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We study probability density functions that are log-concave. 
Despite the space of all such densities being infinite-dimen-
sional, the maximum likelihood estimate is the exponential 
of a piecewise linear function determined by finitely many 
quantities, namely the function values, or heights, at the data 
points. We explore in what sense exact solutions to this prob-
lem are possible. First, we show that the heights given by the 
maximum likelihood estimate are generically transcendental. 
For a cell in one dimension, the maximum likelihood estimator 
is expressed in closed form using the generalized W -Lambert 
function. Even more, we show that finding the log-concave 
maximum likelihood estimate is equivalent to solving a col-
lection of polynomial-exponential systems of a special form. 
Even in the case of two equations, very little is known about 
solutions to these systems. As an alternative, we use Smale’s 
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Transcendence theory
Smale’s α-theory
Lambert functions
Polyhedral subdivisions

α-theory to refine approximate numerical solutions and to cer-
tify solutions to log-concave density estimation.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Nonparametric methods in statistics emerged in the 1950-1960s [26,50,44,3] and fall 
into two main streams: smoothing methods and shape constraints. Examples of smooth-
ing methods include delta sequence methods such as kernel, histogram and orthogonal 
series estimators [58], and penalized maximum likelihood estimators, e.g., spline meth-
ods [25]. Their defining feature is the need to choose the smoothing or tuning parameters. 
It is a delicate process because smoothing parameters depend on the unknown probabil-
ity density function. In contrast to smoothing methods, shape constrained nonparametric 
density estimation is fully automatic and does not depend on the underlying probability 
distribution, though this comes at the expense of worse L1 convergence rates for smooth 
densities [24]. Some previously studied classes of functions include non-increasing [27], 
convex [29], k-monotone [7] and s-concave [20]. We refer the reader to [55,53,57,28]
for general references on nonparametric statistics. The definitions of k-monotone and 
s-concave can be found in [6] and [18], respectively.

In this paper we focus on the class of log-concave densities, which is an important 
special case of s-concave densities. The choice of log-concavity is attractive for several 
reasons. First of all, most common univariate parametric families are log-concave, in-
cluding the normal, Gamma with shape parameter greater than one, Beta densities with 
parameters greater than 1, Weibull with parameter greater than 1 and others. Further-
more, log-concavity is used in reliability theory, economics and political science [4]. In 
addition to this, log-concave densities have several desirable statistical properties. For 
example, log-concavity implies unimodality but log-concave density estimation avoids 
the spiking phenomenon common in general unimodal estimation [21]. Moreover, this 
class is closed under convolutions and taking pointwise limits [13]. We refer the reader 
to [52] for an overview of the recent progress in the field.

Let X = (x1, x2, . . . , xn) be a point configuration in Rd with weights w =
(w1, w2, . . . , wn) such that wi ≥ 0 and w1 +w2 + · · ·+wn = 1. The log-concave maximum 
likelihood estimation (MLE) problem aims to find a Lebesgue density that solves

max
n∑

i=1
wi log(f(xi)) s.t. log(f) is concave and

∫
Rd

f(x)dx = 1. (1.1)

It has been shown that the solution exists with probability 1 and is unique, and its 
logarithm is a tent function, i.e., a piecewise linear function with regions of linearity 
inducing a subdivision of the convex hull of X [59,43,15,49], see Fig. 1 for an example. 

http://creativecommons.org/licenses/by/4.0/
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While MLE is the most widely studied estimator in this setting, it is not the only one, 
for examples see [19,16].

The maximum likelihood estimator is attractive because of its consistency under 
general assumptions [43,21,13,23] and superior performance compared to kernel-based 
methods with respect to mean integrated squared error, as observed in simulations [15]. 
At the same time, the convergence rate is still an open question and only lower [33,35]
and upper [33,10] bounds are known. Further theoretical properties have been studied 
for some special cases of log-concave densities, e.g., k-affine densities [34] and totally pos-
itive densities [48]. Several algorithms have been developed to compute the log-concave 
MLE in one dimension [51] and in higher dimensions [15,2,46]. Software implementa-
tions include R packages such as logcondens [22] and cnmlcd [37] in one dimension, and
LogConcDEAD [14] and fmlogcondens [45] in higher dimensions.

Example 1.1. The starting point of this paper is the following problem. Consider the 
sample of 14 points in R2 with uniform weights:

X =
(
(0, 1), (0, 9), (1, 4), (2, 4), (2, 6), (3, 3), (5, 5), (6, 3), (6, 9), (7, 6), (7, 8), (8, 9),

(9, 5), (9, 9)
)
.

How many cells does the subdivision induced by the logarithm of the optimal log-concave 
density have?

Using the R package LogConcDEAD with default parameters, one obtains that the log-
arithm of the maximum likelihood estimate is a piecewise linear function with seven 
unique linear pieces. However, when one investigates the optimal density more closely, 
it appears that several linear pieces are similar. For example, a visual inspection of the 
optimal density depicted in Fig. 1 makes it impossible to distinguish all 7 regions and 
suggests that there are only four unique linear pieces. Using LogConcDEAD one also ob-
tains the two triangles, but according to the LogConcDEAD output the quadrangle consists 
of two linear pieces and the hexagon consists of three linear pieces. The subdivision cor-
responding to the LogConcDEAD result is depicted in Fig. 8a. What is the true number 
of unique linear pieces of the optimal density? Is it four, seven or another value?

Theoretically, the algorithm used in LogConcDEAD finds the true optimal density, how-
ever, in practice, the answer is a numerical approximation. By changing the parameter
sigmatol from default value 10−8 to 10−10, LogConcDEAD outputs four unique linear 
pieces, exactly as we observed in Fig. 1. Although it might seem obvious that four is 
the correct number of linear pieces, in reality the situation is more complicated, see 
Example 4.16. How do we find the correct number of linear pieces?

The goal of this paper is to study exact solutions to log-concave maximum likelihood 
estimation. An exact solution will have three different meanings in this paper. First, 
one might hope that it is an algebraic number. This would enable exact symbolic com-
putations by way of storing a floating point approximation of a number along with a 
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Fig. 1. The optimal tent function for the sample of 14 points in Example 1.1.

polynomial that vanishes on it. Such computations are not possible for transcendental 
numbers. Thus, the first main result of our paper is Theorem 3.7, which states that the 
heights at the sample points of the logarithm of the log-concave density estimate are, in 
general, transcendental.

Second, in light of Theorem 3.7, we would like to express the maximum likelihood esti-
mator in closed form using well-known mathematical operations and functions, although 
not necessarily elementary functions. In the simplest case of one cell in one dimension, we 
derive the log-concave density estimator in closed form using the generalized W -Lambert 
function, see Proposition 3.9. It is known that the generalized W -Lambert function is 
not an elementary function. More generally, solving the MLE can be restated as a col-
lection of polynomial-exponential systems of equations, which have been studied in the 
literature. However, even in the case of two equations, only bounds on solutions are 
known [38]. This suggests that it might be difficult to express the log-concave maximum 
likelihood estimator in closed form. As an alternative, we turn to Smale’s α-theory, which 
we describe briefly now.

Third, given a sufficiently close floating point solution to the MLE problem, one 
hopes that it can be refined to any desired precision using Newton iteration or other 
techniques. A natural question arises: when is the approximate solution good enough 
for these methods to succeed? A way to make this mathematically rigorous is Smale’s 
α-theory [9,56], which we discuss in Section 4. We obtain the α-certified solutions to 
log-concave density estimation. This allows us to test and compare numerical solvers, 
as well as rigorously decide the certified, correct subdivision for a given log-concave 
density estimation problem. Our methods are especially relevant when the precision of 
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the log-concave density estimate is important. This opens new pathways to answering 
the motivating question: what is the correct number of cells?

The code for computations in this paper can be found at [30].

2. Geometry of log-concave maximum likelihood estimation

We start by reviewing the geometry of log-concave maximum likelihood estimation 
mostly following [49].

Definition 2.1. Let P be the convex hull of a point configuration X = (x1, x2, . . . , xn) ⊂
Rd. For a fixed real vector y ∈ Rn, we define a function hX,y on Rd, called the tent 
function, as the smallest concave function such that hX,y(xi) ≥ yi for i = 1, . . . , n. Here 
the term smallest means that for any other concave function h̄ on Rd such that h̄(xi) ≥ yi
for i = 1, . . . , n, one must have h̄(x) ≥ hX,y(x) for all x ∈ Rd. The tent function hX,y

is piecewise linear on P with linear pieces equal to upper facets of the convex hull of 
the points (x1, y1), (x2, y2), . . . , (xn, yn) in Rd+1. We have hX,y(x) = −∞ at all points 
x ∈ Rd outside P . If hX,y(xi) = yi for i = 1, . . . , n, then y is called relevant.

It was shown by Cule, Samworth and Stewart for uniform weights [15] and by Robeva, 
Sturmfels and Uhler in general [49] that the constrained optimization problem (1.1) of 
finding the log-concave maximum likelihood estimate is equivalent to the unconstrained 
optimization problem

max
y∈Rn

w · y −
∫
P

exp
(
hX,y(t)

)
dt. (2.1)

Moreover, the log-concave maximum likelihood estimate is a tent function with tent 
poles at some of the xi. Therefore finding the log-concave density which maximizes the 
likelihood of (X, w) is equivalent to finding an optimal height vector y∗.

Definition 2.2. We follow the definitions in [17]. Given a point configuration X in Rd, 
a subdivision Δ of X is a collection of d-polytopes, denoted σi, such that the union 
of polytopes in Δ equals conv(X), the vertex set of polytopes in Δ is contained in 
X and the intersection of polytopes in Δ can only happen along lower dimensional 
faces. A subdivision Δ is called a triangulation, if all polytopes in Δ are simplices. A 
triangulation Δ of the point configuration X is called maximal, if every element of X
is a vertex of a simplex in Δ. A subdivision is called regular if its full dimensional cells 
σi are combinatorially equivalent to the regions of linearity of a tent function on X for 
some height vector y ∈ Rn.

Corollary 2.3. [49, Corollary 2.6] To find the optimal height vector y∗ in (2.1) is to 
maximize the following rational-exponential objective function over y ∈ Rn:
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S(y1, . . . , yn) = w · y −
∑
σ∈Δ

∑
i∈σ

vol(σ) · exp(yi)∏
α∈σ\i(yi − yα) , (2.2)

where Δ is any regular triangulation that refines the regular subdivision induced by the 
tent function hX,y.

If y induces a regular subdivision Δ that is not a maximal regular triangulation, then 
we can consider any maximal regular triangulation that refines Δ. Thus if there are m
maximal regular triangulations of X, then to find the optimal y∗ we must compare the 
optimal values y∗Δ1

, y∗Δ2
, . . . , y∗Δm

which are obtained by solving the optimization problem 
(2.2) m times, once for each maximal regular triangulation Δ1, Δ2, . . . , Δm.

Notation 2.4. We will denote by SΔ the function given by the right hand side of (2.2)
for a fixed triangulation Δ.

Example 2.5. Fix d = 1, n = 3 and X = (2, 5, 7). The configuration X has two triangu-
lations Δ1 = {{1, 3}} and Δ2 = {{1, 2}, {2, 3}}, which are both regular triangulations. 
Only Δ2 is a maximal triangulation. Hence solving the optimization problem (2.1) is 
equivalent to maximizing the objective function

SΔ2 = w · y − 3e
y1 − ey2

y1 − y2
− 2e

y2 − ey3

y2 − y3
. (2.3)

If y1 = y2 or y2 = y3, then a denominator on the right hand side of (2.3) becomes zero. 
However, the objective function in the formulation (2.1) can be still simplified to

w · y − 3ey2 − 2e
y2 − ey3

y2 − y3
or w · y − 3(ey1 − ey2)

y1 − y2
− 2ey2 .

To visualize the situation, we consider the Samworth body

S(X) =

⎧⎨⎩y ∈ R3 :
∫
P

exp(hX,y(t))dt ≤ 1

⎫⎬⎭ ,

which was introduced in [49]. The unconstrained optimization problem (2.1) is equiva-
lent to the constrained optimization problem of maximizing the linear function w ·y over 
the Samworth body. For different choices of weight vector w = (w1, w2, w3), we obtain 
different optimal height vectors y = (y1, y2, y3) on the surface of the Samworth body, 
and the height vector determines the triangulation. The Samworth body consists of two 
regions that can be seen in Fig. 2. The green region comes from the one-simplex trian-
gulation Δ1 = {{1, 3}}, while the red region comes from the two-simplex triangulation 
Δ2 = {{1, 2}, {2, 3}}. Moreover, one can see lines separating the green region into two 
pieces and the red region into three pieces (ignore the curve separating the green and 
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Fig. 2. The Samworth body for X = (2, 5, 7). (For interpretation of the colors in the figures, the reader is 
referred to the web version of this article.)

the red regions for now). These lines correspond to the degenerate cases where y1 = y3, 
y1 = y2 or y2 = y3, and hence the right hand side of (2.2) is not defined. Therefore those 
lines are simply artifacts of the reformulation (2.2) since in the original unconstrained 
setting (2.1) these points present no difficulty. The intersection of the three lines is the 
point (− log 5, − log 5, − log 5).

Consider the curve separating the green and red regions of the Samworth body. This 
curve is made of all the points y that form a relevant tent function, inducing the subdi-
vision Δ1. To understand the green region, see the piecewise linear functions drawn in 
Fig. 3. Since the lowest (dotted) function is not concave, it is invalid as a tent function. 
Therefore, if the height y2 is too low, the optimal tent function will be the (solid-line) 
linear function. In effect, the optimal tent-function ignores heights yi if they are too low. 
This basic phenomenon is responsible for the green part of the Samworth body being 
flat in the y2 direction, meaning that it is a pencil of half-lines parallel to the y2-axis.

The transition from the red region to the green region is not smooth. For every y on 
the curve between the green and red regions, there is a two-dimensional cone of weight 
vectors that give y as an optimal solution. The generators of this cone are described 
in [49, Theorem 3.7]. The optimal height vector y∗ for w = ( 1

3 , 
1
3 , 

1
3 ) lies on the curve 

between the red and green regions. It is not a critical point of the function (2.3), because 
w is not a normal vector to the red region at the point y∗.
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Fig. 3. The red tent function corresponds to a vector y in the red region of the Samworth body. The 
solid green tent function corresponds to a vector y on the curve separating red and green regions of the 
Samworth body. The dotted green function is not concave. Its height vector y belongs to the green region 
of the Samworth body and both green sets of heights give the same tent function.

We now return to the general situation and consider the specific approach of critical 
equations for solving the optimization problem (2.2). Let X = (x1, . . . , xn) be a con-
figuration of n points xi ∈ Rd. Fixing a maximal regular triangulation Δ of our point 
configuration X, we can find the optimal y∗Δ for SΔ in (2.2) over y ∈ Rn by solving the 
system of critical equations ∂SΔ/∂yi = 0. These partial derivatives take the form (see 
[49, Proof of Lemma 3.4]):

∂SΔ

∂yi
= wi −

∑
σ∈Δ,
i∈σ

vol(σ) exp(yi)
1∏

α∈σ\i(yi − yα)

⎛⎝1 −
∑

α∈σ\i

1
(yi − yα)

⎞⎠
−

∑
σ∈Δ
i∈σ

vol(σ)
∑
j∈σ\i

exp(yj)
1∏

α∈σ\j(yj − yα)
1

(yj − yi)
. (2.4)

Definition 2.6. For a fixed maximal regular triangulation Δ of X, let A be the matrix 
such that the system of n critical equations (2.4) can be written in the form

Aey = w, (2.5)

where ey is a column vector of exponentials (ey1 , ey2 , . . . , eyn)T , and w is a column vector 
of weights (w1, . . . , wn)T . The matrix A is called the score equation matrix.

The entries of A are in the field of rational functions in the variables y1, . . . , yn. 
Diagonal entries of A are

Aj,j =
∑
σ∈Δ,
j∈σ

vol(σ) 1∏
α∈σ\j(yj − yα)

⎛⎝1 −
∑

α∈σ\j

1
(yj − yα)

⎞⎠
and off-diagonal entries of A are
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Ai,j =
∑
σ∈Δ,
i,j∈σ

vol(σ) 1∏
α∈σ\j(yj − yα)

1
(yj − yi)

.

The matrix A can be written as a sum of matrices over maximal simplices σ ∈ Δ. This 
will be described explicitly in the proof of Theorem 3.1.

There are two caveats when solving the optimization problem (2.2) using the method 
of critical equations. First, it is not enough to consider the system of critical equations 
∂SΔ/∂yi = 0 only for each of the maximal regular triangulations Δ, since the optimiza-
tion problem (2.2) is not smooth. One has to consider a system of critical equations for 
each subdivision of X. For a general subdivision Δ of X, this system is constructed in 
the following way. We consider SΔ′(y1, . . . , yn) for any maximal triangulation Δ′ that 
refines Δ, substitute yi that can be expressed in terms of other y’s in the subdivision 
Δ and construct the system of critical equations ∂S̃Δ/∂yi = 0 for the resulting function 
S̃Δ. For maximal triangulations, we have S̃Δ = SΔ and the system of critical equations 
is given by (2.4). We will demonstrate this phenomenon on the point configuration from 
Example 2.5.

Example 2.7. Recall that d = 1, n = 3 and X = (2, 5, 7). The configuration X has two 
triangulations Δ1 = {{1, 3}} and Δ2 = {{1, 2}, {2, 3}}. Let w = ( 1

3 , 
1
3 , 

1
3 ). The output 

from LogConcDEAD suggests that the optimal tent function is supported on one cell, with 
heights given by y∗1 = −1.816665, y∗2 = −1.576024 and y∗3 = −1.415597. However, the 
vector y∗ is neither a critical point of SΔ2 nor of the function

SΔ1 = w · y − 5e
y1 − ey3

y1 − y3
.

This can be seen by taking partial derivatives of these functions with respect to 
y1, y2, y3 and substituting y∗1 , y

∗
2 , y

∗
3 . In the case of ∂SΔ1/∂yi = 0, it is particularly easy 

to see that there are no solutions, since ∂SΔ1/∂y2 = w2 �= 0. In the case of ∂SΔ2/∂yi = 0, 
the system of critical equations fails to certify in the sense of Section 4.

The points (x1, y∗1), (x2, y∗2), (x3, y∗3) being collinear is equivalent to (x2, y∗2) =
λ1(x1, y∗1) + λ3(x3, y∗3) where λ1, λ3 ≥ 0, λ1 + λ3 = 1. Since x1 = 2, x2 = 5, x3 = 7, 
we have λ1 = 2

5 , λ3 = 3
5 . Hence y2 = 2

5y1 + 3
5y3. Substituting this expression into the 

objective function (2.3) we get

S̃Δ2 =
(
w1 + 2

5w2

)
y1 +

(
w3 + 3

5w2

)
y3 − 5e

y1 − ey3

y1 − y3

which for uniform weights w = ( 1
3 , 

1
3 , 

1
3 ) becomes

S̃Δ2 = 7
15y1 + 8

15y3 − 5e
y1 − ey3

y1 − y3
. (2.6)

We will verify in Example 4.13 that y∗ is a critical point of the function S̃Δ2 .
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Fig. 4. Maximizing SΔ over y restricted to YΔ.

Fig. 5. Piecewise-linear functions induced by y∗
Δ maximizing SΔ for each subdivision Δ in Example 2.8. The 

notation ij in the subcaptions refers to the set {i, j}.

The second caveat is that to find the optimal tent function, it is not enough to merely 
compare the optimal critical points y∗Δ of ∂SΔ/∂yi = 0 for each subdivision Δ. Denote 
by YΔ the set of y that induce a subdivision that is equal to or coarser than Δ. For each 
Δ, it also has to be checked that y∗Δ is in YΔ. Thus if y∗Δ is not in YΔ, then y∗Δ should 
be discarded. If the maximum of SΔ over YΔ is not a critical point of SΔ, then the 
maximum must be on the boundary of YΔ, see Fig. 4 for an illustration. The boundary 
of YΔ is stratified into regions YΔ̃ corresponding to the various subdivisions Δ̃ which are 
refined by Δ. Hence one should consider critical points for strictly coarser subdivisions 
Δ̃.

Example 2.8. We consider the point configuration X = {0, 1, 2, 3, 4} ⊆ R and the weight 
vector w = (3/15, 4/15, 5/15, 2/15, 1/15). This point configuration has exactly eight 
subdivisions. For each subdivision Δ, we use the Mathematica command NMaximize to 
find the maximum y∗Δ of the function SΔ. For each subdivision Δ, the smallest piecewise-
linear function f∗

Δ such that f∗
Δ(xi) ≥ y∗Δ,i for i = 1, . . . , 5 is depicted in Fig. 5. We have ∫

P
exp(f∗

Δ(t))dt = 1 for all subdivisions Δ. This implies that if y∗Δ is not relevant, then 
exp(hX,y∗ ) is not a distribution.
Δ
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The optimal tent function is supported on the subdivision {{1, 3}, {3, 5}}. Also subdi-
visions {{1, 4}, {4, 5}} and {{1, 5}} give concave piecewise-linear functions f∗

Δ, however, 
the value of SΔ at y∗Δ is less for these subdivisions (respectively −2.32524 and −2.32556) 
than for the optimal subdvision (−2.31007). Moreover, only for the optimal subdivision 
we obtain y∗Δ that is close to the optimal y∗Δ obtained by LogConcDEAD. In this exam-
ple, LogConcDEAD gives y∗1 = −1.070377. For the eight subdivisions in Fig. 5, we get 
the following values for the first coordinate of y∗Δ using Mathematica: (a) −0.564769
(b) −1.13722 (c) −0.783036 (d) −0.595576 (e) −0.852468 (f) −1.07045 (g) −0.797148
(h) −0.833582. Similarly for other coordinates of y∗, only y∗{{1,3},{3,5}} agrees with y∗

when rounded to the third decimal digit. This suggests a method for checking whether a 
subdivision supports the optimal tent function: The piecewise-linear function f∗

Δ should 
be concave and the height vector y∗Δ should be close to y∗ obtained by LogConcDEAD.

We see from this example, if a subdivision Δ is incompatible with the optimal sub-
division, then f∗

Δ might or might not be concave. The subdivisions {{1, 4}, {4, 5}}
and {{1, 2}, {2, 5}} are both incompatible with the subdivision {{1, 3}, {3, 5}}, and 
f∗
{{1,4},{4,5}} is concave whereas f∗

{{1,2},{2,5}} is not concave. In all examples that we 
have done, if a subdivision Δ refines the optimal subdivision, then f∗

Δ is not concave and 
if a subdivision Δ is coarser than the optimal subdivision, then f∗

Δ is concave. Whether 
this is true in general, is left as an open question.

3. Transcendentality and closed-form solutions

In this section we use notions from geometric combinatorics to study the structure 
of (2.6). In particular, we will prove that the matrix A is invertible. This will be our 
main tool in proving the transcendentality of log-concave MLE and deriving closed form 
solutions in the one-dimensional one cell case using Lambert functions.

3.1. Score equation matrix invertibility and transcendentality

Towards proving transcendentality, we first investigate the invertibility of the matrix 
A.

Theorem 3.1. Consider a point configuration X = (x1, . . . , xn) in Rd, let Δ =
{σ1, . . . , σm} be a maximal regular triangulation of X. The score equation matrix A
from (2.5) is invertible.

Definition 3.2. Given a triangulation Δ, we define the neighborhood N (j) of a vertex j
in Δ to be the set of vertices

N (j) = {i : (i, j) ∈ σk for some k} .

Before giving the proof of Theorem 3.1, we illustrate the construction in the proof 
with a small example.
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Example 3.3. Let X = (x1, x2, x3, x4) be a four point configuration in R2 with Δ =
{σ1, σ2}, where σ1 = {1, 2, 3} and σ2 = {2, 3, 4}. Let A be the score equation matrix 
for the entire regular triangulation Δ. Let us denote the difference yi − yj by yij . Then 
A = A(σ1) + A(σ2), where

A(σ1)
vol(σ1)

=

⎡⎢⎢⎢⎢⎢⎢⎣

1
y12y13

− 1
y122y13

− 1
y12y132

1
y212y23

1
y312y32

0

1
y122y13

1
y21y23

− 1
y212y23

− 1
y21y232

1
y31y322 0

1
y12y132

1
y21y232

1
y31y32

− 1
y312y32

− 1
y31y322 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

A(σ2)
vol(σ2)

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 1
y23y24

− 1
y232y24

− 1
y23y242

1
y322y34

1
y422y43

0 1
y232y24

1
y32y34

− 1
y322y34

− 1
y32y342

1
y42y432

0 1
y23y242

1
y32y342

1
y42y43

− 1
y422y43

− 1
y42y432

⎤⎥⎥⎥⎥⎥⎥⎦ .

We define matrix B to be the matrix A with its j-th column multiplied by 
∏

i∈N (j) y
2
ji, 

for all j from 1 to 4. We obtain the following matrices

B(σ1)
vol(σ1)

=

⎡⎢⎢⎢⎢⎢⎣
y13y12 − y12 − y13 y24

2y23 y34
2y32 0

y13 y21y23y24
2 − y24

2y21 − y23y24
2 y34

2y31 0

y12 y24
2y21 y31y32y34

2 − y34
2y31 − y34

2y32 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

B(σ2)
vol(σ2)

=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0

0 y21
2y23y24 − y21

2y23 − y21
2y24 y31

2y34 y43

0 y21
2y24 y32y31

2y34 − y31
2y32 − y31

2y34 y42

0 y21
2y23 y31

2y32 y43y42 − y42 − y43

⎤⎥⎥⎥⎥⎥⎦ .

The product of the diagonal entries of B = B(σ1) +B(σ2) is a polynomial of degree 12. 
Whereas a term in the expansion of the determinant of B with off-diagonal entries has 
at most degree 10.

Proof of Theorem 3.1. The score equation matrix A associated to a maximal regular 
triangulation Δ can be written as

A =
∑
σ∈Δ

A(σ),

where the entries of A(σ) for i �= j are

A(σ)i,j = vol(σ)

⎛⎝ ∏ 1
(yj − yα)

⎞⎠(
1

yj − yi

)
,

α∈σ\{j}
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A(σ)j,j = vol(σ)

⎛⎝ ∏
α∈σ\{j}

1
(yj − yα)

⎞⎠⎛⎝1 −
∑

α∈σ\{j}

1
(yj − yα)

⎞⎠ .

The matrix A(σ) is sparse: If i or j does not belong to σ then Ai,j(σ) = 0.
Let B (resp. B(σ)) be the matrix that is obtained by multiplying the j-th column of 

A (resp. A(σ)) by 
(∏

α∈N (j)(yj − yα)2
)

for j = 1, . . . , n:

B. , j = A. , j

⎛⎝ ∏
α∈N (j)

(yj − yα)2
⎞⎠ =

∑
σ∈Δ

A(σ). , j

⎛⎝ ∏
α∈N (j)

(yj − yα)2
⎞⎠ . (3.1)

Fix σ ∈ Δ. We describe separately the off-diagonal and diagonal entries of B(σ). For 
i, j ∈ σ and i �= j we get

B(σ)i,j = A(σ)i,j

⎛⎝ ∏
α∈σ\{j}

(yj − yα)2
⎞⎠⎛⎝ ∏

α∈N (j)\σ
(yj − yα)2

⎞⎠
= vol(σ)

yj − yi

⎛⎝ ∏
α∈σ\{j}

1
(yj − yα)

∏
α∈σ\{j}

(yj − yα)2
⎞⎠⎛⎝ ∏

α∈N (j)\σ
(yj − yα)2

⎞⎠
= vol(σ)

⎛⎝ ∏
α∈σ\{i,j}

(yj − yα)

⎞⎠⎛⎝ ∏
α∈N (j)\σ

(yj − yα)2
⎞⎠ .

And for the diagonal entries

B(σ)j,j

= A(σ)j,j

⎛⎝ ∏
α∈N (j)

(yj − yα)2
⎞⎠

= vol(σ)

⎛⎝ ∏
α∈σ\{j}

1
(yj − yα)

⎞⎠⎛⎝1 −
∑

α∈σ\{j}

1
(yj − yα)

⎞⎠⎛⎝ ∏
α∈N (j)

(yj − yα)2
⎞⎠

= vol(σ)

⎛⎝ ∏
α∈σ\{j}

(yj − yα) −
∑

k∈σ\{j}

∏
α∈σ\{j,k}

(yj − yα)

⎞⎠⎛⎝ ∏
α∈N (j)\σ

(yj − yα)2
⎞⎠ .

Given a polynomial f ∈ R[y1, . . . , yn], we can rewrite f =
∑dj

i=0 fiy
i
j as a univariate 

polynomial in yj of degree dj , where fi ∈ R[yi : i �= j] is a constant with respect to yj. 
We then define the initial form of f with respect to j to be

inj(f) = fdj
y
dj

j .
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We observe that for the off-diagonal entries B(σ)i,j , the initial form with respect to j is

inj(B(σ)i,j) = y
2γj−d−1
j ,

where γj = |N (j)| is the number of vertices adjacent to j in Δ. Whereas for the diagonal 
entry B(σ)j,j , the initial form is

inj(B(σ)j,j) = y
2γj−d
j .

In both cases, the degree of the initial form is the degree of the polynomial. We sum the 
matrices B(σ) for σ ∈ Δ, to get B and note that the coefficient of the monomial y2γj−d

j

in Bj,j is the number of simplices in Δ containing vertex j. Hence, using the Leibniz 
formula to compute the determinant of B, we get that the product of diagonal entries is 

a polynomial of degree 

⎛⎝ n∑
j=1

2γj − d

⎞⎠. All off-diagonal entries in that column of B are 

of degree one smaller, thus any monomial in the expanded form of the determinant with 
off-diagonal entries must have degree at least two smaller than the product of diagonal 
entries. The following equality is a direct consequence of (3.1)

det (B) = det (A)
n∏

j=1

⎛⎝ ∏
α∈N (j)

(yj − yα)2
⎞⎠ .

Since det(B) is not identically 0, det(A) is not identically zero, hence A is invertible over 
the field of rational functions. �

The proof of Theorem 3.1 inspires the following conjecture about the combinatorial 
properties of the determinant.

Conjecture 3.4. The sum over terms of highest total degree of the numerator of det(A)
is

∏
j=1,...,n

⎛⎝ ∑
σ∈Δ s.t. j∈σ

vol(σ)
∏

α∈N (j):α/∈σ

(yj − yα)

⎞⎠ .

Since A is invertible, (2.5) can be rewritten as

ey = A−1w

where entries of A are rational functions in R(y1, . . . , yn).

Corollary 3.5. Fix a maximal triangulation Δ. Then the critical equations (2.4) can be 
written in the form
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exp(y1) = p1(y1, y2, . . . , yn)

exp(y2) = p2(y1, y2, . . . , yn)
...

exp(yn) = pn(y1, y2, . . . , yn)

(3.2)

where p1, . . . , pn ∈ R(y1, . . . , yn). If x1, . . . , xn ∈ Qd, then p1, . . . , pn ∈ Q(y1, . . . , yn).

We will explore rational-exponential systems of the form (3.2) further in Sec-
tions 3.2-3.3. The following is a result from transcendental number theory, for a textbook 
reference see Theorem 1.4 of [5].

Theorem 3.6 (Lindemann-Weierstrass). If y1, . . . , yr are distinct algebraic numbers then 
the numbers exp(y1), . . . , exp(yr) are linearly independent over the algebraic numbers.

A special case of the Lindemann-Weierstrass theorem is the Lindemann theorem which 
states that exp(y) is transcendental for algebraic y �= 0.

Theorem 3.7. Assume that X ⊂ Qd. If vol(conv(X)) �= 1 then at least one coordinate of 
the optimal height vector y∗ is transcendental. If vol(conv(X)) = 1, then all coordinates 
of y∗ are algebraic if and only if w is in the cone over the secondary polytope Σ(X).

Proof. It follows from the proof of [49, Lemma 3.4] that any relevant y∗ ∈ Rn such that 
exp(hX,y∗) is a density, is a critical point of SΔ(y1, . . . , yn) for a maximal regular trian-
gulation Δ and some weight vector w. We consider the rational-exponential system (3.2)
for this choice of Δ and w. Then we have exp(y1) = p1(y1, . . . , yn) where p1 is a ra-
tional function in Q(y1, . . . , yn). Assume that y1, . . . , yn are algebraic. By Lindemann’s 
theorem exp(y1) is algebraic if and only if y1 = 0.

However, p(y1, . . . , yn) is always algebraic, since y1, . . . , yn are algebraic and the alge-
braic numbers form a field. Hence y1 = 0. We can argue similarly that yi = 0 for all i. 
The vector y = (0, . . . , 0) belongs to the boundary of the Samworth body if and only if 
the volume of the convex hull of X is 1. In this case, y is the optimal solution for any w
in the cone over the secondary polytope Σ(X) by [49, Corollary 3.9]. �
3.2. One cell in one dimension

In this section we apply the invertibility of the score equation matrix to give a closed 
form solution to log-concave maximum likelihood estimator in case the logarithm of the 
optimal density is a linear function on the real line. If X = (x1, x2) ⊂ R, then

A = vol(σ)
[

1
y1−y2

− 1
(y1−y2)2

1
(y1−y2)2

1
2 − 1 − 1

2

]

(y1−y2) y1−y2 (y1−y2)
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and

A−1 = 1
vol(σ)

[
1 + y1 − y2 1

1 1 − y1 + y2

]
.

Hence the polynomial-exponential system (3.2) has the form

exp(y1) = 1
vol(σ) ((1 + y1 − y2)w1 + w2) (3.3)

exp(y2) = 1
vol(σ) (w1 + (1 − y1 + y2)w2) (3.4)

Dividing (3.3) by (3.4) and setting y12 = y1 − y2, gives

exp(y12) = (1 + y12)w1 + w2

w1 + (1 − y12)w2
. (3.5)

In the rest of the section we will discuss how to solve Equation (3.5) using Lambert 
functions. The solutions for y1 and y2 can then be obtained from Equations (3.3) and (3.4)
by solving for y12.

Definition 3.8 (Section 2 in [42]). For x, ti, sj ∈ R, consider the function

exp(x) (x− t1)(x− t2) . . . (x− tn)
(x− s1)(x− s2) . . . (x− sm) .

We denote its (generally multi-valued) inverse function at the point a ∈ R by

W (t1, t2, . . . , tn; s1, s2, . . . , sm; a)

and call it the generalized W-Lambert function. The function W (a) := W (0; ; a) is called 
the usual W-Lambert function.

We have W (; ; a) = log(a).

Proposition 3.9. The tent poles corresponding to a single-cell triangulation in 1 dimension 
are given by:

y1 = log(w1W (ρ + 1;−ρ−1 − 1;−ρ) + w1 + w2) − log(vol(σ)),

y2 = log(−w2W (ρ + 1;−ρ−1 − 1;−ρ) + w1 + w2) − log(vol(σ)),

where ρ = w1/w2 and W (ρ + 1; −ρ−1 − 1; −ρ) is a value of the multi-valued generalized 
Lambert W function if y1 �= y2. Otherwise y = (− log(vol(σ)), − log(vol(σ))).
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Fig. 6. Generalized Lambert function W (ρ + 1;−ρ−1 − 1;−ρ).

Proof. Recall from Equation (3.5):

exp(y12) = w1y12 + w1 + w2

−w2y12 + w1 + w2

or, by setting ρ = w1/w2, equivalently

y12 − ρ− 1
y12 + ρ−1 + 1 exp(y12) = −ρ.

Seen as an equation in y12 this has solutions given by the generalized Lambert function 
W (ρ + 1; −ρ−1 − 1; −ρ). The solutions for y1 and y2 can then be obtained from (3.3)
and (3.4) by solving y12. �
Remark 3.10. Proposition 3.9 generalizes to the case when we have n points on a line 
and the optimal tent function is supported on one cell.

The generally multi-valued generalized W -Lambert function W (ρ + 1; −ρ−1 − 1; −ρ)
is plotted in Fig. 6. We explore its branches, i.e., single-valued functions of ρ, using 
r-Lambert functions.

Definition 3.11 (Section 3.2 in [42]). If r ∈ R, consider the function

x exp(x) + rx.
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We denote its inverse function in the point a ∈ R by Wr(a) and call it the r-Lambert 
function.

The following theorem makes the connection between the generalized Lambert func-
tion and the r-Lambert function:

Theorem 3.12 (Theorem 3 in [42]). If t, s, a ∈ R, the following equality holds:

W (t; s; a) = t + W−a exp(−t)
(
a exp(−t)(t− s)

)
.

Hence

W (ρ + 1;−ρ−1 − 1;−ρ) = ρ + 1 + Wρ exp(−ρ−1)
(
− ρ exp(−ρ− 1)(ρ + ρ−1 + 2)

)
.

The number of branches of the r-Lambert function is classified in [42, Theorem 4] and [39, 
Theorem 4]. For r = ρ exp(−ρ − 1), it translates to

1. two branches, if ρ exp(−ρ − 1) < 0;
2. three branches, if 0 < ρ exp(−ρ − 1) < exp(−2);
3. one branch, if ρ exp(−ρ − 1) ≥ exp(−2).

The second case happens when ρ > 0, in which case we have the double branch of 
constant zero function and an additional branch. This is the branch that is relevant 
to us in the context of Proposition 3.9. The first case happens when ρ < 0, in which 
case there exists a double branch of the constant zero function. This cannot appear for 
positive weights wi. The third case does not happen.

The r-Lambert function can be computed with the C++ implementation [41]. Alterna-
tively, one can use results about computing roots of polynomial-exponential equations. 
In [38], a symbolic-numeric algorithm is proposed for constructing explicitly an interval 
containing all the real roots of a single real polynomial-exponential equation, and count-
ing how many roots are contained in a non-bounded interval. In [47], the decision problem 
of the existence of positive roots of such functions is discussed. This subject is strongly 
related to quantifier elimination [60], and to transcendentality problems [40,11,12]. The 
latter problem of the transcendence theory appears in our Theorem 3.7.

3.3. Two cells in one dimension

Let X = (x1, x2, x3) ⊂ R. Then

A =

⎡⎣ v1
(y1−y2)2 − v1

y1−y2
− v1

(y1−y2)2 0
− v1

(y1−y2)2
v1

(y1−y2)2 − v1
y1−y2

+ v2
(y2−y3)2 − v2

y2−y3
− v2

(y2−y3)2
0 − v2

2
v2

2 − v2

⎤⎦ .
(y2−y3) (y2−y3) y2−y3
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Recall y12 = y1 − y2 and y23 = y2 − y3. Then

A−1 = 1
v1(1 + y23) + v2(1 − y12)

×
[

−(1+y12)(1+y23)+ v2
v1

y2
12 −1−y23 −1

−1−y23 (−1+y12)(1+y23) −1+y12

−1 −1+y12 −(−1+y12)(−1+y23)+ v1
v2

y2
23

.

]

Consider the polynomial-exponential system exp(y) = A−1w as in (3.2). Dividing the 
first equality with the second one and the second one with the third one gives:⎧⎪⎪⎪⎨⎪⎪⎪⎩

exp(y12) =
(−(1 + y12)(1 + y23) + v2

v1
y2
12)w1 + (−1 − y23)w2 − w3

(−1 − y23)w1 + (−1 + y12)(1 + y23)w2 + (−1 + y12)w3
,

exp(y23) = (−1 − y23)w1 + (−1 + y12)(1 + y23)w2 + (−1 + y12)w3

−w1 + (y12 − 1)w2 − ((y12 − 1)(y23 − 1) + v1
v2
y2
23)w3

.

(3.6)

Hence we could reduce a polynomial-exponential system with three equations and 
three variables to a polynomial-exponential system with two equations and two variables. 
Systems of two rational bivariate polynomial-exponential equations such as (3.6) are 
studied in [38]. An algorithm giving the number of solutions of such a system is provided, 
where all the solutions are contained in a generalized open rectangle of type I1×I2 ⊂ R2, 
under the hypothesis that at least one of the intervals I1 or I2 is bounded.

Remark 3.13. Let X ⊂ R. If we consider tent functions hX,y that are supported on two 
cells such that hX,y is a constant function on one of the two cells, then one can use 
methods similar to the one cell case (see Section 3.2) to give the optimal solution using 
the Lambert function.

4. Certifying solutions with Smale’s α-theory

As explained in Section 2, our task is to maximize the objective function S(y1, . . . , yn)
defined in Corollary 2.3. For a subdivision Δ, we can find the optimal y∗Δ by considering 
SΔ′(y1, . . . , yn) for any maximal triangulation Δ′ that refines Δ, substituting yi that can 
be expressed in terms of other y’s for the subdivision Δ and solving the system of critical 
equations ∂S̃Δ/∂yi = 0 for the resulting function S̃Δ. For maximal triangulations, we 
have S̃Δ = SΔ and the system of critical equations is given by (2.4). We will write SΔ
instead of S̃Δ also when talking about general subdivisions and for brevity we denote 
the system of critical equations by ∇SΔ(y) = 0. We say the system is square because 
we have n equations ∂SΔ/∂yi = 0 in n variables y1, . . . , yn. Usually it will be impossible 
to write down exact solutions to these systems, but there is a way forward. In what 
follows we discuss the computation of certified solutions to this system of equations. 
To do so, we discuss Smale’s α-theory, which makes mathematically rigorous the idea 
of approximate zeros in the sense of quadratic convergence of Newton iterations. The 
following influential definition was given in [9,56].
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Definition 4.1 (Chapter 8 of [9]). Let Df(x) be the n × n Jacobian matrix of the square 
system of complex-analytic equations f(x) = 0 ∈ Cn, where f : Cn → Cn is written as 
a column vector of its component functions

f(x) = [f1(x1, . . . , xn), . . . , fn(x1, . . . , xn)]T .

A point z ∈ Cn is an approximate zero of f if there exists a zero z∗ ∈ Cn of f such that 
the sequence of Newton iterates

zk+1 = zk −Df(zk)−1f(zk)

satisfies

‖zk+1 − z∗‖ ≤ 1
2‖zk − z∗‖2

for all k ≥ 1 where z0 = z. If this holds, then we call z∗ the associated zero of z. 
Here ‖x‖ := (

∑n
i=1 xixi)

1
2 is the standard norm in Cn, and the zero z∗ is assumed to be 

nonsingular, meaning that detDf(z∗) �= 0.

Therefore the problem becomes two-fold. Given a system of equations f , we need a 
way to (1) generate approximate solutions, and (2) certify their quadratic convergence 
under Newton iterations. The methods of Smale’s α-theory solve exactly this second 
problem. This is accomplished using the constants α(f, x), β(f, x) and γ(f, x), which 
we will discuss in Section 4.1. Typically γ is difficult to compute, since it is defined as 
the supremum of infinitely many quantities depending on higher-order derivatives of our 
system of equations. However, explicit upper bounds on γ were calculated in [31] which 
we can specialize to the system required for log-concave density estimation. These upper 
bounds have the advantage that they are easily computed from our system ∇S = 0, and 
can therefore be used to α-certify approximate solutions coming from numerical software. 
In Section 4.1, we make this precise, discussing recent work on the subject [31,32,54,56]
and how it applies in our context.

Remark 4.2. One might wonder why we do not directly evaluate the equations in question 
to the approximate height values given by statistical packages. The reason is that we 
want to have a measure of how accurate this solution is, which is also very sensitive to the 
system. Consider for example the system consisting of the single polynomial f(x) = x. 
We would not accept 1/2 as a solution. But if we consider the system f(x) = x10 and we 
evaluate at x = 1/2, we get a value that is less than 0.001. This could have been tempting, 
but note that in both cases the difference between actual solution and approximation is 
the same.

Another example that illustrates the potential difficulties involved in judging a numer-
ical solution based on its evaluation into the original system of equations comes from [8]. 
Consider the univariate polynomial
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f(z) = z10 − 30z9 + 2.

A solution which is accurate within 9.4 × 10−12 of the true solution is

z∗ = 30.00000000000142 − 0.00000000000047i,

but evaluating the polynomial at this solution yields a complex number f(z∗) with norm 
|f(z∗)| = 31.371, which certainly seems far from zero. However, refining the accuracy of 
this solution to

z∗∗ = 29.9999999999998983894731343124 + 0.0000000000000000000000062i,

we find that |f(z∗∗)| = 0.00000000032, which is much better.

4.1. Smale’s α-theory

The intuition behind α-theory is as follows. The size of the initial Newton iteration 
step combined with the size of the derivatives control how quickly Newton iteration 
converges to a true solution. We can calculate the size of the Newton iteration step, so 
if we have some control over the higher order derivatives of f , then we should be able 
to certify whether a solution satisfies the criterion of Definition 4.1. This motivates the 
definition of the following constants α, β, γ ∈ R, associated to a system of equations f at 
a point x. These constants measure quantities relevant to certifying approximate zeros.

Definition 4.3. Let f : Cn → Cn be a system of complex-analytic functions and let 
x ∈ Cn. We define α(f, x) to be the product of β(f, x) and γ(f, x):

α(f, x) = β(f, x)γ(f, x).

The constant β(f, x) measures the size of the Newton iteration step applied at x, namely:

β(f, x) = ‖Df(x)−1f(x)‖,

while γ(f, x) bounds the sizes of the following quantities, involving the higher order 
derivatives:

γ(f, x) = supk≥2

∥∥∥∥Df(x)−1Dkf(x)
k!

∥∥∥∥
1

k−1

.

If we can compute these constants β, γ for a candidate solution, then we can utilize 
the following

Theorem 4.4 (Chapter 8 of [9]). If f : Cn → Cn is a system of complex-analytic functions 
and x ∈ Cn satisfies



22 A. Grosdos et al. / Advances in Applied Mathematics 143 (2023) 102448
α(f, x) < 13 − 3
√

17
4 ≈ 0.157671,

then x is an approximate zero of f = 0.

For polynomial systems, all higher-order derivatives eventually vanish. Exactly this 
fact was used in [54] to derive an upper bound for γ(f, x) which involves the degrees 
of the polynomials in the system f . This is highly convenient since, even for systems 
of polynomials, calculating γ(f, x) purely based on the definition is quite a difficult 
task. Yet, if we are to certify candidate solutions to our system of equations, we need to 
calculate γ and β at our candidate x, multiply them, and hope they are below ≈ 0.157671.

4.2. Polynomial-exponential systems

For polynomial-exponential systems f , calculating γ(f, x) is even harder. However, in 
[31], an upper bound was computed for γ involving quantities more readily apparent in 
a given system f than what appears in the bare definition of γ. In fact, an upper bound 
for γ is calculated which applies to a general class of systems, as well as upper bounds for 
several special cases. One of these special cases can be further specialized to the system of 
equations ∇S = 0 arising in log-concave density estimation (this is Lemma 4.9 below). 
In [31] an example is given where the bounds for the special cases allowed candidate 
solutions to be α-certified despite failure using the more general bounds. In this section 
we summarize the results of [31] as they relate to log-concave density estimation. First 
we need a few definitions.

Definition 4.5. For a point x ∈ Cn define

‖x‖2
1 = 1 + ‖x‖2 = 1 +

n∑
i=1

|xi|2.

For a polynomial g : Cn → C given as g(x) =
∑

|ρ|≤d aρx
ρ define

‖g‖2 = 1
d!

∑
|ρ|≤d

ρ! · (d− |ρ|)! · |aρ|2.

For a polynomial system f : Cn → Cn with f(x) = [f1(x), . . . , fn(x)]T , we define

‖f‖2 =
n∑

i=1
‖fi‖2.

We now define a quantity μ(f, x) associated to a polynomial system which will play 
a role in bounding γ later.
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Definition 4.6. Let f : Cn → Cn be a polynomial system with deg fi = di. Define

μ(f, x) = max
{
1, ‖f‖ · ‖Df(x)−1Cf (x)‖

}
where Cf (x) is the diagonal matrix

Cf (x) =

⎡⎢⎢⎣
d
1/2
1 · ‖x‖d1−1

1
. . .

d
1/2
n · ‖x‖dn−1

1

⎤⎥⎥⎦ .

Following [31], we extend Definition 4.6 to certain polynomial-exponential systems.

Definition 4.7. Let a ∈ Z≥0, δi ∈ C, and σi ∈ {1, . . . , n}. Consider the polynomial-
exponential system

G(x1, . . . , xn, u1, . . . , ua) =

⎡⎢⎢⎢⎢⎢⎢⎣
P (x1, . . . , xn, u1, . . . , ua)

u1 − exp(δ1xσ1)
u2 − exp(δ2xσ2)

...
ua − exp(δaxσa

)

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.1)

where P : CN → Cn is a polynomial system with N = n +a variables. Thus, the system 
G is a square system of size N . We write X := (x, u). Define

μ(G,X) = max
{

1,

∥∥∥∥∥DG(x, u)−1

[
CP (x, u)‖P‖

Ia

]∥∥∥∥∥
}
.

The following specializes Corollary 2.6 of [31].

Theorem 4.8. Let a ∈ Z≥0, δi ∈ C, and σi ∈ {1, . . . , n} and consider the polynomial-
exponential system (4.1). Let di = deg Pi and D = max di. For any λ, θ ∈ C define

A(λ, θ) = max
{
|λ|,

∣∣∣∣λ2 exp(λθ)
2

∣∣∣∣} .

Then, for any X = (x, u) ∈ CN such that the Jacobian of G is invertible,

γ(G,X) ≤ μ(G,X)
(

D3/2

2‖X‖1
+

a∑
i=1

A(δi, xσi
)
)
. (4.2)

Proof. This is a straight-forward specialization of Corollary 2.6 of [31]. We set to zero 
quantities that deal with functions not relevant to log-concave density estimation. �



24 A. Grosdos et al. / Advances in Applied Mathematics 143 (2023) 102448
Therefore, reformulating our system of polynomial-exponential equations ∇SΔ = 0 in 
the format (4.1) will allow us to calculate an upper bound on γ, which will allow us to 
certify solutions to our critical equations.

Lemma 4.9. Fix a maximal regular triangulation Δ. The polynomial-exponential system 
∇SΔ = 0 can be reformulated as a system of equations of the form (4.1), demonstrating 
that Theorem 4.8 applies in the context of log-concave maximum likelihood estimation.

Proof. The partial derivatives ∂SΔ/∂yk are rational functions of the yi and the exp(yi). 
Since we set each partial derivative to zero, we can clear denominators, creating a system 
of equations, each of which is a polynomial in the yi and the exp(yi). Setting each δi = 1
in (4.1), we can replace each occurrence of exp(yi) with ui, creating the polynomial 
system P (y1, . . . , yn, u1, . . . , un), hence a = n as well. Appending the equations ui −
exp(yi) to the system of polynomials P , we have a system of 2n equations in 2n unknowns. 
This system is of the required form in order to apply Theorem 4.8. �

Thus, we have everything we need to compute the upper bound in (4.2) for a system 
of critical equations ∇SΔ = 0 when Δ is a maximal regular triangulation. By calculating 
this upper bound for a given system of equations, we can certify approximate numerical 
solutions obtained in any way. When Δ is not a maximal regular triangulation, one must 
impose further linear constraints on some of the yi, as was the case in Example 2.7. After 
simplifications, one might still end up with terms involving exponentials of fractional 
convex combinations of the yi. This poses no threat for the purposes of α-certification, 
as one may in fact use products of exponentials of the form eβyi . In particular, a bound 
for γ(G, X) also for these more general polynomial-exponential systems is given in [31, 
Corollary 2.6].

In algebraic statistics, it is common to find algebraic invariants which characterize 
algebraic complexity. For example, the maximum likelihood degree of a statistical model 
gives information about the critical points of the likelihood function of a parametric 
model [1]. Similarly, in nonparametric algebraic statistics, it could be the case that 
the combinatorial complexity of the optimal subdivision gives us information about the 
computational complexity of finding a numerical solution.

Question 4.10. Does increasing the combinatorial complexity of the optimal subdivision 
decrease the likelihood that the numerical output from LogConcDEAD is α-certified?

We study this question experimentally in the next section. In future work, one could 
hope to precisely describe this phenomenon, should it exist. Of course, higher degrees, 
more variables, more equations will always increase the bound on γ we calculate, but 
the combinatorics should still play some role.
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4.3. A procedure for α-certifying

One of our motivating questions was to determine the correct subdivision for a given 
data set, as was the case in Example 1.1. In this section we describe a procedure based 
on Smale’s α-theory that in principle allows us to find the certifiably correct subdivision. 
Recall that the objective function S(y1, . . . , yn) depends on a subdivision of the convex 
hull of the data set X. If there are m subdivisions, then there are m different objective 
functions S1, . . . , Sm, and m different possible systems of equations ∇S1 = 0, . . . , ∇Sm =
0. Given an estimate of a solution y∗, perhaps computed numerically using existing 
software, we can attempt to α-certify that solution using any of these systems as input 
to Lemma 4.9 and Theorem 4.8. As we collect α-certified critical points for the various 
objective functions, we can use this data to determine the correct subdivision, helping 
to answer our motivating question.

In practice, we have found that numerically computed solutions y∗ are often not α-
certified, using any of the systems ∇Si = 0. However, using a brute-force search over 
all possible additional digits, we often can find one system ∇Sj = 0 to which y∗ + ε is 
an α-certified solution. Here, ε = (ε1, . . . , εn) is a vector providing additional digits of 
precision to each component of y∗. As we compute α-values for each y∗ + ε, we move in 
the direction which causes a decrease in the computed α-value, until we are able to find 
an α-certified y∗ + ε. We describe this in the following

Algorithm 1: Testing certifiability by digit refinement.
Input: A system ∇Si = 0 coming from the ith candidate subdivision and a candidate approximate 

solution y∗ = (y1, . . . , yn).
Result: A refinement of the heights y∗ + ε along with alpha certification of the system, or inability 

to certify.
1 Let p be the number of trusted significant digits (in binary) of the approximate solution y∗.
2 Expressing y∗ in binary, compute the α-value for all 3n points yi + εi2−p, εi ∈ {−1, 0, 1}. Keep the 

point with the lowest alpha value, and set this as the new yi.
3 If the alpha value is below 0.157671 stop and return the solution. If it has decreased between steps 

or remained the same, increase p by 1 and go to step 2. If there is no improvement for several 
loops in a row, stop and declare inability to certify the system.

Remark 4.11. Here we collect a few comments on Algorithm 1.

1. We note that this brute-force search over all possible digits could be replaced by any 
numerical procedure for finding solutions to a given set of equations, see for instance 
the refine command in the Numerical Algebraic Geometry package for Macaulay2 
[36]. For example, Newton iteration could be used on the system of equations to pro-
duce more accurate solutions, which could then be α-certified. However, to compare 
the outputs of LogConcDEAD for problems of increasing combinatorial complexity 
(see Table 1), we wanted to use a completely “blind” brute-force search as described 
above.

2. One does not need to stop at Step 3 once a solution is certified. Repeating the loop 
allows increasing the precision of the solution by moving to lower α values. This is in 
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contrast to statistical software like LogConcDEAD which only allows up to 7 significant 
digits.

3. Although precision can be added, our (first) goal with Algorithm 1 is to find the 
correct subdivision induced by the heights. One can test several subdivisions here, 
therefore we say that we test the (approximate) solution against the corresponding 
system of equations.

4. It might happen that the α-value does not immediately decrease from one loop to 
the next even if we have the correct system of equations. One reason is that if the 
next significant digit is a zero for all heights, we are computing an α-value for the 
same point multiple times.

5. In step 1 of the above algorithm, we let p be the number of trusted significant digits 
of the approximate solution y∗. We have found that several of the last digits of a 
solution computed with LogConcDEAD were incorrect, in the sense that if we start our 
search (in Algorithm 1) earlier in the significant digits of y∗ we are able to α-certify 
some y∗ + ε. In this way, we can correct for some of the imprecision of a numerical 
solver.

Example 4.12. Consider the data set X = (2, 5, 7) with weights w = ( 1
3 , 

1
2 , 

1
6 ). With this 

input, the package LogConcDEAD returns the heights

y∗ = (y1, y2, y3) = (−1.454152,−1.605833,−1.888083),

suggesting that there are two regions of linearity (Fig. 7a). Let Δ = {{1, 2}, {2, 3}}. We 
consider critical equations for

SΔ(y1, y2, y3) = y1

3 + y2

2 + y3

6 − 3 ey1 − ey2

y1 − y2
− 2 ey2 − ey3

y2 − y3

which lead to the polynomial-exponential system ∇SΔ : C3 → C3 given by

(y1 − y2)2
∂S(y1, y2, y3)

∂y1
= 0

(y1 − y2)2(y2 − y3)2
∂S(y1, y2, y3)

∂y2
= 0

(y2 − y3)2
∂S(y1, y2, y3)

∂y3
= 0,

where we have cleared denominators. The numerical solution from LogConcDEAD is not 
immediately α-certified, but after applying Algorithm 1 we obtain the α-certified solu-
tion: y∗ + ε = (y1, y2, y3) = (−1.45415181, −1.60583278, −1.88808307).

Example 4.13. We now consider the same sample X = (2, 5, 7) with uniform weights. As 
discussed in Example 2.7, LogConcDEAD output suggests that the logarithm of the optimal 
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Fig. 7. The height functions for (a) Example 4.12; (b) Example 4.13; (c) Example 4.15.

Table 1
Number of binary digits needed to certify n + 1 points with weights coming from an asymmetric binomial 
distribution.

n 3 4 5 6 7
binary digits 22 23 27 31 31

density has a single region of linearity (Fig. 7c). Can we certify this assessment? Recall 
that substituting y2 = 2

5y1 + 3
5y3 to S(y1, y2, y3) = 1

3y1 + 1
3y2 + 1

3y3−3 ey1−ey2

y1−y2
−2 ey2−ey3

y2−y3

gives

S̃ = 7
15y1 + 8

15y3 − 5e
y1 − ey3

y1 − y3
.

The system of equations ∇S̃ = 0 does have solutions, and we were able to check that 
the numerical solution y∗ computed by LogConcDEAD is an α-certified solution to this 
amended system of equations.

Example 4.14. We used Algorithm 1 to certify the sample X = (0, 1, 2, . . . , n) ⊂ R for 
weights given by the binomial distribution with p = 6/11, i.e., wi =

(
n
i

)
(6/11)i(5/11)n−i. 

Looking at the LogConcDEAD output, we suspect that the triangulation given by the 
points consists of all consecutive line segments {i − 1, i} for i ∈ 1, 2, . . . , n. We therefore 
compute α-values using the system of equations corresponding to the full triangulation. 
In all cases tested, we were able to certify the system for some refinement of the original
LogConcDEAD output. In Table 1, we summarize the number of binary digits required 
for certification in each case. This table suggests that the complexity of α-certifying 
increases when the number of sample points increases.

We now present an example in two dimensions that needs more significant digits than 
the previous cases.

Example 4.15. We consider the point configuration from [49, Example 1.1], given by

X = ((0, 0), (0, 100), (22, 37), (36, 41), (43, 22), (100, 0)) ⊂ R2
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and uniform weights. The package LogConcDEAD returns the heights

(y1, y2, y3, y4, y5, y6)

= (−8.789569,−8.772087,−8.253580,−8.217959,−8.236983,−8.756922)

as the optimal solution. This gives rise to a triangulation of the convex hull of the data 
points with regions of linearity consisting of the triangles

{1, 2, 3}, {1, 3, 5}, {1, 5, 6}, {2, 3, 4}, {2, 4, 6}, {3, 4, 5}, {4, 5, 6},

in Fig. 7b. This data gives an α-value of 1026, which is much larger than the required 
0.157671. However, the system of equations it came from has a relatively high degree 
and the polynomial equations, when expanded, have between 929 and 1564 terms. We 
try to decrease the α-value using the uniform sampling algorithm described above. We 
create a list of 729 = 36 points in R6, consisting of all points whose i-th coordinate is

yi + εi2−14, εi ∈ {−1, 0, 1}.

After a few repetitions, this finds a point with a lower alpha value. We repeat this 
process, each time decreasing the exponent of 2 when creating the new test points. After 
95 rounds we detect the refined point

⎡⎢⎢⎢⎢⎣
−8.789570552675578322471018111262921
−8.772086862481395608253513836856700
−8.253580886913590521217040193671505
−8.217957742357924329528595494315867
−8.236983233544571734253428918807660
−8.756919956247208359690046164738877

⎤⎥⎥⎥⎥⎦
with alpha value 0.125519. Therefore, this new solution is α-certified. Note that this 
number has 34 decimal digits; we have rounded digits coming from the conversion from 
base 2 (109 digits) after this position. Our conclusion is that the triangulation obtained 
by the heights in the LogConcDEAD output is certifiably correct.

Example 4.16. We finish our paper by returning to our motivating Example 1.1 from the 
introduction, and consider two possible subdivisions of P = conv(X) for the regions of 
linearity of the optimal tent function:

Δ1 = {{1, 2, 3}, {1, 3, 4}, {2, 3, 4}, {2, 4, 12}, {1, 4, 8, 11}, {4, 11, 12}, {8, 11, 12, 13, 14}}

and

Δ2 = {{1, 2, 3}, {1, 3, 4}, {2, 3, 4, 12}, {1, 4, 8, 12, 13, 14}}.
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Fig. 8. Subdivisions in Example 4.16. (a) Subdivision Δ1 (b) Subdivision Δ2 (c) The subdivision induced 
by y∗

Δ1
.

The first subdivision Δ1 in Fig. 8a arises from the LogConcDEAD output with default 
parameters after using the “unique” function. The second subdivision Δ2 in Fig. 8b 
is given by the four regions of linearity in Fig. 1 that we get by adjusting the preci-
sion in LogConcDEAD and then using the “unique” function. Unfortunately the objective 
functions involved have too many summands for α-certification to be feasible.

As an alternative, we use the NMaximize command in Mathematica directly on the 
objective functions SΔ1 and SΔ2 . The optimal y∗Δ1

for the 7-cell subdivision gives a tent 
function whose regions of linearity are

{{1, 2, 3}, {1, 8, 13}, {1, 3, 13}, {2, 3, 14}, {3, 13, 14}},

which are depicted in Fig. 8c. This triangulation is not refined by the subdivision Δ1: For 
example, the triangle {1, 3, 4} in the subdivision Δ1 intersects the interiors of triangles 
{1, 3, 13}, {2, 3, 14}, {3, 13, 14}. Thus the 7-cell subdivision Δ1 is not the subdivision that 
we are looking for. In fact, the vector y∗Δ1

is not relevant, i.e. there exists xi such that 
hX,y∗

Δ1
(xi) > yi, and as a result 

∫
P

exp(hX,y∗
Δ1

(t)) �= 1.
The command NMaximize gives for the 4-cell subdivision

y∗Δ2
= ( − 4.32285,−4.7141,−4.2737,−4.14495,−4.26961,−4.10156,−3.94188,

− 3.91671,−3.94162,−3.80042,−3.76397,−3.68413,−3.69541,−3.62252).

In comparison, the optimal height vector that we obtain using LogConcDEAD is

y∗ = ( − 4.322797,−4.714126,−4.273678,−4.144934,−4.269616,−4.101524,−3.941869,

− 3.916668,−3.941666,−3.800423,−3.764006,−3.684179,−3.695395,−3.622560).

A computation in Polymake verifies that y∗Δ2
gives a tent function whose regions of 

linearity are exactly the cells of Δ2. This suggests that the 4-cell subdivision Δ2 is 
indeed the subdivision induced by the optimal y∗ in Example 1.1. We conclude with a 
haiku.
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Approximate heights,
subdivisions inexact.
A long road ahead.
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