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User Preference-Based Dual-Memory Neural Model
With Memory Consolidation Approach
Jauwairia Nasir, Yong-Ho Yoo, Deok-Hwa Kim, and Jong-Hwan Kim, Fellow, IEEE

Abstract— Memory modeling has been a popular topic of
research for improving the performance of autonomous agents
in cognition related problems. Apart from learning distinct
experiences correctly, significant or recurring experiences are
expected to be learned better and be retrieved easier. In order
to achieve this objective, this paper proposes a user preference-
based dual-memory adaptive resonance theory network model,
which makes use of a user preference to encode memories with
various strengths and to learn and forget at various rates. Over a
period of time, memories undergo a consolidation-like process at
a rate proportional to the user preference at the time of encoding
and the frequency of recall of a particular memory. Consolidated
memories are easier to recall and are more stable. This dual-
memory neural model generates distinct episodic memories
and a flexible semantic-like memory component. This leads to
an enhanced retrieval mechanism of experiences through two
routes. The simulation results are presented to evaluate the
proposed memory model based on various kinds of cues over
a number of trials. The experimental results on Mybot are also
presented. The results verify that not only are distinct experiences
learned correctly but also that experiences associated with higher
user preference and recall frequency are consolidated earlier.
Thus, these experiences are recalled more easily relative to the
unconsolidated experiences.

Index Terms— Adaptive resonance theory (ART), cognition,
consolidation, episodic memory, semantic-like, user preference.

I. INTRODUCTION

DECLARATIVE memory, one of the two types of long-
term human memory, is basically the memory of events

and facts. It refers to those memories that can be consciously
and explicitly recalled or declared [1]–[3]. Declarative mem-
ory can then further be divided into episodic memory and
semantic memory. Episodic memory refers to the memory of
personal experiences and specific events in time in a serial
form, whereas semantic memory is a structural record of
facts, meanings, and concepts that have been acquired over
time [4]–[6].

Many studies highlight the importance of hippo-
campus [7], [8], an area of brain which is considered
to be the place of episodic memory, as being very critical
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for representing relationships between stimuli and forming
memories associated with temporally dated, spatially located,
and personally experienced events or episodes [9], [10].
Episodic memory is considered to be of crucial significance
for various cognition related activities [12], [13]. Also, studies
reveal that emotionally arousing experiences are generally
well remembered [14], [15]. More precisely, emotions enhance
the encoding of emotional experiences into our memory by
influencing attention and perception [16]. Emotions and
attention at the time of encoding seem to play an important
role in enabling the significance of an experience to regulate
the strength of memory of the experience [17], [18]. In light
of the role that memory plays in improving the cognitive
abilities generally, one of the most critical components for
an autonomous robot would be to remember its experiences
and recall them later. Not just that, in terms of artificially
intelligent agents, the aforementioned information [14]–[18]
that certain experiences are encoded more strongly than
others can also be used in various ways to enhance the
cognitive skills of a robot. One way to take advantage of this
would be by developing a memory model that enables itself
to strongly encode and easily recall those experiences them
that are deemed significant by the user or the robot itself
while adapting to the ever-unpredictable world.

Also, it is reasonable to argue that experiences that are
repeated frequently must not require the same level of
detailed or error-free cues to being recalled after a certain
number of times being recalled. Instead, over a period of time,
the recurring experiences must be predicted earlier and with
more ease compared with when they were learned for the very
first time. In other words, those memories should become more
stable and easier to recall. This follows loosely the concept of
memory consolidation in biological brains where an unstable
memory trace is converted into a stable form that is resistant
to degradation over subsequent days to years [19].

This paper, taking inspiration from the biological brain,
but without trying to replicate the biological memory system
or consolidation process, extends a spatiotemporal memory
model episodic memory adaptive resonance theory (EM-ART)
into a memory model that tries incorporating the aforemen-
tioned abilities to develop a robust mechanism for recalling
episodic memories. Our model user preference-based dual-
memory adaptive resonance theory (pDM-ART) learns and
forgets memories at various learning rates that are defined by
a parameter that we termed as the importance parameter I .
Although I can be used to define anything the user might
want the episodic memory to be adapted to, in our model, I is
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defined as user preference, which indicates how significant a
particular event or episode is to the user. It should be noted that
our work focuses on the effect of a “user preference” parameter
on the memory of an autonomous robot/service robot and
not on the modeling of the parameter itself. Second, episodic
memories undergo a consolidation-like process to form a
semantic-like memory component. Our semantic-like memory
component consists of consolidated episodes that are easier to
recall and are more stable compared with the unconsolidated
episodes in episodic memory. Thus, it facilitates the retrieval of
episodic memories by adding another route for retrieval. The
timing of consolidation for a particular episode is dependent
on the associated I value and the frequency of recall of that
experience.

Section II presents related work, while Section III describes
a brief summary of the proposed pDM-ART network.
Section IV discusses encoding and learning of episodes using
pDM-ART. Retrieval and memory consolidation are discussed
in Section V. Section VI analyzes the space and time com-
plexity, while Section VII evaluates our approach in detail,
along with the comparative results using EM-ART for various
types of retrieval cues, demonstrating the usefulness of the
approach. The experimental results on Mybot are presented
in VIII, followed by concluding remarks that follow in
Section IX.

II. RELATED WORK

For empowering robots with higher levels of auton-
omy, various cognitive architectures with declarative memory
have been proposed [20]–[22]. These also include various
symbolic [13], [23], [24] and bioinspired [25]–[27] episodic
memory models, which differ in their mechanisms used
for storing and retrieving. A number of neural network
models have also been developed for sequential learning,
which can be employed for episodic memory. Some of
these include spatiotemporal memories for machine learn-
ing [27], long–short-term memory [28], temporal sequential
learning [29], associative neural networks for spatiotempo-
ral learning [30], anticipation-based temporal pattern genera-
tion [31], anticipation-based temporal sequence learning [32],
and hierarchical temporal memory [33]. Generally, in bioin-
spired approaches, neural models that learn spatiotemporal
sequences directly from experienced situations are employed
providing a more efficient way of categorizing events.

Adaptive resonance theory (ART) network, introduced by
Carpenter and Grossberg [25], is a self-organizing neural
network model that is able to categorize patterns and is
well suited to problems that require online learning of large
evolving databases. A neuromimetic episodic cognitive model
is presented by Taylor et al. [34], which makes use of fuzzy
ART [35] and temporal integration to form episodic represen-
tations. In [36], unlike [34], recall methods have also been
devised enabling the selection and retrieval of the episodes.
It is an extension of a TopoART [37] neural network that
incorporates temporal information in the input space to form
episode-like clusters.

The recently proposed EM-ART model [38], based on a
generalization of fusion ART [39], stands out because of its

ability to store the spatiotemporal relations among various
events and retrieve them with a higher tolerance toward noise
compared with the prior models of spatiotemporal memory.
In [40], a reward strategy has been developed to improve the
retrieval accuracy of EM-ART in situations where the lengths
of the learned episodes vary significantly. Varied episode
lengths can lead to an incorrect recall of an episode when
the retrieval cue is incomplete.

Also, recent research has proved the interdependence of
both memory systems by pointing out the significant overlap
between episodic and semantic memories essential for retrieval
of autobiographical memories, episodic learning, and semantic
processing [12], [41], [42]. Although not many bioinspired
consolidation approaches for episodic memory have been
proposed for autonomous agents, a few recent contributions
employ ART in their schemes. Wang et al. [43] developed
a memory module, employing fusion ART networks, which
learns both declarative and procedural knowledge. In the
declarative memory module, the episodic memory is built
with the same approach as in [39], while semantic knowledge
is built through a memory consolidation process in which
episodes from the episodic memory model are played back
to gradually extract and learn general facts, using a lower
template matching threshold. In this approach, each type
of semantic memory can be built using fusion ART with
each input field representing an attribute or property of a
concept. This system employs playing back of episodes for
the knowledge transfer process.

Gao and Tan [44] designed a multimemory model activities
of daily living (ADL) ART to discover the daily activity
pattern of a sensor monitored user from his/her ADL. The
daily activity patterns are encoded in episodic memory using
EM-ART and the patterns are consolidated into semantic mem-
ory by extracting the regularities of the activity routines. This
system uses a date input field indicating the date information
as tags.

In another adaptation of the EM-ART network,
Leconte et al. [16] incorporated the emotional influences
of a robot to categorize and recall its experiences. Their
adaptation dynamically sets the learning rate and vigilance
parameters, two of the key parameters of EM-ART, based on
how the robot is able to carry out its tasks using a simple
artificial emotion model. One objective of their model is to
provide a fast recall of those experiences of the robot that are
associated with emotions.

The models in the above-mentioned literature, to the best of
our knowledge, are able to represent and learn spatiotemporal
sequences. Before going into the formal description of the
proposed model, we would like to highlight the ways in
which it relates to and differs from some of the existing
models.

1) Just like AEM-ART [16], LTM [27], and
EM-ART [32], [38], our model also comprises of
a hierarchical network architecture.

2) However, unlike [16], [27], [38], [43], and [44],
the learning rate and memory strength of each
event/episode is biased by a “user” input/preference at
the time of encoding.
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Fig. 1. Architecture of the proposed pDM-ART network, where sEr and ssem
t represent the memory strengths for an rth episode Er and the semantic

memory threshold value, respectively.

3) Even though [16], [27], [38], and [45] support retrievals
based on degraded cues, pDM-ART provides a consoli-
dation mechanism that results in an alternate route that
may facilitate retrieval with further degraded cues for
those spatiotemporal sequences that are recurrent and
significant to the user.

4) Moreover, the influence of an external parameter on
the learning rate is also employed in [16], but that
external parameter models the emotions of the robot
at the time of learning and the learning rate is
changed (increased/decreased) for any future learning
of similar experiences, while in our model, the learning
rate is increased/decreased based on a user input for the
current representation, as well as similar future repre-
sentations that may activate the current representation.

5) Unlike [43], memory consolidation is online (does not
require specific playback of the episodes in episodic
memory) and leads to representations that still represent
spatiotemporal knowledge, facilitating the retrieval of
recurrent or significant experiences in episodic memory.

Because the two schemes (the scheme in [43] and our proposed
pDM-ART) differ in that they both have different meanings
of their semantic memories and the consolidation processes,
a direct comparison is not feasible; hence, it is not covered in
this paper.

III. SUMMARY OF PROPOSED PDM-ART

This section summarizes the proposed model, pDM-ART.
The proposed model makes two contributions. First, it pro-
vides a mechanism where a user preference is incorporated
in the memory model as an importance factor I associ-
ated with each event that the robot experiences. The higher
the importance associated with an event, the stronger the
encoding is compared with other events at time of encoding.
Second, pDM-ART encourages a consolidation-like process to
ensure that significant memories and recurrent memories are
distinguished from insignificant and nonrecurring memories.
Experiences/episodes become more stabilized, which means
they allow adaptation to partial sequences and changes in
event representation and sequence, and are easier to recall.
The point at which an episode is consolidated is dependent on
the importance associated with the events experienced in that

particular episode and the recall frequency of that episode.
Episodes that are strongly encoded and frequently retrieved
are consolidated earlier.

Fig. 1 shows the overall architecture describing the dynam-
ics of the proposed pDM-ART. The importance factor leads to
various learning rates and various forgetting rates for events
and episodes from input layer F1 to event layer F2 and from
event layer F2 to episode layer Fepi

3 . An event has the general
representation as Event: {I1, I2, . . . , Il | Importance I}, where
Ik represents an input vector to channel k, k = 1, 2, . . . , l is the
index of the input channels, and I is the importance associated
with the event. Note that I does not have its own channel at the
input layer rather it is concatenated along with the input vector.
Each channel here represents the key information regarding the
situation experienced by the autonomous agent, such as what,
where, and how.

The input {I1, I2, . . . , Il | Importance I} is fed at input
layer F1 and {I1, I2, . . . , Il} is encoded as an event at layer
F1 to F2. I is responsible for controlling parameters like
learning rate and contribution factor at the time of learning
of {I1, I2, . . . , Il} from F1 to F2. The learning rate defines
the amount of effect a pattern has on the changes in the
weights of an existing pattern, whereas the contribution factor
defines the contribution of a channel’s attributes. A sequence
of events is learned as an episode at Fepi

3 , while Fepi
3 and Fsem

3
represent the episodic and semantic-like memories, respec-
tively. In our memory model, semantic memory refers to those
memories that are consolidated based on retrieval frequency
and associated significance. Similarly, I also controls learning
rate and contribution factor from F2 to Fepi

3 . In this way,
the importance factor I is embedded in the memory model,
eventually effecting the retrieval success in various scenarios
as will be seen in the later sections.

Each j th event and r th episode is associated with a memory
strength value se j and sEr , respectively. If the memory strength
sEr of an r th episode Er increases above a semantic memory
threshold value ssem

t defined by the user, the episode Er

is copied into the semantic-like memory component. Also,
the higher the recall frequency, the higher the chances for
the episode to be consolidated. In other words, all episodes,
if not forgotten, are consolidated with a rate proportional to the
factor I associated with them and their recall rate. Memories
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Fig. 2. Fusion ART architecture.

with high I and high recall frequency have the highest chance
of consolidation. Once the semantic-like component is formed,
there are now two routes, both with different thresholds,
ρepi and ρsem for the template matching process to allow the
retrieval of an episode.

IV. ENCODING AND LEARNING OF EPISODES

Since pDM-ART is based on EM-ART [38], which is built
by hierarchically joining two multichannel self-organizing
fusion ART neural networks [39] to learn and retrieve a tempo-
ral sequence of events called an episode, we first describe the
dynamics of fusion ART for better understanding. The basic
structure of fusion ART is shown in Fig. 2.

A. Fusion ART

Fusion ART network [39] is an extended model of
ART [25], which is used to learn individual events encoded
as weighted connections between the input layer F1 and the
event layer F2.

1) Complement Coding: Each field Fk
1 receives an input

vector Ik = (I k
1 , I k

2 , . . . , I k
n ), where I k

i ∈ [0, 1], i =
1, 2, . . . , n, denotes the i th input to channel k, k = 1, 2, . . . , l.
Each of the input vector Ik is converted into an activity vector
xk by the process of complement coding in which the input
vector is concatenated with its complement, Īk = (1 − Ik).
In our implementation, we did not use complement coding as
it leads to incorrect retrieval when a large number of events
and episodes are learned.

2) Parameters: Each of the field dynamics is determined
by various parameters. These include choice parameters αk ,
learning rate parameters βk , contribution parameters γ k , and
vigilance parameters ρk .

3) Code Activation: F2 has one channel that is represented
by an activity vector y = (y1, y2, . . . , yd), where d is the
number of nodes in F2. The following choice function activates
a node j in F2:

T j =
l∑

k=1

γ k

∣∣xk ∧ wk
j

∣∣

αk + ∣∣wk
j

∣∣ (1)

where xk is the activity vector of Fk
1 receiving the input Ik

(including the complement), wk
j denotes the weight vector

associated with the j th node in F2 for learning the input
pattern in Fk

1 , αk is the choice parameter, and γ k is the
contribution parameter. Also, k = 1, 2, . . . , l is the number
of input channels, ∧ represents fuzzy AND operator, where
∧ : a ∧ b = (min(a1, b1), min(a2, b2), . . . , min(aD, bD)) for
the D-dimensional vectors a and b, and the norm operator is
defined by |a| =∑D

i=1 |ai |.

4) Code Competition: The node with the highest activation
value in F2 is selected as the winner node by the process of
code competition, where the winner node is indexed at J as

TJ = max{T j : for all F2 node j}. (2)

Making use of the winner-take-all strategy, the output of the
winner node is set as 1 and all the other outputs are set as 0.

5) Template Matching: This process is used to check the
similarity between the activity vector xk and the weight vector
wk

J , which is associated with the selected node in F2. This
similarity is defined by the value given the following match
function:

mk
J =

∣∣xk ∧ wk
j

∣∣

|xk | (3)

and the vigilance criterion

mk
J ≥ ρk . (4)

In order for resonance to occur, (4) should be true, that is,
the match value of the selected node J should be greater than
the vigilance parameter ρk . The vigilance parameter ρk sets
a threshold for the template matching step. If (4) is not true,
a reset occurs setting the value of TJ to 0. Until resonance is
achieved, a new index j is chosen by (2). In the case when no
node meets vigilance criterion, a new category node is created
in F2.

6) Template Learning: After resonance occurs in F2,
the weight vectors are modified for each channel using the
following learning rule:

wk(new)
J = (1− βk)wk(old)

J + βk(xk ∧wk(old)
J

)
. (5)

7) Readout: Once a node J is chosen in F2, it can readout
its weight vectors by a top-down process to an input field Fk

1
such that xk(new) = wk

J .

B. Encoding and Learning in pDM-ART

A vital part of episodic memory is to encode the sequen-
tial or temporal order between events. The EM model, an adap-
tation of which we have proposed, provides this ability of
associating and grouping patterns across time by joining
hierarchically two fusion ART networks [38].

The learning phase for episodic memory of pDM-ART is
illustrated in Fig. 3. An activity vector xk of input layer F1
undergoes four steps to learn an event node in event layer F2.
The activation values are calculated using (1) for each event
node to find a potential match for the activity vector xk .
In accordance with code competition highlighted by using (2),
the event node with the highest activation value is chosen for
template matching. The match value returned by using (3)
determines how close the node with highest activation value
is to the activity vector. If the match value is higher or equal to
the vigilance parameter ρk , resonance is said to occur, the node
is selected as the current event node, and the activity vector xk

is learned by modifying the weights as in (5). On the other
hand, if resonance fails to occur, a new event node is created
to encode the new pattern.
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Fig. 3. pDM-ART episodic memory learning phase where βe j and βEr
represent the learning rates for j th event e j and rth episode Er , respectively.

The activation values of the situational attributes are held
in F1 layer. The pattern of activations in F1 layer forms
the basis of selection and activation of a node in F2 layer,
which is considered as the recognition of an event once the
resonance occurs. Updating the weights in the connections
between F1 and F2 layers leads to the learning of the incoming
event based on βe j , where βe j is the learning rate for j th event.
Using the same dynamics, as used for learning an event from
F1 to F2, a temporal sequence of events is learned from
F2 to Fepi

3 . In F2 layer, a decaying pattern of activations is
produced by a sequence of events. This pattern of activations
represents an episode that is also learned as the weighted
connections between F2 and the category selected in Fepi

3 .
The activation values of nodes representing an event are used
to represent the time sequence of the events. The most recently
activated node is given a value of 1, while the nodes that were
selected previously are decayed over time using a decaying
factor, given by τ ∈ (0, 1).

An event including an action input I1, an object
input I2, and an importance I is represented by Event:
{Action(I1), Object(I2)| Importance I }. The user preference
then controls the learning rate and the contribution factor
for each event during learning from layer F1 to F2 and
consequently for each episode that is formed from F2 to
Fepi

3 , where Fepi
3 refers to the episodic memory component

in layer F3.
The contribution factor and learning rate from F1 to F2, for

every j th event e j , change according to the following rules:
γe j = γmin + (1− γmin)(Ie j − 0.5) (6)

βe j = βmin + (1− βmin)(Ie j − 0.5) (7)

where γe j , γmin ∈ [0.5, 1], and Ie j ∈ [0, 1] represent the
contribution factor for event e j , the minimum contribution
factor of the memory model initially set, and the importance
of the event e j , respectively. Furthermore, βe j and βmin ∈
[0.5, 1], respectively, represent the learning rate for event
e j and the minimum learning rate of the memory model
initially set.

The contribution factor γEr and learning rate βEr from
layer F2 to F3 are also defined by the same equations for an
r th episode Er , except that Ie j is replaced by

IEr =
∑p

j=1 Ie j

p
(8)

Algorithm 1 pDM-ART Episodic Learning
1: BEGIN
2: ASSIGN user preference Ie j for every event e j in

episode Er

3: CALCULATE initial memory strength sinit
e j

for e j based
on Ie j

4: FOR every subsequent event e j in episode Er

5: Based on input Ik in F1, select a resonant node J in F2
6: Let node activation yJ be 1 or any predefined maximum

value
7: FOR every previously selected node j in F2
8: Let its activation be ynew

j = yold
j (1− τ ) or 0 if yold

j ≤ 0
9: After a subsequent presentation of Er , given an activation

vector y formed in F2

10: Select a resonant node R in Fepi
3 on the basis of the

activation vector y
11: if ER is a novel episode, learn its associated weight vector

w
(new)
R = y then

12: Set IER for episode ER based on (8)
13: CALCULATE sinit

ER
for ER based on IER

14: end if
15: END

where IEr ∈ [0, 1] is the importance factor for the r th episode,
p is the total number of events in the r th episode, and Ie j is
the importance of the j th event in the r th episode. Algorithm 1
outlines the learning procedure in pDM-ART.

V. RETRIEVAL OF EPISODES AND

MEMORY CONSOLIDATION

A. Retrieval of Episodes

The events and episodes, once learned by pDM-ART, can
be retrieved by a top-down readout procedure. It receives a
retrieval cue that can either be complete/incomplete or noisy in
terms of event representation or event sequence. A retrieval cue
activates a node in F2. If the match is high enough, the node is
recognized as the incoming event. All the incoming events in
the retrieval cue are recognized in this way. A similar process
takes place from F2 to F3 to select an episode that matches
the most with the input and also fulfills the vigilance criterion.
In this way, an episode is selected and the weights are read out
by a top-down process, which takes place first from F3 to F2
and then from F2 to F1 in a sequential manner by making use
of a vector that first complements the values in F2 such that
ȳ j = 1 − y j . Given this complement vector, the weights of
the node associated with the highest value are read out first
from F2 to F1. In this manner, the entire sequence of events
is retrieved in the same order in which they were encoded and
learned.

A cue for retrieving an event, for example, with an action
input I1 and object input I2 is represented by Retrieval
cue: {Action(I1), Object(I2)}. Before the formation of the
semantic-like memory, a retrieval cue activates a memory from
the episodic memory component and the weights would be
read out if the match is above the threshold vigilance value

ρepi for the episodic component from F2 to Fepi
3 .
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Fig. 4. (a)–(d) Particular episode, in this example E4, is copied to Fsem
3 during the retrieval phase. The various retrieval routes that can be taken once the

episode is copied to Fsem
3 are explained.

As the episodes start consolidating, an episode can be
activated by either of two routes, one to the episodic mem-
ory component and the other to the semantic-like memory
component. If neither of the two routes succeeds in providing
resonance, retrieval failure is recorded. Both of the routes from
F2 to episodic memory Fepi

3 and F2 to semantic memory Fsem
3

have different vigilance values ρepi and ρsem, respectively.
As episodes are consolidated in the order of their frequency
being recalled, the consolidated episodes probably contain
more useful information. Apart from recalling frequency,
the user can also control which episodes should move to
the semantic memory faster than the others by setting the
values for the importance parameter associated with each
event. The procedure for consolidation is explained in the fol-
lowing section. To assist fast recall of consolidated episodes,
ρsem is lower than ρepi to give a more flexible semantic-like
component. Also, the learning rate βsem is lower than βmin
used in episodic learning. This is to keep the consolidated
episodes stable in memory, which means that the weights
associated with them change slowly over time. The formation
of two routes leads to a robust retrieval mechanism as will be
observed in Section VII.

B. Memory Consolidation

The proposed memory model assigns a memory strength
value to each and every event and episode at the time of
encoding based on the importance factor that the user defines.
For pDM-ART, the memory strengths for both events and
episodes are defined as follows:

1) Memory Strength for Events: The strength of an event
e j at time t is computed depending on if the event is just
created or reactivated, otherwise. The strength of an event e j

when e j is just created at time t , reactivated at time t , and not
reactivated at time t is respectively computed as follows:

se j (t) =

⎧
⎪⎨

⎪⎩

sinit
e j
= smin + (1− smin)(Ie j − 0.5) (9a)

se j (t − 1)+ (1− se j (t − 1))rs (9b)

se j (t − 1)(1− δs) (9c)

where sinit
e j

is the initial memory strength of the event e j ,
smin ∈ [0.5, 1] is the minimum value set initially for the
proposed memory model, and se j (t) and se j (t − 1) are the
memory strengths of the event e j at time t and t − 1,
respectively.

2) Memory Strength for Episodes: Similarly, the strength
of an episode Er at time t can be computed depending
on if the episode is just created or reactivated, otherwise.
The strength of an episode Er when Er is just created at
time t , reactivated at time t , and not reactivated at time t is,
respectively, computed as follows:

sEr (t) =

⎧
⎪⎨

⎪⎩

sinit
Er
= smin + (1− smin)(IEr − 0.5) (10a)

sEr (t − 1)+ (1− sEr (t − 1))rs (10b)

sEr (t − 1)(1− δs) (10c)

where sinit
Er

is the initial memory strength of the episode Er ,
smin ∈ [0.5, 1] is the minimum value set initially for the
proposed memory model, and sEr (t) and sEr (t − 1) are the
memory strengths of the episode Er at time t and t − 1,
respectively.

Whenever an event or an episode is formed, the initial
memory strength is set according to the importance factor
as shown by (9a) and (10a), respectively. Therefore, in this
way, the initial memory strength may not be the same for all
memories. This ensures that two events of unequal importance
do not get strengthened or decayed at the same rate. Whenever
an event or an episode is reactivated, the memory strength
is strengthened proportionally to a reinforcement rate rs ,
as in (9b) and (10b). The memory strengths gradually decay by
a decay factor δs for events and episodes, as in (9c) and (10c).

An event or an episode whose memory strength falls below
a threshold value st ∈ [0, 1] is removed from the memory.
On the other hand, any event or episode whose memory
strength is strengthened above a semantic-like memory thresh-
old value ssem

t ∈ [0, 1] is moved to semantic-like memory
following loosely the concept of consolidation. Fig. 4 demon-
strates how memory consolidation takes place during the
retrieval phase. Fig. 4 highlights the details of copying one
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particular episode, in this example, the fourth episode E4 to
semantic-like memory during the retrieval phase after multiple
cues including the events of E4 are received. It does not
matter if a cue for one single episode is received multiples
times in a row or multiple times within a combination of
cues for other episodes. In Fig. 4(a), the retrieval cue consists
of incomplete/complete and erroneous/error-free events of the
fourth episode E4 such that the match value m4 for E4 from
F2 to Fepi

3 is greater than or equal to ρepi. On first activation
of E4, the memory strength sE4 is less than the semantic
memory threshold ssem

t . Hence, E4 is retrieved from Fepi
3

and Fsem
3 is empty. In Fig. 4(b), the retrieval cue consists

of incomplete/complete and erroneous/error-free events of the
fourth episode E4 such that the match value m4 for E4 from
F2 to Fepi

3 is greater than or equal to ρepi. On the second
activation of E4, the memory strength sE4 becomes greater
than the semantic memory threshold ssem

t . Hence, E4 is copied
to Fsem

3 and is retrieved from Fepi
3 .

In Fig. 4(c), the retrieval cue contains incomplete/complete
and erroneous/error-free events of the fourth episode E4 such
that the match value m4 for E4 from F2 to Fepi

3 and from F2
to Fsem

3 is greater than or equal to ρepi and ρsem, respectively.
E4 is in both Fepi

3 and Fsem
3 and can be retrieved from either

Fepi
3 or Fsem

3 . Finally, in Fig. 4(d), the retrieval cue contains
incomplete and erroneous events of the fourth episode E4

such that the match value m4 for E4 from F2 to Fepi
3 and

from F2 to Fsem
3 is less than ρepi and greater than or equal

to ρsem, respectively. E4 is in both Fepi
3 and Fsem

3 but can
only be retrieved from Fsem

3 because of high error rate in
the retrieval cue and low flexibility of Fepi

3 . Hence, E4 is
retrieved from Fsem

3 . A pseudocode highlighting retrieval and
semantic-like memory formation procedure are presented in
Algorithm 2.

Note that at resonance, the memory strengths of nodes
in Fsem

3 do not change. Only those memories that are in
Fepi

3 get their memory strengths increased or decreased. Also,
note that the decision to update weights in steps 24, 27, and
30 during the retrieval process lies with the user (step 22).
When learning is not allowed during retrieval, the weights
of learned memories remain unchanged. Hence, memories
remain stable unless the user wants the memories in Fepi

3 and
Fsem

3 to generalize based on incoming activity pattern. Due
to higher learning rate in Fepi

3 , weights change much quicker
than in Fsem

3 . On the other hand, Fsem
3 is prone to higher level

of generalization because of the low vigilance parameter ρsem
that leads to resonance, and hence, weights update in many
more cases than in Fepi

3 .

VI. COMPLEXITY ANALYSIS

In this section, we analyze the space and time complexity
of pDM-ART for encoding and retrieving events and episodes.
Consider the task of encoding E episodes with e unique
events. For each event, we suppose there is a fixed set of
a attributes associated with it. In addition to that, among E
episodes, there is an average of m events and a maximum of M
events. Also, in Fsem

3 , there can be a maximum of E episodes
and a minimum 0 episodes in the case when the semantic

Algorithm 2 pDM-ART Retrieval and Memory Consolidation
1: BEGIN
2: FOR every incoming event in retrieval cue
3: Select a resonant node J in F2
4: Let node activation yJ be 1 or any predefined maximum

value
5: FOR every previously selected node j in F2
6: Let its activation be ynew

j = yold
j (1− τ ) or 0 if yold

j ≤ 0
7: Based on the activation vector y formed in F2:
8: Select a resonant node R in Fepi

3 ∪ Fsem
3

9: if R is found in Fepi
3 then

10: Increase sER (t) for R by
11: sER (t) = sER (t − 1)+ (1− sER (t − 1))rs

12: end if
13: for every other node do
14: Decrease sER (t) by
15: sER (t) = sER (t − 1)(1− δs)
16: end for
17: if sER for R is ≥ ssem

t and R is not in Fsem
3 then

18: Copy R to semantic memory component Fsem
3

19: Learn the associated weight vector w(sem)
R = w(epi)

R
20: end if
21: Readout weights from Fepi

3 and F2 or Fsem
3 and F2

22: if learning is allowed then
23: if resonance occurred in Fepi

3 then
24: Update weights in F2 and Fepi

3 using βe j and
βEr , respectively

25: end if
26: if resonance occurred in Fsem

3 then
27: Update weights in F2 and Fsem

3 using βe j and
βsem , respectively

28: end if
29: if resonance occurred in Fepi

3 and Fsem
3 then

30: Update weights in F2, Fepi
3 and Fsem

3 using βe j ,
βEr and βsem , respectively

31: end if
32: end if
33: Exit Loop
34: END

TABLE I

COMPARISON OF SPACE AND TIME COMPLEXITY

component is not yet formed. The space and time complexity
is shown in Table I for both EM-ART and pDM-ART. We see
that that embedding a user preference and a consolidation-
like procedure does not affect the complexity of the EM-ART,
the model from which pDM-ART is adapted.

A. Space Complexity

Space complexity refers to the amount of space that is
needed by an algorithm or a memory model in terms of
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the amount of input. As discussed earlier, for encoding e
number of events, pDM-ART requires e number of nodes in F2
layer. Each event has a attributes and because the event, as a
multimodal pattern, is stored in the a weighted connections to
the F1 layer, we will have a total of ea connections between
the F1 and F2 layers keeping in mind that we did not employ
complement coding. The number of nodes that are required
to store E number of episodes is E and each Fepi

3 node is
connected to all the e nodes in F2. Hence, the number of
connections between F2 and Fepi

3 is Ee. After the semantic-
like memory component is formed, the maximum number of
nodes that can be in Fsem

3 is E , and hence the maximum
number of connections from F2 to Fsem

3 is Ee. On the other
hand, when no episodes have undergone consolidation yet,
there are 0 or no nodes in Fsem

3 . Therefore, the total number of
nodes required in pDM-ART is minimum e+E and maximum
e + 2E . And similarly, the number of weights required is
minimum ea + Ee and maximum ea + 2Ee. The vigilance
parameters ρe, ρepi and ρsem can be increased or decreased
correspondingly to an increase or decrease in the number of
nodes and weights.

B. Time Complexity

Time complexity is basically a function describing the
amount of time an algorithm takes in terms of the amount
of input to an algorithm/model. In pDM-ART, a total of
ea comparisons are required during the resonance search
operation from F1 to F2. If there is an average of m events
in each episode, pDM-ART takes mea processing steps to
produce a series of activations in F2. If there are E episodes in
Fepi

3 , it will require Ee2 amount of processing time to compare
the activation pattern in F2 with E number of nodes in Fepi

3 .
Therefore, the time associated with encoding of an episode is
given by mea + Ee2. On the other hand, the time required
to retrieve an episode is minimum mea + Ee2 if there are
no nodes in Fsem

3 and maximum mea + 2Ee2 if there are E
number of nodes in Fsem

3 .

VII. RESULTS AND COMPARISONS

One of the key parameters for EM-ART model is the vig-
ilance parameter, which defines the matching threshold for a
template. Generally, EM-ART gives a higher retrieval accuracy
when the vigilance criterion is lowered [38]. The higher the
vigilance criterion, the more strictly the patterns should match
for resonance. However, the high retrieval accuracy at lower
vigilance values for the types of cues in [38], including partial
cues from the beginning, partial cues from the end, partial
cues from arbitrary locations, noisy cues in terms of event
representation, and noisy cues in terms of event sequence,
comes with a compromise of the distinct experiences that the
model can learn. The amount of partiality and noise in the
cues is referred to as rate of error in this paper. In a simulation
analysis (see Fig. 5, in which cues used for these results are the
same as the ones used in Sections VII-C and VII-D) that we
performed using a set of ten distinct experiences described in
Section VII, it is observed that while the retrieval percentage is
generally higher for cases when ρepi is lower, the number of

Fig. 5. Percentage of learned episodes and successful retrieval of learned
episodes by EM-ART at various values of ρepi .

distinct experiences learned correctly if the experiences are
similar yet distinct enough is lesser than when the ρepi is
higher. The first and the last scenario are an example of such
a case. In Fig. 5, apart from the cues that are partial from the
beginning, in all other types of retrieval cues, the percentage
of successful retrieval of learned episodes is higher at lower
vigilance values, while the number of distinct episodes learned
is higher when ρepi is higher. One of the contributions of our
adaptation to EM-ART, by developing two routes for retrieval,
is to try to overcome this compromise.

In this section, we evaluate the performance of our model
and compare it with EM-ART. The comparison is done to
test whether adding an alternate route (Fsem

3 ) to EM-ART
by memory consolidation mechanism improves the retrieval
accuracy of episodic memories with increasingly degrading
cues compared with when there is only one route as in EM-
ART. EM-ART outperforms other models in [38], while having
the performance similar to LTM [27]; hence, EM-ART is
chosen for benchmarking. For evaluation purpose, we used a
test bed that consists of ten distinct experiences/tasks, which
include Water the flowers and read a book after, Take out a
book from a drawer, Pour the contents of a bottle, Sort the
toys, Toast a slice of bread, Take out a bottle from the fridge,
Put glass from a shelf on a tray, Heat a meal in microwave,
Clean the room with a broom, and Read a book to a friend.
All of these tasks consist of sequences of events; for example,
the task Water the flowers and read a book after consists
of a sequence of 11 events {Move to a drawer, Open the
drawer, Grasp a watering pot, Move with the watering pot
to the flowers, Tilt the watering pot to the flowers, Move with
the watering pot to the table, Put the watering pot on the
table, Move with the book to a chair, Sit on the chair with
the book, Read the book}. Similarly, sequences of events from
a set of around 40 more events constitute the remaining nine
tasks. Details of these are not shown due to space constraints.
Some of these simulation scenarios are similar to the ones
used in [40] and [46]. The three terms, tasks, episodes, and
experiences, would be used interchangeably in this section.
Scenario 1 is a combination of two tasks in order to have
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a longer sequence of events and to have two similar yet
distinct experiences (Scenarios 1 and 10). For learning of
these scenarios, two inputs are used to represent the event:
an action and an object. There are a total of 13 actions
{Grasp, Move, Lean, Putdown, Open, Close, Pour, Pushdown,
Read, Sit, Putin, Clean, Set} and 23 objects {Wateringpot,
Flower, Table, Drawer, Book, Bottle, Bowl, Toy, Box, Bread,
Toaster, Chair, Cup, Fridge, FridgeHandle, Tray, Shelf, Glass,
Food, Microwave, Broom, Room, Friend} that are employed
for generating the scenarios. For pDM-ART, along with the
action and the object, an importance factor I is associated
with each event to specify user preference. The end result of
applying this model to a robot can be briefly summarized in
the following words. With pDM-ART, not only will a robot
with pDM-ART be able to learn and retrieve an experience
of, for example, Toasting a bread, but also it will be able to
retrieve the experience from cues with higher rate of error as
that experience is consolidated by the repetition of Toasting
a bread and/or associating a higher I with it if the user
wants to further speed up the consolidation timing for the
task of Toasting a bread. A practical scenario is discussed
in Section VIII.

A. Setting of Importance Parameter

The importance parameter I has to be set for each event at
the time of encoding. Then, the importance parameter for each
episode is automatically set by (8). The importance parameter
can be based on user feedback, artificial emotions of the robot,
any one of the two or both, or even any other factor that a user
would like the memories to be adapted with. In our simulation
experiments and experiments using Mybot in Section VIII,
the value of I is a quantification of how important a particular
event is in the view of the user, so I is defined based on a
user feedback.

For practical experiments, user feedback can be recorded
in various ways. For example, one way of doing this would
be a robot performing a task for the first time based on a
state machine while the user gives verbal feedback or feedback
via facial expressions. Another method may be that the user
demonstrating the task for learning and giving feedback along
with each step. This would be based on what the user thinks is
more important and what the user would like the robot to learn
better/faster than certain other tasks. This feedback can be ver-
bal. These sensory (verbal/facial expressions) inputs can then
be converted into numerical values of I by comparing against
a predefined feedback function feedback(). The feedback func-
tion can be tuned by any user based on their preferences.
To design a robust feedback function, we may need a classifier
that can classify the verbal input or facial expressions after it
has been trained or an LSTM classifier [28] that can identify
if the feedback was positive or negative. We believe this is a
whole new area that requires full concentration and since this
paper does not focus on the modeling aspect of I, we would
like to include this as possible future work. A probable method
for assigning I to each event is provided in Algorithm 3
without going into the details of modeling of the feedback
function. In Sections VII and VIII, the feedback was given
manually by the user during the learning phase.

Algorithm 3 Generation of Importance Parameter for Each
Event
1: Define f eedback f unction()
2: Begin
3: while LEARNING do
4: for each EVENT e j do
5: Get feedback fe j from user
6: Calculate Ie j = f eedback f unction( fe j )
7: end for
8: end while
9: END

For evaluating pDM-ART, once the aforementioned scenar-
ios as ten distinct episodes had been learned, we tested its
performance with various types of cues. Partial cues from the
beginning, partial cues from the middle, partial cues from the
end, noisy cues in terms of event representation, and noisy cues
in terms of event sequence were used. For each set of cues,
the experiment was performed for ten trials with the same set
of cues in each trial. Also, each experiment was performed in
three different cases with a varying importance parameter. The
first two cases consist of a fixed I value (0.5 and 0.8) for each
event and the last case assigns I values randomly from 0.5 to
1 to all events with a higher value of I indicating a higher
importance. The objective was to analyze the consolidation
trend and the improvement in retrieval accuracy with each
trial whenever an episode (episodes) is consolidated. The
retrieval accuracy is defined by the number of times an episode
is correctly retrieved over the total number of cues in one
trial. Overall, the results show that the model was able to
improve the retrieval accuracy for the learned experiences as
the episodes were consolidated. Consolidation of episodes was
also higher and faster when I was higher, and for each case
of I, percentage of consolidation was higher as the number of
trials increases, which was due to the increase in frequency
of recall of a certain episode. Also, the retrieval accuracy for
pDM-ART was always equal to or higher than EM-ART across
all experiments.

B. Generation of Cues for Each Experiment

The cues for each type of error (first five experiments) were
generated as shown in Algorithm 4. We define the trials to be
continuous, which means the values of memory strengths se j

at the start of trial n+ 1 are the same as the memory strength
values at the end of trial n. The parameters for pDM-ART and
EM-ART were, respectively, initialized as follows.

1) ρe = 0.9, ρepi = 0.95, ρsem = 0.65, βmin = γmin =
smin = 0.5, δs = 0.0001, rs = 0.5, and ssem

t = 0.95
2) ρe = 0.9, ρepi = 0.95, βe j = 0.8 (for all channels from

layer F1 to F2), βEr = 0.8, δs = 0.0001, and rs = 0.5.

We also tested the performance for all of the experiments
using ρsem = 0.65, 0.70, and 0.75. Due to similarity in the
results and the large number of results, we present only the
performance of the model with ρsem= 0.65. Also, we tested
the model in both cases, i.e., when learning is allowed during
retrieval and when it is not. In the case when learning

                                                                                                                                              



                                                                                    2303

Algorithm 4 Generation of Cues for Each Trial
1: Error rate r and rmax ∈ [0, 100]
2: Maximum trial number n ∈ [0, 15]
3: r = 0
4: Begin
5: for i= 1 to n do
6: while r ≤ rmax do
7: for j = 1 to number of episodes learned do
8: Introduce error r
9: end for

10: Increment error r
11: end while
12: end for
13: END

is allowed, the retrieval rates for Sections VII-A2 and VII-B1
are observed to be a little lower, but otherwise the retrieval
rates are similar in both cases with the test bed used in this
paper. The lower retrieval rate in the case when weights are
updated during retrieval is due to the higher level of gener-
alization disabling Fsem

3 in retrieving some of the episodic
memories when the cues are almost complete or less noisy

but still partial or noisy enough to avoid resonance in Fepi
3 .

The retrieval rates in either case highly depend on the design
of the cues that are applied to retrieve memories. Due to space
constraints, we have included only results for the simpler case
when learning was not allowed.

The general guideline for choosing βmin, γmin and smin is
to choose values, which may give a suitable rate (according
to the user), the lowest or highest possible learning rate βe j ,
contribution factor γe j , and memory strengths sinit

e j
for events.

For example, in our case, we used βmin = γmin = 0.5,
which gives βe j and γe j their possible maximum and minimum
values as 1 and 0.25, respectively. The same is done for smin.
The limits of βmin, γmin, and smin control the limits of βe j , γe j ,
and sinit

e j
, respectively. For values less than 0.4 for βmin, γmin,

and smin, the values for βe j , γe j , and sinit
e j

can become negative
for Ie j ∈ [0, 1]. Similarly, the limits of βmin, γmin, and smin

also control the limits of βEr , γEr , and sinit
Er

, respectively.

C. Retrieval With Partial Cues

Three kinds of partial cues were tested.
1) Retrieval With Partial Cues From the Beginning: In the

first experiment, we used a total of 10 trials and each trial
consisted of the same set of 46 cues in which there is at least
one instance of a complete cue for each of the 10 episodes.
The remaining cues are partial cues from the beginning, in the
increasing order of error, with lengths up to one-fourth of the
original length. Fig. 6 illustrates consolidation and retrieval
for pDM-ART for the three cases of I. The retrieval curve for
EM-ART is also shown. We observe that in this experiment,
the retrieval rate is 100% for all trials and for all three cases
of importance parameter. Moreover, the retrieval rate for EM-
ART is also 100%. It can be seen that the consolidation of
all the ten episodes was achieved as early as in trial 1 except
for the case when I=0.5. This is because at a lower value

Fig. 6. Testing with partial cues from the beginning. Percentage of
consolidated episodes and correctly retrieved episodes by pDM-ART for three
cases of I (I = 0.5 for all events, I = 0.8 for all events, and I = randomly
set for each event, whereas the values range from 0.5 to 1) for ten continuous
trials. The retrieval accuracy for EM-ART is also shown.

Fig. 7. Testing with partial cues from the end. Percentage of consolidated
episodes and correctly retrieved episodes by pDM-ART for three cases of I
for ten continuous trials. The retrieval accuracy for EM-ART is also shown.

of I, a higher number of retrievals are required to increase
memory strengths beyond the semantic-like memory threshold
value ssem

t .
2) Retrieval With Partial Cues From the End: In this

retrieval test, a total of 10 trials were used with each trial
consisting of the same set of 46 cues, which, apart from
at least one instance of a complete cue, were partial cues
from the end with lengths up to one-fourth of the original
length. Fig. 7 shows the performance of pDM-ART in all three
cases of I. We see that the consolidation rate varies greatly
for the three cases. When I= 0.5, only 40% of episodes are
consolidated even as late as trial number 10. A lower value of I
sets low initial memory strengths. Also, the memory strength
associated with each episode decreases by an amount given
by δs every time that episode is not recalled. This means
that for a longer set of cues, the memory strength values will
be lower at the end of each trial than for a set of shorter
cues. We also see that the retrieval accuracy increases as the
number of consolidated episodes increases. The retrieval rate
for EM-ART remains the same in all the ten trials. It is because
EM-ART in [38] does not have a mechanism to cater for the
recurrent or significant experiences.

3) Retrieval With Partial Cues From the Center of Episodes:
Just like the last two experiments, we used 10 trials with
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Fig. 8. Testing with partial cues from the center of episodes. Percentage
of consolidated episodes and correctly retrieved episodes by pDM-ART for
three cases of I for ten continuous trials. The retrieval accuracy for EM-ART
is also shown.

36 cues in each, which, apart from one complete instance of
each episode, consists of partial cues from the center of those
episodes with lengths up to one-fourth of the original length.
The results for consolidation and retrieval for the three cases
of I can be seen in Fig. 8. As expected, we observe three
different consolidation patterns for each case of I with faster
consolidation for all episodes in the case of I being higher.
Following the trend as in previous tests, the retrieval rate also
increases whenever the percentage of consolidated episodes
increases.

D. Noisy Cues

The model is tested with two kinds of noisy cues. One type
of noise was generated by introducing an error in the events
attributes and the second was generated by introducing error
in the sequence of the events in one particular episode.

1) Retrieval With Noisy Cues in Terms of Event Representa-
tion: For testing the performance against noisy cues with the
first type of error, we used a set of 50 cues in each of the 10
trials. This set of cues consists of at least one instance of a
noise-free episode and the remaining are cues with an increase
of error from 10% to 40% in terms of event attributes. This
kind of noise was generated as shown in Algorithm 5.

The performances of pDM-ART and EM-ART are shown
in Fig. 9. We observe the same trend in I = 0.5, where the
consolidation rate is slower than for when I = 0.8. Also,
we note that for each case of I , the consolidation rate is much
faster for noisy cues in terms of event representation than for
partial cues from the end or the middle. This is because the
retrieval rates are lower for the latter in each trial and the
recall frequency of an episode has a direct effect on increasing
the memory strength, which in turn leads to consolidation.
As expected, the performance of EM-ART remains constant
along all trials.

2) Retrieval With Noisy Cues in Terms of Event Sequence:
For the second type of noise, a set of 90 cues was used in
each trial. The set consists of cues with at least one instance
of noise-free cue and the rest of the cues are scrambled cues in

Algorithm 5 Noise Generation in Terms of Event Represen-
tation
1: Error rate r ∈ [0, 100]
2: BEGIN
3: for each EPISODE in original data set do
4: for each EVENT in an episode do
5: for each attribute a in each event do
6: Generate a random number x between 1 to 100
7: if x ≤ r then
8: attribute ã = 1− a
9: end if

10: end for
11: end for
12: end for
13: END

Fig. 9. Testing with noisy cues in terms of event representation. Percentage
of consolidated episodes and correctly retrieved episodes by pDM-ART for
three cases of I for ten continuous trials. The retrieval accuracy for EM-ART
is also shown.

terms of the sequence of events in one particular episode. The
error introduced is in an increasing order from 10% to 80%.
Algorithm 6 illustrates how this type of error is generated.

In this experiment (Fig. 10), generally a higher percentage
of consolidation and retrieval was observed across all three
cases of I . A higher retrieval accuracy in the first trial leads
to 100% consolidation as early as in trial 1 except in the case
when I = 0.5. This is because the memory strength levels for
some episodes are not able to cross the threshold value ssem

t
even after being retrieved multiple times in trial 1 and also
because of the longer set of cues in each trial. Additionally,
in all three cases of I, we see that the performance remains
the same throughout the trials after trial 1. This is because
maximum consolidation is achieved as early as in the first
trial, and due to that, the best possible performance is also
achieved accordingly right after the first trial. Hence, we see
no improvement after the first trial in all three cases. The
performance of EM-ART is constant as expected.

E. Performance Test With Cues With All Types of Errors

After testing the model for five different types of cues
separately, we observed the consolidation and retrieval per-
formances of pDM-ART with all types of cues in a single
data set. The different types of cues were mixed to give a set
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Algorithm 6 Noise Generation in Terms of Event Sequence
1: Error rate r ∈ [0, 100]
2: BEGIN
3: for each EPISODE S in original data set do
4: index = random number from 1 to [S.length ∗ r/100]
5: while Stemp .length ≤ [S.length ∗ r/100] do
6: Stemp.ei = S.eindex+i

7: i ← i + 1
8: end while
9: Sshu f f le = permutate_randomly(Stemp)

10: for i = 0 to [S.length ∗ r/100] + 1 do
11: S.eindex+i = Sshu f f le.ei

12: end for
13: end for
14: END

Fig. 10. Testing with noisy cues in terms of event sequence. Percentage
of consolidated episodes and correctly retrieved episodes by pDM-ART for
three cases of I for ten continuous trials. The retrieval accuracy for EM-ART
is also shown.

of 226 cues for each of the ten trials. Results can be observed
for both EM-ART and pDM-ART in Fig. 11. In all three cases
of I, we again observe that the performance remains the same
throughout the trials after trial 1. The reasoning is the same
as for the previous case.

F. Effect of Randomness of Cues on the Consolidation
Pattern

The objective of this test was to observe the effect of
randomness in the order of the cues on the pattern of episode
consolidation. In the first five tests, the order of cues was in the
order of increasing error. In this experiment, we demonstrated
the effect on the consolidation pattern of episodes if the cues
were not ordered (from zero to maximum error rmax) but
were placed randomly. We repeated the test five times for
the set of cues used in Section VII-A2 randomly ordered.
Fig. 12 illustrates four different consolidation patterns that
were produced as a result of the randomness of cues.

G. Unique Episode of Importance

If a unique episode of significance is learned with the
maximum value for the importance parameter Imax = 1, then
it could be consolidated (sEr (t) ≥ ssem

t ) after one successful

Fig. 11. Performance test with cues with all types of errors. Percentage
of consolidated episodes and correctly retrieved episodes by pDM-ART for
three cases of I for ten continuous trials. The retrieval accuracy for EM-ART
is also shown.

Fig. 12. Illustration of four different patterns of episode consolidation
demonstrating the effect of the randomness of the cues. In the x-axis, the first
number is the trial number, while the fractional part is the cue number in
that trial.

recall. Once consolidated, it can be retrieved at higher levels
of errors in partial/noisy cue. On the other hand, if a unique
episode of insignificance is learned, e.g., at an average value
I = 0.5, then as seen by various results above, it will require
at least five successful retrievals from episodic memory before
it can be consolidated. Since it is a unique episode, there
is a high chance that it may be forgotten before having a
chance of five successive recalls to be consolidated. In effect,
this system of preference based episodic memory with online
consolidation process is able to distinguish between episodes
of importance and insignificance.

VIII. EXPERIMENTS ON MYBOT

We tested a simple scenario with Mybot, a robot developed
in the Robot Intelligence Technology (RIT) Laboratory at
KAIST. It makes use of Odroid XU board, Ubuntu 14.04 and
ROS. In this scenario, it was expected to act as a service
robot that was taught five tasks (episodes) including Arrange
the Red Circular Toy in Box A, Arrange the Red Square Toy
in Box F, Arrange the Red Rectangular Toy in Box C, Bring
Cola from Counter to Table and pour it in a Cup, and Bring
Coffee from Counter to Table and pour it in a Mug. The user
had no particular preference for any task except for the fourth
task. While the user did not mind that the other four tasks can
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Fig. 13. (a)–(d) Mybot performing three tasks of arranging RedCircularToy, RedSquareToy, and RedTriangularToy in BoxA, BoxF, and BoxC, respectively.

Fig. 14. (a)–(e) Mybot performing the task of bringing Cola from the counter to the table and pouring it in a cup.

be consolidated and hence learned better by Mybot based on
only the frequency of retrieval as the time goes by, the user
wanted Mybot to consolidate the fourth task faster, and hence
IE4 was set higher comparatively.

The experimental conditions were set similar to
Section VII-A3 except that the set of cues were different.
Importance I was set manually by the user for the events
considered significant by the user, while for all other events
I was assumed to be 0.6. In the first trial, all the tasks were
retrieved with three-quarter length retrieval cues for tasks
with longer sequences (fourth and fifth tasks) and half-length
retrieval cues for tasks with shorter sequences. However,
in the fourth trial, the fourth task was retrieved even with
half length of the retrieval cue, but the other tasks could still
only be retrieved by three-quarter length long retrieval cues
in the case of the fifth task and half-length cues for the other
tasks. This is because even though all the tasks had the same
frequency of retrieval, due to higher significance associated
by the user, the fourth task was consolidated earlier in the
fourth trial, while the remaining tasks were consolidated
later. Hence, after consolidation, due to the second route with
lower ρsem, a representation of that task in Fsem

3 facilitated
in the retrieval of the fourth task relatively easily even with
a cue of (1/2) length. Hence, pDM-ART allowed a service
robot to distinguish significant and recurrent tasks (episodes)
from other equally recurrent but less significant tasks.
Figs. 13 and 14 demonstrate the first three tasks and the
fourth task, respectively. The fifth task (similar to the fourth
task) is not shown due to space constraints. A clip from
the experiment is available at: http://rit.kaist.ac.kr/home/
pDM-ART.

IX. CONCLUSION

This paper proposed a user preference-based dual-memory
model, which, over a period of time, forms a semantic-
like memory component alongside an episodic component
based on: 1) a user-defined importance factor at the time of
encoding and 2) recall frequency. These consolidated episodes
then assist in retrieving the experiences learned by the model.

Taking advantage of the flexible design of the semantic-like
memory component, pDM-ART becomes increasingly robust
to erroneous cues with two routes for retrieval of experiences.
This dual-memory model promises to be an efficient memory
model for service robots in HRI, task intelligence, and other
cognition problems, which require a mechanism to distinguish
between significant and insignificant and recurrent and spo-
radic experiences, and to adapt learning based on an external
feedback.

It should be noted that the objective of this memory model
can be achieved by keeping a single episodic memory compo-
nent and instead introducing dynamic vigilance rates, which
are influenced by the importance parameter and the recall
frequency. However, we chose to reach the goal by dedicating
an entire new semantic-like memory component, which does
not consist of episodes learned by a single experience but only
those that are recurrent and significant to the user. As the
consolidated nodes are activated relatively easily by cues with
higher rates of error (but still have enough similarity to achieve
an average vigilance criterion; ρsem = 0.65 in our case),
over a period of time as the weights are updated (with a
lower learning rate βsem and when learning is allowed during
retrieval), the isolated events fade from the episodes stored
in Fsem

3 and only the frequent events remain in the episode.
Thus, as the episode is experienced repeatedly, a gist of
the more frequent events in that episode remains in Fsem

3 .
These frequent events can then represent a concept of doing
a particular task.

The semantic-like memory described in this paper is limited
and differs from the formal definition of semantic memory
since it is only constructed through the consolidation of expe-
riences (episodes in episodic memory) to formulate conceptual
representations for a particular task and does not currently
include symbol grounding or any associations between symbol
grounding and the high-level concepts. Also, this semantic-like
memory is related to episodic memory used in this paper as
the consolidated episodes in semantic-like memory still very
much represent a spatiotemporal sequence, which is, however,
a sequence that is prone to slow degradation over time to
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represent only the most frequent of the events in a sequence.
This along with its ability to retrieve relatively easily due to
the low vigilance criterion in Fsem

3 and to be more stable
comparatively due to the low learning rate in Fsem

3 is what
makes it relatable to high-level concepts in semantic memory.
For future work, we intend to work on the limitations of
the semantic-like memory by tackling the symbol grounding
problem and integrating a map of semantically related objects
and behaviors with Fsem

3 . This would truly make use of the
semantic-like memory component proposed in this paper by
forming associations between high-level concepts in Fsem

3
and among low-level grounded representations and low-level
grounded representations, expanding the general knowledge of
the system about the world.
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