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Abstract
In educational HRI, it is generally believed that a robots behavior has a direct effect on the engagement of a user with the robot,
the task at hand and also their partner in case of a collaborative activity. Increasing this engagement is then held responsible
for increased learning and productivity. The state of the art usually investigates the relationship between the behaviors of
the robot and the engagement state of the user while assuming a linear relationship between engagement and the end goal:
learning. However, is it correct to assume that to maximise learning, one needs to maximise engagement? Furthermore,
conventional supervised models of engagement require human annotators to get labels. This is not only laborious but also
introduces further subjectivity in an already subjective construct of engagement. Can we have machine-learning models for
engagement detection where annotations do not rely on human annotators? Looking deeper at the behavioral patterns and
the learning outcomes and a performance metric in a multi-modal data set collected in an educational human–human–robot
setup with 68 students, we observe a hidden link that we term as Productive Engagement. We theorize a robot incorporating
this knowledge will (1) distinguish teams based on engagement that is conducive of learning; and (2) adopt behaviors that
eventually lead the users to increased learning by means of being productively engaged. Furthermore, this seminal link paves
way for machine-learning models in educational HRI with automatic labelling based on the data.
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1 Introduction

Engagement is a concept widely investigated in human–
robot interaction (HRI) and yet still elusive [52]. Commonly
adopted definitions include the one of Sidner et al. [68],
defining engagement as “the process by which two (or more)
participants establish, maintain and end their perceived con-
nection during interactions they jointly undertake”, or the
one of Poggi et al. [58], defining engagement as “the value
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that a participant in an interaction attributes to the goal of
being together with the other participant(s) and continuing
interaction”. Castellano et al., investigating predictors and
components of engagement, regard engagement as charac-
terised by both an affect and an attention component [17].
Conversely, Salam et al., postulate that “engagement is not
restricted to one or two mental or emotional states (enjoy-
ment or attention). During the interaction, as the objective
of the current sub-interaction differs, the different concepts
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Fig. 1 Children engaged in the JUSThink educational activity:which of
these two teams, apparently similarly performing, will end up actually
learning? Can we tell from their behavior? And if so, can we equip a
robot with this knowledge, so that it will drive the robots behavior that
is helpful for learning?

or cues related to engagement would differ” [63]. Similarly,
O’Brien et al. define “user engagement as amultidimensional
construct comprising the interaction between cognitive (e.g.,
attention), affective (e.g., emotion, interest), and behavioural
(e.g., propensity to re-engage with a technology) character-
istics of users, and system features (e.g., usability)” [48,49].

Studying HRI engagement in educational applications is
particularly challenging (and therefore interesting) because
of the fact that the robot and the interaction with it is
a means to an end, which is learning. In [7], Baxter et
al. show “that students who interacted with a robot that
simultaneously demonstrated three types of personalization
(nonverbal behavior, verbal behavior, and adaptive content
progression) showed increased learning gains and sustained
engagement when compared with students interacting with
a non-personalized robot”. Szafir et al. found that “adaptive
robotic agent employing behavioral techniques (i.e. the use of
verbal and non-verbal cues: increased spoken volume, gaze,
head nodding, and gestures) to regain attention during drops
in engagement (detected using EEG) improved student recall
abilities 43% over the baseline” [69]. In [13], 24 students
engage with the robot during a computer-based math test and

the results demonstrate increased test performance with var-
ious forms of behavioral strategies while combining them
with verbal cues result in a slightly better outcome. These
studies show how in fact changing the robot’s behavior has
an impact on learning while making the linear assumption
that increasing users engagement leads to increased learn-
ing. Hence, the standard approaches in the literature look
to maximize engagement itself. But, is it enough to assume
thatmaximizing engagement, as currently defined,maximizes
learning?

Inspired by the behaviour and pedagogical principles of
human teachers, we propose a paradigm shift for which at
a given point in time, an engaging robot for education is
the one capable of choosing an action that is in line with
enhancing the educational goals directly. We postulate that
to maximize learning, engagement need not be maximized,
rather it needs to be optimized. This postulation draws some
inspiration from the idea of Productive Failure proposed by
ManuKapoor [40]where he says “Engaging students in solv-
ing complex, ill-structured problemswithout the provision of
support structures can be a productive exercise in failure”.We
believe that more often that not, there are learners that con-
secutively fail in a constructivist design, apparently scoring
low on perceived engagement that can be biased by perfor-
mance; however, they end up with higher learning. Same can
be true with learners that seem to be succeeding but achieve
lower learning. An example of this can be observed in [30]
where the authors design a tangible tabletop environment
for logistic apprentices for warehouse manipulation. They
observe that while the task performance is high compared to
the learners using the traditional method of paper and pen-
cil, there is no increase in the learning outcomes. This is
due to a phenomenon they termed as Manipulation Temp-
tation where there is over-engagement with the task but no
high-level reflection. Hence, interventions are incorporated
to disengage learners to reflect more and eventually increase
learning gains. Going back to the idea of engaging robot for
education, as pointed out by Belpaeme et al. [9], design-
ing one such robot is then not an easy feat. This is because
even experienced human instructors struggle to make the
best choice always. We believe that to not be able to distin-
guish actual engagement that potentially will lead to higher
learning from apparent engagement that has no, or even a
detrimental effect on learning plays a role in the struggle to
find the appropriate choice.

If optimal engagement does exist, higher learning should
then be reflected in certain behavioral patterns of the users.
These patterns can then be leveraged to inform the behavior
of the robot that is useful for learning. Briefly, this paper
makes the following contributions:

– Validate the existence of “a hidden hypothesis that links
multi-modal behaviors of the users to learning and
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performance” that we term as Productive Engagement
(See Fig. 2).

– The existence of the hidden hypothesis paves way to
havemachine-learning engagementmodels for which the
labels donot come fromhumanannotators but instead can
emerge from the data itself.

Moreover, we define our human–human–robot setting
where a learning task is present as a social-task engage-
ment scenario as seen in Fig. 1. The definition by Corrigan
et al. in [22] seems to be in line with the social/task dis-
tinction in the HRI engagement literature with regards to
the nature of the HRI scenario/context. They define engage-
ment in terms of three contexts as follows: “task engagement
where there is a task and the participant starts to enjoy the
task he is doing, social engagement which considers being
engagedwith another party of which there is no task included
and social-task engagement which includes interaction with
another (e.g., robot) where both cooperate with each other
to perform some task”. That said, still in a vast amount of
literature, while defining the scenario, the distinction is often
blurry since most interactions involve both task as well as
social components, intertwined with each other and possibly
co-dependent.

Lastly, the choice to have two users in our setting, intro-
ducing social engagement with a human, is because we want
to grasp all facets of engagement, since we do not know yet
which ones will better relate to learning. Social engagement
with a human is supported by the idea that collaboration
only produces learning if peers engage into rich verbal
interactions such as argumentation, explanation, mutual reg-
ulation [12,27], or conflict resolution [33,66]. Furthermore,
we want the interaction of the user to be as rich as possi-
ble and, therefore, the counterpart has to be another human.
However, since engagement itself is still rather ambiguous,
as explained at the start of the section, having two partici-
pants adds the variable of “group engagement”, for which,
too, multiple definitions exist. Salam et al. define group
engagement as,“the joint engagement state of two partici-
pants interactingwith each other and a humanoid robot” [62].
Oertel et al. define group engagement as “a group variable
which is calculated as the average of the degree to which
individual people in a group are engaged in spontaneous,
non-task-directed conversations” [51] whereas Gatica et al.
define group interest as “the perceived degree of interest or
involvement of the majority of the group” in [32]. In our
human–human–robot setup, we adapt the definition by [51]
to our multi-modal data and where the engagement with a
robot is dependent on the role of the robot (active, e.g. a
team member; or passive, e.g. an instructor). Briefly, for the
purpose of analyzing the hidden hypothesis highlighted in the
contributions, we want to consider multiple facets of engage-

ment as well as have two human users in the setting to have
richer interactions.

In the remainder of the paper, Sect. 2 presents the related
work while Productive Engagement (PE) is introduced in
Sect. 3. The research questions are highlighted in Sect. 4 fol-
lowed by the description of the learning activity, and the setup
in Sect. 5. Section 6 includes an in-depth analysis, results and
discussion. Lastly, concluding remarks follow in Sect. 7.

2 RelatedWork

The paradigm shift we propose puts us at the crossroad of two
fields, social robotics and education. Therefore, this leads us
to look at engagement literature from both perspectives of
HRI and Multi-modal Learning Analytics (MLA).

It should be noted that in MLA, several studies target
“motivation’ and its link to learning. This is inspired by
the positive relationship established in educational psychol-
ogy between motivation and success at learning [24,71], For
example, in this work by [59], they “demonstrate that moti-
vation in young learners corresponds to observable behaviors
when interacting with a robot tutoring system, which, in
turn, impact learning outcomes”. They observe a correlation
between “academic motivation stemming from one’s own
values or goals as assessed by the Academic Self-Regulation
Questionnaire (SRQ-A)” and observable suboptimal help-
seeking behavior. The authors then go on to show that an
interactive robot that responds intelligently to the observed
behaviors positively impacts students learning outcomes.
While motivation is not equivalent to engagement, it could
rather be the cause of engagement, i.e., if one is motivated
to learn intrinsically or extrinsically, one will engage more
which is also in line with Maslow’s theory of human motiva-
tion [44]. TheseMLAstudies are thus sometimes also viewed
relevant in the context of understanding engagement in edu-
cational settings.

In the literature coming from HRI and MLA, engagement
is conventionally described as multi-faceted, meaning that
various aspects of the user can be used to model it. Some
of the forms found in literature, following the nomenclature
proposed by [26], include affective, behavioral, cognitive,
academic, and psychological, etc.

Various methods to measure engagement along these
facets can then be found in the HRI and MLA literature.
In [26], Dewan et al. categorize these methods (for online
learning) into manual, semi-automatic, and automatic, and
then divide the methods in each category into sub-categories
depending upon the modality(ies) of the data used. Adapting
the classification mainly from [26], we focus on the manual
and automatic categories:
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2.1 Manual

Two of the most popular manual methods found both in HRI
and MLA engagement literature include: 1) Self-Reporting,
where “the learners report their own levels of engagement,
attention, distraction, motivation, excitement, etc.” [50,70];
2) Observational Checklist, where external observers com-
plete questionnaires on learners engagement or annotate
video or speech data [39,55]. While self-reporting is easy
to administer and useful for “self-perception and other less
observable engagement indicators” [70], there is also the
issue of validity that depends on several factors such as
learners honesty, willingness, and self-perception accuracy,
etc. [29]. On the other hand, disadvantages of the second type
of methods include the fact that they require a huge amount
of time and effort by the observers, as well as the risk of
observational metrics to be affected by confounding factors.
For instance, as Whitehill et al. point out in [70], “sitting
quietly, good behavior, and no tardy cards appear to measure
compliance andwillingness to adhere to rules and regulations
rather than engagement”. Furthermore, while studies with a
single observer might suffer from subjectivity, studies with
multiple observers might lead to low inter-rater agreement
as engagement is a highly subjective construct.

2.2 Automatic

Some of the most widely used methods in MLA and HRI
engagement modelling fall under this category. They can
further be sub-divided into: 1) Log-file Analysis, and 2) Sen-
sor Data Analysis methods. In Log-file Analysis, interaction
traces are analyzed to extract users engagement or even per-
formance (in educational settings) via behavioral indicators
like the frequency of doing a particular behavior or the time
taken on a particular action, etc. [1,16,20]. Various learning
analytics and data mining approaches are used to perform
log-file analysis in educational settings [4] including predic-
tion methods, structure discovery, relationship mining, etc.
While the interaction data is relatively easier to log and,
hence, result in considerable amount of data; it lacks infor-
mation that can be crucial to learning such as where the user
is looking at or how the user feels. In the second method, a
number of cues are investigated, most commonly through
video and audio data: gaze, mutual gaze, joint-attention,
speech, posture, gestures, facial expressions, proxemics, per-
sonality etc. [3,11,15,31,37,38,41,64,65]. A number of work
complement video and audio data with physiological and
neurological sensors to provide information such as: EEG,
heart rate, perspiration rate, etc. [18,43]. The main advan-
tage of relying on video and audio data only is that the setup
can bemade relatively unobtrusive and as close to the real set-
tings in a classroom. On the other hand, while physiological
and neurological sensors may provide more accurate infor-

mation about some of the internal states of a learner (namely
arousal, alertness, anxiety, etc.), they are specialized sensors
that are not very practical in daily classroom settings.

Due to the multi-modality and diversity of the data
collected, Sensor Data Analysis approaches can differ signif-
icantly in terms of the chosen analysis methods. Commonly
found solutions include: 1) methods that look to detect
the presence of specific engagement cues/events such as
directed gaze, back-channels, valence, smile [34,60], 2)
supervised classifiers where the labels come from human
annotators [15,41,64], and 3) deep-learning [47] and deep
reinforcement learning [53,61] approaches for engagement
estimation. The deep-learning methods are relatively newer
methods in HRI, motivated by the idea that the traditional
machine learning methods are not equipped to deal with
high-dimensional feature space, require expert engineering,
and always rely on data annotation. While the first kind of
methods are relatively straight-forward to implement, they
are limited to the detectable cues, which are few and possi-
bly affected by confounding factors. Even though supervised
classifiers are one of the widely used methods, since engage-
ment is a highly subjective construct, there is the problem of
generalization and accuracy of such models since they are
modeled in a specific context and the labels are provided
by multiple annotators. We must also note that not many
studies actually report the annotation protocol. Lastly, the
latest deep learning approaches suffer from the lack of inter-
pretability/explainability of results and require an abundance
of data.

The state of the art review reported above emphasizes the
benefits ofmulti-modal approaches,which are better suited to
capture the nuances of engagement and less severely affected
by confounding factors, as well as emphasizes the disad-
vantages of relying on human observers/annotators, which
introduce a hard-to-control-for subjectivity. Hence, in the
proposed work, we try to steer away from dependency on
human annotators and lack of interpretability (introduced
by deep learning approaches) while still making use of
multi-modal data as in [57]. We put forward an automatic
machine learning method, which relies on both log-files and
video/audio data, analysed with clustering techniques. This
method can then generate labels for engagement which can
then be utilized for training a supervised classifier.

While engagement research in HRI is usually studied as
the standalone goal of an experiment and, to the best of
our knowledge, no study exists trying to explicitly link it to
learning, a large amount of contributions within MLA (and
specifically coming from the field of Intelligent Tutoring Sys-
tems - ITS) aims at capturing the knowledge state or skill level
of the students through the interactions with the system [4,6,
21,25,54] in addition to modelling meta-cognitive behaviors,
affective states, engagement, and motivation [5,8,14,23,25].
We want to explore the relation between engagement and

123



International Journal of Social Robotics (2022) 14:55–71 59

Fig. 2 Overview-productive engagement

learning. The reportedMLA literature supports our hypothe-
sis that it is possible to “unveil” learning and performance in
the way learners engage with each other and the task at hand.
The article investigates this intuition, without forgetting the
ultimate goal of turning what we find into something that
a robot can use online to drive its behavior to best support
learning.

3 Productive Engagement

Our research is motivated by the following conceptions:

1. Maximizing engagement does not necessarily lead to
increased learning outcomes, as first noted in Sect. 1,
where by here engagement entails the apparent repre-
sentation through logs, video and audio streams that are
annotated by humans.

2. As first discussed in Sect. 2, evaluating engagement in
light of domain specific measures like learning outcomes
and performance metrics, that are more objective con-
structs, and relying upon multi-modal data, can be more
effective in educational settings than using classifierswith
labels from human observers.

We define Productive Engagement as the level of engage-
ment thatmaximizes learning. Unproductive engagement can
occur either due to over engagement (that can happen espe-
cially when interacting with gamified educational setups or
setups with a robot) or under-engagement, both socially or
with the task. We make a distinction between the social and
task aspects of an interaction that happen in an educational
setting, adapted from the work of [22]. Productive Engage-
ment would then have the following components:

1. Social Engagement that we define as the quality and quan-
tity of the verbal and non-verbal social interaction with
other entities (learners and robots).

2. Task Engagement that we define as the quality and quan-
tity of the interaction with the task.

As seen in Fig. 2, learning and performance can be positive
or negatively affected by behavioral patterns pertaining to
social and/or task engagement and vice versa. Furthermore,
we argue that the other popularly used distinction (cognitive
and affective), as seen in the review by [9], comes under the

umbrella of both task and social engagement aspect of an
interaction. To shed more light on the motivation to use this
distinction, we include the outcomes classification from the
aforementioned review by [9]. They showed that in most of
the studies carried out with robots in educational settings, the
outcomes (what the robot intervention targets and what the
learning activity is designed for) can be classified into cog-
nitive and affective outcomes [9].“Cognitive outcomes focus
on one or more of the following competencies: knowledge,
comprehension, application, analysis, synthesis, and evalu-
ation” while the “Affective outcomes refer to qualities that
are not learning outcomes per se, for example, the learner
being attentive, receptive, responsive, reflective, or inquisi-
tive”. Both of these outcomes have been reported to affect
learning; however, having a positive affective outcome does
not imply positive cognitive outcome or vice versa [9,36].
The use of these two outcomes is also in line with the study
of [28]whopropose amodel to explain the dynamics of affec-
tive states that emerge during deep learning that ultimately
are also linked with cognitive engagement. Based on the def-
initions in the engagement literature [19,35,48,49,70], we
define them as follows:

1. Cognitive engagement refers to the effort that is put into
understanding and analyzing the learning concept includ-
ing meta-cognitive behaviors like reflection.

2. Affective engagement encompasses feelings, enjoyment,
attitude and the mood of the learners, etc.

The above categorization of engagement facets is pre-
sented to ground our definition of productive engagement
in the context of existing engagement literature and to illus-
trate our rationale for selecting engagement-related features.
Furthermore, we are aware that separating the cognitive and
affective dimensions of interactions is a gross simplification.
We nonetheless use this distinction as a convenient way to
design the robot behavior as well as to analyse data. Con-
cretely, we propose that a feature can be labelled based on
the type of engagement (cognitive or affective in task or/and
social space) we are using it to measure.

4 Research Questions

Weconsider our definitionofProductiveEngagement described
above as a hidden hypothesis that “links multimodal behav-
iors of the users to learning and performance”. Briefly, this
paper investigates the following research questions:

– RQ1: Given the behavioral patterns, whether cognitive
or affective, social or task, can we reveal a quantitative
relationship that links them to learning and performance?
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i.e., do people that differ in their behavior also differ in
their learning and performance?

– RQ2: To feed a machine-learning model of engagement
with labelled data, canwe replace humanannotated labels
by measures extracted from learning outcomes?

The link between the stated contributions in the paper,
Productive Engagement and the research questions is anal-
ogous to a cosco ladder. Previous work on educational HRI
and MLA, as aforementioned, agree in suggesting that there
is a link between learner engagement and learning. Then,
the two fields differ: while the educational HRI side has
mostly focused on investigating the relationship between
the robot’s behavior and learner’s engagement, a subset of
MLA literature has investigated the relation between learners
behaviors (indicative of constructs like engagement, motiva-
tion, effortful behavior, that have been used comparably [67])
and learning. In this article, we postulate that it is time to
reunite the two sides of the equation: robot behavior to user
engagement to user learning. We propose to do so via the
concept of Productive Engagement that emerges by investi-
gating such domains in parallel. Productive Engagement is
the type of engagement that the robot seeks to raise in the user,
because “it is the one that is expected to put the user in con-
ditions likely to trigger learning mechanisms, although there
is no guarantee that the expected conditions would occur”1.
Aforementioned is the first half of the ladder, the one where
we climb from the literature to Productive Engagement. Now,
on the second half, we descend from Productive Engage-
ment to experiments and implementation. For the full link to
work: (1) the robot needs to be able to autonomously infer
the user’s Productive Engagement in real time (RQ2), and (2)
there must exist a link between said engagement and learn-
ing (RQ1), so that the robot can verify whether the current
user engagement is conducive to learning and plan its actions
accordingly.

5 User Study

For the evaluation purpose of the hidden hypothesis, wemake
use of the data from a user study done with a first version
of a robot-mediated human–human collaborative learning
activity called JUSThink [46]. The JUSThink learning activ-
ity aims to (1) improve the computational skills of children
by imparting intuitive knowledge about minimum-spanning-
tree problems and (2) promote collaboration among the team
via its design. As an experimental setup for HRI studies,
it also serves as a platform for designing and evaluating
robot behaviors that are effective for the pedagogical goals.

1 This definition is inspired by Dillenbourg’s way of defining collabo-
rative learning in [27].

Fig. 3 The contents of the screens of the participants during the JUS-
Think learning activity, where one participant is in the figurative view
as seen in (a) and the other participant is in the abstract view given by
(b). The figures show a set of tracks forming a minimum spanning tree
for the network of gold mines: finding it and building it collaboratively
is the goal of the activity.

Theminimum-spanning-tree problem is introduced througha
gold mining scenario based on a map of Switzerland, where
mountains represent gold mines labelled with Swiss cities
names (see Fig. 3).

5.1 Learning Activity

The activity that envisions two children to play as a team
consists of several stages spanning approximately 50 min-
utes. It starts with the robot welcoming the children, then
introducing the goal of the task which is then followed by a
pre-test. After the pre-test, the robot gives a demo explain-
ing the two game views (see Fig. 3) and their functionalities,
which is then followed by the learning task lasting around 25
minutes. After the task, children are asked to fill in a post-test
and a self-assessment questionnaire before the robot greets
them goodbye. Both the pre-test and post-test are defined in
a context other than Swiss gold mines and are based on vari-
ants of the graphics in the muddy city2 problem. Both tests
are composed of 10 multiple-choice questions, assessing the

2 https://csunplugged.org/minimal-spanning-trees/.

123

https://csunplugged.org/minimal-spanning-trees/


International Journal of Social Robotics (2022) 14:55–71 61

three concepts: (1) If a spanning tree exists, i.e. if the graph
is connected., (2) If the given subgraph spans the graph, and
(3) If the given subgraph that spans the graph has a minimum
cost.

The learning task lies at the heart of the activity and
requires the children to interact with maps such as those
shown in Fig. 3 via touch-screens, as shown in Fig. 1. A small
humanoid robot, acting as the CEO of a gold-mining com-
pany reiterates the problem by asking the participants to help
it collect the gold by connecting the gold mines with railway
tracks, while spending as little money as possible. The par-
ticipants collaboratively construct a solution by drawing and
erasing tracks that connect pairs of goldmines, and submit it
to the robot for evaluation (one of the two optimal solutions
is shown in Fig. 3).

The learning task design is scaffolded towards collabora-
tion through precise design choices:

1. The task relies on two different views, respectively called
figurative and abstract, where each gives only partially
observable information to the user. The nodes and edges
of the graph are shown by mountain and railway tracks
in the figurative view while in the abstract view, they are
denoted by circles and solid lines, respectively. Addition-
ally, in the abstract view, deleted railway tracks are shown
with dashed lines and the cost of each edge is indicated
as a number.

2. The two views provide complimentary functionality and,
therefore, in order to make informed decisions, the team
members need to communicate. While in the figurative
view, one can build and erase tracks, in the abstract view,
one can view the cost of every track ever added, access
previous solutions and their costs, and bring back a pre-
vious solution.

3. Every two edits, the views are swapped between partici-
pants, thus allowing each team member to experience the
thought process that comes with a view. It also eliminates
permanent roles in the game.

4. The cost of each track is initially hidden and only revealed
after it is drawn, thus instigating reasoning about an edge
in terms of a connection between two entities with an
associated cost.

5. The team can submit their solution only if it spans the
whole graph and only when both participants press the
submit button. This scaffolds for team agreement before
submission.

The robot’s role in the current activity is two fold: 1) to
mediate and automate the entire activity by giving instruc-
tions at every stage and moving the activity from one stage
to the next as required, and 2) to intervene sparsely dur-
ing the learning task to provide feedback on the progress,

Child 1

RGB-D 
Camera 1

Barrier

Environment
Camera

touch screen 1 touch screen 2Learner 1

RGB-D 
Camera 2

Robot

Child 1

Experimenter

Learner 2

microphone 1 microphone 2

Fig. 4 The layout of the hardware setup for JUSThink

give hints and lend support through minimal verbal and non-
verbal behaviors [46].

5.2 Setup and Participants

The setup for the experiment is shown in Fig. 1 where the
two children in the team sit across each other separated by
a barrier. Each of them has a touch screen in front, to inter-
act with the application. The humanoid robot (QTrobot) is
placed sideways with respect to the participants, to be visible
to both. As depicted in Fig. 4, there are two RGB-D cameras
that record the facial streams and one environment camera
that films the entire scene. Two lavalier microphones, clipped
on the participants, are used to record audio.Weuse two com-
puters, connected to the screens and the robot, to manage the
activity and the synchronous recording of the sensors. On the
software side, each participant interacts with an instance of
the JUSThink application while a separate robot application
is used to manage the robot. All of the applications commu-
nicate via Robot Operating System (ROS). Rosbags are used
to record all of the participants’ actions (the logs) as well as
the robot actions. For more details on the hardware and the
software setup, see [46].

The study was conducted in two international schools in
Switzerland over two weeks3. Although the experimenters
were always present in the room, the activitywas autonomous
with little to no intervention required. A total of 96 stu-
dents participated ranging from 9 to 12 years old; however,
to ensure that data used for the study is complete and non-
faulty across all sensing modalities (i.e., video, audio and
actions logs) as well as homogeneous (e.g., we excluded a
team in which participants were speaking French instead of

3 This study received the approval of the university’s ethics committee
with reference number HREC No.: 051-2019.
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Fig. 5 Clustering of teams based on their learning and performance

English to communicate with each other), we omitted 28 stu-
dents, resulting in a corpus of 68 participants (i.e., 34 teams)
used for the analysis reported in this article. The dataset that
we termed as PE-HRI is made freely and publicly avail-
able [45].

6 Evaluating the Hidden Hypothesis

RQ2 assumes that learning and performance data, respec-
tively extracted from the pre- and post-tests and the learning
task itself, can provide labels to be used as a reference for
the analysis of the engagement features. Concretely, this
means that learning and performance data should allow for
a separation of teams into different groups, with different
learning outcomes and performance. This analysis, which
we call “backward” since it allows for moving from learning
to engagement (from learning outcomes back to the learning
process), is reported in Sect. 6.1. In Sect. 6.2, we first discuss
the engagement-related features extracted from video, audio
and log data (see Table 1), then investigate the existence of
the link between behavior and learning and performance,
which we postulate, by verifying whether correspondences
exist between the clustering of teams based on their behavior
patterns and the learning labels. This is what we call the “for-
ward” approach, since it moves from engagement features to
learning outcomes and performance metric. We must point
out that by performance, we mean how the teams perform,
i.e., fail or succeed at the activity and by learning outcomes,
we refer to how the learners score in there pre- and post-
tests. For our analysis, we make use of the sklearn machine
learning library [56].

Fig. 6 Pair plots of the clusters obtained through the backward
approach. According to their relative placement w.r.t. learning and per-
formance (and in line with terms and concepts used in Education), we
can label the clusters as: non-Productive Success (cluster non-PS), Pro-
ductive Failure (cluster PF), non-Productive Failure (cluster non-PF)
and Productive Success (cluster PS)

6.1 Backward Analysis

We make use of the following learning outcomes and per-
formance metric (which were first outlined in [46]), the
definitions of which are outlined as:

– Last error: It is a performance metric, denoted by
last_error, defined as the error of the last submitted solu-
tion by a team. It is computed as the difference between
the total cost of the submitted solution and the cost of the
optimal solution. Note that if a team has found an opti-
mal solution (last_error = 0) the game stops, therefore
making last error = 0.

– Relative learning gain: It is a learning outcome, cal-
culated individually and not as a team, defined as the
difference between a participant’s post-test and pre-test
score, divided by the difference between the maximum
score that can be achieved and the pre-test score. This
grasps how much the participant learned of the knowl-
edge that he/she didn’t possess before the activity. At
team level, denoted by T_LG_relative, we take the aver-
age of the two individual relative learning gains of the
team members.

– Joint learning gain: It is a learning outcome, denoted
by T_LG_joint_abs, defined as the difference between
the number of questions that both of the team members
answer correctly in the post-test and in the pre-test, which
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grasps the amount of knowledge acquired together by the
team members during the activity.

We calculate these measures for each team, normalize
them to have unit variance, and then perform a K-means
clustering on the metrics as observed in Fig. 5. The k is
estimated based on the commonly used metric of inertia for
analyzing how well the clustering method did. For a bet-
ter understanding of the resulting clusters, we also generate
pair plots for the three metrics in Fig. 6. As the pair plots
show, we have four clusters that we can label, in accordance
with terminology and concepts commonly adopted in the
field of learning and education (more specifically the terms
productive/non-productive inspired by the terminology of
Productive Failure [40]), as:

– Non-Productive Success, i.e. teams that performed well
in the task but did not end up learning; hence, with lower
last errors and lower learning gains (BA cluster = non-PS
in blue in Fig. 6).

– Productive Failure, i.e. teams that did not perform well
but did end up learning; hence, with higher last errors and
higher learning gains (BA cluster = PF in orange).

– Non-ProductiveFailure, i.e. teams that neither performed
well in the tasknor did endup learning; hence,with higher
last errors and lower learning gains (BA cluster = non-PS
in green).

– Productive Success, i.e. teams that performed well and
also ended up learning; hence, with lower last errors and
higher learning gains (BA cluster = PS in red).

In terms of the pedagogical goal as well as the apparent
success in the activity, it is quite interesting to see these four
types of teams. However, the next question is whether behav-
ioral patterns of teams would cluster in a similar manner or
not. In other words, would the different behavioral patterns
also indicate such a division among teams?

6.2 Forward Analysis

6.2.1 Joint Analysis of Video, Audio and Log Features

As explained in Sect. 2, in this work we focus on video,
audio and log features as some of the most commonly used
features for engagement detection, such as speech, affective
states, and gaze come from such data. Table 1 lists and details
the multi-modal features that we use to analyze participants’
behavior in the forward approach. We also mark the feature
type as task/social and cognitive/affective, in line with the
definitions and rationale outlined in Sect. 3. As a first step,
we make sure that the logs, videos, and audios used for gen-
erating all the features for a team are aligned and cut for the
task duration only and not the entire pipeline given in Sect. 5.

Log features are extracted from the recorded rosbags.
The features related to both affective states and gaze are
computed through the open source library OpenFace [2]. A
common way of calculating affective states, such as valence
and arousal, is via the facial action units generated by Open-
Face. For positive and negative valence, we build on action
units (AUs) that correspond to positive and negative emo-
tions, respectively, based on the findings from IMotions4 that
uses Affectiva5 for emotion recognition. These findings are
also similar to the ones in EmotioNet ([10]). Exponential
moving average is applied to smoothen the data for each AU
followed by taking an average of the AUs belonging to posi-
tive and negative emotions for positive and negative valence,
respectively. We calculate arousal by taking average of all
the AUs above a certain intensity at a given point in time.
Regardless of the valence, the absolute value of arousal is
calculated to measure the expressivity of a user. For the smile
extraction based on AUs, we base it on the findings from a
smile authenticity study conducted by [42]. OpenFace also
generates gaze angles that can be used to determine the eye
gaze direction in radians in world coordinates. These angles
are averaged for both eyes and are converted into more easy
to use format than the gaze vectors. Using these gaze angles,
it can be approximated if a person is looking straight ahead,
left or right. Lastly, voice activity detection (VAD) through
audio stream is done by using the python wrapper for the
opensource Google WebRTC Voice Activity Detection. All
the audio features listed inTable 1 are computed on the output
given by the Google WebRTC VAD.

Assessing Forward Clusters: To cluster teams based on their
behavior pattern, as captured by the 28 features listed in Table
1, we first apply Principal Component Analysis (PCA) on
the normalized features (we use min-max scaler to trans-
form features by scaling each feature between a range of 0
and 1) which return three principal components (PCs). The
three principal components identified by the PCA account
for 50% of the variance within the features dataset, with the
fourth component only contributing for 8%. Then, by apply-
ing K-means clustering on the three PCs (with K=4 chosen
in accordance with the inertia score), we end up with four
clusters as shown in Fig. 7 where each cluster represents a
different behavioral pattern.

As outlined in the opening of this section, to investigate
RQ1, we compute the average performance metric and learn-
ing outcomes for the teams in the clusters obtained from
the analysis of behavioral features as shown in Fig. 8. In
the rest of the analysis, we disregard cluster F2

all since it is
composed of only 2 data points. As the figure shows, while
the three clusters F0

all , F
1
all and F3

all have similar average

4 https://imotions.com/blog/facial-action-coding-system/.
5 https://www.affectiva.com/.

123

https://imotions.com/blog/facial-action-coding-system/
https://www.affectiva.com/


International Journal of Social Robotics (2022) 14:55–71 65

Fig. 7 Clustering of teams based on their behavioural pattern (extracted
from video, audio and log features)

Fig. 8 Learning outcomes and performance metric (averaged within
cluster) for the clusters computed with the forward approach. Stars
denote statistically significant differences (p < 0.05). Dashed horizon-
tal lines indicate the metrics’ global averages

performance, they significantly differ in terms of learning
outcomes, with clusters F0

all and F3
all having higher aver-

ages than cluster F1
all (i.e., F

0
all and F3

all including teams that
ended up with higher learning, while cluster F1

all includes
teams who ended up with low learning). To validate these
differences statistically, we perform a Kruskal-Wallis (KW)
test on these metrics between each pair. In addition to the
learning outcomes first defined in Sect. 6.1, we also include
“absolute learning gain” to further validate the results. It
is calculated individually and is defined as the difference
between a participant’s post-test and pre-test score, divided
by the maximum score that can be achieved (10), which
grasps how much the participant learned of all the knowl-
edge available. At team level, denoted by T_LG_absolute,
we take the average of the two individual absolute learn-
ing gains of the team members. Coming back to the KW
test, for the pair (F1

all , F
3
all), there is a significant difference

for absolute learning gain, relative learning gain, and joint

Fig. 9 Similarity matrix between the clusters computed on the learn-
ing outcomes and performance metric (backward analysis - rows) and
those computed on the engagement features listed in Table 1 (forward
analysis-columns)

learning gain respectively as (mean_LG_abs: p = 0.025,
mean_LG_rel: p = 0.016, mean_LG_joint: p = 0.026). For
the pair (F0

all , F
1
all), albeit not statistically significant (for

p < 0.05), there is a difference in absolute learning gain,
and relative learning gain, respectively, as (mean_LG_abs:
p = 0.073, mean_LG_rel: p = 0.067). These results seem
to indicate that the teams that end up having significantly
higher learning gains behave differently w.r.t. the teams end-
ing upwith lower learning gains. In otherwords, this suggests
that participants’ behavior is indicative of the separation of
teams in high- and low-learners. This, in turn, supports our
hypothesis of the existence of a link between engagement
and learning (RQ1) and its representability with features that
do not require human annotation (RQ2).

Comparing Forward and Backward Clusters: In an effort
to further assess our hypothesis, we compare the clusters
formed by the backward approach with those obtained in the
forward approach. For this, we compute a similarity score
SFB for each backward cluster B with each forward cluster F
as:

SFB = common teams in both clusters

total teams in both clusters
(1)

which generates the Similarity Matrix shown in Fig. 9. It
must be noted here that in Fig. 9, the order of naming of clus-
ters on each axis is unrelated, i.e., we don’t expect learners in
horizontal cluster non-PS to also be in vertical cluster F0

all , or
more specifically we do not expect the diagonal to be filled.

In order to interpret the matrix, let us look at Figs. 6
and 8, along with Fig. 9. Starting from the backward
clusters, we can observe that the majority of the teams
belonging to low-learning clusters (i.e., cluster non-PS -
non-Productive Success and cluster non-PF - non-Productive
Failure in Fig. 6) fall in the forward cluster F1

all (S
1
non - PS =

123



66 International Journal of Social Robotics (2022) 14:55–71

0.37, S1non - PF = 0.52), which in fact is the one with lowest
average learning gain values (see Fig. 8 and Fig. 9). Simi-
larly, themajority of the teams belonging to the high-learning
clusters (i.e., cluster PF - Productive Failure and cluster PS
- Productive Success in Fig. 6) fall in the forward clusters
F0
all (S

0
PF = 0.40, S0PS = 0.37) and F3

all (S
3
PF = 0.46,

S3PS = 0.41) that have significantly higher learning gain val-
ues (refer to Figs. 8 and 9).

The aforementioned analyses show that there are similar-
ities in the composition of clusters generated by evaluating
the teams’ learning and performance and those generated
by considering their behavior, captured by features extracted
from logs, video and audio data. Concretely, in both cases,
teams with low learning are grouped together and separated
from high-learning teams. This indicates that, irrespective of
performance during the task, teams that end up with higher
learning exhibit behavioral patterns that can be clearly dis-
tinguished from those of teams that do not end up learning.
In accordance with the definition put forth in Sect. 3, we
deem the teams displaying behavioural patterns conducive
to learning as Productively Engaged, as opposed to those
whose behaviour, albeit possibly appearing engaged and even
leading to good performance in the task, is not conducive to
learning (non-ProductiveEngagement).Weconclude that the
reported analysis supports our hypothesis of the existence of
a link between behavioral patterns and learning. Moreover,
it paves the way for the design of robot behaviours, via the
definition of Productive Engagement, which aim at putting
learners in the best conditions for learning, by optimizing
their engagement to that end.

6.2.2 Type-Specific Forward Analysis

The forward analysis presented in the previous section relies
on features extracted from action logs, video and audio data.
In an effort to verify the robustness of our findings, as well
as restrict the feature set, we decided to replicate the forward
analysis by first considering only the features extracted from
the logs and then only the features extracted from the video
and audio data. This separation is based on the idea that
log-features are task-specific and, as captured by Table 1,
mostly cognitive, while the other two data sources provide
mostly social features (both cognitive and affective). Hence,
an additional motivation for the analysis is therefore to check
whether features of one type contribute more than the other
to explaining the results seen in Sect. 6.2.1.

Performing PCA and K-means clustering on the log fea-
tures (first section of Table 1), returns 3 clusters along 2
significant PCs (accounting for 55% of the variance within
the features dataset, with the fourth component only con-
tributing for 10%) as shown in Fig. 10. The similarity
matrix given in Fig. 12 between the backward (on learn-
ing outcomes and performance metric) and forward (on

Fig. 10 Clustering of teams based on their behavioural pattern
(extracted from log features only)

Fig. 11 Learning outcomes and performance metric (averaged within
cluster) for the clusters computed with the forward approach using log
features only. Dashed horizontal lines indicate the metrics’ global aver-
ages. No statistically significant difference is found

behavioral features) clusters shows similar results w.r.t. those
obtained when considering all features. The low-learning
backward clusters (i.e., cluster non-PS - non-Productive Suc-
cess and cluster non-PF - non-Productive Failure in Fig. 6)
fall more in the forward cluster F1

logs (S1non - PS = 0.44,

S1non - PF = 0.59) while the high-learning backward clus-
ters (i.e., cluster PF - Productive Failure and cluster PS -
Productive Success in Fig. 6) fall more in the other two for-
ward clusters F0

logs (S0PF = 0.68, S0PS = 0.40) and F2
logs

(S2PS = 0.41) (see Figs. 11 and 12). However, a Kruskal-
Wallis test run pairwise for the forward clusters over the
learning outcomes shown in Fig. 11 reports no statistically
significant difference, with only near-significant results we
get are for the pair (F0

logs, F
2
logs) (mean_LG_abs: p = 0.060,

mean_LG_rel: p = 0.065, mean_LG_joint: p = 0.096) .
Similarly, following the backward and forward approach

whenusingonly thevideo andaudio features (seeFigs. 13, 14,
and 15), we see the same conclusion as previously seen.
The low-learning backward clusters (i.e., cluster non-PS -
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Fig. 12 Similarity Matrix between the clusters computed on the learn-
ing outcomes and performance metric (backward analysis - rows) and
those computed on the log features listed in the top section of Table 1
(forward analysis - columns)

Fig. 13 Clustering of teams based on their behavioural pattern
(extracted from video and audio features only)

non-Productive Success and cluster non-PF - non-Productive
Failure in Fig. 6) fall more in the forward cluster F2

v_a
(S2non - PS = 0.54, S2non - PF = 0.44) which in fact is the one
with lowest average learning gain values. On the other hand,
the high-learning backward clusters (i.e., cluster PF -Produc-
tive Failure and cluster PS - Productive Success in Fig. 6) fall
more in the other two forward clusters F0

v_a (S0PF = 0.42,
S0PS = 0.47) and F1

v_a (S1PF = 0.36) (see Figs. 14 and 15)
that have higher learning gain values. However, a Kruskal-
Wallis test run pairwise for the forward clusters over the
learning outcomes shown in Fig. 14 reports no statistically
significant difference.

The results of the type-specific analyses suggest that (1)
the results obtained in the global analysis of Sect. 6.2.1 are
robust (since type-specific analyses are in line with them,
either isolating high-learners or low-learners), and (2) the
results obtained in the global analysis are produced by the

Fig. 14 Learning outcomes and performance metric (averaged within
cluster) for the clusters computedwith the forward approach using video
and audio features only. Dashed horizontal lines indicate the metrics’
global averages. No statistically significant difference is found

Fig. 15 Similarity Matrix between the clusters computed on the learn-
ing outcomes and performance metric (backward analysis - rows) and
those computed on the video and audio features listed in the middle and
bottom sections of Table 1 (forward analysis - columns)

combined effect of all types of features (since type-specific
analyses fail to produce statistically significant results). The
latter conclusion is a nice, indirect proof of the multi-
dimensional, multi-faceted nature of human engagement,
which makes it such a challenging and fascinating research
topic.

7 Conclusion and FutureWork

As outlined in Sect. 3, our goal is to pave the way for a new
way of designing social robots for learning. The behavior of
these robots is driven by the effects it will ultimately have on
the user’s learning, via the effect it has on the user’s engage-
ment, inspired by the findings in the fields of Educational
HRI andMulti-modal LearningAnalytics about the existence
of a link between engagement and learning. Fundamental
pre-requisites for achieving that goal are that (1) it is possi-
ble to compute an approximation of user engagement which
is devoid of human intervention, to allow for its automatic
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online extraction (RQ2); (2) the operationalizationof engage-
ment obtained in step 1 preserves the link with user learning
(RQ1). The results we have obtained, reported in Sect. 6,
support both hypotheses. Briefly, this paper explores the link
between engagement and learning and, thus, proposes the
concept of Productive Engagement, its validation in an HRI
data set, and considerations on its consequences.

Firstly, we conclude that there are behavioral features, per-
taining to task or/and social engagement, that predict learning
outcomes and that these features are sometimes disconnected
from performance in the task. To elaborate on the statement,
in light of the results in Sect. 3, we observe that the teams that
end up achieving a higher learning gain (i.e., cluster PF -Pro-
ductive Failure and cluster PS - Productive Success in Fig. 6)
in the JUSThink activity may or may not apparently perform
well in the task itself. However, irrespective of their perfor-
mance, theway those teams interact with the task and express
themselves through speech, facial expressions and gaze is
distinct from the behavior of the teams who achieve lower
learning gains (i.e., cluster non-PS - non-Productive Suc-
cess and cluster non-PF - non-Productive Failure in Fig. 6).
Hence, these patterns of observable behaviors validate the
existence of the hidden hypothesis of Productive Engage-
ment.

Secondly, we conclude that the existence of this hidden
hypothesis paves way for the design of machine-learning
engagement detection models where the labelling for the
state of engagement would not need a human annotator but
rather come from the data itself. Specifically, the link between
the behavioral patterns and the learning outcomes and the
performance metric, in the form of statistically significant
differences found with KW and the similarity matrix shown
in Sect. 6.2.1, allows us to label the teams in forward clus-
ters F0

all and F3
all as Productively Engaged and the teams in

FA cluster F1
all as Non-productively Engaged. At the same

time, the results show that the proposed procedure seems bet-
ter in isolating high-learners than low-learners (see results
in Sect. 6.2.1 based on similarity matrix). This finding seems
to suggest that while the behavior of people closer to the
pedagogical goal of understanding the concept tends to be
more distinctive and identifiable, the behavior or people who
are (and will end up) not learning is more varied and harder
to characterize. Intuitively, this finding reminds of Thomas
Edison’s famous quote about the many ways in which some-
thing can go wrong, and the only (or few) ways in which it
can go right.

With this said, while performance is usually a biasing
factor for humans when annotating a subjective construct
like engagement in such activities; a robot enabled with the
aforementioned knowledge around Productive Engagement
would thus not make its interventions based on whether a
team is failing in the task or not, but rather by observing
more sophisticated patterns of interaction of a team with the

task and with the social environment including the partner
and the robot itself.

Furthermore, the analysis presented in this paper consid-
ers features computed at global level, i.e., at the end of the
interaction. The next logical step along the path that we aim
to walk is to transform the features of interest into time-
series and verify whether the correlation with learning that
we found at a global level still holds in the progression. To
further investigate in this direction, as a second step, we plan
to design a supervised time-series model with labels adapted
through the hidden hypothesis established in the baseline
JUSThink scenario, i.e., where the robot’s interventions are
minimal in order to reduce the confounding effects. The idea
is then, as a third step forward, to put the model to test in
a real-time scenario where the robot will adapt its behav-
iors according to the concept of productive engagement. The
model will, thus, help the robot to answer the question of
when to intervene effectively. However, to determine what
behavior to induce in the user while designing for effec-
tive robot interventions, the next logical step we envision for
this research is the characterization of the forward clusters
obtained in Sect. 6.2.1 in terms of the contributions of the
single features, and emerging differences between high- and
low-learners. The aim is to acquire a deeper understanding
of the link between engagement and learning, and there-
fore reach a refined and more solid definition for Productive
Engagement.
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