

International Journal of Advanced Robotic Systems

RRT*-SMART: A Rapid Convergence
Implementation of RRT*

Regular Paper

Jauwairia Nasir1,2, Fahad Islam1,2, Usman Malik1,
Yasar Ayaz1, Osman Hasan2, Mushtaq Khan1 and Mannan Saeed Muhammad1,3,*

1 Robotics & Intelligent Systems Engineering (RISE) Lab, Department of Robotics and Artificial Intelligence,
School of Mechanical & Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
2 Department of Electrical Engineering, School of Electrical Engineering & Computer Sciences (SEECS),
National University of Sciences and Technology (NUST), Islamabad, Pakistan
3 Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, South Korea
* Corresponding author E-mail: mannan@hanyang.ac.kr

Received 30 May 2012; Accepted 3 Jun 2013

DOI: 10.5772/56718

© 2013 Nasir et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract Many sampling based algorithms have been
introduced recently. Among them Rapidly Exploring
Random Tree (RRT) is one of the quickest and the most
efficient obstacle free path finding algorithm. Although it
ensures probabilistic completeness, it cannot guarantee
finding the most optimal path. Rapidly Exploring
Random Tree Star (RRT*), a recently proposed extension
of RRT, claims to achieve convergence towards the
optimal solution thus ensuring asymptotic optimality
along with probabilistic completeness. However, it has
been proven to take an infinite time to do so and with a
slow convergence rate. In this paper an extension of
RRT*, called as RRT*-Smart, has been prposed to
overcome the limitaions of RRT*. The goal of the
proposecd method is to accelerate the rate of
convergence, in order to reach an optimum or near
optimum solution at a much faster rate, thus reducing the
execution time. The novel approach of the proposed
algorithm makes use of two new techniques in RRT*--
Path Optimization and Intelligent Sampling. Simulation
results presented in various obstacle cluttered
environments along with statistical and mathematical

analysis confirm the efficiency of the proposed RRT*-
Smart algorithm.

Keywords Biasing Radius, Path Optimization, Biasing
Ratio

1. Introduction

Motion Planning is a domain which involves finding a
feasible trajectory that connects the starting point to the
goal point while avoiding collision with the obstacles.
The geometry of Robot and the obstacles is defined in a
2D or 3D configuration workspace and the motion is
represented by a path in the configuration space. Motion
planning has a lot of applications in various fields
including autonomy, automation, architectural designs,
AI for video games, digital character animations,
molecular biology and robotic surgery. The field of
Motion Planning and Navigation has gained immense
popularity and importance in the recent years due to the
fact that current trends in robotics research for both

1Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com

ARTICLE

www.intechopen.com Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013

http://crossmark.crossref.org/dialog/?doi=10.5772%2F56718&domain=pdf&date_stamp=2013-01-01

industrial and domestic needs are focused towards
intelligent automation.

In the last four decades, many path planning algorithms,
including geometric, grid-based, potential field, neural
networks, genetic and sampling based algorithms, have
been proposed for various static and dynamic
environments. Each of these algorithms has its own
advantages and shortcomings in finding the most
efficient path planning solution in terms of space and
time complexity and path optimization [1-6]. Sampling
based algorithms are among the latest and most popular
path planning algorithms. As compared to other
probabilistically complete algorithms, they are
computationally less complex, and have the ability to find
solutions without using explicit information about the
obstacles in the configuration space. They rely on a
collision checking module and build a roadmap of
feasible trajectories made by connecting together a set of
points sampled from the obstacle-free space. An extensive
comparative study and analysis of a number of sampling
based techniques has been presented by various
researchers over the years [7], [8], and [10]. Rapidly
Exploring Random Tree (RRT) [9], is one of the quickest
algorithms in finding the first path but it does not ensure
asymptotic optimality [10]. To improve the efficiency of
the RRT algorithm, various methods have been presented
including potential function planner [11], density avoided
sampling [12] including variations of such planners as
well [13-17]. However, the major breakthrough came with
the development of RRT* in 2010 [10]. Rapidly Exploring
Random Tree Star (RRT*) is one of the recent sampling
based algorithms which was also presented as an
extension to RRT. Its major advantage over other
algorithms is that it finds an initial path very quickly and
then later keeps on optimizing it as the number of
samples increases. Thus, apart from probabilistic
completeness it ensures asymptotic optimality [10],
unlike the predecessor sampling based algorithms like
RRT [10], [13], Probabalistic Road Map (PRM) [14] and
RRTConnect [13]. A few recent sampling based
algorithms are also asymptotically optimal like PRM* [14]
and RRG [10], yet RRT* has the advantage over these
planners in terms of both time complexity and space
complexity as explained by Keraman and Frazolli in [10].

Although RRT* claims to reach an optimal solution, it
never reaches that optimality in finite time [10]. Also, the
rate of convergence is slow. This manuscript addresses
these issues by introducing RRT*-Smart, which instead of
employing purely random space exploration, performs an
informed exploration of search space. It makes use of the
first path found by RRT* as an intelligent guess to help in
exploring the configuration space. Moreover, it uses
intelligent sampling to give an optimum or near optimum
path at a very fast rate of convergence and reduced
execution time. The solution obtained by RRT*-Smart also

facilitates the robot to track the trajectory as it is straighter
and with less way points. Thus, it gives a more efficient
path planning solution as compared to RRT*. The
algorithm proposed, in this manuscript, demonstrantes
these distinguishing features through experimental
results and performance analysis.

The remainder of the paper is organized as follows. In
Section 2, RRT* is discussed. RRT*-Smart is presented in
Section 3. Sections 4 cover results and performance
analysis. Section 5 explains the optimization parameters.
Section 6 concludes the paper and highlights future
research avenues.

2. RRT* Algorithm

This section briefly introduce motion planning using the
RRT* algorithm to build the background for
understanding RRT*-Smart. RRT* is an incremental
sampling based algorithm which finds an initial path
very quickly. The path is later optimized as the execution
takes place [10], [20].

Let X define the configuration space in which Xobs is the
obstacle region, Xfree = X / Xobstacle is the obstacle-free region
and Xgoal is the goal region. RRT* works to find out an
input u: [0:T] ϵ U that yields a feasible path x(t) ϵ Xfree that
starts from x(0) = x-initial to x(T)= goal following the
system constraints. While finding this solution, RRT*
maintains a tree Ƭ= (V, E) of vertices V sampled from the
obstacle-free state space Xfree and edges E that connect
these vertices together. This algorithm makes use of a set
of procedures which are explained as below :

Sampling: It randomly samples a state zrand ϵ Xfree from the
obstacle-free configuration space.

Distance: This function returns the cost of the path
between two states assuming the region between them is
obstacle free. The cost is in terms of Euclidean distance.

Nearest Neighbor: The function Nearest(Ƭ, zrand) returns
the nearest node from Ƭ=(V, E) to zrand in terms of the cost
determined by the distance function.

Steer: The function Steer (zrand, znearest) solves for a control
input u[0,T] that drives the system from x(0)=zrand to
x(T)=znearest along the path x: [0,T] → X giving znew at a
distance ∆q from znearest towards zrand where ∆q is the
incremental distance.

Collision Check: The function Obstaclefree(x) determines
whether a path x:[0,T] lies in the obstacle-free region Xfree
for all t=0 to t=T.

Near-by Vertices: The function Near(Ƭ, zrand, n) returns the
nearby neighboring nodes that lie in a ball of volume (β

2 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com

(logn/n)) around zrand, where β is a constant that depends
on the planner.

Insert node: The function Insertnode(zparent, znew, Ƭ) adds a
node znew to V in the tree Ƭ =(V, E) and connects it to an
already existing node zparent as its parent, and adds this
edge to E. A cost is assigned to znew which is equal to the
cost of its parent plus the Euclidean cost returned by the
Distance function between znew and its parent zparent.

Rewire: The function Rewire(Ƭ, Znear, zmin, znew) checks if the
cost to the nodes in Znear is less through znew as compared
to their older costs. If it is for a particular node, its parent
zparent is changed to znew.

Pseudocode describing RRT* is shown in Algorithm 1.

 1 Ƭ ← InitializeTree();
 2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
 3 for i=0 to i=N do
 4 zrand ← Sample(i);
 5 znearest ← Nearest(Ƭ, zrand);
 6 (xnew, unew, Tnew) ← Steer (znearest, zrand);
 7 if Obstaclefree(xnew) then
 8 Znear ← Near(Ƭ, znew, |V|);
 9 zmin ← Chooseparent (Znear, znearest, znew, xnew);
 10 Ƭ ← InsertNode(zmin, znew, Ƭ);
 11 Ƭ ← Rewire (Ƭ, Znear, zmin, znew);
 12 return Ƭ

Algorithm 1. Ƭ = (V, E) ← RRT*(zinit)

At first, a sample zrand is placed randomly in the
configuration space Xfree. Then, the nearest node znearest to
zrand is checked for in the entire configuration space. A node
znew is placed at a distance ∆q from the nearest node znearest in
the line of direction of zrand. Then, the trajectory path xnew is
checked if it is free of obstacles. If the trajectory is obstacle
free then a ball of radius β(logn/n) around znew is checked for
near nodes Znear. Among this set of nodes, the node that
gives the least cost from the starting point to znew through
itself is selected as the parent of znew. Once the parent is
selected, rewiring takes place. The costs of all the nodes
inside this ball around znew is calculated through znew. If this
cost is less than the previous cost for any node then that
particular node is disconnected from its old parent and is
connected to znew as its parent.

RRT* is a landmark sampling based algorithm to
approach an optimal solution ensuring asymptotic
optimality, apart from probabilistic completeness, as
opposed to its predecessor RRT (and its various other
improved versions). Although it tends to approach an
optimal solution but it has been proven mathematically
that it reaches the said solution in infinite time [10]. To
overcome these limitations, a rapid convergence version
of RRT* known as RRT*-Smart is proposed in this paper,
which moves towards an optimal solution at a
significantly faster rate.

3. RRT*-Smart Algorithm

This section describes the RRT*-Smart algorithm and the
two proposed key concepts --Intelligent Sampling and
Path Optimization. Initially, RRT*-Smart randomly
searches the state space as RRT* does. Similarly, the first
path is found just like the RRT* would try to find a path
by random sampling in the configuration space. Once this
first path is found, it then optimizes it by interconnecting
the directly visible nodes. This optimized path yields
biasing points for intelligent sampling. At these biasing
points, sampling takes place at regular intervals, which
are governed by a constant b that in turn depends upon
the biaisng ratio explained in Section 6. This process is
continued, as the algorithm progresses and the path is
optimized continuously. Whenever, a shorter path is
found, the biasing shifts towards the new path. This
process is outlined in Algorithm 2.

 1 Ƭ ← InitializeTree();
 2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
 3 for i=0 to i=N do
 4 if i=n+b, n+2b, n+3b…. then
 5 zrand ← Sample(i, zbeacons);
 6 else
 7 zrand ← Sample(i);
 8 znearest ← Nearest(Ƭ, zrand);
 9 (xnew, unew, Tnew) ← Steer (znearest, zrand);
 10 if Obstaclefree(xnew) then
 11 Znear ← Near(Ƭ, znew, |V|);
 12 zmin ← Chooseparent (Znear, znearest, znew, xnew);
 13 Ƭ ← InsertNode(zmin, znew, Ƭ);
 14 Ƭ ← Rewire (Ƭ, Znear, zmin, znew);
 15 if InitialPathFound then
 16 n ← i;
 17 (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal);
 18 if (directcostnew < directcostold)
 19 zbeacons ← PathOptimization(Ƭ, zinit, zgoal);
 20 return Ƭ

Algorithm 2. Ƭ = (V,E) ← RRT*Smart(zinit)

The steps 1 to 3 and 7 to 14 execute in the same way as
the corresponding ones in RRT*. Once the initial path is
found, (i.e., in step 15) the function InitialPathFound
returns the iteration number n at which this path is
found. This n is then used to inform the algorithm when
to start the biased sampling. This biased sampling then
starts with an interval time defined by the constant b. The
function (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal)
determines an optimized path by directly connecting the
nodes in the path that are visible to each other and
returns its cost (step 17). In steps 18 and 19 beacons (the
nodes which form the basis for intelligent sampling) are
being formed from the function zbeacons ←
PathOptimization(Ƭ, zinit, zgoal), only if the new cost is less
than the old cost. Otherwise, the old beacons keep on
biasing the tree. In steps 4-5, zrand ← Sample (i, zbeacons),
samples are being spawned at the beacons within a ball of
radius Rbeacons centered at zbeacons. After the initial beacons

3Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com

are found, intelligent sampling takes place with a certain
percentage; i.e., after every few samples that are placed in
the normal way as for RRT* (steps 7 to 9), one sample is
spawned in the vicinity of the beacons.

3.1 Path Optimization

Once RRT* gives an initial path, the nodes in the path x:
[zinit, zgoal] → X that are visible to each other are directly
connected. An iterative process starts from zgoal and moves
towards zinit checking for direct connections with
successive parents of each node until the collision free
condition fails. By the end of this process, no more
directly connectable nodes are present. Hence the path is
optimized based on the concept of the Triangular
Inequality as illustrated in Fig. 1. According to the
Triangular Inequality, c is always less than the sum of a
and b, and hence always gives a shorter path. The
proposed path optimization is elaborated in Algorithm 3,
where, zvc is a visibilty check node, which is used for
notation in the psuedocode.

Figure 1. Path Optimization based on Triangular Inequality.

 1 while (! visible nodes)
 2 zvc = zgoal ;
 3 while (! zinit)
 4 if Obstaclefree (zvc, zvc-parent-to-parent)
 5 zvc-parent = zvc-parent-to-parent ;
 6 zvc = zvc-parent ;
Algorithm 3. (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal)

The number of nodes present in this path are thus
reduced, as compared to the original path found by RRT*.
These nodes are termed as Beacons (zbeacons), which form
the basis for intelligent sampling.

Every time a new RRT* path with a shorter cost is found, it
is optimized by the path optimization technique to give a
relatively better path. The cost of this optimized path is
compared with the cost of the previous optimized path. If
the cost is better, then the nodes that are present in this
path are selected as beacons zbeacons, for intelligent sampling.

At each visibility check between two nodes, the collision
free check is required. For this purpose, an interpolation
technique is utilized in the proposed method, which
works by constructing every point on the line (by

connecting all the nodes together), while making sure
that the newly added points lie in the free configuration
space. This method of visibility check does not need
explicit information about obstacles as required in other
collision checking methods, [21]. Hence, the proposed
method of interpolation for collision free checking is
independent of the shape of the obstacles and is
computationally less expensive.

3.2 Intelligent Sampling

The idea behind intelligent sampling is to approach
optimality by generating the nodes as close as possible to
the obstacle vertices following the underlining idea of
visibility graph technique. However, the visibility graph
techniques require complex environmental modeling and
explicit information about obstacles, [2]. Furthermore the
basic visibility graph method may not reach a solution in
environments containing obstacles with complex
geometries (concave, polygonal, circular etc). Some
solutions in this regard have been presented like Reduced
Visibility Graphs [22], which improve the efficiency of
visibility graphs. Whereas, Generalised Visibility Graphs
[22], are an extension of the basic technique that form
paths around intricate complex geometries. However, in
doing so, the computational complexity for Generalised
Visibility Graphs is increased to a great extent as it find
solution for all the complex gemotroies present in the
configuration space. On the other hand, in sampling
based RRT*-Smart, the path is optimized only along the
periphery of those obtscales which lie along the optimum
path or the intermediate paths.

Once the initial path has been found, intelligent sampling
starts with a certain number of samples being directly
spawned (steps 4 and 5 of Algorithm 2) in a ball of radius
Rbeacons centered at zbeacons. The sampling is biased towards
these beacons because they provide useful clues
regarding the position of obstacle vertices (or periphery
in the case of circular obstacles). Therefore, these beacons
need to be surrounded by maximum nodes to optimize
the path at these turns. This feature forces the proposed
algorithm to reach the optimal solution in less number of
iterations, as compared to RRT*, as later demonstrated in
the experimental results section of this paper.

As the algorithm iterates an optimized path is calculated,
when ever a new RRT* path is found.. The cost of this
new optimized path is compared with the previous
optimized path. If the cost is smaller, new beacons, zbeacons,
are generated resulting in the formation of new biasing
points. These newly formed beacons are closer to the
vertices. This process continues until the required
iterations are completed.

Although the obstacles are not being explicitly defined by
keeping the beneficial property of sampling based
algorithms intact; the proposed algorithm finds a way to

4 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com

spawn the tree nearer to the vertices by using intelligent
guessing and biasing beacons, which eventually leads
towards an optimal/near-optimal path x:[zinit,zgoal] →optimal
X. This path also has a very few number of samples which
are shown in Section 5. Hence, the RRT*-Smart algorithm
works to provide a much better solution at a faster rate of
convergence. The proposed algorithm also finds a simpler
path for the mobile robots to follow in any kind of
environment due to the less number of waypoints.

Figure 2. (a) First Path given by RRT* at n=650. (b) An optimized
path (in blue) is shown after the Path Optimization technique is
applied on the path shown in (a). (c) shows clustered samples as
a result of biasing towards the beacons (in green) at n=2500; (d)
shows the optimum path at n=4200

Fig. 2 demonstrates the effectiveness and working of the
RRT*-Smart algorithm. An initial path is found in Fig. 2(a) at
n=650. In Fig. 2(b), path optimization yields an optimized
path, as shown in blue. The green dots are the beacons that
are formed for this initial path. After n=2500, clustered
samples are formed around the beacons, as demonstrated
in Fig. 2(c). Finally, after an iterative process, an optimized
path is found for this obstacle scenario at n=4200.

The space and time complexity for RRT* are given by
O(n) and O(nlogn), respectively [10]. Mathematical
analysis of RRT*-Smart shows that the space and time
complexity is the same as that of RRT* but the value of n
is significantly reduced in case of RRT*-Smart. Thus, O(n)
and O(nlogn) for RRT*Smart yields much better
performance. However, as the performance improves and
the biasing ratio increases, the randomness in the
exploration of the tree decreases as a number of nodes are
now used to optimize the path in a particular region.
Therefore, there is a tradeoff between intelligent sampling
and the space exploration rate.

4. Results and Performance Comparison

This section demonstrates the results for RRT*-Smart in
four seperate environments, each with different obstacle
scenario. The statistical and analytical comparison
between RRT* and RRT*-Smart is also presented in this
section, along with a t-student test for testing equality of
the means for the two methods.

In the figures, the hollow red box represents the goal
region; the solid red blocks represent the obstacles while
the trajectory is depicted by a black line. The algorithm
provides an optimal/near-optimal solution in the circular,
local minima and cluttered environment. It can be
observed that the path optimization and the intelligent
sampling techniques, that this algorithm employs, is
independent of the obstacle shape, as highlighted in the
previous section. It not only optimizes the path for
obstacles with straight edges but also for those with
rounded peripheries, as illustrated in Fig. 3(a).

Figure 3. RRT*-Smart in different obstacle Environments with
constant biasing ratio

The number of beacons that are being used to optimize
the path in each obstacle environment may be different.
In case of rounded obstacles as in Fig. 3(a), the number of
beacons may be significantly greater than in cases where
the obstacles are with straight edges. This is due to the
reason that now more number of nodes are required to
cover the circular periphery of the obstacle to provide the
most optimum path possible.

4.1 Statistical Analysis

An experimental comparison between RRT*-Smart and
RRT* by analyzing their performance from various
perspectives is presented in this section. At first, the
results of the two algorithms in Fig. 4 are used to
illustrate their comparative differences.

5Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com

Figure 4. A comparison of RRT* and RRT*-Smart using simulation results at 800, 1200 and 4200 iterations.

It is clear from the Fig. 4(d) that RRT*-Smart uses the
RRT* path with a cost of 630.18 at the iteration number n
=800 shown in Fig. 4(a) and finds a more optimal path
with a cost of 584.02, as shown in Fig. 4(d), with an equal
number of iterations using the path optimization
technique. Utilizing intelligent sampling and further path
optimization, the cost in Fig. 4(e) has further reduced to
557.478 at n=1200 while RRT* converging with its original
rate manages to reach a cost of 624.95 with an equal
number of iterations, as shown in Fig. 4(b). Finally, RRT*-
Smart gives an optimal/near-optimal solution at n=4200
with a cost of 540.12 as shown in Fig. 4(f). With the same
number of iterations, RRT* converges to a path with a
cost of 574.009, Fig. 4(c). The efficiency in terms of path
cost is evident from this comparison.

A statistical comparison between the two algorithms using
graphical results for the experiment is shown in Fig. 5. The
figure clearly demonstrates the convergence pattern of the
costs of RRT* and RRT*-Smart. It can be seen that RRT*-
Smart not only has a much faster rate of convergence but
also approaches the optimum cost after finite iterations
whereas RRT* is still in the process of reaching an optimal
solution with relatively slower ratof convergence.

In Fig. 6, iterations are plotted against different fixed
costs. It can be observed that for approaching the same
cost, as the algorithms iterate, towards finding an optimal
solution the number of iterations for RRT* is far greater
than RRT*-Smart. The cost of 540 is achieved by the latter
algorithm at 4200 iterations whereas RRT* fails to achieve
this cost even at very large number of iterations, as
shown by the same graph. Fig. 7 shows the path cost
versus time comparison for the implementation of the

two algorithms. It is observed that RRT* takes
significantly greater time as compared to RRT*-Smart in
reaching the same cost. These results have been obtained
using a 2.1 GHz Intel corei3 processor with a 4GB RAM.

Figure 5. Costs are plotted against iterations showing the rate of
convergence of both RRT* and RRT*-Smart.

Figure 6. Iterations are plotted against different fixed costs.

15000

22600
29500∞

800 900 1400 4200

0

10000

20000

30000

40000

563 557 555 540

N
um

be
r o

f
ite

ra
tio

ns

Costs

RRT*

RRT*Smart

6 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com

Figure 7. Time comparison against fixed costs. Constant b is
taken as 2 for RRT*-Smart.

Fig. 8 highlights the running time ratio of RRT* to RRT*-
Smart. The graph shows that the ratio is always greater
than 1 for the implementation of both algorithms,
proving the time efficiency of RRT*-Smart over RRT*.

Figure 8. Running Time Ratio of RRT* over RRT*-Smart is
plotted against iterations. Constant b is taken as 2 for RRT*-
Smart.

Figure 9. Costs of path in fifty different environments for 2500
iterations with dynamic biasing ratio scheme.

Fig. 9 demonstrates the behavior of RRT* and RRT*-Smart
in fifty different obstacle environments. For each

environment, the cost is plotted for a fixed number of
iterations n. It can be seen that the graph of RRT*-Smart
consistently stays below the graph of RRT*, showing that
in all these environments the path costs found by RRT*-
Smart remains less than the path costs of RRT*, hence
proving the efficiency of RRT*-Smart.

Analyzing the performance comparison results, it can be
concluded that RRT*-Smart is more efficient than RRT*
not only with respect to path optimization but also in
terms of computational time.

Comparative Statistical Analysis using t-Student test:

The two algorithms are compared in three different
environments; including a maze, a narrow passage and a
cluttered environment (with increasing number of
obstacles), each solved for atleast 5 times. Fig.10 shows
the results for one particular instance out of the five
experiments performed in a Maze and a narrow passage
environment, for both RRT*-Smart and RRT*. In Fig.10 (a
and c), the red hollow box represents the goal region
while in Fig.10(b and d), S and G denote the starting point
and the goal position respectively. Similarly, Fig.11
compares the two algorithms in the cluttered
environment, again for one particular instance, with
increasing number of obstacles. In each figure, the
obstacles are represented in red color, the goal region is
shown by a red box and the trajectory is represented in
black.

The results are summmarized in Table 1. followed by a
statistical analysis of t-Student test for testing equality of
the means of the two methods. This statistical test called t-
Student test is often used by the researchers and scientists
to assess whether two groups significantly differ from
one another. We performed an unpaired t-test between
the two sets of samples, one for RRT*-Smart and the other
for RRT*. Each set consists of 5 values of path costs
calculated after solving that particular environment for 5
times considering the stochastic nature of the methods.
The cost in each case contributes to the data, that is used
to perform this test. The minimum, maximum, average,
standard deviation values and the t-value for each
experiment (along with the reference tabulated value z
for 95 % confidence level) at 8 degress of freedom are
presented in Table I. Comparing the value of t with the
tabulated values of 2.31 (p=0.05) to 5.04 (p=0.001), it is
observed that the value of t of the proposed scheme is
greater in each case as compared to the other methods.
Thus, according to the principles t-test theory, the
difference between the means is very significant and so
clearly RRT*-Smart provides significantly improved costs
as compared to RRT* for the same number of iterations.

266
368

636 ∞

8 9 11 51

0

200

400

600

800

563 557 555 540

Ti
m

e
(s

ec
s)

Costs

RRT*

RRT*Smart

7Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com

Figure 10. A comparison of RRT* and RRT*-Smart in environments with maze and narrow path.

Environment Algorithm Iterations Minimum Maximum Average Standard Deviation t value z
Maze

(Fig. 10 a,c)
RRT*-Smart 2000 664 672 668 2.97 28.8 2.31

RRT* 720 727 722 2.95
Narrow Passage

(Fig. 10 b,d)
RRT*-Smart 2500 597 607 602 4.34 15.2 2.31

RRT* 631 637 633 2.28
Cluttered with 5 obstacles

(Fig. 11 a,e)
RRT*-Smart 2000 575 582 578 2.77 14.4 2.31

RRT* 601 610 606 3.21
Cluttered with 50 obstacles

(Fig. 11 b,f)
RRT*-Smart 2000 603 609 607 2.49 11.0 2.31

RRT* 621 627 624 2.45
Cluttered with 100 obstacles

(Fig. 11 c,g)
RRT*-Smart 2000 583 591 588 3.13 36.3 2.31

RRT* 662 672 666 3.70
Cluttered with 200 obstacles

(Fig. 11 d,h)
RRT*-Smart 2500 601 605 603 2 18.8 2.31

RRT* 631 639 635 3.29

Table 1. Statistical comparison of RRT* and RRT*-Smart using the t-student test.

Figure 11. A comparison of RRT* and RRT*-Smart using simulation results in environments with 5, 50, 100 and 200 obstacles.

8 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com

4.2 Complexity Analysis

The space and time complexity of RRT* as demonstrated
in [10] is given by O(n) and O(nlogn). Mathematical
analysis of RRT*-Smart shows that its space and time
complexity also same as of RRT, but the value of n is
significantly reduced in order to achieve same optimality.
Hence, the proposed method yields better performance as
compared to RRT*.

Space Complexity

Space complexity of an algorithm is defined as the
amount of memory that is required by an algorithm to
execute. It is clear by the above discussion that RRT*-
Smart requires n number of memory configurations for n
number of iterations to execute. Hence showing a linear
space complexity of O(n), just like RRT*.

Time Complexity

Time complexity of an algorithm is defined as the amount
of time that is required by the algorithm to execute a
problem of size n. The additional steps of path
optimization, intelligent sampling and the collision
checking method of interpolation that have been
introduced in RRT*-Smart have complexities that are
insignificant enough to have no effect on the complexity
of the algorithm. The analysis of the T-Notation for both
RRT* and RRT*-Smart, shows that for the same number
of iterations the time for RRT*-Smart is significantly less
as compared to RRT*.

Complexity of the Path Optimization step

Path optimization technique is applied when ever a new
smaller path as compared to the previous one is found.
Let us assume that the new path is found for Delta
number of times. The computational complexity of this
step be given by:

Delta x Direct cost

Where,
Direct cost = {f x yf/2 x (Cost of each collision check)}
yf is number of nodes in the RRT* path found for each
iteration f.
f is number of times the iterative process is repeated for
each path until all the visible nodes are directly
connected.

The cost of a collision check is always some constant
value. As the path will move towards optimization, the
direct cost will reduce with time. It is interesting to note
here that the upper bound of Delta depends upon the
particular environment but will always be significantly
less than the total number of iterations n, and would
always be a finite value for reaching an optimal solution
in a particular obstacle scenario. This is due to the finite

number of the path (or the paths) which lead to optimal
solution, and are significantly small in comparison to n.
Hence, making this term ineffective in terms of
computational complexity as it is independent of the
number of iterations n.

Delta <<< n

This is supported by statistical results for three different
obstacle scenarios, as shown in Table II. In each of these
scenarios, the algorithm is executed until the optimized
path is found.

Environment Optimized

Cost
Iterations
Required (n)

Delta Result

Circular (Fig3(a)) 237 9100 17 Delta<<n
Potential(Fig3(b)) 382 7500 22 Delta<<n
Cluttered(Fig3(c)) 408 13000 55 Delta<<n

Table 2. A comparison of values of delta and n in three different
obstacle scenarios

Complexity of Intelligent Sampling step

Let p be a constant which defines the number of times a
node will be placed at a beacon. This depends on the the
constant b. Greater the biasing ratio, greater will be the
value of p for the same configuration space and number
of iterations. So, the complexity of this time may be given
by p×c where c is a constant time to place a sample.

Reduced complexity of Sample, Nearest and Steer Step

Each of these steps will now execute (n-p) times because
for p times the nodes are being placed directly at the
beacons zbeacons, whereas, n is equal to the total number of
iterations. Though this does not effect the O-Notation in
any way but explains the reduced computational
complexity and one of the factors that leads to reduced
execution time as demonstrated in Fig. 7.

Thus, it can be concluded that the O-Notation for the time
complexity of RRT*-Smart is unaffected by the additional
steps. The performance of RRT*-Smart has been
improved as:

1. n is significantly reduced and
2. Execution of RRT* sample step, nearest step and steer

step has been reduced by a factor p, replaced by a
single step with the same computational complexity
as that of RRT* sample step, and also, a path
optimization step which has an insignificant
contribution as Delta <<< n.

5. Algorithm Characteristics

5.1 Biasing Radius

Biasing radius is the radius of sphere within which
biasing takes place around Zbeacon. The radius Rbeacon can be

9Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com

chosen according to the planner’s requirements. For a
relatively larger Rbeacon in a configuration space, the path
has a greater chance of moving quickly towards an
optimum path, and then with continuing iterations, the
convergence rate slows down. On the other hand, when
the radius Rbeacon is small for the same configuration space,
the convergence rate of the path towards an optimum
solution will be slower, but once an optimum enough
path is found, it is more certain to reach an optimized
value at a faster rate.

This might be seen as a tradeoff between the planning
time and the navigation time. If, for example, a motion
planning and navigation problem is put up which could
be solved by using this algorithm, and also which is more
concerned about reducing planning time rather than
navigation time, then the better solution for it will be a
larger radius and vice versa. However, there is a limit to
increasing the radius. If, it is increased to a very large
value then the algorithm’s behaviour becomes very
identical to that of RRT*. For the environment shown in
Fig. 2, the experimental results for various biaising radius
vs the number of iterations to reach the same cost is
presented in a tabulated form in Table III. As the size of
radius is increased beyond a certain level, the number of
iterations required to reach the optimum cost increases
significantly hence approaching the trend of RRT*, as for
biasing radius of 25 in the Table III .

A biasing radius in the range of 10 to 15 is used for all the
experiments performed in a configuration space of the
same size. A good approximation is to use a biasing
radius in accordance with the size of the configuration
space.

Biasing Radius Number of Iterations Cost
11 4300 540
13 4600 540
15 5200 540
17 8000 540
25 40000 540

Table 3. No. Of iterations for different biaisng radius to achieve
the same cost of 450 at a biaisng ratio of 2

5.2 Biaising Ratio

Biasing ratio determines the number of times a sample
has been spawned directly at a beacon instead of being
sampled normally. For a constant biasing ratio
throughout the entire planning phase, the choice depends
upon the planner. It must be noted that changing this
ratio does affect the trend of reaching optimality.

The effect of choosing different constant biasing ratio for
the same obstacle environment is evident from the results
shown in Table IV. These results have been obtained by
using the environment of Fig. 3(c).

The results shown in Table IV demonstrate that for the
same environment, there exists an optimized value of
biasing ratio that balances the rate of biasing and
exploration to give the optimum/near optimum cost. Any
value of biasing ratio that is above or below this
optimized value will get the optimum/near-optimum
solution using a larger number of iterations.

Biasing Ratio Number of Iterations Costs
5 23000 408
7 17300 408
10 21600 408

Table 4. No. Of iterations for different biaisng ratio to achieve
the same cost of 408

A constant biasing ratio has been choosen for all the
results presented in this manuscript. However, a generic
scheme of dynamic biasing ratio is also presented, while
the execution of the proposed algorithm caters for the
limitations of constant biasing ratio scheme.

Generic Dynamic Biasing Ratio Scheme

By introducing intelligent sampling, a tradeoff has been
set between the rate of convergence and the rate of
exploration as explained earlier in this section. To reach
an optimal solution, it is not only necessary to converge at
a faster rate through strong biasing, but also the
exploration of the configuration space is of equal
important. The complexity of an environment is directly
related to this challenge of choosing a suitable biasing
ratio to optimize the output. A scheme of dynamic
biasing ratio is presented to overcome this challenge.
Instead of being static, it would keep on changing as the
number of iterations take place. It is approximated to give
best results in almost all scenarios.

An hueristic scheme based upon the assumption that the
dynamic biasing ratio is a function of the obstacle-free
space Xfree and the number of iterations n. For the
dynamic biasing scheme :

 Biasing ratio= (n/ Xfree) x constant. (1)

The factor n/ Xfree determines the space density at any
point in time. When the environment is not explored,
minimal biaising takes place. As the space density
increases with the increase in n, biasing ratio also
increases. Note that, at very high values of n, majority of
the configuration space has been explored so at this point
the algorithm focuses at intelligent biasing instead of
exploration.

Some representative environments are shown in Fig. 12.
RRT*-Smart achieves optimization for each of the four
scenarios while using a dynamic biasing ratio which is
calculated with the help of equation (1). As the number of
iterations increases, the biasing ratio increases, i.e., the

10 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com

rate at which the nodes are being placed at beacons is
now much faster and keeps on accelerating. This implies
that as the space is being explored, the biasing increases

thus reaching an approximation to provide optimization
for the tradeoff between the space exploration rate and
intelligent sampling rate.

Figure 12. RRT*-Smart in different obstacle Environments with dynamic biasing ratio

Algorithm Monotone
Convergence

Probabilistic
Completeness

Asymptotic
Optimality

Informed /
Uninformed

Sampling

Time Complexity Space
Complexity Processing Query

PRM Yes Yes No Uninformed O(nlogn) O(nlogn) O(n)
RRT Yes Yes No Uninformed O(nlogn) O(n) O(n)

PRM* Yes Yes Yes Uninformed O(nlogn) O(nlogn) O(nlogn)
RRG Yes Yes Yes Uninformed O(nlogn) O(nlogn) O(nlogn)
RRT* Yes Yes Yes Uninformed O(nlogn) O(n) O(n)

RRT*-Smart Yes Yes Yes Informed O(nlogn) O(n) O(n)

Table 5. A summary of algorithms characteristics with the earlier presented sampling based algorithms [10]. Time and Space
complexity is shown as a function of the number of samples n

This scheme is intended to achieve an optimization for
the tradeoff between the biasing rate and the exploration
rate in most environments. It also makes the algorithm
independent by choosing a biasing ratio according to the
environment itself.

5.3 Algorithm characteristics with respect to other sampling
algorithms

In recent years, random and iterative sampling stratergies
have been implementd in sampling based algorithms
similar to the proposed algorithm. A few exeptions
include the popular PRM which first generates random
samples in the entire configuration space and then works
to connect them to form a roadmap with various paths
[14]. The algorithm RRT*-Smart can be compared with

popular sampling algorithms in terms of sampling
strategy, completeness, convergence, optimality and
complexity. It has the ability to converge at a very fast
rate to an optimal solution due to its informed or
intelligent sampling characteristic, as explained in the
sections above. The comparison is shown in Table V
below.

6. Conclusions

Incremental sampling based algorithms have been
widely used because of their advantages over other
motion planners. RRT* unlike RRT is asymptotically
optimaized apart from being probabilistically
complete,but the rate of convergence to this close-to
optimal solution is slow.

11Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com

This paper presents a rapid convergence implementation of
RRT* known as RRT*-Smart which helps approaching an
optimal/near-optimal solution by introducing intelligent
sampling and path optimization techniques. Simulation
results have demonstrated that RRT*-Smart converges to
relatively optimal solutions at very few iterations and at an
accelerated rate. Performance comparison proved the
efficiency of RRT*-Smart with respect to both time and cost.
A natural extention to the proposed work is the
generalization to higher dimentional space.

7. Acknowledgements

The authors would like to thank Matthew Walter and
Alejandro Perez of CSAIL, Massachusetts Institute of
Technology (MIT) for their help and guidance regarding
RRT*. The authors are also gratful to National University
of Sciences and Technology and Hanyang University
Grant (HY-2012-N) for supporting this research.

8. References

[1] M. Kanehara, S. Kagami, J.J. Kuffner, S. Thompson,
H. Mizoguhi (2007) "Path shortening and smoothing
of grid-based path planning with consideration of
obstacles", IEEE International Conference on
Systems, Man and Cybernetics, (ISIC) , pp. 991-996.

[2] I. Petrovic and M. Brezak (2011) “A visibility graph
based method for path planning in dynamic
environments”, in proceedings of 34th International
Convention on Information and Commuincation
Technology, Electronics and Microelectronics
(MIPRO), pp. 711-716.

[3] N.H. Sleumer, N. Tschichold-Grman (1999) “Exact cell
decomposition of arrangements used for path
planning in robotics”, Technical report. Switzerland:
Institute of Theoretical Computer Science Swiss
Federal Institute of Technology Zurich.

[4] Y.K.Hwang, N. Ahuja (1992) "A potential field
approach to path planning", IEEE Transactions on
Robotics and Automation,, vol. 8, no. 1, pp. 23-32.

[5] A. Ghorbani, S, Shiry, and A. Nodehi (2009) ”Using
Genetic Algorithm for a Mobile Robot Path
Planning”, Proceedings of the 2009 International
Conference on Future Computer and
Communication (ICFCC) . pp. 164- 166.

[6] S.X. Yang, C. Luo (2004) "A neural network approach
to complete coverage path planning", IEEE
Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics, vol. 34, no. 1, pp. 718- 724.

[7] Roland Geraerts (2006) “Sampling-based Motion
Planning: Analysis and Path Quality”, Ph.D. thesis.
Utrecht University.

[8] Roland Geraerts (2006) “On Experimental Research in
Sampling-based Motion Planning”, In (IROS)
Workshop on Benchmarks in Robotics Research, pp. 31-
34.

[9] Lavalle, S.M. (1998). "Rapidly-exploring random trees:
A new tool for path planning", Computer Science
Dept, Iowa State University, Tech. Rep. TR: 98–11.
Retrieved 2008-06-30.S.

[10] S. Karaman and E. Frazzoli (2011) “Sampling-based
Algorithms for Optimal Motion Planning”,
International Journal of Robotics Research, vol. 30,
no. 7, pp. 846-894.

[11] I. Garcia, J. P. How (2005) “Improving the efficiency
of Rapidly-exploring Random Trees Using a Potential
Function Planner”, in the proceedings of 44th IEEE
Conference on Decision and Control, and the
European Control Conference, pp. 7965-7970.

[12] Khanmohammadi, S.; Mahdizadeh, A. (2008)
"Density Avoided Sampling: An Intelligent Sampling
Technique for Rapidly-Exploring Random Trees",
Eighth International Conference on Hybrid
Intelligent Systems, HIS, pp.672-677.

[13] J. Kuffner and S.M. LaValle (Apr. 2000) RRT-connect:
“An efficient approach to single-query path
planning”, in Proc. of IEEE Intl. Conf. on Robotics
and Automation, pp. 995–1001.

[14] L.E. Kavraki, P.Švestka, J.-C. Latombe, and M.H.
Overmars (Aug. 1996) “Probabilistic roadmaps for
path planning in high-dimensional configuration
spaces”, IEEE Trans. on Robotics and Automation,
vol. 12, pp. 566–580.

[15] D. Hsu, J.-C. Latombe, and R. Motwani (1999) “Path
planning in expansive configuration spaces”, Intl. J.
of Computational Geometry and Applications, vol. 9,
no. 4/5, pp. 495–512.

[16] S. M. LaValle and J. J. Kuffner (2001)“Randomized
kinodynamic planning,” Intl. J. of Robotics Research,
vol. 17, no. 5, pp. 378–400.

[17] I. S¸ucan and L. E. Kavraki (2012) “A sampling-based
tree planner for systems with complex dynamics”,
IEEE Trans. on Robotics, vol. 28, no. 1, pp.116–131.

[18] S. M. Lavalle and J.J. Kuffner (2000) “Rapidly
Exploring Random Trees: Progress and Prospects”, In
Proceedings Workshop on the Algorithmic
Foundations of Robotics.

[19] S. Karaman, Matthew R. Walter, A. Parez, E. Farazolli
and S. Teller (2011) ”Anytime Motion Planning using
the RRT”, in proceedings of International Conference
on Robotic and Automation, pp. 1478-1483.

[20] M. Zucker, J. Kuffner and M. Branicky (2007)
“Multipartite RRTs for Rapid Replanning in Dynamic
Environments”, in Proc. Of Internation Conference
on Robotics and Automation, pp. 1603-160.

[21] Bialkowski,S. Karaman, and E. Frazzoli (2011)
“Massively Parallelizing the RRT and the RRT*,” in
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[22] Latombe, J.C. (1990) “Robot Motion Planning”,
Springer.

12 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com

