97	17	51
F_S	96	F_S	68	157	14	0.95	F_S	99	72	91
F _{DOWN}	90	F _{DOWN}	105	195	21	0.92	<i>F</i> _{DOWN}	98	41	87
F_{UP}	90	F_{UP}	106	198	21	0.92	F_{UP}	98	47	74
F_{TOP20}	95	F_{TOP20}	81	175	16	0.93	F_{TOP20}	97	56	86

Automatic Feature Selection – **CS features** (F_s) alone provide the best results (69 features), improving overall performance. Top 20 features (F_{TOP20}) provide similar improvement with much less features

140

120