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ABSTRACT 

 

Rapidly Exploring Random Trees (RRT) are regarded as one of the most efficient tools for planning feasible paths 
for mobile robots in complex obstacle cluttered environments. The recent development of its variant: RRT* is 
considered as a major breakthrough as it makes it possible to achieve optimality in paths planning. However, its 
limitations include the infinite time it takes to reach the optimal solution and a very slow rate of convergence. Just 
recently the authors have introduced RRT*-Smart which is a rapid convergence implementation of RRT* for 
improved efficient path planning both in terms of planning time as well as path cost. This paper presents a new 
scheme for RRT*-Smart that helps it to adapt to various types of environments by tuning its parameters during 
planning based on the information gathered online. The paper also includes detailed explanation of the 
algorithm’s characteristics and statistical analysis of its behavior in different environment types including mazes, 
narrow passages and obstacle cluttered environments in comparison with RRT*. Navigation experiments using 
the real Pioneer 3-AT Mobile Robot provide a proof of the concept. 
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INTRODUCTION 
 

The forthcoming era of domestic robotics comes with high expectations from robots to acquire 
the ability to assist humans in various complex tasks of daily life. For an autonomous robot to 
safely and optimally navigate through obstacle cluttered everyday terrains such as homes and 
offices is one of the most fundamental of requirements towards the achievement of this aim.  

Motion planning for mobile robots is mainly concerned with finding a path for a robot 
or an autonomous agent in such a way that the robot or the agent will follow that path to move 
to the goal configuration from its initial configuration without colliding with obstacles or other 
agents in the environment. Over the last thirty to forty years, many motion planning algorithms 
have been introduced with some of the popular ones being grid-based algorithms (Kanehara, 
2007), visibility graphs (Latombe, 1991), potential field algorithms (Hwang, 1992), neural 
networks (Yang, 2004), and sampling based algorithms (Geraerts, 2004). Algorithms may be 
compared and their pros and cons may be weighed based upon factors such as computational 
time, computational complexity, cost heuristics, planning time etc. 
A-Star algorithm has been one of the most popular and the most widely used techniques since 
its introduction. It is being used in computer games to autonomous vehicles. Rapidly Exploring 
Random Tree (RRT) (Lavalle, 1998) introduced in 1998 by Lavelle is considered another 
popular and widely used algorithms. In fact, sampling based algorithms, RRT being one of 
them, generally gained much popularity because of their less computational complexity and 
their ability to find paths without specific information of the obstacles in the configuration 
space. Instead, they make obstacle free trajectories leading to a roadmap between sampled 
configurations in the obstacle free region. Though RRT has the advantage in providing the 
quickest first path and also probabilistic completeness but it does not ensure asymptotic 
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optimality. In 2011, Karaman and Farazolli overcame this problem of asymptotic optimality by 
introducing the extended version of RRT known as RRT*. Rapidly Exploring Random Tree 
Star made it possible to reach an optimal solution but to do so, it has been proven to take an 
infinite time (Karaman, 2011). RRT*-Smart which is used for solving the limitation of infinite 
time and provides a significantly faster rate of convergence proved to of benefit both in terms 
of cost and time as compared to RRT* in various environments (Islam, 2012). This is achieved 
by introducing two new concepts Intelligent Biasing and Path Optimization. This study presents 
a dynamic biasing ratio scheme for RRT*-Smart which leads to more efficient results and also 
makes the algorithms parameter, biasing ratio, independent of the environment leading to a 
balanced trade-off between the exploration rate and biasing rate.  

This paper is organized into the following sections. Section 2 presents a brief 
background of RRT* and RRT*-Smart. Section 3 discusses the characteristics of the latter 
algorithm in detail in addition to their effect on the behavior and efficiency of RRT*-Smart. 
Section 4 presents the dynamic scheme for the algorithm while Section 5 discusses the 
complexity of the algorithm in detail. Comparison between the two algorithms in complex 
environments using t-test is presented in Section 5 and Section 6 covers the hardware 
implementation of the algorithm on P3-AT. Section 7 presents possible future avenues. 

 
ALGORITHM DESCRIPTION 

 

This section describes the RRT* motion planning algorithm and its rapid convergence 
implementation RRT*-Smart. 
 

RRT* 
 

RRT* is one of the recent incremental sampling based algorithm which is quick to find an intial 
path and then later works to improve and optimize this path as the execution takes place 
(Karaman, 2011). 

Let X defines the configuration space in which Xgoal , Xobs and Xfree=X/Xobstacle  is the 
goal region, the obstacle region and the obstacle-free region respectively. RRT* works to find 
an input u: [0:T] ϵ U that yields a feasible path x(t) ϵ Xfree. This path starts from x(0) = x-initial 
to x(T)= goal following the system constraints. A tree Ƭ= (V, E) constituting of a set of vertices 
V sampled from the obstacle-free region Xfree and edges E that connect these vertices together 
is being maintained by RRT* as it tries to find this solution. Algorithm 1 is the Pseudocode 
describing RRT*. This algorithm makes use of the following set of procedure. 
    Sampling: In this procedure a state zrand ϵ Xfree is randomly sampled from the obstacle-
free region. 
    Distance: This procedure returns the cost of the path in terms of euclidean distance 
between two states considering the region between them is obstacle free.  
    Nearest Neighbor: The procedure Nearest (Ƭ, zrand) returns the node from Ƭ=(V, E) 
which is the nearest from zrand in terms of the cost which is calculated by the distance function.  
    Steer: The procedure Steer (zrand, znearest) works to solve for a control input u[0,T] that 
drives the system from x(0)=zrand to x(T)=znearest along the path x: [0,T] → X giving znew at a 
distance ∆q from znearest towards zrand where ∆q is the incremental distance.  

Collision Check: The function Obstaclefree(x) is in charge to find out whether a path 
x:[0,T] lies in the obstacle-free region Xfree for all t=0 to t=T. 
    Near-by Vertices: The function Near(Ƭ, zrand, n) returns a set of the nearby neighboring 
nodes that lie in a ball of volume (β (logn/n)) around zrand where β is a constant that depends on 

the planner. 
    Insert node: The procedure Insertnode(zparent, znew, Ƭ) adds a node znew to V in the tree 
Ƭ =(V, E) and joins it to an already existent node zparent as its parent, and adds this edge to E. A 
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cost which is the sum of the cost of its parent and the Euclidean cost that is returned by the 
Distance function between znew and its parent zparent is assigned to znew. 
   Rewire : The function Rewire(Ƭ, Znear, zmin, znew) checks if the cost to the nodes in Znear  
is less through znew as compared to their older costs. If that is a case for any node, that nodes 
parent zparent is changed to znew. 

Apart from ensuring probablistic completeness, RRT* also guarantees asymptotic 
optimality which is in contrast to its predecessor RRT and other augmented versions of RRT. 
Although, based on the fact that it has made it possible to approach an optimal solution, it is 
considered a landmark sampling based algorithm but it has been proven mathematically that it 
reaches the said solution in infinite time [Karaman, 2011]. Approaching the optimal solution at 
a significantly faster rate, RRT*-Smart looks to outrun these limitations.  
 

Algorithm 1: Ƭ = (V, E) ← RRT*(zinit) 
1 Ƭ ← InitializeTree(); 
2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 
3 for i=0 to i=N do 
4      zrand ← Sample(i); 
5        znearest ← Nearest(Ƭ, zrand); 
6       (xnew, unew, Tnew) ← Steer (znearest, zrand); 
7     if Obstaclefree(xnew) then 
8         Znear ← Near(Ƭ, znew, |V|); 
9         zmin ← Chooseparent (Znear, znearest, znew, xnew); 
10         Ƭ ← InsertNode(zmin, znew, Ƭ); 
11         Ƭ ← Rewire (Ƭ, Znear, zmin, znew); 
12 return Ƭ 
 

RRT*-SMART 
  
Now we briefly describe the RRT*-Smart algorithm along with the two proposed key concepts: 
Intelligent Sampling and Path Optimization. Initially, random search of the state space takes 
place as RRT* does until the first path is found. Once this initial path is found, it works to 
optimize this path by interconnecting the directly visible nodes in this path. Biasing points for 
intelligent sampling are yielded from this optimized path. At these biasing points, sampling 
takes place at regular intervals, which are governed by a constant b that in turn depends upon 
the biasing ratio explained later. As the algorithm progresses, this process continues and the 
path keeps on being optimized. The biasing shifts towards the new path whenever a shorter path 
is found. Algorithm 2 outlines this process. 
 
Algorithm 2: Ƭ = (V,E) ← RRT*Smart(zinit) 
1 Ƭ ← InitializeTree(); 
2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 
3 for i=0 to i=N do 
4     if i=n+b, n+2b, n+3b…. then 
5         zrand ← Sample(i, zbeacons); 
6     else 
7        zrand ← Sample(i); 
8        znearest ← Nearest(Ƭ, zrand); 
9       (xnew, unew, Tnew) ← Steer (znearest, zrand); 
10     if Obstaclefree(xnew) then 
11         Znear ← Near(Ƭ, znew, |V|); 
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12         zmin ← Chooseparent (Znear, znearest, znew, xnew); 
13         Ƭ ← InsertNode(zmin, znew, Ƭ); 
14         Ƭ ← Rewire (Ƭ, Znear, zmin, znew); 
15         if InitialPathFound then 
16              n ← i;  
17         (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, zgoal); 
18         if (directcostnew < directcostold) 
19             zbeacons ← PathOptimization(Ƭ, zinit, zgoal); 
20 return Ƭ   
 
The lines 1, 2, 3 and 7 to 14 execute in the same way as the corresponding ones in RRT* do. 
The function InitialPathFound , in line 15, returns the iteration number n at which the first path 
is found. The algorithm starts biased sampling based on this information. This biased sampling 
then starts with an interval time defined by the constant b. The function (Ƭ, directcost) ← 

PathOptimization(Ƭ, zinit, zgoal) determines an optimized path by directly connecting the nodes 
in the path that are visible to each other i.e.there is no obstacle between the nodes and are 
directly connectable without any intermediate node. The function returns its cost in terms of 
euclidean distance (line 17). In lines 18-19, the function zbeacons ← PathOptimization(Ƭ, zinit, 
zgoal) returns the beacons (the nodes which form the basis for intelligent sampling) if the new 
cost is less than the old cost; otherwise the old beacons keep on biasing the tree. In lines 4-5, 
zrand ← Sample (i, zbeacons), samples are being generated at the beacons within a ball of radius 
Rbeacons centered at zbeacons which is known as biasing radius.  The intelligent sampling takes 
place with a certain percentage once the initial beacons are found i.e. after every few samples 
that are placed in the normal way as for RRT* (lines 7-9), one sample is spawned in the region 
surrounding the beacons. This percentage is defined by biasing ratio.This is to be discussed 
later.  
 

ALGORITHM CHARACTERISTICS 
 

In this section, the two most important characteristics of the algorithm, biasing radius and 
biasing ratio, are explained in detail with tabular examples to give a better understanding of 
how the two factors affect the efficiency of the algorithm. 
 

BIASING RADIUS 
 
Biasing radius is the radius of sphere within which biasing takes place around Zbeacon. The radius 
Rbeacon can be chosen according to the planner’s requirements. For a relatively larger Rbeacon in 
a configuration Space, the path has a greater chance of moving quickly towards an optimum 
path as the biasing starts, and as the iterations continue, the convergence rate slows down. On 
the other hand, when the radius Rbeacon is kept small for the same configuration space, the 
convergence rate of the path towards an optimum path will be slower as the biasing starts but 
once an optimum enough path is found, it is certain to reach an optimized path and also at a 
faster rate towards the end as compared to when the radius Rbeacon was kept large. 

This might be seen as a trade off between the planning time and the navigation time. If, 
for example, a motion planning and navigation problem are put up, which could be solved by 
using this algorithm and which is more concerned about reducing planning time rather than 
navigation time, then the better solution is a larger radius and vice versa. However, there is a 
limit to increasing the radius as if it is increased to a large value, the algorithm’s behaviour 

becomes  identical to that of RRT*. For one of the many environments used for 
experimentation, the experimental results for various biasing radius vs number of iterations to 
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reach the same cost is presented in a tabulated form in Table 1. As the size of radius is increased 
beyond a certain level, the number of iterations required to reach the optimum cost increases 
significantly hence approaching the trend of RRT* as for biasing radius of 25 in the table shown 
below. 

A biasing radius in the range of 10-15 is used for all the experiments performed in a 
configuration space of the same size. A good approximation is to use a biasing radius in 
accordance with the size of the configuration space.  
 

TABLE 1.  No. of iterations for different biasing radius to achieve the same cost of 450 at a biasing ratio of 2. 
 
 

 
 

BIASING RATIO 
 

Biasing ratio determines the number of times a sample will be spawned directly at a beacon 
instead of being sampled normally. For a constant biasing ratio throughout the entire planning 
phase, the choice depends upon the planner. It must be noted that changing this ratio does affect 
the trend of reaching optimality.  

The effect of choosing different constant biasing ratio for the same obstacle environment 
is evident from the results shown in table 2. These results have been obtained by using one of 
the many representative environments used for experimentation and analysis. 

The results shown above demonstrate that for the same environment, there exists an 
optimized value of biasing ratio that balances the rate of biasing and exploration to give the 
optimum/near optimum cost. Any value of biasing ratio that is above or below this optimized 
value will get the optimum/near-optimum solution using a larger number of iterations. 

There are two biasing schemes for the algorithm : static  biasing ratio scheme and 
dynamic biasing ratio scheme. The basic idea behind the generic scheme of dynamic biasing 
ratio is to cater for the limitations of constant biasing ratio scheme. 
 

TABLE 2.  No. of  iterations for different biasing ratio to achieve the same optimal cost of 408 
  

Biasing Ratio Number of Iterations Cost 
5 23000 408 
7 17300 408 
10 21600 408 

 

 

 GENERIC DYNAMIC BIASING RATIO SCHEME 
 

This is the second and the latest biasing scheme introduced for RRT*-Smart. By introducing 
intelligent sampling, a tradeoff has been set between the rate of convergence and the rate of 
exploration as explained earlier in this section. To reach an optimal solution, it is not only 
necessary to converge at a faster rate through strong biasing but the exploration of the 
configuration space is equally important. The complexity of an environment is directly related 
to this challenge of choosing a suitable biasing ratio to optimize the output. It has been seen 
that in complex environments including a large number of obstacles, the algorithm employing 
static biasing ratio scheme may give the worst results. To overcome this challenge, a scheme 
of dynamic biasing ratio has been presented. Instead of being static, it would keep on changing 

Biasing Radius Number of Iterations Cost 
11 4300 540 
13 4600 540 
15 5200 540 
17 8000 540 
25 40000 540 
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as the number of iterations take place depending upon some parameters. It is approximated to 
give the best results in almost all scenarios. 

A scheme has been developed based upon the heuristic that the dynamic biasing ratio 
should be a function of the obstacle-free space Xfree and the number of iterations n. For the 
dynamic biasing scheme 
 

Biasing ratio= (n/ Xfree) x constant                                    (1) 
 
The factor n/ Xfree determines the space density at any point in time. When the environment is 
not explored, minimal biasing takes place. As the space density increases with the increase in 
n, biasing ratio also increases. Note that, at a high value of n, majority of the configuration 
space has been explored so at this point the algorithm focuses at intelligent biasing instead of 
exploration. 
 

 
 

FIGURE 1. RRT*-Smart in various obstacle Environments with constant biasing ratio 
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FIGURE 2.  RRT*-Smart in various obstacle Environments with dynamic biasing ratio 

 

Some representative environments comparing both the schemes are shown in Figure 1 and 
Figure 2. RRT*-Smart achieves optimization for each of the four scenarios first using the static 
biasing ratio in Figure 1 and then a dynamic biasing ratio in Figure 2 which is calculated with 
the help of Equation (1). For dynamic biasing ratio, as the number of iterations increases, the 
biasing ratio increases, i.e. the rate at which the nodes are being placed at beacons is now much 
faster and keeps on accelerating. This implies that as the space is being explored, the biasing 
increases thus reaching an approximation to provide optimization for the tradeoff between the 
space exploration rate and intelligent sampling rate. A comparison between the two schemes 
shows that the latter is able to reach the optimum cost in fewer iterations in all four 
environments.  
     This scheme is intended to achieve an optimization for the tradeoff between the biasing rate 
and the exploration rate in most environments, thus, it makes the algorithm independent and 
more efficient by choosing a biasing ratio according to the environment itself. 

 

COMPLEXITY ANALYSIS 
 

The Space and Time Complexity of RRT* as demonstrated in (Karaman, 2011) is given by O 
(n) and O (nlogn). Mathematical analysis shows that the Space and Time complexity of RRT*-
Smart also comes out to be the same but for acquiring the same optimality, the value of n, in 
case of RRT*-Smart, is significantly reduced; hence it yields better performance than RRT*. 

SPACE COMPLEXITY 
 

Space complexity of any algorithm is the amount of memory that is required by the algorithm 
to execute. Clearly it can be seen by the discussion that RRT*-Smart requires n number of 
memory configurations for n number of iterations to execute. Hence showing a linear Space 
Complexity of O (n) just like RRT*. 
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TIME COMPLEXITY 

 

Time complexity of an algorithm is defined as the amount of time that is required by the 
algorithm to execute a problem of size n. The additional steps of path optimization, intelligent 
sampling and the collision checking method of interpolation that have been introduced in 
RRT*-Smart have complexities that are insignificant enough to not have an effect on the 
complexity of the algorithm. Rather, by the analysis of the T-Notation for both RRT* and 
RRT*-Smart, it can be observed why for the same number of iterations the time for RRT*-
Smart is significantly less as compared to RRT*. 
 

COMPLEXITY OF PATH OPTIMIZATION STEP 
 

Path optimization technique is applied whenever a new smaller path as compared to the 
previous one is found. 
 

TABLE 3.  A comparison of values of delta and n in three different obstacle scenarios 
 

Test 
Environm

ents 

Optimized 
Cost 

Iterations Required 
(n) 

Delta Result 

Circular 237 9100 17 Delta<<n 
Potential 382 7500 22 Delta<<n 
Cluttered 408 13000 55 Delta<<n 

 
Let us assume that the new path is found for Delta number of times. The computational 
complexity of this step be given by:  
 
                     Delta x Direct cost 
Where:  
 
Direct cost = {f x yf/2 x (Cost of each collision check)} 
yf = number of nodes in the RRT* path found for each iteration f. 
f = number of times the iterative process is repeated for each path until all the visible nodes are 
directly connected. 

The computational cost of each collision check between the nodes under consideration 
will always be some finite value. As the path will move towards optimization, the direct cost 
will reduce with time. It is interesting to note here that the upper bound of Delta depends upon 
the particular environment but will always be significantly less than the total number of 
iterations n and would always be a finite value for reaching an optimal solution in a particular 
obstacle scenario. This is because the number of times the path or the paths which lead to 
optimal solution get optimized will be finite and significantly small in comparison to n. Hence, 
rendering this term is ineffective in terms of computational complexity as it is independent of 
the number of iterations n. 
 
                     Delta <<< n 
 
     This is supported by statistical results for three different obstacle scenarios shown in Table 
3. In each of these scenarios, the algorithm is executed until the optimized path is found. 

COMPLEXITY OF INTELLIGENT SAMPLING STEP 
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Let p be a constant which defines the number of times a node will be placed at a beacon. This 
depends on the constant b. The greater the biasing ratio, the greater will be the value of p for 
the same configuration space and number of iterations. So the complexity of this time may be 
given by p*c where c is a constant time to place a sample. 
Reduced complexity of Sample, Nearest and Steer Step: 
      Each of these steps will now execute (n-p) times as p times the nodes are being placed 
directly at the beacons zbeacons whereas n is equal to the total number of iterations. Though 
this does not affect the O-Notation in any way but explains the reduced computational 
complexity and one of the factors that leads to reduced execution time. 
       Thus, it can be concluded that the O-Notation for the time complexity of RRT*-Smart is 
unaffected by the additional steps though performance has been improved as  

1. n is significantly reduced and  
2. Execution of RRT* sample step, nearest step and steer step has been reduced by a factor 

p and replaced by a single step with the same computational complexity as that of RRT* sample 
step and a path optimization step which has an insignificant contribution as Delta <<< n. 

 
TABLE 4.  A comparison of values of delta and n in three different obstacle scenarios 

Environment Algorithm Iterations Minimum Maximum Average Standard 
Deviation t value z 

Maze 
(Figure  3 a, c) 

RRT*-Smart 
2000 

664 672 668 2.97 
28.8 2.31 

RRT* 720 727 722 2.95 

Narrow Passage 
(Figure  3 b, d) 

RRT*-Smart 
2500 

597 607 602 4.34 
15.2 2.31 

RRT* 631 637 633 2.28 

Cluttered with 5 
obstacles 

(Figure  4 a, e) 

RRT*-Smart 
2000 

575 582 578 2.77 
14.4 2.31 

RRT* 601 610 606 3.21 

Cluttered with 50 
obstacles 

(Figure  4 b, f) 

RRT*-Smart 
2000 

603 609 607 2.49 
11.0 2.31 

RRT* 621 627 624 2.45 

Cluttered with 100 
obstacles 

(Figure  4 c, g) 

RRT*-Smart 
2000 

583 591 588 3.13 
36.3 2.31 

RRT* 662 672 666 3.70 

Cluttered with 200 
obstacles 

(Figure  4 d, h) 

RRT*-Smart 
2500 

601 605 603 2 
18.8 2.31 

RRT* 631 639 635 3.29 

 

COMPARISON OF RRT* WITH RRT*-SMART IN COMPLEX ENVIRONMENTS 
 

After the analysis of the algorithm characteristics, introduction of  dynamic biasing scheme for 
RRT*-Smart and complexity analysis, we would now compare the two algorithms in three 
different environments including a maze, a narrow passage and a cluttered environment (with 
increasing number of obstacles) each solved for at least 5 times. Figure 3 shows the results for 
one particular instance out of the five experiments performed in a Maze and a narrow passage 
environment for both RRT*-Smart and RRT*. In Figure 3 (a,c), the red hollow box represents 
the goal region while in Figure 3 (b,d), S and G denote the starting point and the goal position 
respectively. Similarly, Figure 4 compares the two algorithms in the cluttered environment, 
again for one particular instance, with increasing number of obstacles. In each figure, the 
obstacles are represented in red color, the goal region is shown by a red box and the trajectory 
is represented in black. The results are then summarized in Table 4 followed by a statistical 
analysis of t-Student test for testing equality of the means of the two methods. This statistical 
test called t-Student test is often used by the researchers and scientists to assess whether two 
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groups significantly differ from one another. We performed an unpaired t-test between the two 
sets of samples, one for RRT*-Smart and the other for RRT*. Each set consists of 5 values of 
path costs calculated after solving that particular environment for 5 times considering the 
stochastic nature of the methods and the costs in each case contributes to the data that is used 
to perform this test. The minimum, maximum, average and standard deviation values, the t-
value for each experiment along with the reference tabulated value z for 95 % confidence level 
and at 8 degrees of freedom are presented in Table I.   Comparing the value of t with the 
tabulated value of 2.31 (p=0.05) going upto a tabulated value of 5.04 (0.001), we see that the 
value of our t exceeds these in each case. Thus, according to the principles t-test theory, the 
difference between the means is very significant and so clearly RRT*-Smart provides 
significantly improved costs as compared to RRT* for the same number of iterations. 

 

 

 
 

FIGURE. 3. A comparison of RRT* and RRT*-Smart using simulation results in environments  with maze and narrow path. 
 
 



49 
 

 
 

FIGURE 4. A comparison of RRT* and RRT*-Smart using simulation results in cluttered environments with 

increasing number of obstacles 

 

 

 



50 
 

HARDWARE IMPLEMENTATION 
 

Now the results of hardware implementation of RRT*-Smart algorithm on Pioneer 3AT mobile 
robotic platform controlled by Player Project to prove its viability is given. An overhead camera 
is used for environment perception. The image of an environment is taken from the camera as 
in Figure 5(a). This image is converted into binary image and using image dilation technique 
the obstacle size is enlarged keeping into consideration the kinodynamic constraints (Oliveira 
Vaz, 2010) of the robot shown in Figure 5(b) and (c) respectively. Then the RRT*-Smart 
algorithm functions to come up with a collision free near-optimum path is shown in Figure 5(d). 
The robot follows this generated trajectory.  

 

 

 
FIGURE 5. Results of hardware implementation of RRT*-Smart algorithm on Pioneer 3AT mobile robotic platform. 

 
 

CONCLUSION 
 

Since its introduction, the sampling based algorithms have been popular in motion planning and 
navigation problems. Significant contribution was made by RRT* as it achieves asymptotical 
optimality apart from probabilistic completeness, but infinite time is needed because of the slow 
convergence rate. RRT*-Smart, a recent algorithm, tries to overcome these limitations by 
introducing intelligent sampling and path optimization. 

The dynamic biasing ratio scheme for RRT*-Smart has been proven for being able to 
further improves its efficiency apart from making it independent of the environment. Also, the 
complexity analysis of RRT*-Smart and its characteristics could impact the behavior of the 
algorithm. A rigorous comparison has also proved the efficiency of the latter algorithm over 
RRT* in complex environments. Thus, it is proven easy to implement algorithm on hardware 
platforms. 
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