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Abstract Many sampling based algorithms have been 
introduced recently. Among them Rapidly Exploring 
Random Tree (RRT) is one of the quickest and the most 
efficient obstacle free path finding algorithm. Although it 
ensures probabilistic completeness, it cannot guarantee 
finding the most optimal path. Rapidly Exploring 
Random Tree Star (RRT*), a recently proposed extension 
of RRT, claims to achieve convergence towards the 
optimal solution thus ensuring asymptotic optimality 
along with probabilistic completeness. However, it has 
been proven to take an infinite time to do so and with a 
slow convergence rate. In this paper an extension of 
RRT*, called as RRT*-Smart, has been prposed to 
overcome the limitaions of RRT*. The goal of the 
proposecd method is to accelerate  the rate of 
convergence, in order to reach an optimum or near 
optimum solution at a much faster rate, thus reducing the 
execution time. The novel approach of the proposed 
algorithm makes use of two new techniques in RRT*--
Path Optimization and Intelligent Sampling. Simulation 
results presented in various obstacle cluttered 
environments along with statistical and mathematical 

analysis confirm the efficiency of the proposed RRT*-
Smart algorithm. 
 
Keywords Biasing Radius, Path Optimization, Biasing 
Ratio 

 
1. Introduction 

Motion Planning is a domain which involves finding a 
feasible trajectory that connects the starting point to the 
goal point while avoiding collision with the obstacles. 
The geometry of Robot and the obstacles is defined in a 
2D or 3D configuration workspace and the motion is 
represented by a path in the configuration space. Motion 
planning has a lot of applications in various fields 
including autonomy, automation, architectural designs, 
AI for video games, digital character animations, 
molecular biology and robotic surgery. The field of 
Motion Planning and Navigation has gained immense 
popularity and importance in the recent years due to the 
fact that current trends in robotics research for both 
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industrial and domestic needs are focused towards 
intelligent automation. 
 
In the last four decades, many path planning algorithms, 
including geometric, grid-based, potential field, neural 
networks, genetic and sampling based algorithms, have 
been proposed for various static and dynamic 
environments. Each of these algorithms has its own 
advantages and shortcomings in finding the most 
efficient path planning solution in terms of space and 
time complexity and path optimization [1-6]. Sampling 
based algorithms are among the latest and most popular 
path planning algorithms. As compared to other 
probabilistically complete algorithms, they are 
computationally less complex, and have the ability to find 
solutions without using explicit information about the 
obstacles in the configuration space. They rely on a 
collision checking module and build a roadmap of 
feasible trajectories made by connecting together a set of 
points sampled from the obstacle-free space. An extensive 
comparative study and analysis of a number of sampling 
based techniques has been presented by various 
researchers over the years [7], [8], and [10]. Rapidly 
Exploring Random Tree (RRT) [9], is one of the quickest 
algorithms in finding the first path but it does not ensure 
asymptotic optimality [10]. To improve the efficiency of 
the RRT algorithm, various methods have been presented 
including potential function planner [11], density avoided 
sampling [12] including variations of such planners as 
well [13-17]. However, the major breakthrough came with 
the development of RRT* in 2010 [10]. Rapidly Exploring 
Random Tree Star (RRT*) is one of the recent sampling 
based algorithms which was also presented as an 
extension to RRT. Its major advantage over other 
algorithms is that it finds an initial path very quickly and 
then later keeps on optimizing it as the number of 
samples increases. Thus, apart from probabilistic 
completeness it ensures asymptotic optimality [10], 
unlike the predecessor sampling based algorithms like 
RRT [10], [13], Probabalistic Road Map (PRM) [14] and 
RRTConnect [13]. A few recent sampling based 
algorithms are also asymptotically optimal like PRM* [14] 
and RRG [10], yet RRT* has the advantage over these 
planners in terms of both time complexity and space 
complexity as explained by Keraman and Frazolli in [10]. 
 
Although RRT* claims to reach an optimal solution, it 
never reaches that optimality in finite time [10]. Also, the 
rate of convergence is slow. This manuscript addresses 
these issues by introducing RRT*-Smart, which instead of 
employing purely random space exploration, performs an 
informed exploration of search space. It makes use of the 
first path found by RRT* as an intelligent guess to help in 
exploring the configuration space. Moreover, it uses 
intelligent sampling to give an optimum or near optimum 
path at a very fast rate of convergence and reduced 
execution time. The solution obtained by RRT*-Smart also 

facilitates the robot to track the trajectory as it is straighter 
and with less way points. Thus, it gives a more efficient 
path planning solution as compared to RRT*. The 
algorithm proposed, in this manuscript, demonstrantes  
these distinguishing features through experimental 
results and performance analysis. 
 
The remainder of the paper is organized as follows. In 
Section 2, RRT* is discussed.  RRT*-Smart is presented in 
Section 3. Sections 4 cover results and performance 
analysis. Section 5 explains the optimization parameters. 
Section 6 concludes the paper and highlights future 
research avenues. 

2. RRT* Algorithm 

This section briefly introduce motion planning using the 
RRT* algorithm to build the background for 
understanding RRT*-Smart. RRT* is an incremental 
sampling based algorithm which finds an initial path 
very quickly. The path is later optimized  as the execution 
takes place [10], [20]. 
 
Let X define the configuration space in which Xobs is the 
obstacle region, Xfree = X / Xobstacle is the obstacle-free region 
and Xgoal is the goal region. RRT* works to find out an 
input u: [0:T] ϵ U that yields a feasible path x(t) ϵ Xfree  that 
starts from x(0) = x-initial to x(T)= goal following the 
system constraints. While finding this solution, RRT* 
maintains a tree Ƭ= (V, E) of vertices V sampled from the 
obstacle-free state space Xfree and edges E that connect 
these vertices together. This algorithm makes use of a set 
of procedures which are explained as below : 
 
Sampling: It randomly samples a state zrand ϵ Xfree from the 
obstacle-free configuration space. 
 
Distance: This function returns the cost of the path 
between two states assuming the region between them is 
obstacle free. The cost is in terms of Euclidean distance. 
 
Nearest Neighbor: The function Nearest(Ƭ, zrand) returns 
the nearest node from Ƭ=(V, E) to zrand in terms of the cost 
determined by the distance function.  
 
Steer: The function Steer (zrand, znearest) solves for a control 
input u[0,T] that drives the system from x(0)=zrand to 
x(T)=znearest along the path x: [0,T] → X giving znew at a 
distance ∆q from znearest towards zrand where ∆q is the 
incremental distance.  
 
Collision Check: The function Obstaclefree(x) determines 
whether a path x:[0,T] lies in the obstacle-free region Xfree 
for all t=0 to t=T. 
 
Near-by Vertices: The function Near(Ƭ, zrand, n) returns the 
nearby neighboring nodes that lie in a ball of volume (β 
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(logn/n)) around zrand, where β is a constant that depends 
on the planner. 
 
Insert node: The function Insertnode(zparent, znew, Ƭ) adds a 
node znew to V in the tree Ƭ =(V, E) and connects it to an 
already existing node zparent as its parent, and adds this 
edge to E. A cost is assigned to znew which is equal to the 
cost of its parent plus the Euclidean cost returned by the 
Distance function between znew and its parent zparent. 
 
Rewire: The function Rewire(Ƭ, Znear, zmin, znew) checks if the 
cost to the nodes in Znear  is less through znew as compared 
to their older costs. If it is for a particular node, its parent 
zparent is changed to znew. 

 
Pseudocode describing RRT* is shown in Algorithm 1.  
 
 1 Ƭ ← InitializeTree(); 
 2 Ƭ ← InsertNode(Ø, zinit, Ƭ);  
 3 for i=0 to i=N do 
 4      zrand ← Sample(i); 
 5        znearest ← Nearest(Ƭ, zrand); 
 6       (xnew, unew, Tnew) ← Steer (znearest, zrand); 
 7     if Obstaclefree(xnew) then 
 8         Znear ← Near(Ƭ, znew, |V|); 
 9         zmin ← Chooseparent (Znear, znearest, znew, xnew); 
 10         Ƭ ← InsertNode(zmin, znew, Ƭ); 
 11         Ƭ ← Rewire (Ƭ, Znear, zmin, znew); 
 12 return Ƭ 

Algorithm 1. Ƭ = (V, E) ← RRT*(zinit) 

At first, a sample zrand is placed randomly in the 
configuration space Xfree. Then, the nearest node znearest  to 
zrand is checked for in the entire configuration space. A node 
znew is placed at a distance ∆q from the nearest node znearest in 
the line of direction of zrand. Then, the trajectory path xnew is 
checked if it is free of  obstacles. If the trajectory is obstacle 
free then a ball of radius β(logn/n) around znew is checked for 
near nodes Znear. Among this set of nodes, the node that 
gives the least cost from the starting point to znew through 
itself is selected as the parent of znew. Once the parent is 
selected, rewiring takes place. The costs of all the nodes 
inside this ball around znew is calculated through znew. If this 
cost is less than the previous cost for any node then that 
particular node is disconnected from its old parent and is 
connected to znew as its parent. 
 
RRT* is a landmark sampling based algorithm to 
approach an optimal solution ensuring asymptotic 
optimality, apart from probabilistic completeness, as 
opposed to its predecessor RRT (and its various other 
improved versions). Although it tends to approach an 
optimal solution but it has been proven mathematically 
that it reaches the said solution in infinite time [10]. To 
overcome these limitations, a rapid convergence version 
of RRT* known as RRT*-Smart is proposed in this paper, 
which moves towards an optimal solution at a 
significantly faster rate. 

3. RRT*-Smart Algorithm 

This section describes the RRT*-Smart algorithm and the 
two proposed key concepts --Intelligent Sampling and 
Path Optimization. Initially, RRT*-Smart randomly 
searches the state space as RRT* does. Similarly, the first 
path is found just like the RRT* would try to find a path 
by random sampling in the configuration space. Once this 
first path is found, it then optimizes it by interconnecting 
the directly visible nodes. This optimized path yields 
biasing points for intelligent sampling. At these biasing 
points, sampling takes place at regular intervals, which 
are governed by a constant b that in turn depends upon 
the biaisng ratio explained in Section 6. This process is 
continued, as the algorithm progresses and the path is 
optimized continuously. Whenever, a shorter path is 
found, the biasing shifts towards the new path. This 
process is outlined in Algorithm 2.  
 
 1 Ƭ ← InitializeTree(); 
 2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 
 3 for i=0 to i=N do 
 4     if i=n+b, n+2b, n+3b…. then 
 5         zrand ← Sample(i, zbeacons); 
 6     else 
 7        zrand ← Sample(i); 
 8        znearest ← Nearest(Ƭ, zrand); 
 9       (xnew, unew, Tnew) ← Steer (znearest, zrand); 
 10     if Obstaclefree(xnew) then 
 11         Znear ← Near(Ƭ, znew, |V|); 
 12         zmin ← Chooseparent (Znear, znearest, znew, xnew); 
 13         Ƭ ← InsertNode(zmin, znew, Ƭ); 
 14         Ƭ ← Rewire (Ƭ, Znear, zmin, znew); 
 15         if InitialPathFound then 
 16              n ← i;  
 17         (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal); 
 18         if (directcostnew < directcostold) 
 19             zbeacons ← PathOptimization(Ƭ, zinit, zgoal); 
 20 return Ƭ 

Algorithm 2. Ƭ = (V,E) ← RRT*Smart(zinit) 

The steps 1 to 3 and 7 to 14 execute in the same way as 
the corresponding ones in RRT*. Once the initial path is 
found, (i.e., in step 15) the function InitialPathFound 
returns the iteration number n at which this path is 
found. This n is then used to inform the algorithm when 
to start the biased sampling. This biased sampling then 
starts with an interval time defined by the constant b. The 
function (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal) 
determines an optimized path by directly connecting the 
nodes in the path that are visible to each other and 
returns its cost (step 17). In steps 18 and 19 beacons (the 
nodes which form the basis for intelligent sampling) are 
being formed from the function zbeacons ← 
PathOptimization(Ƭ, zinit, zgoal), only if the new cost is less 
than the old cost. Otherwise, the old beacons keep on 
biasing the tree. In steps 4-5, zrand ← Sample (i, zbeacons), 
samples are being spawned at the beacons within a ball of 
radius Rbeacons centered at zbeacons. After the initial beacons 

3Jauwairia Nasir, Fahad Islam, Usman Malik, Yasar Ayaz, Osman Hasan, Mushtaq Khan and  
Mannan Saeed Muhammad: RRT*-SMART: A Rapid Convergence Implementation of RRT*

www.intechopen.com



 

 

are found, intelligent sampling takes place with a certain 
percentage; i.e., after every few samples that are placed in 
the normal way as for RRT* (steps 7 to 9), one sample is 
spawned in the vicinity of the beacons.  

3.1 Path Optimization 

Once RRT* gives an initial path, the nodes in the path x: 
[zinit, zgoal] → X that are visible to each other are directly 
connected. An iterative process starts from zgoal and moves 
towards zinit checking for direct connections with 
successive parents of each node until the collision free 
condition fails. By the end of this process, no more 
directly connectable nodes are present. Hence the path is 
optimized based on the concept of the Triangular 
Inequality as illustrated in Fig. 1. According to the 
Triangular Inequality, c is always less than the sum of a 
and b, and hence always gives a shorter path. The 
proposed path optimization is elaborated in Algorithm 3, 
where, zvc is a visibilty check node, which is used for 
notation in the psuedocode. 

 
Figure 1. Path Optimization based on Triangular Inequality. 

 1 while (! visible nodes) 
 2   zvc  = zgoal ; 
 3   while ( ! zinit) 
 4       if Obstaclefree (zvc, zvc-parent-to-parent)  
 5          zvc-parent  =  zvc-parent-to-parent  ; 
 6       zvc            =  zvc-parent ; 
Algorithm 3. (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal) 

The number of nodes present in this path are thus 
reduced, as compared to the original path found by RRT*. 
These nodes are termed as Beacons (zbeacons), which form 
the basis for intelligent sampling. 
 
Every time a new RRT* path with a shorter cost is found, it 
is optimized by the path optimization technique to give a 
relatively better path. The cost of this optimized path is 
compared with the cost of the previous optimized path. If 
the cost is better, then the nodes that are present in this 
path are selected as beacons zbeacons, for intelligent sampling. 
 
At each visibility check between two nodes, the collision 
free check is required. For this purpose, an interpolation 
technique is utilized in the proposed method, which 
works by constructing every point on the line (by 

connecting all the nodes together), while making sure 
that the newly added points lie in the free configuration 
space. This method of visibility check does not need 
explicit information about obstacles as required in other 
collision checking methods, [21]. Hence, the proposed 
method of interpolation for collision free checking is 
independent of the shape of the obstacles and is 
computationally less expensive. 

3.2 Intelligent Sampling 

The idea behind intelligent sampling is to approach 
optimality by generating the nodes as close as possible to 
the obstacle vertices following the underlining idea of 
visibility graph technique. However, the visibility graph 
techniques require complex environmental modeling and 
explicit information about obstacles, [2]. Furthermore the 
basic visibility graph method may not reach a solution in 
environments containing obstacles with complex 
geometries (concave, polygonal, circular etc). Some 
solutions in this regard have been presented like Reduced 
Visibility Graphs [22], which improve the efficiency of 
visibility graphs. Whereas, Generalised Visibility Graphs 
[22], are an extension of the basic technique that form 
paths around intricate complex geometries. However, in 
doing so, the computational complexity for Generalised 
Visibility Graphs is increased to a great extent as it find 
solution for all the complex gemotroies present in the 
configuration space. On the other hand, in sampling 
based RRT*-Smart, the path is optimized only along the 
periphery of those obtscales which lie along the optimum 
path or the intermediate paths. 
 
Once the initial path has been found, intelligent sampling 
starts with a certain number of samples being directly 
spawned (steps 4 and 5 of Algorithm 2) in a ball of radius 
Rbeacons centered at zbeacons. The sampling is biased towards 
these beacons because they  provide useful clues 
regarding the position of obstacle vertices (or periphery 
in the case of circular obstacles). Therefore, these beacons 
need to be surrounded by maximum nodes to optimize 
the path at these turns. This feature  forces the proposed 
algorithm to reach the optimal solution in less number of 
iterations, as compared to RRT*, as later demonstrated in 
the experimental results section of this paper. 
 
As the algorithm iterates an optimized path is calculated, 
when ever a new RRT* path is found.. The cost of this 
new optimized path is compared with the previous 
optimized path. If the cost is smaller, new beacons, zbeacons, 
are generated resulting in the formation of new biasing 
points. These newly formed beacons are closer to the 
vertices. This process continues until the required 
iterations are completed. 
 
Although the obstacles are not being explicitly defined by 
keeping the beneficial property of sampling based 
algorithms intact; the proposed algorithm finds a way to 
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spawn the tree nearer to the vertices by using intelligent 
guessing and biasing beacons, which eventually leads  
towards an optimal/near-optimal path x:[zinit,zgoal] →optimal 
X. This path also has a very few number of samples which 
are shown in Section 5. Hence, the RRT*-Smart algorithm 
works to provide a much better solution at a faster rate of 
convergence. The proposed algorithm also finds a simpler 
path for the mobile robots to follow in any kind of 
environment due to the less number of waypoints. 

 
Figure 2. (a) First Path given by RRT* at n=650. (b) An optimized 
path (in blue) is shown after the Path Optimization technique is 
applied on the path shown in (a). (c) shows clustered samples as 
a result of biasing towards the beacons (in green) at n=2500; (d) 
shows the optimum path at n=4200 

Fig. 2 demonstrates the effectiveness and working of the 
RRT*-Smart algorithm. An initial path is found in Fig. 2(a) at 
n=650. In Fig. 2(b), path optimization yields an optimized 
path, as shown in blue. The green dots are the beacons that 
are formed for this initial path. After n=2500, clustered 
samples are formed around the beacons, as demonstrated 
in Fig. 2(c). Finally, after an iterative process, an optimized 
path is found for this obstacle scenario at n=4200. 
 
The space and time complexity for RRT* are given by 
O(n) and O(nlogn), respectively [10]. Mathematical 
analysis of RRT*-Smart shows that the space and time 
complexity is the same as that of RRT* but the value of n 
is significantly reduced in case of RRT*-Smart. Thus, O(n) 
and O(nlogn) for RRT*Smart yields much better 
performance. However, as the performance improves and 
the biasing ratio increases, the randomness in the 
exploration of the tree decreases as a number of nodes are 
now used to optimize the path in a particular region. 
Therefore, there is a tradeoff between intelligent sampling 
and the space exploration rate. 

4. Results and Performance Comparison  

This section demonstrates the results for RRT*-Smart in 
four seperate environments, each with different obstacle 
scenario. The statistical and analytical comparison 
between RRT* and RRT*-Smart is also presented in this 
section, along with  a t-student test for testing equality of 
the means for the two methods. 
 
In the figures, the hollow red box represents the goal 
region; the solid red blocks represent the obstacles while 
the trajectory is depicted by a black line. The algorithm  
provides an optimal/near-optimal solution in the circular, 
local minima and cluttered environment. It can be 
observed that the path optimization and the intelligent 
sampling techniques, that this algorithm employs, is 
independent of the obstacle shape, as highlighted in the 
previous section. It not only optimizes the path for 
obstacles with straight edges but also for those with 
rounded peripheries, as illustrated in Fig. 3(a). 

 
Figure 3. RRT*-Smart in different obstacle Environments with 
constant biasing ratio 

The number of beacons that are being used to optimize 
the path in each obstacle environment may be different. 
In case of rounded obstacles as in Fig. 3(a), the number of 
beacons may be significantly greater than in cases where 
the obstacles are with straight edges. This is due to the 
reason that now more number of nodes are required to 
cover the circular periphery of the obstacle to provide the 
most optimum path possible. 

4.1 Statistical Analysis 

An experimental comparison between RRT*-Smart and 
RRT* by analyzing their performance from various 
perspectives is presented in this section. At first, the 
results of the two algorithms in Fig. 4 are used to 
illustrate their comparative differences. 
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Figure 4. A comparison of RRT* and RRT*-Smart using simulation results at 800, 1200 and 4200 iterations.

It is clear from the Fig. 4(d) that RRT*-Smart uses the 
RRT* path with a cost of 630.18 at the iteration number n 
=800 shown in Fig. 4(a) and finds a more optimal path 
with a cost of 584.02, as shown in Fig. 4(d), with an equal 
number of iterations using the path optimization 
technique. Utilizing intelligent sampling and further path 
optimization, the cost in Fig. 4(e) has further reduced to 
557.478 at n=1200 while RRT* converging with its original 
rate manages to reach a cost of 624.95 with an equal 
number of iterations, as shown in Fig. 4(b). Finally, RRT*- 
Smart gives an optimal/near-optimal solution at n=4200 
with a cost of 540.12 as shown in Fig. 4(f). With the same 
number of iterations, RRT* converges to a path with a 
cost of 574.009, Fig. 4(c). The efficiency in terms of path 
cost is evident from this comparison. 
 
A statistical comparison between the two algorithms using 
graphical results for the experiment is shown in Fig. 5. The 
figure clearly demonstrates  the convergence pattern of the 
costs of RRT* and RRT*-Smart. It can be seen that RRT*-
Smart not only has a much faster rate of convergence but 
also approaches the optimum cost after finite iterations 
whereas RRT* is still in the process of reaching an optimal 
solution with relatively slower ratof convergence. 
 
In Fig. 6, iterations are plotted against different fixed 
costs. It can be observed that  for approaching the same 
cost, as the algorithms iterate, towards finding an optimal 
solution the number of iterations for RRT* is far greater 
than RRT*-Smart. The cost of 540 is achieved by the latter 
algorithm at 4200 iterations whereas RRT* fails to achieve 
this cost even at very large number of iterations, as 
shown by the same graph. Fig. 7 shows the path cost 
versus time comparison for the implementation of the  
 

two algorithms. It is observed that RRT* takes 
significantly greater time as compared to RRT*-Smart in 
reaching the same cost. These results have been obtained 
using a 2.1 GHz Intel corei3 processor with a 4GB RAM. 
 

 
Figure 5. Costs are plotted against iterations showing the rate of 
convergence of both RRT* and RRT*-Smart. 
 

 
Figure 6. Iterations are plotted against different fixed costs. 
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Figure 7. Time comparison against fixed costs. Constant  b is 
taken as 2 for RRT*-Smart. 

Fig. 8 highlights the running time ratio of RRT* to RRT*-
Smart. The graph shows that the ratio is always greater 
than 1 for the implementation of both algorithms, 
proving the time efficiency of RRT*-Smart over RRT*. 

 
Figure 8. Running Time Ratio of RRT* over RRT*-Smart is 
plotted against iterations. Constant b is taken as 2 for RRT*-
Smart. 

 
Figure 9. Costs of path in fifty different environments for 2500 
iterations with dynamic biasing ratio scheme. 

Fig. 9 demonstrates the behavior of RRT* and RRT*-Smart 
in fifty different obstacle environments. For each  
 

environment, the cost is plotted for a fixed number of 
iterations n. It can be seen that the graph of RRT*-Smart 
consistently stays below the graph of RRT*, showing that 
in all these environments the path costs found by RRT*-
Smart remains less than the path costs of RRT*, hence 
proving the efficiency of RRT*-Smart. 
 
Analyzing the performance comparison results, it can be 
concluded that RRT*-Smart is more efficient than RRT* 
not only with respect to path optimization but also in 
terms of computational time. 

Comparative Statistical Analysis using t-Student test: 

The two algorithms are compared in three different 
environments; including a maze, a narrow passage and a 
cluttered environment (with increasing number of 
obstacles), each solved for atleast 5 times. Fig.10 shows 
the results for one particular instance out of the five 
experiments performed in a Maze and a narrow passage 
environment, for both RRT*-Smart and RRT*. In Fig.10 (a 
and c), the red hollow box represents the goal region 
while in Fig.10(b and d), S and G denote the starting point 
and the goal position respectively. Similarly, Fig.11 
compares the two algorithms in the cluttered 
environment, again for one particular instance, with 
increasing number of obstacles. In each figure, the 
obstacles are represented in red color, the goal region is 
shown by a red box and the trajectory is represented in 
black.  
 
The results are summmarized in Table 1. followed by a 
statistical analysis of t-Student test for testing equality of 
the means of the two methods. This statistical test called t-
Student test is often used by the researchers and scientists 
to assess whether two groups significantly differ from 
one another. We performed an unpaired t-test between 
the two sets of samples, one for RRT*-Smart and the other 
for RRT*. Each set consists of 5 values of path costs 
calculated after solving that particular environment for 5 
times considering the stochastic nature of the methods. 
The cost in each case contributes to the data, that is used 
to perform this test. The minimum, maximum, average, 
standard deviation values and the t-value for each 
experiment (along with the reference tabulated value z 
for 95 % confidence level) at 8 degress of freedom are 
presented in Table I. Comparing the value of t with the 
tabulated values of 2.31 (p=0.05)  to 5.04 (p=0.001), it is 
observed that the value of t of the proposed scheme is 
greater in each case as compared to the other methods. 
Thus, according to the principles t-test theory, the 
difference between the means is very significant and so 
clearly RRT*-Smart provides significantly improved costs 
as compared to RRT* for the same number of iterations. 
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Figure 10. A comparison of RRT* and RRT*-Smart in environments with maze and narrow path. 

Environment Algorithm Iterations Minimum  Maximum Average Standard Deviation t value z 
Maze 

(Fig. 10 a,c) 
RRT*-Smart 2000 664 672 668 2.97 28.8 2.31

RRT* 720 727 722 2.95 
Narrow Passage 

(Fig. 10 b,d) 
RRT*-Smart 2500 597 607 602 4.34 15.2 2.31

RRT* 631 637 633 2.28 
Cluttered with 5 obstacles 

(Fig. 11 a,e) 
RRT*-Smart 2000 575 582 578 2.77 14.4 2.31

RRT* 601 610 606 3.21 
Cluttered with 50 obstacles 

(Fig. 11 b,f) 
RRT*-Smart 2000 603 609 607 2.49 11.0 2.31

RRT* 621 627 624 2.45 
Cluttered with 100 obstacles 

(Fig. 11 c,g) 
RRT*-Smart 2000 583 591 588 3.13 36.3 2.31

RRT* 662 672 666 3.70 
Cluttered with 200 obstacles 

(Fig. 11 d,h) 
RRT*-Smart 2500 601 605 603 2 18.8 2.31

RRT* 631 639 635 3.29 

Table 1. Statistical comparison of RRT* and RRT*-Smart using the t-student test. 

 
Figure 11. A comparison of RRT* and RRT*-Smart using simulation results in environments with 5, 50, 100 and 200 obstacles.
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4.2 Complexity Analysis 

The space and time complexity of RRT* as demonstrated 
in [10] is given by O(n) and O(nlogn). Mathematical 
analysis of RRT*-Smart shows that its space and time 
complexity also same as of RRT, but the value of n is 
significantly reduced in order to achieve same optimality. 
Hence, the proposed method yields better performance as 
compared to RRT*. 

Space Complexity 

Space complexity of an algorithm is defined as the 
amount of memory that is required by an algorithm to 
execute. It is clear  by the above discussion that RRT*-
Smart requires n number of memory configurations for n 
number of iterations to execute. Hence showing a linear 
space complexity of O(n), just like RRT*. 

Time Complexity 

Time complexity of an algorithm is defined as the amount 
of time that is required by the algorithm to execute a 
problem of size n. The additional steps of path 
optimization, intelligent sampling and the collision 
checking method of interpolation that have been 
introduced in RRT*-Smart have complexities that are 
insignificant enough to  have no effect on the complexity 
of the algorithm. The analysis of the T-Notation for both 
RRT* and RRT*-Smart, shows that for the same number 
of iterations the time for RRT*-Smart is significantly less 
as compared to RRT*. 

Complexity of the Path Optimization step 

Path optimization technique is applied when ever a new 
smaller path as compared to the previous one is found. 
Let us assume that the new path is found for Delta 
number of times. The computational complexity of this 
step be given by: 

Delta x Direct cost 

Where,  
Direct cost = {f x yf/2 x (Cost of each collision check)} 
yf is number of nodes in the RRT* path found for each 
iteration f. 
f is number of times the iterative process is repeated for 
each path until all the visible nodes are directly 
connected. 
 
The cost of a collision check is always some constant 
value. As the path will move towards optimization, the 
direct cost will reduce with time. It is interesting to note 
here that the upper bound of Delta depends upon the 
particular environment but will always be significantly 
less than the total number of iterations n, and would 
always be a finite value for reaching an optimal solution 
in a particular obstacle scenario. This is due to the finite 

number of the path (or the paths) which lead to optimal 
solution,  and are significantly small in comparison to n. 
Hence, making this term ineffective in terms of 
computational complexity as it is independent of the 
number of iterations n. 

Delta <<< n 

This is supported by statistical results for three different 
obstacle scenarios, as shown in Table II. In each of these 
scenarios, the algorithm is executed until the optimized 
path is found. 
 
Environment Optimized 

Cost 
Iterations 
Required (n) 

Delta Result 

Circular (Fig3(a)) 237 9100 17 Delta<<n
Potential(Fig3(b)) 382 7500 22 Delta<<n
Cluttered(Fig3(c)) 408 13000 55 Delta<<n

Table 2. A comparison of values of delta and n in three different 
obstacle scenarios 

Complexity of Intelligent Sampling step 

Let p be a constant which defines the number of times a 
node will be placed at a beacon. This depends on the the 
constant b. Greater the biasing ratio, greater will be the 
value of p for the same configuration space and number 
of iterations. So, the complexity of this time may be given 
by p×c where c is a constant time to place a sample. 

Reduced complexity of Sample, Nearest and Steer Step 

Each of these steps will now execute (n-p) times because 
for p times the nodes are being placed directly at the 
beacons zbeacons, whereas, n is equal to the total number of 
iterations. Though this does not effect the O-Notation in 
any way but explains the reduced computational 
complexity and one of the factors that leads to reduced 
execution time as demonstrated in Fig. 7. 
 
Thus, it can be concluded that the O-Notation for the time 
complexity of RRT*-Smart is unaffected by the additional 
steps. The performance of RRT*-Smart has been 
improved as:  
 
1. n is significantly reduced and  
2. Execution of RRT* sample step, nearest step and steer 

step has been reduced by a factor p, replaced by a 
single step with the same computational complexity 
as that of RRT* sample step, and also, a path 
optimization step which has an insignificant 
contribution as Delta <<< n. 

5. Algorithm Characteristics 

5.1 Biasing Radius 

Biasing radius is the radius of sphere within which 
biasing takes place around Zbeacon. The radius Rbeacon can be 
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chosen according to the planner’s requirements. For a 
relatively larger Rbeacon in a configuration space, the path 
has a greater chance of moving quickly towards an 
optimum path, and then with continuing iterations, the 
convergence rate slows down. On the other hand, when 
the radius Rbeacon is small for the same configuration space, 
the convergence rate of the path towards an optimum 
solution will be slower, but once an optimum enough 
path is found, it is more certain to reach an optimized 
value at a faster rate. 
 
This might be seen as a tradeoff between the planning 
time and the navigation time. If, for example, a motion 
planning and navigation problem is put up which could 
be solved by using this algorithm, and also which is more 
concerned about reducing planning time rather than 
navigation time, then the better solution for it will be a 
larger radius and vice versa. However, there is a limit to 
increasing the radius. If, it is increased to a very large 
value then the algorithm’s behaviour becomes very 
identical to that of RRT*. For the environment shown in 
Fig. 2, the experimental results for various biaising radius 
vs the number of iterations to reach the same cost is 
presented in a tabulated form in Table III. As the size of 
radius is increased beyond a certain level, the number of 
iterations required to reach the optimum cost increases 
significantly hence approaching the trend of RRT*, as for 
biasing radius of 25 in the Table III . 
 
A biasing radius in the range of 10 to 15 is used for all the 
experiments performed in a configuration space of the 
same size. A good approximation is to use a biasing 
radius in accordance with the size of the configuration 
space. 
 

Biasing Radius Number of Iterations Cost 
11 4300 540 
13 4600 540 
15 5200 540 
17 8000 540 
25 40000 540 

Table 3. No. Of iterations for different biaisng radius to achieve 
the same cost of 450 at a biaisng ratio of 2 

5.2 Biaising Ratio 

Biasing ratio determines the number of times a sample 
has been spawned directly at a beacon instead of being 
sampled normally. For a constant biasing ratio 
throughout the entire planning phase, the choice depends 
upon the planner. It must be noted that changing this 
ratio does affect the trend of reaching optimality.  
 
The effect of choosing different constant biasing ratio for 
the same obstacle environment is evident from the results 
shown in Table IV. These results have been obtained by 
using the environment of Fig. 3(c). 

The results shown in Table IV demonstrate that for the 
same environment, there exists an optimized value of 
biasing ratio that balances the rate of biasing and 
exploration to give the optimum/near optimum cost. Any 
value of biasing ratio that is above or below this 
optimized value will get the optimum/near-optimum 
solution using a larger number of iterations. 
 

Biasing Ratio Number of Iterations Costs 
5 23000 408 
7 17300 408 
10 21600 408 

Table 4. No. Of iterations for different biaisng ratio to achieve 
the same cost of 408 

A constant biasing ratio has been choosen for all the 
results presented in this manuscript. However, a generic 
scheme of dynamic biasing ratio is also presented, while 
the execution of the proposed algorithm caters for the 
limitations of constant biasing ratio scheme. 

Generic Dynamic Biasing Ratio Scheme 

By introducing intelligent sampling, a tradeoff has been 
set between the rate of convergence and the rate of 
exploration as explained earlier in this section. To reach 
an optimal solution, it is not only necessary to converge at 
a faster rate through strong biasing, but also the 
exploration of the configuration space is of equal 
important. The complexity of an environment is directly 
related to this challenge of choosing a suitable biasing 
ratio to optimize the output. A scheme of dynamic 
biasing ratio is presented to overcome this challenge. 
Instead of being static, it would keep on changing as the 
number of iterations take place. It is approximated to give 
best results in almost all scenarios. 
 
An hueristic scheme based upon the assumption that the 
dynamic biasing ratio is a function of the obstacle-free 
space Xfree and the number of iterations n. For the 
dynamic biasing scheme : 

 Biasing ratio= (n/ Xfree) x constant.                   (1) 

The factor n/ Xfree determines the space density at any 
point in time. When the environment is not explored, 
minimal biaising takes place. As the space density 
increases with the increase in n, biasing ratio also 
increases. Note that, at very high values of n, majority of 
the configuration space has been explored so at this point 
the algorithm focuses at intelligent biasing instead of 
exploration. 
 
Some representative environments are shown in Fig. 12. 
RRT*-Smart achieves optimization for each of the four 
scenarios while using a dynamic biasing ratio which is 
calculated with the help of equation (1). As the number of 
iterations increases, the biasing ratio increases, i.e., the 

10 Int. j. adv. robot. syst., 2013, Vol. 10, 299:2013 www.intechopen.com



 

 

rate at which the nodes are being placed at beacons is 
now much faster and keeps on accelerating. This implies 
that as the space is being explored, the biasing increases 

thus reaching an approximation to provide optimization 
for the tradeoff between the space exploration rate and 
intelligent sampling rate. 

 
Figure 12. RRT*-Smart in different obstacle Environments with dynamic biasing ratio 

Algorithm Monotone 
Convergence 

Probabilistic 
Completeness 

Asymptotic 
Optimality 

Informed / 
Uninformed 

Sampling 

Time Complexity Space 
Complexity Processing Query 

PRM Yes Yes No Uninformed O(nlogn) O(nlogn) O(n) 
RRT Yes Yes No Uninformed O(nlogn) O(n) O(n) 

PRM* Yes Yes Yes Uninformed O(nlogn) O(nlogn) O(nlogn) 
RRG Yes Yes Yes Uninformed O(nlogn) O(nlogn) O(nlogn) 
RRT* Yes Yes Yes Uninformed O(nlogn) O(n) O(n) 

RRT*-Smart Yes Yes Yes Informed O(nlogn) O(n) O(n) 

Table 5. A summary of algorithms characteristics with the earlier presented sampling based algorithms [10]. Time and Space 
complexity is shown as a function of the number of samples n 

This scheme is intended to achieve an optimization for 
the tradeoff between the biasing rate and the exploration 
rate in most environments. It also makes the algorithm 
independent by choosing a biasing ratio according to the 
environment itself. 

5.3 Algorithm characteristics with respect to other sampling 
algorithms 

In recent years, random and iterative sampling stratergies 
have been implementd in sampling based algorithms 
similar to the proposed algorithm. A few exeptions 
include the popular PRM which first generates random 
samples in the entire configuration space and then works 
to connect them to form a roadmap with various paths 
[14]. The algorithm RRT*-Smart can be compared with 

popular sampling algorithms in terms of sampling 
strategy, completeness, convergence, optimality and 
complexity. It has the ability to converge at a very fast 
rate to an optimal solution due to its informed or 
intelligent sampling characteristic, as explained in the 
sections above. The comparison is shown in Table V 
below. 

6. Conclusions 

Incremental sampling based algorithms have been 
widely used because of their advantages over other 
motion planners. RRT* unlike RRT is asymptotically 
optimaized apart from being probabilistically 
complete,but the rate of convergence to this close-to 
optimal solution is slow.  
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This paper presents a rapid convergence implementation of 
RRT* known as RRT*-Smart which helps approaching an 
optimal/near-optimal solution by introducing intelligent 
sampling and path optimization techniques. Simulation 
results have demonstrated that RRT*-Smart converges to 
relatively optimal solutions at very few iterations and at an 
accelerated rate. Performance comparison proved the 
efficiency of RRT*-Smart with respect to both time and cost. 
A natural extention to the proposed work is the 
generalization to higher dimentional space. 
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