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Abstract—In this paper, we propose that the data generated
by educational robots can be better used by applying learning
analytics methods and techniques which can lead to a deeper
understanding of the learners’ apprehension and behavior
as well as refined guidelines for roboticists and improved
interventions by the teachers. As a step towards this, we put
forward analyzing behavior and task performance at team
and/or individual levels by coupling robot data with the data
from conventional methods of assessment through quizzes.
Classifying learners/teams in the behavioral feature space with
respect to the task performance gives insight into the behavior
patterns relevant for high performance, which could be backed
by feature ranking. As a use case, we present an open-ended
learning activity using tangible haptic-enabled Cellulo robots
in a classroom-level setting. The pilot study, spanning over
approximately an hour, is conducted with 25 children in teams
of two that are aged between 11-12. A linear separation is
observed between the high and low performing teams where two
of the behavioral features, namely number of distinct attempts
and the visits to the destination, are found to be important.
Although the pilot study in its current form has limitations, e.g.
its low sample size, it contributes to highlighting the potential
of the use of learning analytics in educational robotics.

Keywords—educational robotics, learning analytics, compu-
tational thinking, path planning.

I. INTRODUCTION

The potential of robots is increasingly being explored in
educational settings across the globe. When used in a class-
room or group setting, they introduce a range of sensors that
would not otherwise be available. Currently, these sensors
are primarily being used to mediate and guide educational
activities where the system benefits from being situated in
the real world to help the learners gain understanding in
various domains as diverse as physics [1], chemistry [2],
maths [3], handwriting [4], [5], reading [6], storytelling [7],
vocabulary [8], chess [9], meteorology [10] etc.

Two types of intervention of robots for learners have been
identified [11]: i) robot as a tool, ii) robot as an agent. When
used as a tool, researchers have explored using robots to
teach robotics or other STEM curricular content [12]. As an
agent, scientists focused their research in creating engaging
and personalized scenarios for learners interacting with the
robots [13]. While performances of students have been
evaluated in both types of interventions, the analysis is often
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limited to learning outcomes and statistics. We believe that
robot sensors and interaction logs can be used to get deeper
insights in the learning process of students during the activity
with robots. These insights can be useful for designing new
experiments, refining guidelines and enhancing the research
value of studies in robots for learning.

Within the field of education, analytics is termed as
learning analytics and is a relatively new trend. Learning
analytics provides a lens for analysis and representation of
data collected during a learning activity to improve learn-
ing [14]. Through the collection, measurement, and analysis
of behavioral data, we can develop a deeper understanding of
learning. Through the dissemination of this information back
to teachers and students with visualizations and interventions,
we can impact learning [15], [16]. To this end, we believe
that learning analytics methods like prediction algorithms,
structure discovery, and relationship mining can bridge the
aforementioned gap as robots generate an abundance of data
that can give useful information about learners’ behavior.

In this paper, we present a study featuring a constructivist
learning activity, the Cellulo City, targeted to improve the
computational thinking skills of children aged 11 to 12
through a path planning problem. The activity makes use
of tangible haptic-enabled Cellulo robot [17]. Using this
study, we demonstrate with learning analytics applied to
the robots’ sensor and interaction logs that we could get
a better understanding of learning strategies of students in
link with their learning outcomes. Specifically, we observe
patterns of interaction with the robot that are relevant for
high performance by performing feature ranking, clustering
and classification techniques on the collected data.

II. RELATED WORK

A. Use of Robots in Education

In STEM, for programming applications, the Thymio
robot [18] has served as an environment to learn program-
ming; however, a logging capability is not readily available
in the associated software development environments. The
reported experiments with Thymio consist mainly of work-
shops to gain programming experience [19] or recently with
case studies for experimenting with swarm robotics [20],
where they provide no analysis for learning. In [21], LEGO
Mindstorms was used as the physical instances correspond-
ing to objects in object-oriented programming paradigm.

For non-programming STEM activities, LEGO Mind-
storms robot kit in [22] served as a platform to provide



students with physical robot building experience to un-
derstand mechanical concepts. Then, pretest, post-test and
student notes on a template were analyzed for conceptual
understanding and development. Furthermore, we increas-
ingly see active tangible robots (most prominently Cellulo)
being employed as experimental tools to enhance the learn-
ing experience for various educational concepts like wind
formation [10] and states of matter [2]. The analyses in these
two activities seem to be closest to our proposed approach.
In [10], in addition to the post-test, robot logs such as
pose of the robot, grasp and release events are collected to
analyze more complex metrics like exploration similarity and
entropy. The authors used these metrics to explain what each
of them meant in terms of behavior and if statistically each
individual metric relates to performance. Similarly, in [2],
apart from the pretest and post-test, the authors statistically
tie back the learning outcome to metrics generated from robot
logs. However, in both of the studies, we do not see any pre-
diction or structure discovery techniques to classify/cluster
high and low performing teams with respect to a multi-
dimensional behavioral space.

For other non-STEM disciplines, the letter handwriting
activity [4] is similar to the aforementioned activities with
Cellulo. Mostly, in this domain, we find activities such as
story telling [7] and language learning [23], where social
robots are used as either peers/tutors to assist in learning [13].
In addition to this, more recently, social robots are utilized for
measuring high level constructs like engagement, trust and
attention of the learners [24], [25], [26] that are assumed to
be linked with performance.

B. Learning Analytics

When students are working on a technology-enhanced
learning activity, they create data traces that can be used
to analyze and support their learning. The most common
modality of collected data consists of logs from the students’
interactions with personal computing devices [27]. However,
with the advances in technologies, learning analytics is shift-
ing towards integrating multimodal data taking into account
text, speech, visual, physiological cues by making use of data
devices like Kinect sensor, microphones, eye-trackers, cam-
eras, and wrist-bands/wearables [28]. These different data
streams can be used to provide additional information about
the learning state of the students, such as their current level
of attention [29]. Multimodal data collection and analysis
techniques (termed as multimodal learning analytics) can be
utilized for looking into the learning process of the students
in open-ended, complex learning environments where assess-
ment is particularly difficult: in doing so, it would be possible
to “generate distinctive insights into what happens when stu-
dents create unique solution paths to problems, interact with
peers, and act in both the physical and digital worlds” [30].
Specifically, in tasks where learners have to build functioning
artifacts, learning analytics can help “to make rich inferences
about learning and learners” [31]. For instance, [32] applied
learning analytics to associate multimodal data with the
experimental condition in a hands-on “making” activity (of

constructing a complete operational object) and correlate the
student behavior with two learning outcomes, success in the
task and learning. On gesture (hand/wrist movement), audio
and bio-physiological data, the authors identify common
student behaviors, and then compare how behaviors differ
as a process in time and separately in frequency: the results
support the usefulness of separating success, learning and
process as well as considering multiple modalities in order
to differentiate between effective behaviors.

Data captured by robots serves as a beneficial source and
adds to the multimodality of the data. Robots that are used in
the classroom can produce continuous behavioral data around
how the students are interacting with the robot. As the data
collected for analysis becomes more diverse, the methods
within learning analytics used to address this data also grows.
To better understand how these student behaviors relate to
their learning, structure discovery methods and prediction
algorithms can be used to find which behaviors are produc-
tive for learning. On the other hand, to understand which
behaviors often proceed other behaviors, sequential pattern
mining can be used. For instance, data mining has been
applied to data from the interaction with the programming
environment in order to classify [33] students’ interaction
with the educational robotics environment Lego Mindstorms,
and predict [34] the learning progress of students to help
teachers facilitate this progress. Once these relationships are
better understood, interventions can be put into place. By
applying learning analytics methods to data collected from a
robot, we can develop a better understanding of the learning
strategies that the students use as they engage with the robot.

Briefly, with regards to the contributions, this paper: i)
highlights the potential of analyzing learners’ behaviors by
coupling robot data with the data from conventional methods
of assessment through quizzes in educational settings with
a pilot study, ii) introduces a novel open-ended learning
activity using tangible haptic-enabled Cellulo robots in a
classroom-level setting for the pilot study, and iii) showcases
classification of learners/teams in the behavioral feature
space with respect to the task performance giving insight
into the relevant behavior patterns for high performance in
the use case.

III. LEARNING ACTIVITY DESIGN
A. Path Planning and the Notion of Cost

Path planning can simply be defined as developing a
strategy aiming to optimize certain constraints of navigating
from one point to another. In order to find the best path when
multiple paths exist, one would need to define a criterion to
determine how good a path is. For instance, considering the
layout of a city as in the muddy city problem', a criterion
could be the number of paving stones connecting two houses
or the number of houses that you pass to reach a specific
house. This criterion is basically what is termed as the notion
of cost in the field of path planning, and the goal is to
minimize this cost.

https://csunplugged.org/minimal-spanning-trees/
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(a) Introductory Map (b) Map 1

(c) Map 2

Fig. 1: (a) The introduction sheet to familiarize children with Cellulo, specifically how to move a Cellulo robot and to distinguish haptic feedback given by the robot. (b, c)
Map 1 and Map 2 used in the learning activity, where the goal on a map is to find the optimal path from home represented with a clip-art of a house to (b) gym and (c) cinema.
The source and destination nodes, and the optimal paths are highlighted here with dashed circles and dashed lines respectively.

TABLE I: Content breakdown for path planning

| Concept | Description |
node the idea of a node as an entity
edge the idea of an edge as a connection or link
between two entities
path the idea of a path as a sequence of edges con-

necting nodes

the existence of a path between two nodes

that there can be multiple distinct paths between
two nodes, rather than a single path

reachability of a node
multiplicity of paths

path length the length of a path as the number of edges on
that path
edge weight the idea of a weight function on edges

path distance interpreting the length of a path as the sum of
costs on the edges of that path
that a path can be better (more preferable) or

worse by some cost criterion

optimality of a path

We highlight some of the core concepts involved in
path planning in Table I. The idea is to design a learning
activity in a manner that helps in extracting some part of
a concept by exploratory behavior; hence, serving as an
advance organizer [35] to a conventional lesson or even a
stand alone session with some modifications.

Path planning is useful in applications as diverse as
computer networks, telephone networks, oil pipelines, airline
routes, social networks, etc. All in all, the inspiration for
the subject material around path planning is the idea that it
can help children acquire some of the computational think-
ing skills such as analysis and pattern generalization. The
motivation behind choosing a constructivist activity design
involving path planning as a use case shares the same spirit
as proposed by [36] that “a constructionism-based problem-
solving learning environment, with information processing,
scaffolding and reflection activities, could be designed to fos-
ter computational practices and computational perspectives”.

B. Learning Activity for the Notion of Cost

We formulate our open ended learning activity on the
lines of helping a robot go from a source location home
to a destination by using as little battery as possible. The
learning outcome for this activity, i.e. what the learners are
expected to learn at the end, is the notion of cost. What are
the learners able to do at the end, that they are not able to
do at the beginning, is that they are able to choose the best
path among many possible paths by considering the cost of
each segment.

To set the task space for the Cellulo City problem, we

design maps as given in Fig. 1, and utilize the Cellulo robotic
platform where a tangible, handheld, haptic-enabled Cellulo
robot operates on a printed paper sheet [17]. The sheet is
overlaid with Anoto pattern [37] by utilizing an open-source
2D localization library libdots*>. A Cellulo robot is equipped
with a camera below with the help of which it can infer its
position and orientation on the printed document.

1) Dimensions of the cost criterion: In order to represent
the cost of traversing an edge, each edge is assigned a
weight that is associated with two dimensions: the type of
the edge and the length of the edge. For the type dimension,
we distinguish between three types of edges—plain, stony,
mountainous as shown in Fig. la. For the length dimension,
an edge is either of one or two unit lengths, where the cost of
an edge is twice if it is two unit lengths. These relationships
constitute as the specific instance of the notion of cost in the
learning activity that is to be discovered by the learners.

2) Feedback modalities: The first modality is used to
visualize the remaining pretended battery level through the
six RGB LEDs located on top of a Cellulo robot. When a
Cellulo is placed at home, the pretended battery is charged to
the full value of 24 and displayed by illuminating all six of
the robot’s LEDs with the color green, which represent six
full batteries—see Fig. 2a for a Cellulo placed at home. As
the robot is moved on an edge, the battery value decreases
by the cost on that edge from which a learner can infer the
total cost of the path taken. Every time the robot is moved
to home, the battery level is reset to six full batteries.

The second modality is the haptic feedback that matches
with the type of an edge: a Cellulo robot gives little resistance
and vibrates on stony edges, gives higher resistance with no
vibration on mountainous edges, and assists the movement
on plain edges.

IV. PILOT STUDY
A. Setup

The pilot study was conducted with a class of twenty five
children that were aged 11 to 12 years (15 females: M = 11.9,
SD = 0.34; 10 males: M = 11.9, SD = 0.47). The learners

’https://chili.epfl.ch/libdots



TABLE II: Activity pipeline of our pilot study. Visual refers to the visual representation of the remaining battery level through the LEDs on top of the robot.

| Name | What are the learners asked to do? | Feedback from the Robot | Level | Duration |
Introduction hold and move the Cellulo robot and feel the haptic | - haptic team 2 min
feedback associated with the type of the road to get
familiar with the robot
Phase 1 find the best path from the source to the destination - haptic team 15-20 min
(Complete Feedback Phase) - visual
Phase 2 find the best path from the source to the destination | - haptic team 15-20 min
(Delayed Feedback Phase) on a different map - visual at home and destination
Individual Quiz draw the best path on a set of three maps not available (no robot) individual 5 min
Collaborative Quiz answer a list of questions that were designed to gather | not available (no robot) team 5 min
the learners’ understanding about the underlying notion
of cost
Time for Telling listen to a brief explanation on what makes a path an | not available (no robot) all 5 min
optimal path, what is notion of cost, and link them to
the activity at hand

(a) A team of two children (b) Several teams

Fig. 2: Photos of (a) a single team while answering the collaborative quiz and (b)
several teams participating concurrently in the learning activity in our pilot study

participated in teams of two (with the exception of one team,
team 1, that consisted of three children) and each team was
given one Cellulo robot. The study was run in parallel with
all teams going through the activity pipeline described in
Section IV-B synchronously. There were four supervisors,
one per three teams, that instructed and managed the teams.
The learners had no prior experience with the Cellulo robot
platform used in this study, and reported by their teacher to
have been coding occasionally for three years. The study was
in the form of a one hour long session, and took place in a
school in Switzerland. See Fig. 2a and Fig. 2b for one team
and several teams in parallel respectively, as they participate
in the learning activity.

B. Activity Pipeline

See Table II for an overview of the activities that the
learners went through. In Phase 1 and Phase 2, the teams
were asked to find the best path from home to the destination.
In Phase 1, the remaining pretended battery level of the
robot is shown throughout the map, whereas in Phase 2,
the battery level is shown only at the goal node and not on
the intermediate nodes or edges. In both phases, learners are
allowed to repeat going from home to destination as many
times as they want for a limited time. The teams were not
notified whether a path they took was the best or not. Each
team was given a blank note-taking sheet (with a printed
suggestion to use the paper to keep track of the battery) that
was collected at the end of the phase. Afterwards, the teams
were asked to report the best path on their given map and
draw the path on a copy of the map. In Phase 1, the first
six teams were given Map | and the remaining six teams
were given Map 2 which were then swapped in Phase 2—see
Fig. 1b and Fig. 1c for the maps, and the best paths to be
found and reported by the teams.

After the two phases in which the children worked in
teams, in individual quiz, each learner was asked to draw the
best path on paper for a set of maps similar to the maps in
the phases. Then, in collaborative quiz, each team was asked
to answer a list of questions that were designed to gather the
learners’ understanding about the underlying notion of cost
in the context of this activity, that connects to the learning
outcome of the activity. Finally, we showed the teams their
performance as collected through robots on an orchestration
teacher dashboard, which is out of scope of this paper. We
explained the teams together the notion of cost and what
makes a path an optimal path as a general case, as well as
by linking it to the activity at hand. A detailed description
is available online’.

C. Data Collection

We recorded the poses (position and orientation) of all
robots on the paper maps in Introduction, Phase 1 and Phase
2. Every time an event with a pose-change (either position
or orientation or both) occurred, it was recorded. We also
collected the note-taking sheets given to the teams in the two
phases, the best path reporting sheets that were distributed
to the teams at the end of each phase, and the individual and
the collaborative quizzes.

V. RESULTS AND DISCUSSION

We discuss the performance and behavioral analysis in the
following subsections.

A. Analysis of the Task Performance

We do not measure the learning gain itself on the concept
of the notion of cost per se but we measure: if the children
are able to report the best path correctly i) for the maps in
the two phases, ii) for the maps in the individual quiz; and
iii) to what extent they understand the notion of cost in this
context, which is evaluated through the collaborative quiz.

1) Success in the Phases: A team in a phase is labeled as
“Pass” if it successfully reported the optimal path in the end
of the phase, and as “Fail” otherwise. For each of the two
phases, 10 out of 12 teams were able to find the best path,
and there exist no teams that failed both of the phases.

3https://github.com/chili-epfl/robot-analytics
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Fig. 3: Robot battery level at destination vs. path number for each team. A star marks
the first time a team traverses on the optimal path. Dashed line indicates that the team
has failed to report the optimal path. The best path is unique and has the cost of 17.

Fig. 3a and Fig. 3b give the battery level at the destination
for each path that a team traversed in Phase 1 and Phase 2,
respectively. We see that the two teams (Team 3 and 4) that
were not able to report the best path correctly in Phase 1 were
the only ones that never came across it during the exploration
of the map. However in Phase 2, the two teams that failed
did come across the best path during the exploration stage,
but were unable to report it at the end. Note that most teams
kept attempting even after reaching the best score, since they
were not notified about the path being best.

2) Quiz and Overall Performance: From the quizzes, we
calculate for each team i) individual quiz score of the team,
by averaging the individual quiz scores of the team members
as estimated by the fraction of correct answers per individual;
and ii) collaborative quiz score, by averaging the Jaccard
index used to measure the similarity between a team’s answer
with the correct answer for each multiple-choice multiple-
answers question in the collaborative quiz.

Consider the distribution of i) average quiz score in
Fig. 4b, calculated by averaging collaborative quiz score and
individual quiz score for each team; and ii) overall score

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(a) average quiz score (b) overall score

Fig. 4: Stacked bar charts that show the distribution of team-level task performance.
The averages of phase success groups are marked by the dashed lines.

TABLE III: Exploration metrics and their ranks in Phase 1 and 2

Exploration Metric | Rank in Phase 1 | Rank in Phase 2 |

number of attempts 2
number of distinct attempts
number of destination attempts
average variation of attempts
number of pauses

number of backtracks

Q| & W | =
| O\ W = N

in Fig. 4a, estimated by averaging collaborative quiz score,
individual quiz score, success in Phase 1, and success in
Phase 2, where success is one if the team reports the best
path and zero otherwise. We see that the teams that passed
both phases score higher. The teams that were not able to
find the best path in Phase 1 score the lowest followed by
the ones that failed Phase 2. The teams failing in Phase 1 did
not transfer their understanding well to the following phase,
since they failed despite the immediate feedback in Phase 1.

B. Analysis of the Teams’ Exploration Behavior

In this section, we analyze the behavior of teams to see if
some behaviors taken by learners lead to better performance
outcomes.

1) Exploration Metrics and Their Ranking: With the
purpose of quantifying the exploration behavior of a team,
we consider and explore six basic features and omit their
transformations. The features are defined as follows:

o Number of attempts is the number of paths taken by
a learner, where a path begins at home but does not
necessarily visit the destination.

o Number of distinct attempts is the number of unique
paths taken.

o Number of destination attempts is the number of paths
that go through the destination node.

o Average variation of attempts is the averaged graph edit
distance of all subpaths to the best path, where a subpath
is only the portion from source to destination of an
attempt. The edit distance is calculated with all edit
costs (node or edge deletion/insertion) as 1.

o Number of pauses is calculated by summing pause
counts at three category of places: i) source node, ii)
destination node, and iii) the remaining i.e. all of the
edges and intermediate nodes. We define a pause at a
node or an edge in a category as spending more than
one standard deviation time from the time spent in that
specific category in both Phase 1 and Phase 2 averaged
for all teams.

o Number of backtracks is the sum of backtrack counts,
where a backtrack is defined as moving a robot back-
ward from one node to another node on the x-axis
(further from the goal and closer to the home), and
specifically into the home and out of the goal for the
neighbors of source and goal.

Among all the features, we notice that not all of them are
equally informative for performance in the given scenario.
In Table III, exploration metrics are ranked using a Support
Vector Machine (SVM) classifier with linear kernel, with a
large penalty parameter C' = 1000, by using the absolute
value of SVM weights as ranking criterion [38]. We observe
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Fig. 5: Dynamics of robot movement on x-axis for two teams which exhibit (a) a local
attitude and (b) global attitude in their exploration of the map in Phase 1. The blue
lines indicates the position of the Cellulo on the x-axis, which roughly aligns the axis
from the home to the destination. The red dots indicate where a backtrack is made to.

(a) Profile of a Local Team

that some of the features are less predictive of performance:
For instance, number of pauses and number of backtracks are
less informative, whereas number of attempts and average
variation of attempts seem to be good predictors. Another
interesting observation is that the highest ranked feature for
each phase is among the lowest ranked in the other phase
which indicates how a certain behavior is important the first
time but not in the delayed feedback phase and vice versa.

2) Local vs Global Exploration Attitude: Using the two
features number of destination attempts and number of
attempts, we observe two kinds of attitudes in the way a team
explores a map: a team that prefers a more global approach
going until the destination, or a more /ocal approach. Fig. 5
illustrates how the Cellulo robot is moved between home and
the destination. Note that the exploration attitude is not an
indication of the performance as can be seen in the Table IV
that gives performance of the teams.

3) Linking Exploration Metrics with Task Performance:
As an attempt to cluster the teams for patterns of behavior
in the exploration metrics space, we selected the top three
ranked features in Phase 2 and ran K-Means algorithm,
which resulted in two clusters for optimizing the average
silhouette. In Fig. 6, we do not see the clusters correlating
with the performance. Hence, as a step further, we employ
an SVM classifier with linear kernel in the same space: it
is interesting to observe the feature number of destination
attempts allows for the linear separability to low and high
performing teams of the given dataset. In Phase 2, the teams
that visited destination less seem to have performed better.
This could be because of a better transfer of the underlying
cost in Phase 1 while for the teams that did more destination
attempts, it could be because of a lack of understanding

TABLE IV: The relevant exploration and performance metrics for a local and a global
team in Phase 1, where the attitude can be seen at the fraction of destination attempts

| Metric | Local Team  Global Team |

number of backtracks 40 112
number of destination attempts 21.7% 54.8%
/ number of attempts

Phase 1 Pass Pass
Phase 2 Fail Pass
Quiz Average 59% 68%
Overall 57% 79%

= High Performance
= Low Performance

normalised average variation
[ ]

)

1 0 1 2
normalised number of destination attempts

Fig. 6: Visualization of the teams in Phase 2, as drawn in the feature space spanned by
the three highest ranked metrics in Phase 2 and projected onto two. High performing
teams (> 70% average quiz score) are in blue, and low performing are in red. A line
that linearly separates the two classes is drawn using a linear SVM classifier trained on
the three features, with penalty C' = 1000. The marker shape indicates which cluster
the data point belongs to in two cluster K-Means, where cluster centers are indicated
in gray, and the number of clusters is optimal for maximizing the average silhouette.
Dashed lines are drawn from positions of the teams in Phase 1 to 2 and illustrate how
a team moves in the feature space. The numbers on the data points indicate the team
number. The metrics are normalized to zero mean and unit variance.

which lead them to try to solve the problem at hand (to
succeed in the phase) by brute force. This behavior could
also be suggestive of a thought process that considers the
problem in Phase 2 as a completely new problem while it
was just a reverse problem of Phase 1—see Fig. 1.

We notice that the teams with high scores lie in the
similar range of exploration metrics in both the phases. One
interesting thing to note in Fig. 6 is that two of the teams
that failed in Phase 1 moved through the decision boundary
closer to the low scoring teams. In other words, we see teams
that kept the same behavior in both phases (i.e. lie on the
same side of the boundary in the feature space) and teams
that change their behavior (i.e. move in the feature space to
the other side of the boundary in Phase 2). Although, with a
low sample size, it may not be wise to generalize; however,
it can be said that certain behaviors can be good indicators
for high performance. This information can then be utilized
by the roboticists/teachers to refine the learning design or
focus on certain aspects of the learners’ behavior more than
the others. One hypothesis that could be tested in a larger
study is to see whether interventions made early in Phase
1 would lead to learners getting a better understanding, and
hence transfer well to Phase 2 and later. Another hypothesis
that we can test is teams visiting destination more in Phase
2 would perform worse.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a pilot study involving a novel
open-ended learning activity with a robot to showcase the
potential that lies in the data captured by robots to inform
learning, especially, in constructivist activities that are more
challenging to quantify. This can help the roboticists to
design robot’s behavior for learners, and to have effective in-
terventions, improved learning design and orchestration that
could eventually benefit teachers as well. In an experiment
carried out at a school in Switzerland, we observe how a
classification technique discriminates between high and low
performing students based on behavioral features extracted



from the data collected through robots. However, in the
current design, there are limitations that can be improved.

As such, for future work, we plan to refine the design by
adding a path planner that can help the system evaluate how
good a path that is being taken by a learner is at a give point
in time for appropriate interventions. In addition to this, it
may be a nice idea to integrate heuristics from [39] to have
a more robust and plausible activity design. Also, we feel
it may be interesting to increase the complexity of the map
to discourage brute force approaches. This will hopefully
promote meta-cognitive behavior like reflection which can
improve learning. Furthermore, certain landmarks can be
defined inside the activity for interventions. For instance, in
the immediate feedback phase, going through the best path
at least once in a certain time limit during the exploration
can be a possible landmark.
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