
▪ Training multiple ML models over more then 4.6M individual, 1 sec. slots 
(5-fold cross validation) – here using all 207 inputs

▪ Classification task: per second video resolution, 6-classes: 144p, 240p, 
360p, 480p, 720p, 1080p
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ONLINE PREDICTION OF VIDEO RESOLUTION ONLINE PREDICTION OF VIDEO BITRATE

ONLINE PREDICTION OF STALLING

▪ Real-time (1-sec resolution) prediction of 
KQIs for video streaming

▪ Video chunk detection NOT NEEDED
features are packet size/time based

▪ ML models for prediction of instant, per-sec:
▪ re-buffering events
▪ video resolution
▪ video bitrate 

COMPUTATIONAL TIME & IMPACT OF FEATURE SELECTION 

▪ per-slot re-buffering estimation errors
are high, stalling slots under-estimated…

▪ …but estimation of re-buffering ratio is
perfect for almost 90% of the videos

▪ Data generation through semi-controlled testbeds

▪ 15.000+ YouTube video sessions streamed and 
recorded in late 2018/early 2019

▪ Different ISPs, different geographic locations 
(Austria, Italy, Germany, China)

▪ Home/corporate WiFi networks, LTE networks

▪ QUIC and TCP sessions

▪ Bandwidth limitations: 20Mbps, 5Mbps, 3Mbps, 
1Mbps, 300kbps + fluctuations

▪ JavaScript-based monitoring script to measure 
ground truth at the player

▪ Video stream-based analysis, using multiple sliding windows, capturing 
different temporal phenomena (current time, short-term trend, 
session-aggregated)

▪ Analysis is done in real time: for every video session and for every new 
time slot of 1 second, we consider the following set of 207 features:
▪ Features extracted from current time slot (C) – 69 features
▪ Short-memory (trend) based features, extracted from last T (3) slots (CT) – 69 

features
▪ Cumulative based features, extracted from all past traffic for this video session 

(CS) – 69 features

▪ Feature computation is done continually, in constant-memory 
boundaries, using sketches

▪ Automatic Feature Selection – CS features (FS ) alone provide the best results (69 features), improving 
overall performance. Top 20 features (FTOP20 ) provide similar improvement with much less features

HTTPS/QUIC – ISPs blackout

VICRYPT
AI to the Rescue
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▪ Regression task: estimation of per second average video bitrate

▪ ERT10 & BAGGING realize MAE below 100kbps, 
and RMSE below 190kbps (penalizes larger errors)

▪ 80% of the slots are estimated with errors below 
100kbps

▪ Predictions are highly correlated with the target 
(PLCC = 0.93)

▪ Binary classification task: playback stalled/not-stalled at every new slot
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▪ laptop (i5 CPU, 8GB RAM) vs. server
(Xeon Silver, 48 cores, 128GB RAM)

▪ server: avg. duration of full feature 
set update is 13 μs, prediction time 
below 1.4ms 

▪ Laptop: avg. feature update takes 37 
μs, prediction time below 16ms

▪ Evaluation of full feature set update time (done at every new incoming packet) and prediction time (done 
for every 1s slot), using an upper bound with all 207 features


