
https://doi.org/10.17576/apjitm-2013-0202-04

39

http://www.ftsm.ukm.my/apjitm
Asia-Pacific Journal of Information Technology and Multimedia
Jurnal Teknologi Maklumat dan Multimedia Asia-Pasifik
Vol. 2 No. 2, December 2013 : 39 - 51
e-ISSN: 2289-2192

ADAPTIVE RAPIDLY-EXPLORING-RANDOM-TREE-STAR (RRT*) -
SMART: ALGORITHM CHARACTERISTICS AND BEHAVIOR ANALYSIS

IN COMPLEX ENVIRONMENTS

JAUWAIRIA NASIR
FAHAD ISLAM
YASAR AYAZ

ABSTRACT

Rapidly Exploring Random Trees (RRT) are regarded as one of the most efficient tools for planning feasible paths
for mobile robots in complex obstacle cluttered environments. The recent development of its variant: RRT* is
considered as a major breakthrough as it makes it possible to achieve optimality in paths planning. However, its
limitations include the infinite time it takes to reach the optimal solution and a very slow rate of convergence. Just
recently the authors have introduced RRT*-Smart which is a rapid convergence implementation of RRT* for
improved efficient path planning both in terms of planning time as well as path cost. This paper presents a new
scheme for RRT*-Smart that helps it to adapt to various types of environments by tuning its parameters during
planning based on the information gathered online. The paper also includes detailed explanation of the
algorithm’s characteristics and statistical analysis of its behavior in different environment types including mazes,
narrow passages and obstacle cluttered environments in comparison with RRT*. Navigation experiments using
the real Pioneer 3-AT Mobile Robot provide a proof of the concept.

Keywords: RRT*, Adaptive Sampling, Robot Motion Planning, Biasing Radius, Path Optimization, Biasing Ratio.

INTRODUCTION

The forthcoming era of domestic robotics comes with high expectations from robots to acquire
the ability to assist humans in various complex tasks of daily life. For an autonomous robot to
safely and optimally navigate through obstacle cluttered everyday terrains such as homes and
offices is one of the most fundamental of requirements towards the achievement of this aim.

Motion planning for mobile robots is mainly concerned with finding a path for a robot
or an autonomous agent in such a way that the robot or the agent will follow that path to move
to the goal configuration from its initial configuration without colliding with obstacles or other
agents in the environment. Over the last thirty to forty years, many motion planning algorithms
have been introduced with some of the popular ones being grid-based algorithms (Kanehara,
2007), visibility graphs (Latombe, 1991), potential field algorithms (Hwang, 1992), neural
networks (Yang, 2004), and sampling based algorithms (Geraerts, 2004). Algorithms may be
compared and their pros and cons may be weighed based upon factors such as computational
time, computational complexity, cost heuristics, planning time etc.
A-Star algorithm has been one of the most popular and the most widely used techniques since
its introduction. It is being used in computer games to autonomous vehicles. Rapidly Exploring
Random Tree (RRT) (Lavalle, 1998) introduced in 1998 by Lavelle is considered another
popular and widely used algorithms. In fact, sampling based algorithms, RRT being one of
them, generally gained much popularity because of their less computational complexity and
their ability to find paths without specific information of the obstacles in the configuration
space. Instead, they make obstacle free trajectories leading to a roadmap between sampled
configurations in the obstacle free region. Though RRT has the advantage in providing the
quickest first path and also probabilistic completeness but it does not ensure asymptotic

40

optimality. In 2011, Karaman and Farazolli overcame this problem of asymptotic optimality by
introducing the extended version of RRT known as RRT*. Rapidly Exploring Random Tree
Star made it possible to reach an optimal solution but to do so, it has been proven to take an
infinite time (Karaman, 2011). RRT*-Smart which is used for solving the limitation of infinite
time and provides a significantly faster rate of convergence proved to of benefit both in terms
of cost and time as compared to RRT* in various environments (Islam, 2012). This is achieved
by introducing two new concepts Intelligent Biasing and Path Optimization. This study presents
a dynamic biasing ratio scheme for RRT*-Smart which leads to more efficient results and also
makes the algorithms parameter, biasing ratio, independent of the environment leading to a
balanced trade-off between the exploration rate and biasing rate.

This paper is organized into the following sections. Section 2 presents a brief
background of RRT* and RRT*-Smart. Section 3 discusses the characteristics of the latter
algorithm in detail in addition to their effect on the behavior and efficiency of RRT*-Smart.
Section 4 presents the dynamic scheme for the algorithm while Section 5 discusses the
complexity of the algorithm in detail. Comparison between the two algorithms in complex
environments using t-test is presented in Section 5 and Section 6 covers the hardware
implementation of the algorithm on P3-AT. Section 7 presents possible future avenues.

ALGORITHM DESCRIPTION

This section describes the RRT* motion planning algorithm and its rapid convergence
implementation RRT*-Smart.

RRT*

RRT* is one of the recent incremental sampling based algorithm which is quick to find an intial
path and then later works to improve and optimize this path as the execution takes place
(Karaman, 2011).

Let X defines the configuration space in which Xgoal , Xobs and Xfree=X/Xobstacle is the
goal region, the obstacle region and the obstacle-free region respectively. RRT* works to find
an input u: [0:T] ϵ U that yields a feasible path x(t) ϵ Xfree. This path starts from x(0) = x-initial
to x(T)= goal following the system constraints. A tree Ƭ= (V, E) constituting of a set of vertices
V sampled from the obstacle-free region Xfree and edges E that connect these vertices together
is being maintained by RRT* as it tries to find this solution. Algorithm 1 is the Pseudocode
describing RRT*. This algorithm makes use of the following set of procedure.
 Sampling: In this procedure a state zrand ϵ Xfree is randomly sampled from the obstacle-
free region.
 Distance: This procedure returns the cost of the path in terms of euclidean distance
between two states considering the region between them is obstacle free.
 Nearest Neighbor: The procedure Nearest (Ƭ, zrand) returns the node from Ƭ=(V, E)
which is the nearest from zrand in terms of the cost which is calculated by the distance function.
 Steer: The procedure Steer (zrand, znearest) works to solve for a control input u[0,T] that
drives the system from x(0)=zrand to x(T)=znearest along the path x: [0,T] → X giving znew at a
distance ∆q from znearest towards zrand where ∆q is the incremental distance.

Collision Check: The function Obstaclefree(x) is in charge to find out whether a path
x:[0,T] lies in the obstacle-free region Xfree for all t=0 to t=T.
 Near-by Vertices: The function Near(Ƭ, zrand, n) returns a set of the nearby neighboring
nodes that lie in a ball of volume (β (logn/n)) around zrand where β is a constant that depends on

the planner.
 Insert node: The procedure Insertnode(zparent, znew, Ƭ) adds a node znew to V in the tree
Ƭ =(V, E) and joins it to an already existent node zparent as its parent, and adds this edge to E. A

41

cost which is the sum of the cost of its parent and the Euclidean cost that is returned by the
Distance function between znew and its parent zparent is assigned to znew.
 Rewire : The function Rewire(Ƭ, Znear, zmin, znew) checks if the cost to the nodes in Znear
is less through znew as compared to their older costs. If that is a case for any node, that nodes
parent zparent is changed to znew.

Apart from ensuring probablistic completeness, RRT* also guarantees asymptotic
optimality which is in contrast to its predecessor RRT and other augmented versions of RRT.
Although, based on the fact that it has made it possible to approach an optimal solution, it is
considered a landmark sampling based algorithm but it has been proven mathematically that it
reaches the said solution in infinite time [Karaman, 2011]. Approaching the optimal solution at
a significantly faster rate, RRT*-Smart looks to outrun these limitations.

Algorithm 1: Ƭ = (V, E) ← RRT*(zinit)
1 Ƭ ← InitializeTree();
2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
3 for i=0 to i=N do
4 zrand ← Sample(i);
5 znearest ← Nearest(Ƭ, zrand);
6 (xnew, unew, Tnew) ← Steer (znearest, zrand);
7 if Obstaclefree(xnew) then
8 Znear ← Near(Ƭ, znew, |V|);
9 zmin ← Chooseparent (Znear, znearest, znew, xnew);
10 Ƭ ← InsertNode(zmin, znew, Ƭ);
11 Ƭ ← Rewire (Ƭ, Znear, zmin, znew);
12 return Ƭ

RRT*-SMART

Now we briefly describe the RRT*-Smart algorithm along with the two proposed key concepts:
Intelligent Sampling and Path Optimization. Initially, random search of the state space takes
place as RRT* does until the first path is found. Once this initial path is found, it works to
optimize this path by interconnecting the directly visible nodes in this path. Biasing points for
intelligent sampling are yielded from this optimized path. At these biasing points, sampling
takes place at regular intervals, which are governed by a constant b that in turn depends upon
the biasing ratio explained later. As the algorithm progresses, this process continues and the
path keeps on being optimized. The biasing shifts towards the new path whenever a shorter path
is found. Algorithm 2 outlines this process.

Algorithm 2: Ƭ = (V,E) ← RRT*Smart(zinit)
1 Ƭ ← InitializeTree();
2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
3 for i=0 to i=N do
4 if i=n+b, n+2b, n+3b…. then
5 zrand ← Sample(i, zbeacons);
6 else
7 zrand ← Sample(i);
8 znearest ← Nearest(Ƭ, zrand);
9 (xnew, unew, Tnew) ← Steer (znearest, zrand);
10 if Obstaclefree(xnew) then
11 Znear ← Near(Ƭ, znew, |V|);

42

12 zmin ← Chooseparent (Znear, znearest, znew, xnew);
13 Ƭ ← InsertNode(zmin, znew, Ƭ);
14 Ƭ ← Rewire (Ƭ, Znear, zmin, znew);
15 if InitialPathFound then
16 n ← i;
17 (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal);
18 if (directcostnew < directcostold)
19 zbeacons ← PathOptimization(Ƭ, zinit, zgoal);
20 return Ƭ

The lines 1, 2, 3 and 7 to 14 execute in the same way as the corresponding ones in RRT* do.
The function InitialPathFound , in line 15, returns the iteration number n at which the first path
is found. The algorithm starts biased sampling based on this information. This biased sampling
then starts with an interval time defined by the constant b. The function (Ƭ, directcost) ←

PathOptimization(Ƭ, zinit, zgoal) determines an optimized path by directly connecting the nodes
in the path that are visible to each other i.e.there is no obstacle between the nodes and are
directly connectable without any intermediate node. The function returns its cost in terms of
euclidean distance (line 17). In lines 18-19, the function zbeacons ← PathOptimization(Ƭ, zinit,
zgoal) returns the beacons (the nodes which form the basis for intelligent sampling) if the new
cost is less than the old cost; otherwise the old beacons keep on biasing the tree. In lines 4-5,
zrand ← Sample (i, zbeacons), samples are being generated at the beacons within a ball of radius
Rbeacons centered at zbeacons which is known as biasing radius. The intelligent sampling takes
place with a certain percentage once the initial beacons are found i.e. after every few samples
that are placed in the normal way as for RRT* (lines 7-9), one sample is spawned in the region
surrounding the beacons. This percentage is defined by biasing ratio.This is to be discussed
later.

ALGORITHM CHARACTERISTICS

In this section, the two most important characteristics of the algorithm, biasing radius and
biasing ratio, are explained in detail with tabular examples to give a better understanding of
how the two factors affect the efficiency of the algorithm.

BIASING RADIUS

Biasing radius is the radius of sphere within which biasing takes place around Zbeacon. The radius
Rbeacon can be chosen according to the planner’s requirements. For a relatively larger Rbeacon in
a configuration Space, the path has a greater chance of moving quickly towards an optimum
path as the biasing starts, and as the iterations continue, the convergence rate slows down. On
the other hand, when the radius Rbeacon is kept small for the same configuration space, the
convergence rate of the path towards an optimum path will be slower as the biasing starts but
once an optimum enough path is found, it is certain to reach an optimized path and also at a
faster rate towards the end as compared to when the radius Rbeacon was kept large.

This might be seen as a trade off between the planning time and the navigation time. If,
for example, a motion planning and navigation problem are put up, which could be solved by
using this algorithm and which is more concerned about reducing planning time rather than
navigation time, then the better solution is a larger radius and vice versa. However, there is a
limit to increasing the radius as if it is increased to a large value, the algorithm’s behaviour

becomes identical to that of RRT*. For one of the many environments used for
experimentation, the experimental results for various biasing radius vs number of iterations to

43

reach the same cost is presented in a tabulated form in Table 1. As the size of radius is increased
beyond a certain level, the number of iterations required to reach the optimum cost increases
significantly hence approaching the trend of RRT* as for biasing radius of 25 in the table shown
below.

A biasing radius in the range of 10-15 is used for all the experiments performed in a
configuration space of the same size. A good approximation is to use a biasing radius in
accordance with the size of the configuration space.

TABLE 1. No. of iterations for different biasing radius to achieve the same cost of 450 at a biasing ratio of 2.

BIASING RATIO

Biasing ratio determines the number of times a sample will be spawned directly at a beacon
instead of being sampled normally. For a constant biasing ratio throughout the entire planning
phase, the choice depends upon the planner. It must be noted that changing this ratio does affect
the trend of reaching optimality.

The effect of choosing different constant biasing ratio for the same obstacle environment
is evident from the results shown in table 2. These results have been obtained by using one of
the many representative environments used for experimentation and analysis.

The results shown above demonstrate that for the same environment, there exists an
optimized value of biasing ratio that balances the rate of biasing and exploration to give the
optimum/near optimum cost. Any value of biasing ratio that is above or below this optimized
value will get the optimum/near-optimum solution using a larger number of iterations.

There are two biasing schemes for the algorithm : static biasing ratio scheme and
dynamic biasing ratio scheme. The basic idea behind the generic scheme of dynamic biasing
ratio is to cater for the limitations of constant biasing ratio scheme.

TABLE 2. No. of iterations for different biasing ratio to achieve the same optimal cost of 408

Biasing Ratio Number of Iterations Cost
5 23000 408
7 17300 408
10 21600 408

 GENERIC DYNAMIC BIASING RATIO SCHEME

This is the second and the latest biasing scheme introduced for RRT*-Smart. By introducing
intelligent sampling, a tradeoff has been set between the rate of convergence and the rate of
exploration as explained earlier in this section. To reach an optimal solution, it is not only
necessary to converge at a faster rate through strong biasing but the exploration of the
configuration space is equally important. The complexity of an environment is directly related
to this challenge of choosing a suitable biasing ratio to optimize the output. It has been seen
that in complex environments including a large number of obstacles, the algorithm employing
static biasing ratio scheme may give the worst results. To overcome this challenge, a scheme
of dynamic biasing ratio has been presented. Instead of being static, it would keep on changing

Biasing Radius Number of Iterations Cost
11 4300 540
13 4600 540
15 5200 540
17 8000 540
25 40000 540

44

as the number of iterations take place depending upon some parameters. It is approximated to
give the best results in almost all scenarios.

A scheme has been developed based upon the heuristic that the dynamic biasing ratio
should be a function of the obstacle-free space Xfree and the number of iterations n. For the
dynamic biasing scheme

Biasing ratio= (n/ Xfree) x constant (1)

The factor n/ Xfree determines the space density at any point in time. When the environment is
not explored, minimal biasing takes place. As the space density increases with the increase in
n, biasing ratio also increases. Note that, at a high value of n, majority of the configuration
space has been explored so at this point the algorithm focuses at intelligent biasing instead of
exploration.

FIGURE 1. RRT*-Smart in various obstacle Environments with constant biasing ratio

45

FIGURE 2. RRT*-Smart in various obstacle Environments with dynamic biasing ratio

Some representative environments comparing both the schemes are shown in Figure 1 and
Figure 2. RRT*-Smart achieves optimization for each of the four scenarios first using the static
biasing ratio in Figure 1 and then a dynamic biasing ratio in Figure 2 which is calculated with
the help of Equation (1). For dynamic biasing ratio, as the number of iterations increases, the
biasing ratio increases, i.e. the rate at which the nodes are being placed at beacons is now much
faster and keeps on accelerating. This implies that as the space is being explored, the biasing
increases thus reaching an approximation to provide optimization for the tradeoff between the
space exploration rate and intelligent sampling rate. A comparison between the two schemes
shows that the latter is able to reach the optimum cost in fewer iterations in all four
environments.
 This scheme is intended to achieve an optimization for the tradeoff between the biasing rate
and the exploration rate in most environments, thus, it makes the algorithm independent and
more efficient by choosing a biasing ratio according to the environment itself.

COMPLEXITY ANALYSIS

The Space and Time Complexity of RRT* as demonstrated in (Karaman, 2011) is given by O
(n) and O (nlogn). Mathematical analysis shows that the Space and Time complexity of RRT*-
Smart also comes out to be the same but for acquiring the same optimality, the value of n, in
case of RRT*-Smart, is significantly reduced; hence it yields better performance than RRT*.

SPACE COMPLEXITY

Space complexity of any algorithm is the amount of memory that is required by the algorithm
to execute. Clearly it can be seen by the discussion that RRT*-Smart requires n number of
memory configurations for n number of iterations to execute. Hence showing a linear Space
Complexity of O (n) just like RRT*.

46

TIME COMPLEXITY

Time complexity of an algorithm is defined as the amount of time that is required by the
algorithm to execute a problem of size n. The additional steps of path optimization, intelligent
sampling and the collision checking method of interpolation that have been introduced in
RRT*-Smart have complexities that are insignificant enough to not have an effect on the
complexity of the algorithm. Rather, by the analysis of the T-Notation for both RRT* and
RRT*-Smart, it can be observed why for the same number of iterations the time for RRT*-
Smart is significantly less as compared to RRT*.

COMPLEXITY OF PATH OPTIMIZATION STEP

Path optimization technique is applied whenever a new smaller path as compared to the
previous one is found.

TABLE 3. A comparison of values of delta and n in three different obstacle scenarios

Test
Environm

ents

Optimized
Cost

Iterations Required
(n)

Delta Result

Circular 237 9100 17 Delta<<n
Potential 382 7500 22 Delta<<n
Cluttered 408 13000 55 Delta<<n

Let us assume that the new path is found for Delta number of times. The computational
complexity of this step be given by:

 Delta x Direct cost
Where:

Direct cost = {f x yf/2 x (Cost of each collision check)}
yf = number of nodes in the RRT* path found for each iteration f.
f = number of times the iterative process is repeated for each path until all the visible nodes are
directly connected.

The computational cost of each collision check between the nodes under consideration
will always be some finite value. As the path will move towards optimization, the direct cost
will reduce with time. It is interesting to note here that the upper bound of Delta depends upon
the particular environment but will always be significantly less than the total number of
iterations n and would always be a finite value for reaching an optimal solution in a particular
obstacle scenario. This is because the number of times the path or the paths which lead to
optimal solution get optimized will be finite and significantly small in comparison to n. Hence,
rendering this term is ineffective in terms of computational complexity as it is independent of
the number of iterations n.

 Delta <<< n

 This is supported by statistical results for three different obstacle scenarios shown in Table
3. In each of these scenarios, the algorithm is executed until the optimized path is found.

COMPLEXITY OF INTELLIGENT SAMPLING STEP

47

Let p be a constant which defines the number of times a node will be placed at a beacon. This
depends on the constant b. The greater the biasing ratio, the greater will be the value of p for
the same configuration space and number of iterations. So the complexity of this time may be
given by p*c where c is a constant time to place a sample.
Reduced complexity of Sample, Nearest and Steer Step:
 Each of these steps will now execute (n-p) times as p times the nodes are being placed
directly at the beacons zbeacons whereas n is equal to the total number of iterations. Though
this does not affect the O-Notation in any way but explains the reduced computational
complexity and one of the factors that leads to reduced execution time.
 Thus, it can be concluded that the O-Notation for the time complexity of RRT*-Smart is
unaffected by the additional steps though performance has been improved as

1. n is significantly reduced and
2. Execution of RRT* sample step, nearest step and steer step has been reduced by a factor

p and replaced by a single step with the same computational complexity as that of RRT* sample
step and a path optimization step which has an insignificant contribution as Delta <<< n.

TABLE 4. A comparison of values of delta and n in three different obstacle scenarios

Environment Algorithm Iterations Minimum Maximum Average Standard
Deviation t value z

Maze
(Figure 3 a, c)

RRT*-Smart
2000

664 672 668 2.97
28.8 2.31

RRT* 720 727 722 2.95

Narrow Passage
(Figure 3 b, d)

RRT*-Smart
2500

597 607 602 4.34
15.2 2.31

RRT* 631 637 633 2.28

Cluttered with 5
obstacles

(Figure 4 a, e)

RRT*-Smart
2000

575 582 578 2.77
14.4 2.31

RRT* 601 610 606 3.21

Cluttered with 50
obstacles

(Figure 4 b, f)

RRT*-Smart
2000

603 609 607 2.49
11.0 2.31

RRT* 621 627 624 2.45

Cluttered with 100
obstacles

(Figure 4 c, g)

RRT*-Smart
2000

583 591 588 3.13
36.3 2.31

RRT* 662 672 666 3.70

Cluttered with 200
obstacles

(Figure 4 d, h)

RRT*-Smart
2500

601 605 603 2
18.8 2.31

RRT* 631 639 635 3.29

COMPARISON OF RRT* WITH RRT*-SMART IN COMPLEX ENVIRONMENTS

After the analysis of the algorithm characteristics, introduction of dynamic biasing scheme for
RRT*-Smart and complexity analysis, we would now compare the two algorithms in three
different environments including a maze, a narrow passage and a cluttered environment (with
increasing number of obstacles) each solved for at least 5 times. Figure 3 shows the results for
one particular instance out of the five experiments performed in a Maze and a narrow passage
environment for both RRT*-Smart and RRT*. In Figure 3 (a,c), the red hollow box represents
the goal region while in Figure 3 (b,d), S and G denote the starting point and the goal position
respectively. Similarly, Figure 4 compares the two algorithms in the cluttered environment,
again for one particular instance, with increasing number of obstacles. In each figure, the
obstacles are represented in red color, the goal region is shown by a red box and the trajectory
is represented in black. The results are then summarized in Table 4 followed by a statistical
analysis of t-Student test for testing equality of the means of the two methods. This statistical
test called t-Student test is often used by the researchers and scientists to assess whether two

48

groups significantly differ from one another. We performed an unpaired t-test between the two
sets of samples, one for RRT*-Smart and the other for RRT*. Each set consists of 5 values of
path costs calculated after solving that particular environment for 5 times considering the
stochastic nature of the methods and the costs in each case contributes to the data that is used
to perform this test. The minimum, maximum, average and standard deviation values, the t-
value for each experiment along with the reference tabulated value z for 95 % confidence level
and at 8 degrees of freedom are presented in Table I. Comparing the value of t with the
tabulated value of 2.31 (p=0.05) going upto a tabulated value of 5.04 (0.001), we see that the
value of our t exceeds these in each case. Thus, according to the principles t-test theory, the
difference between the means is very significant and so clearly RRT*-Smart provides
significantly improved costs as compared to RRT* for the same number of iterations.

FIGURE. 3. A comparison of RRT* and RRT*-Smart using simulation results in environments with maze and narrow path.

49

FIGURE 4. A comparison of RRT* and RRT*-Smart using simulation results in cluttered environments with

increasing number of obstacles

50

HARDWARE IMPLEMENTATION

Now the results of hardware implementation of RRT*-Smart algorithm on Pioneer 3AT mobile
robotic platform controlled by Player Project to prove its viability is given. An overhead camera
is used for environment perception. The image of an environment is taken from the camera as
in Figure 5(a). This image is converted into binary image and using image dilation technique
the obstacle size is enlarged keeping into consideration the kinodynamic constraints (Oliveira
Vaz, 2010) of the robot shown in Figure 5(b) and (c) respectively. Then the RRT*-Smart
algorithm functions to come up with a collision free near-optimum path is shown in Figure 5(d).
The robot follows this generated trajectory.

FIGURE 5. Results of hardware implementation of RRT*-Smart algorithm on Pioneer 3AT mobile robotic platform.

CONCLUSION

Since its introduction, the sampling based algorithms have been popular in motion planning and
navigation problems. Significant contribution was made by RRT* as it achieves asymptotical
optimality apart from probabilistic completeness, but infinite time is needed because of the slow
convergence rate. RRT*-Smart, a recent algorithm, tries to overcome these limitations by
introducing intelligent sampling and path optimization.

The dynamic biasing ratio scheme for RRT*-Smart has been proven for being able to
further improves its efficiency apart from making it independent of the environment. Also, the
complexity analysis of RRT*-Smart and its characteristics could impact the behavior of the
algorithm. A rigorous comparison has also proved the efficiency of the latter algorithm over
RRT* in complex environments. Thus, it is proven easy to implement algorithm on hardware
platforms.

51

ACKNOWLEDGEMENT

The authors would like to thank Alejandro Perez and Matthew Walter of MIT CSAIL for their
help regarding RRT* which much improved our understanding of the algorithm.

REFERENCES

Geraerts, R. 2006 Sampling-based Motion Planning: Analysis and Path Quality. PhD thesis, Utrecht

University.
Hwang, Y.K. and Ahuja, N. 1992. A potential field approach to path planning. IEEE Transactions on

Robotics and Automation, vol. 8(1): 23-32.
Islam, F., Nasir, J., Malik, U., Ayaz, Y., and Hasan, O. 2012. RRT*-Smart: Rapid Convergence

Implementation of RRT* Towards Optimal Solution. Proceedings of IEEE International
Conference of Mechatronics and Automation. Chengdu, China: IEEE, pp.1651-1656.

Kanehara, M. Kagami, S., Kuffner, J.J., Thompson, S., and Mizoguhi, H. 2007. Path shortening and
smoothing of grid-based path planning with consideration of obstacles. IEEE International
Conference on Systems, Man and Cybernetics, 2007 (ISIC), Montreal, pp.991-996.

Karaman, S. and Frazzoli, E. 2011. Sampling-based Algorithms for Optimal Motion Planning.
International Journal of Robotics Research, vol. 30(7):846-894.

Latombe, J.C. 1991. Robot Motion Planning. Boston:Kluwer Academic Publishers.
Lavalle, S.M. 1998. Rapidly-exploring random trees: A new tool for path planning. Technical Report.

Computer Science Dept, Iowa State University, 98–11.
Vaz,O.D.B, Inoue, R.S. and Grassi Jr., V. 2010. Kinodynamic Motion Planning of a Skid-Steering

Mobile RobotUsing RRTs. Latin American Robotics Symposium and Intelligent Robotics
Meeting, Centro Universitario da FEI Sao Bernardo do Campo, Brazil, pp. 73–78.

Yang, S.X., Luo, C., 2004. A neural network approach to complete coverage path planning. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol.34(1):718-724

Jauwairia Nasir,
Fahad Islam,
Yasar Ayaz.
Robotics and Intelligent Systems Engineering (RISE) Lab,
Department of Robotics and Artificial Intelligence,
School of Mechanical and Manufacturing Engineering (SMME),
National University of Sciences and Technology (NUST),
Main Campus, Sector H-12, Islamabad, 44000, Pakistan.
08beejnasir@seecs.edu.pk, 08beefahad@seecs.edu.pk, yasar@smme.nust.edu.pk

