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ABSTRACT 
In this paper, we propose and compare personalized models for Pro-
ductive Engagement (PE) recognition. PE is defned as the level of 
engagement that maximizes learning. Previously, in the context of 
robot-mediated collaborative learning, a framework of productive 
engagement was developed by utilizing multimodal data of 32 dyads 
and learning profles, namely, Expressive Explorers (EE), Calm Tin-
kerers (CT), and Silent Wanderers (SW) were identifed which cate-
gorize learners according to their learning gain. Within the same 
framework, a PE score was constructed in a non-supervised man-
ner for real-time evaluation. Here, we use these profles and the 
PE score within an AutoML deep learning framework to person-
alize PE models. We investigate two approaches for this purpose: 
(1) Single-task Deep Neural Architecture Search (ST-NAS), and (2) 
Multitask NAS (MT-NAS). In the former approach, personalized 
models for each learner profle are learned from multimodal fea-
tures and compared to non-personalized models. In the MT-NAS 
approach, we investigate whether jointly classifying the learners’ 
profles with the engagement score through multi-task learning 
would serve as an implicit personalization of PE. Moreover, we com-
pare the predictive power of two types of features: incremental and 
non-incremental features. Non-incremental features correspond 
to features computed from the participant’s behaviours in fxed 
time windows. Incremental features are computed by accounting 
to the behaviour from the beginning of the learning activity till 
the time window where productive engagement is observed. Our 
experimental results show that (1) personalized models improve the 
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recognition performance with respect to non-personalized mod-
els when training models for the gainer vs. non-gainer groups, 
(2) multitask NAS (implicit personalization) also outperforms non-
personalized models, (3) the speech modality has high contribution 
towards prediction, and (4) non-incremental features outperform 
the incremental ones overall. 
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1 INTRODUCTION 
With the increase in technological advancements, commercial avail-
ability of several robots, and the readiness to integrate technology 
in various felds including education, we can indeed witness a rise 
of social robotics in learning settings [15]. In what way can these 
robots be benefcial for advancing the pedagogical goal is still an 
open question. 

One line of research that stands out in educational Human Robot 
Interaction (HRI) and Intelligent Tutoring Systems (ITS) is using 
robots to personalize learning strategies to individual needs in or-
der to cater for the learning goal as not everyone learns in the 
same way [6, 18, 31]. Further, another line of research focuses more 
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on equipping robots with the ability to infer whether the learn-
ers are engaged in the learning activity at hand. We believe this 
goes hand in hand with personalization as the better the robot is 
aware about the students individual characteristics, the better it can 
detect the engagement state of the learners, which itself can be man-
ifested in several ways. Similarly, the better this engagement state 
is inferred, the better personalized learning interactions the robot 
can ofer. Existing approaches in engagement recognition employ 
non-verbal behaviours as predictors of engagement [38]. The most 
recent approaches also make use of deep learning architectures to 
train engagement models which has proven to outperform tradi-
tional machine learning models [3, 36]. The current approaches 
consider one-fts-all paradigms which consist of training static mod-
els without taking into consideration specifc characteristics of the 
individuals present in the dataset. Such models are simple to train, 
however, their accuracy in predicting the users engagement state 
is compromised. Moreover, previous research in behavioural and 
social sciences have revealed diferences among diferent individu-
als in conveying their engagement state. Zacherman and Foubert 
[44] and Conner [5] highlight the need for customized models, and 
the potential of such models in ofering more accurate decisions. 

The concept of Productive Engagement (PE) was introduced by 
Nasir et al. [23] with the aim to conceptualize engagement in educa-
tional settings. It is defned as the level of engagement that maximizes 
learning, or in other words, engagement that is conducive to learning 
where the authors present it as a “hidden hypothesis that links mul-
timodal behaviors of the users to learning and performance”. In con-
trast to existing work in engagement conceptualization, Nasir et al. 
[23] argue that over-engagement, similar to under-engagement, 
can lead to decreased learning outcomes. The proposed concept 
was validated in the context of a robot-mediated human-human 
collaborative learning activity implemented within the JUSThink 
platform by Nasir et al. [28], where the employed approach surfaces 
multiple ways (precisely sets of multimodal behaviors given by log, 
audio, and video data) in which diferent individuals learn [25]. 
Through an in-depth quantitative and qualitative analysis, three 
learner profles are identifed, namely, Expressive Explorers, Calm 
Tinkerers, and Silent Wanderers where the frst two profles corre-
spond to those who have high learning gain, while the last one 
corresponds to those who exhibit a low learning gain [27]. The 
idea of conceptualizing engagement with a focus on the learning 
aspect in educational settings and the aforementioned outcomes in-
deed show potential in advancing the literature in educational HRI 
and multimodal learning analytics. Furthermore, we believe that 
personalization would further enhance learner models given that 
personalization techniques catering for the unique requirements of 
learners have been found to be benefcial as mentioned previously. 

Until recently, the Human-Machine Interaction (HMI) commu-
nity has focused on one-fts-all approaches. Few approaches have 
attempted to train personalized models for afective and personality 
computing tasks such as mood [42], engagement [35], and emo-
tion recognition [40], or personality traits prediction [39]. Among 
the employed machine learning methods for learning personal-
ized models for HMI tasks, multitask learning was used to learn 
individual-specifc models for mood and stress prediction. Through 
weight sharing, multitask learning has the ability to learn individ-
ual user models while leveraging data across the population. In 

a recent work, Salam et al. [39] proposed personalized models of 
big fve personality traits via Efcient Neural Architecture Search 
[14] and it was shown to outperform state-of-the-art approaches 
in personality computing. 

In this paper, we then seek to combine the positive aspects of 
personalization and adaptation with a deeper understanding of what 
productively engaged learners look like. We extend the approach 
proposed by Salam et al. [39] to the task of productive engage-
ment prediction. Hence, we propose to learn personalized deep 
architectures for diferent learner profles identifed by Nasir et al. 
[27] using single-task and multi-task Efcient Neural Architecture 
Search (ENAS). Via multitask ENAS, we investigate whether simul-
taneously predicting productive engagement scores and classifying 
learners profles can efciently ofer an implicit personalization of 
productive engagement models. 

Previous research by Oertel et al. [29] has shown that engage-
ment is a dynamic process that varies in time via a dynamic evo-
lution mechanism between (two or more) interaction parties. Ex-
isting approaches in engagement recognition have focused on us-
ing user behavioural features extracted in fxed time windows or 
time-frames and using these features to recognize the engagement 
state in the time window in question. However, the user’s prior be-
haviours can be indicative of the their current state of mind [17, 32]. 
The dataset used by Nasir et al. [26] includes a set of incremen-
tal features computed from the beginning of the learning activity 
till the time window where productive engagement is observed 
rather than focusing on the behaviours within the time window in 
question. In this work, we conduct a comparative study between 
incremental and non-incremental features. Such analysis allows to 
investigate the efect of past behaviours on the predictive power of 
engagement recognition models. 

In summary, the main contributions of this work are: 

(1) We build personalized models for automatic prediction of 
productive engagement in robot-mediated collaborative gam-
ifed learning. To this end, we use a Neural Architecture 
Search framework for designing and training separate mod-
els per learner profle. We evaluate our approach with a rich 
open source data set of multimodal features developed by 
Nasir et al. [26] including log data, gaze, afect, and speech, 
both singly as well as their early fusion. 

(2) We investigate multitask learning for implicitly accounting 
for diferent learner profles in the model. 

(3) We compare incremental and non-incremental features serv-
ing to investigate whether accounting for multimodal be-
haviour from the beginning of the learning activity until the 
time window where productive engagement is observed has 
an efect on the current learner’s productive engagement 
state. 

The rest of the paper is organized as follows: Section 2 reviews 
related work in learner’s mental states analysis in education set-
tings, including engagement recognition, and personalized models 
in Human-Machine Interaction. Section 3 introduces the productive 
engagement dataset used in our framework. Section 4 presents the 
proposed approach. Section 5 reports the performance evaluation 
of the proposed approach. Finally, section 6 concludes the paper. 
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2 RELATED WORK 
In this section, we review relevant work in learner’s mental states 
analysis in education settings, including engagement recognition, 
and personalized models in Human-Machine Interaction (HMI). 

2.1 Learner’s Mental States Analysis in 
Education Settings 

Personalizing an intelligent system’s actions and decisions to indi-
vidual diferences in education settings is compulsory for achieving 
a better learning performance and a higher level of learner’s satis-
faction. The frst step to build personalization mechanisms is the 
understanding of human observable behaviours. To this efect, there 
have been some works by Alyuz et al. [2], Gupta et al. [12], Kamath 
et al. [16], Mustafa et al. [22], Pham and Wang [30], which focused 
on automatically detecting learner’s mental states associated with 
learning such as satisfaction, confusion, engagement or boredom. 

Diferent studies have approached to the problem within the 
context of in-class teaching. For instance, Alyuz et al. [2] collected 
data from 20 students (14-15 years) who partook a math course 
over the course of several months. Each student worked indepen-
dently in the class using a laptop, and was recorded using a 3D 
camera. The recordings were annotated by experts in educational 
psychology with respect to the afective states of excited, calm, 
bored, confused and unknown. From the recordings, they extracted 
two types of features, namely, appearance features and contextual 
features. While appearance features were composed of face loca-
tion, head pose, facial gestures and seven basic facial emotions (e.g., 
happiness, sadness, etc.), contextual features were extracted from 
(i) user profles including age, gender; (ii) session information in-
cluding video duration, time within a session; and (iii) performance 
features including number of trials until success, number of used 
hints, grade. 

A line of work by Gupta et al. [12], Kamath et al. [16], Mustafa 
et al. [22], Pham and Wang [30] has focused on predicting learner’s 
mental states during MOOCs. Dhall et al. [8] introduced a sub-
challenge for predicting learner’s engagement level, from disen-
gaged to highly engaged, in large-scale real-life video recordings 
in the 2018 Emotion Recognition in the Wild (EmotiW) challenge. 
Among these methods, Pham and Wang [30] modelled human be-
haviours from physiological signals, which is out of scope of this 
work. Kamath et al. [16] recorded 23 students using a web cam-
era mounted on a computer screen while viewing a video lecture 
for a duration of 10 minutes. Annotations regarding student’s en-
gagement states, namely, not engaged, nominally engaged, and 
very engaged, were collected from external observers recruited 
via a crowdsourcing service. For recognising engagement states, 
frst Histogram of Gradients (HoGs) were extracted from the face 
region, and then fed into the instance-weighted Support Vector Ma-
chines together with Multiple Kernel Learning framework where 
the importance of a particular sample in the training data was 
obtained from the crowdsourced annotations. In their following 
work [12], the previously collected dataset was enriched by incor-
porating video recordings from up to 119 students and additional 
annotations such as boredom, confusion, and frustration, again 
collected via crowdsourcing. The enlarged dataset, called DAiSEE 
dataset, was used to train/fne-tune widely used CNN models for 

image classifcation (e.g., InceptionNet V3) and video classifcation 
(e.g., C3D, LRCN - Long-term Recurrent Convolutional Networks). 
Mustafa et al. [22] took an approach similar to what was followed 
by Gupta et al. [12] for data collection and annotation, where a total 
of 75 participants were recorded via a video-conferencing setup, 
and a team of 5 annotators provided ratings with respect to four 
engagement levels ranging from completely disengaged to highly 
engaged. They proposed to use a Deep Multi-Instance Learning 
(DMIL) framework where the task of engagement prediction was 
formalised as a regression problem from weakly labeled data. The 
DMIL was trained using facial features that were Local Binary Pat-
terns extracted from three orthogonal planes, and outperformed 
classical regression methods such Support Vector Regression for 
engagement intensity estimation. 

In HRI, some studies also formalized the task of engagement pre-
diction as a regression problem. For instance, Del Duchetto et al. [7] 
proposed a novel regression model (utilizing CNN and LSTM net-
works) to compute a single scalar engagement from video streams, 
obtained from the point of view of an interacting robot. Similarly 
in the work of Rossi et al. [34], diferent feature selection and re-
gression models were compared to predict a user’s engagement 
state along three dimensions: afective, cognitive and behavioural. 
The study found that characterising each dimension separately in 
terms of features and regression leads to better results compared 
to a model directly combining the three dimensions. 

One line of research that stands out in educational Human Robot 
Interaction (HRI) and Intelligent Tutoring Systems (ITS) is using 
robots to personalize learning strategies to individual needs in order 
to cater for the learning goal as not everyone learns in the same 
way [6]. For example, Leyzberg et al. [18] employed a setting where 
participants try to solve grid-based puzzles with a personalized or 
a non-personalized tutor. When comparing the time it took for the 
students to solve the puzzles, the authors observed improvement 
in the post-test of those students who dealt with a personalized 
learning interaction. Then, Ramachandran et al. [31] showed that 
when a robot tutor provides breaks to students according to their 
performance gain or performance drop rather than at fxed times, 
it has a positive efect on the learning gains of the students. 

2.2 Personalized Models in Human-Machine 
Interaction 

Until recently, the Human-Machine Interaction (HMI) community 
has focused on one-fts-all approaches. Few approaches have at-
tempted to train personalized models for afective and personality 
computing tasks such as pain, mood, and emotion recognition, or 
personality traits prediction. Personalized models can be trained to 
take into account characteristic and behavioural diferences among 
(1) individual users, or a (2) group of users. Diferent character-
istics include the users age, gender, culture, or even personality. 
Behavioural diferences entail clustering behavioral patterns based 
on correlations of the users behavioural cues and the target task. 

Personalizing models for individual users involves training mod-
els on each user’s data. Such personalization allows to tailor the 
models towards the specifc individual assuming that diferent in-
dividuals behave diferently and have unique ways in conveying 
their state. Multitask learning was used in the literature for this 
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purpose due to its ability to learn individual user models while 
leveraging data across the population through weight sharing. Ex-
ample approaches that used individual-level multitask learning for 
personalization include the work of Jaques et al. [13], Taylor et al. 
[42] who used multitask learning to train individual models for 
mood, stress, and health prediction. Another work that employed 
multitask learning with Gaussian process regression models to 
personalize self-reported pain prediction is by Liu et al. [20]. 

Within the area of facial expression recognition, personalization 
is performed to take into account facial appearance diferences 
among individuals. While facial expressions are considered uni-
versal, the diferences in facial shapes and textures afect the ac-
curacy of expression recognition models. Consequently, training 
individual-level adaptive models allows a better modeling of facial 
expressions variability. An example approach for individual-level 
personalized expression recognition include supervised domain 
adaption with mixture of experts [10]. Another approach by Sha-
habinejad et al. [40] proposed a CNN architecture to learn and 
propagate individual deep facial features followed by a spatial at-
tention map, which is then provided as an input to another CNN. 
For the task of personality computing, Shao et al. [41] proposed to 
learn individual-specifc graph representations for personality traits 
recognition in a human-human interaction scenario. Individual-
specifc CNN architecture is learned from the conversational part-
ner’s (speaker) non-verbal cues to predict the target individual’s 
facial reactions (listener). The learned individual-specifc CNN’s 
parameters and layer weights are then used to create a person-
specifc graph representation which is then provided as an input to 
a residual gated graph convolution neural network for personality 
prediction. 

In the context of educative settings, few approaches for personal-
ization were proposed. The study by Alyuz et al. [2] demonstrated 
that learning student-specifc personalized models for learners’ con-
fusion and satisfaction (engagement emotional states) classifcation 
outperformed one-fts-all generic. Two diferent personalization 
approaches were compared in this work: the adapted approach aug-
ments the one-fts-all model’s training data with student-specifc 
data; the personal approach uses person-specifc data to train the 
model. The personal approach trained with the contextual features 
outperformed the other models overall. In another work, Alyuz 
et al. [1] proposed a semi-supervised model for personalizing en-
gagement emotional states (satisfed, bored, confused). Students 
were instructed to provide their engagement emotional states at 
randomised times during the course of the learning task. 

Personalizing models with respect to diferences among a group 
of users entails dividing users into diferent profles characterizing 
each group, and then training models that make use of the users’ 
profle information. Such information can be used at the data-level 
or the model-level. At the data-level, personalized models can be 
trained by creating profle-specifc datasets which are used to train 
the models. At the model-level, the users profles can be used within 
the models learning process. Profle-wise personalization was ex-
plored in the literature in few HMI contexts for a number of tasks. 
For instance, in a multi-party HRI context, Salam et al. [37] used 
users personality scores as features to predict individual and group 
engagement with a robot. In an HRI autism therapy framework, 

child-specifc deep learning models of valence, arousal, and engage-
ment were trained [35]. Culture and gender profling information 
were used within specifc layers of the deep architecture to nest the 
children based on these profles. This was followed by individual 
network layers for each child. In another work by Rudovic et al. 
[36], a deep learning architecture, called CultureNet, was intro-
duced, which used culture data to tailor the model towards each 
culture and child. 

2.2.1 Neural Architecture Search. Neural architecture search (NAS) 
is a technique of automated machine learning that aims to auto-
mate the design of artifcial neural networks (ANN) architectures, 
which were shown to be on par or outperform manually-designed 
architectures [9, 33]. NAS mainly works by evaluating a large num-
ber of architectures across a search space (defning the ANN type) 
using a search strategy (approach used for the search space ex-
ploration) and selecting the optimal architecture for a certain task 
via a performance estimation strategy. Among the existing search 
algorithms we can fnd NASNet [11], Progressive NAS (PNAS) [19], 
and Efcient NAS (ENAS) [14]. NAS has been applied in the lit-
erature for training personalized models in various domains of 
application. These include personalized human pose estimation 
[43], efcient object recognition [4], and heart rate estimation from 
faces [21], among others. In a recent work, Salam et al. [39] pro-
posed to learn gender-wise and age-wise personalized models of 
big fve personality traits. ENAS was employed to automatically 
learn deep learning architectures for diferent user profles from 
multimodal behavioural features. This work extends the approach 
of Salam et al. [39] to the task of productive engagement prediction 
based on diferent learners’ profles. Additionally, multitask ENAS 
is also proposed for implicitly personalizing productive engage-
ment models. Implicit personalization is investigated by jointly 
classifying learners’ profles and predicting productive engagement 
scores. 

3 PE-HRI-TEMPORAL DATASET 
We use the open source PE-HRI-temporal dataset developed by 
Nasir et al. [26] generated from a study done with the JUSThink 
platform [28] where 68 children (in teams of two i.e., 34 teams) 
aged 9 to 12 years interact with a collaborative learning platform 
consisting of two screens and a QTrobot acting as a guide and a 
mediator. The learning aim of this activity was to impart the knowl-
edge of the minimum spanning tree problem. This was presented 
in a scenario based map of Switzerland. The dataset comprises of 
28 multi-modal behaviours which were extracted from log, video 
(afect and gaze), and audio (speech) data (as seen in Section 4.2) 
where the average duration of the interaction data per team is 20 
minutes that is organized in windows of 10 seconds. Hence, this 
gives a total of 5048 windows. In addition to this, it also contains 
the performance metrics and the learning gains of the teams. We 
must note here that while the dataset provides 5048 data points 
with 34 teams; the learner profles (discussed later in Section 4.1) 
are only available for 32 teams [27]; hence, the data used in this 
work consists of 4676 data points from the dataset. 

Productive Engagement Scores – For the Productive Engage-
ment Score, we make use of the metric proposed by Nasir et al. [24] 
to characterize productive engagement in real-time. Briefy, the 
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Figure 1: Overview of the proposed approach: Learners are clustered into three profles based on their multimodal behavioural 
features [26] and learning gain: Expressive Explorers (Type 1 gainers), Calm Tinkerers (Type 2 gainers), and Silent Wanderers 
(non-gainers) [27]. Behavioural features and learners’ profles are then fed as inputs to the Efcient Neural Architecture Search 
(ENAS) framework to automatically search for the optimal architecture for each profle and for each modality to predict 
productive engagement. 

score is generated using a linear combination of speech behaviors 
that have been found most discriminating between those who learn 
and those who do not, for example, the amount of interjections 
or overlap in speech of the two team members or the amount of 
long pauses that the teams made in their speech activity. For more 
details, see the work of Nasir et al. [24]. This score is what the 
regression models, in this paper, will try to predict. 

4 PERSONALIZED PRODUCTIVE 
ENGAGEMENT PREDICTION 

We propose to learn personalized models of productive engage-
ment of teams of children (a team is composed of two members) 
involved in a robot-mediated learning task. Our approach can be 
decomposed into three steps: (1) Learners’ profling, (2) Features ex-
traction, and (3) Efcient Neural Architecture Search (ENAS). ENAS 
is investigated for this task within two frameworks: (1) single-task 
profle-level personalization, and (2) multitask learning personal-
ization. In this work, we rely on the learners’ profles and features 
extracted by Nasir et al. [27] and discussed below. The workfow of 
the proposed approach is depicted in Figure 1. 

4.1 Learners’ Profling 
The frst step of the proposed approach is learners’ profling. Nasir 
et al. [27] applied a clustering approach to multimodal learners 
behaviours and their associated learning gain metrics followed by 
comparing the two sets of clusters obtained in terms of the teams 
they consist of; thus, allowing for the identifcation of three types 
of learner profles: Expressive Explorers (EE), Calm Tinkerers (CT) 
and Silent Wanderers (SW). While EE and CT are gainers (high 
learning outcomes), SW falls in the non-gainer category (low learn-
ing outcomes). These profles are used in this work to personalize 

the productive engagement models. The following is a brief descrip-
tion of the profles. For a detailed description, the reader is referred 
to the work of Nasir et al. [27]. 

(1) Expressive Explorers belong to the category of high gain-
ers. Teams belonging to this profle demonstrate efective 
communication, high refection periods and a pronounced 
exploratory approach when involved in a learning task. They 
tend to exhibit high expressiveness of their emotional state 
(higher arousal and negative valence). 

(2) Calm Tinkerers also belong to the category of high gain-
ers. Teams belonging to this profle are similar to the EE 
profle in terms of communication, refection, and explo-
ration. However, they exhibit a relatively calm emotional 
state characterized by lower arousal and negative valence. 

(3) Silent Wanderers belong to the non-gainers category. This 
profle is characterized by poorer communication, lower 
refection periods, and high frustration states. 

4.2 Features 
In this work, a set of multimodal behaviour features are explored 
for training personalized productive engagement models. These 
features are provided with the publicly available dataset used in 
this work (please refer to Section 3). They include: 

(1) Log Features: These features represent behaviours describ-
ing the team’s interaction with the learning activity. These 
include features characterising refection (e.g., the team mem-
bers opened the history of their submissions, and refected 
on them), usability confusion (e.g., the team members opened 
the instructions manual), and exploration (e.g., team’s ac-
tions to solve the learning activity problem on the learning 
platform). 
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(2) Afect Features: These features represent the team mem-
bers’ displayed afective state along the valence and arousal 
dimensions. 

(3) Gaze Features: In order to gauge the attention of the learn-
ers in the collaborative settings, gaze features represent the 
team members gaze behaviours (e.g. looking at the partner 
or the robot). 

(4) Speech Features: These features represent the audio-related 
team members behaviours such as silence, pauses and over-
laps. 

(5) Time Feature: The time window of which the features are 
computed for a given team. This is measured with respect to 
the total duration of the task. The time information enables 
the investigation of temporal dynamics of engagement, and 
whether including the point in time (i.e., beginning, mid-
dle, or end of learning activity) of which the multimodal 
behaviours are computed contribute to the predictive power 
of the productive engagement models. 

In the dataset, two types of features were computed: 
(1) Non-Incremental Features: The average value of a feature 

in that particular time window. 
(2) Incremental Features: The average value of a feature from 

the beginning of the learning activity until that particular 
time window. 

Incremental features serve to investigate whether accounting for 
the team’s behaviour from the beginning of the learning activity till 
the time window where productive engagement is observed have 
an efect on the current productive engagement state. 

4.3 Personalized Neural Architecture Search 
Strategy 

In order to personalize productive engagement models, we propose 
two frameworks: (1) Profle-level personalization, and (2) Multi-task 
learning personalization. These frameworks are described below: 

Profle-level Personalization: Profle-level personalization en-
tails explicitly using the learners’ profles to create diferent datasets 
for each profle, and using Efcient Neural Architecture Search 
(ENAS) to learn adaptive architectures per profle. The learner pro-
fles are used to separate the learners into diferent groups. An 
adaptive neural architecture is then automatically designed and 
trained for each profle using the extracted features (log, afect, gaze, 
speech, time) as input to ENAS. Proposed by Jin et al. [14], ENAS 
employs a search space defned by network morphism operations 
such as new layers insertion, existing layers expansion, or skip 
connections addition. Bayesian optimization is used to guide an 
Efcient exploration of the search space. We use Auto-Keras, an 
open-source AutoML implementation of ENAS, to implement and 
train our models which was developed by Jin et al. [14]. 

Implementation Details – A default architecture composed of two 
dense layers with 32 units was used. An 85 − 15% split strategy was 
used to divide the training dataset into training and validation sets. 
Mean squared error is used as loss function, and each network is 
trained with ADAM optimiser. The number of epochs was set to 100. 
The number of trials was set to 10. A trial is a parameter of Neural 
Architecture Search. It corresponds to the maximum number of 
diferent models to try. 

Multitask ENAS

Learner’s Profile 
Classification

Productive Engagement 
Regression

Affect Features

Gaze Features

Log Features

Time Feature

Speech Features

Figure 2: Multi-task learning personalization framework. 

Multi-task Learning Personalization: Multi-task learning 
personalization entails using multi-task ENAS to learn an adaptive 
model for jointly predicting productive engagement and classifying 
learner profles, thus implicitly using the learner profles informa-
tion to drive productive engagement model via weight sharing. 
Here, we used the AutoModel module of Auto-Keras. In the multi-
task architecture, the output is composed of a regression head for 
predicting the PE score, and a classifcation head for classifying the 
three learner profles. The best models were searched by employ-
ing network morphism operations such as inserting new layers, 
expanding existing layers, or adding skip connections. Figure 2 
depicts the multi-task ENAS PE personalization framework. 

Implementation Details – Similar to the single-task personaliza-
tion framework, an 85 − 15% split strategy was used to divide the 
training dataset into training and validation sets. For classifcation, 
categorical cross entropy was used as the loss function and for the 
regression task, mean squared error was used as the loss function. 
The number of epochs was set to 100. The number of trials was set 
to 10. 

5 EXPERIMENTS AND RESULTS 
In this section, we describe the used evaluation metrics and present 
the evaluation results of the proposed approach, as compared to a 
non-personalised approach (i.e., baseline). Please note the test data 
for personalised and non-personalised models are the same. 

5.1 Evaluation Metrics 
The proposed productive engagement regression models are as-
sessed using Pearson Correlation Coefcient (PCC) and Root Mean 
Square Error (RMSE). Let ���� and ���� be the true and predicted 
productive engagement scores, respectively, ���� (���� , ���� ) is 
given by: 

vut
1 �∑

���� (���� , ���� ) = (���� (�) − ���� (�))2 (1)
� 

�=1 

where � is the number of samples in the test set. 
In addition to PCC and RMSE, accuracy and Cross-Entropy loss 

(CE) are used to assess the classifcation task in the multi-task frame-
work. Cross-Entropy loss (log loss) is a measure of the model’s 
classifcation performance based on the output probability. CE in-
creases with the divergence of the predicted probability from the 
true class label. The CE loss is computed by computing a separate 
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Table 1: Performance evaluation of personalized (P) and non-personalized (NP) models using incremental (INC) and non-
incremental (NON INC) features. The results are reported in terms of RMSE and PCC as follows: RMSE (PCC∗). (∗) corresponds 
to statistically signifcant results (p-value ≤ 0.05). Gainers (G); Non-Gainers (NG). Bold: best performance among the features 
(vertically); Underline: best performance among the personalized and non-personalized models using the best performing 
features. 

. 

EE-SW (G vs. NG) 

CT-SW (G vs. NG) 

EE-CT (G vs. G) 

EE-CT-SW 

Features 

All 
Log 
Gaze 
Afect 
Speech 

All 
Log 
Gaze 
Afect 
Speech 

All 
Log 
Gaze 
Afect 
Speech 

All 
Log 
Gaze 
Afect 
Speech 

INC 
P NP 

0.041 (0.264*) 0.05 (0.066*) 
0.042 (0.336*) 0.042 (-0.151*) 
0.047 (0.099*) 0.049 (0.148*) 
0.05 (0.283*) 0.045 (-0.033) 
0.031 (0.363*) 0.038 (0.297*) 

0.079 (0.248*) 0.139 (0.181*) 
0.035 (0.315*) 0.046 (0.012) 
0.055 (0.239*) 0.055 (-0.074*) 
0.06 (0.319*) 0.041 (-0.064*) 
0.032 (0.303*) 0.038 (-0.171*) 

0.069 (0.063*) 0.039 (0.284*) 
0.043 (0.055*) 0.04 (0.113* ) 
0.06 (-0.040* ) 0.044 (0.039*) 
0.05 (0.027) 0.045 (-0.056* ) 
0.035 (0.192*) 0.031 (0.139*) 

0.062 (0.217*) 0.039 (0.194*) 
0.041 (0.256* ) 0.057 (-0.090*) 
0.054 (0.115*) 0.059 (-0.004) 
0.044 (0.060* ) 0.042 (0.079* ) 
0.033 (0.306*) 0.033 (0.352*) 

NON INC 
P NP 

0.03 (0.408*) 0.041 (0.254*) 
0.03 (0.426*) 0.038 (0.028) 
0.03 (0.402*) 0.04 (0.026) 
0.029 (0.410*) 0.041 (0.149*) 
0.025 (0.500*) 0.037 (0.448*) 

0.038 (0.382*) 0.051 (0.185*) 
0.033 (0.397*) 0.043 (-0.008) 
0.031 (0.373*) 0.043 (-0.008) 
0.033 (0.389*) 0.042 (0.194* ) 
0.031 (0.494*) 0.037 (0.377*) 

0.037 (0.162* ) 0.03 (0.075* ) 
0.035 (0.101*) 0.036 (0.144*) 
0.034 (0.013) 0.035 (-0.086*) 
0.035 (0.067*) 0.034 (-0.043*) 
0.032 (0.323*) 0.029 (0.413*) 

0.035 (0.344*) 0.037 (0.217*) 
0.033 (0.355*) 0.052 (0.049*) 
0.032 (0.319*) 0.04 (0.092*) 
0.032 (0.342*) 0.039 (0.054*) 
0.029 (0.458*) 0.029 (0.400*) 

loss for each class label per observation and summing the result. ∑� �
�� = − ��,� log ��,� (2) 

�=1 

where � is the number of classes (three classes in our case, namely, 
CC, SW, and EE), log is the natural log, � is a binary indicator 
(0/1) of whether class label � is the correct classifcation label for 
observation � , and � is the predicted probability that observation � 
is of class � . 

5.2 Performance Evaluation 
We evaluate the proposed single-task and multi-task personalization 
frameworks using a leave-one-team-out strategy. 

5.2.1 Profile-level Personalization. Table 1 presents the comparison 
of the proposed single-task personalized productive engagement 
approach to non-personalized (one-fts-all) approach for diferent 
feature modalities individually (Log, Gaze, Afect, Speech) as well 
as the early fusion of these modalities. For each of these experi-
ments, we compare the performance using incremental and non-
incremental features. The one-fts-all models are learned using the 
combined data of the diferent learners profles as input to ENAS. 
The personalized models are learned using each learner profle data 
separately as input to ENAS. Diferent personalized and one-fts-all 

models are trained and compared by (1) taking all the three profles 
into account, and (2) eliminating one of the profles from the data. 
This resulted in four types of experiments: 

(1) EE-SW: The Calm Tinkerers profle is excluded from the 
data used to learn the models. This constitutes models that 
consider learner profles of high learning gain versus low 
learning gain. 

(2) EE-CT: The Silent Wanderers profle is excluded from the 
data used to learn the models. This constitutes models that 
consider two types of learner profles exhibiting high learn-
ing gain, with diferences in the behavioural manifestation 
of such gain. 

(3) CT-SW: The Expressive Explorers profle is excluded from 
the data used to learn the models. This constitutes models 
that consider learner profles of high learning gain versus 
low learning gain. 

(4) EE-CT-SW: All the learners profles data are used to learn 
the models. 

From the table, we can notice that when the models account 
for diferences among gainers and non-gainers learning profles, 
personalized models outperform non-personalized models using 
both the incremental and the non-incremental features, and for all 
the unimodal and multimodal features. With the EE-SW profles, 
the models trained on the speech modality outperform the other 
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modalities and the fusion of all modalities (PCC = 0.363 [P, Speech] 
vs. 0.297 [NP, Speech] with the incremental speech features; PCC 
= 0.5 [P, Speech] vs. 0.448 [NP, Speech] with the non-incremental 
speech features). With the CT-SW profles, the afect modality out-
performs the rest using the incremental features (PCC = 0.319 [P, 
Afect] vs. 0.181 [NP, All]), while the speech modality outperforms 
the rest with the non-incremental features (PCC = 0.494 [P, Speech] 
vs. 0.377 [NP, Speech]). 

When the models account for diferences among the gainers pro-
fles (EE-CT), the non-personalized models perform better than the 
personalized ones for both the incremental and the non-incremental 
features. Except for the non-personalized model trained on incre-
mental features where the multimodal model performs the best in 
the two-by-two gainers profle, the speech features perform the 
best for all the other models (PCC = 0.192 [P, Speech] vs. PCC = 
0.284 [NP, All] with the incremental speech features; PCC = 0.323 
[P, Speech] vs. PCC = 0.413 [NP, Speech] with the non-incremental 
speech features). 

When the models account for diferences among the three learner 
profles, personalized models outperform non-personalized models 
using the non-incremental features for all the unimodal and mul-
timodal features. The speech modality performs the best (PCC = 
0.458 [P, Speech] vs. 0.400 [NP, Speech]). In the case of incremental 
features, personalized models perform better except for the afect 
and speech modalities. The best performing modality is again the 
speech (PCC = 0.352 [NP, Speech] vs. 0.306 [P, Speech]). 

Overall, we can observe that non-incremental features perform 
better than incremental ones. This could be due to the nature of 
the incremental features: as the time evolves, the average of each 
feature at time t becomes very similar to the average at t-1; hence, 
giving us almost identical data points associated with unique PE 
score values. This similarity between the data points can then lead 
to more errors in prediction. It is also observed that the speech 
modality outperforms the other modalities. This is not surprising 
as speech modality was also found to be most discriminant modality 
between gainers and non-gainers by Nasir et al. [27]. Additionally, 
the PE score is generated with speech based features (see [24] for 
details), albeit these speech features not included in our feature set 
here, that may explain the results we observe with speech modality. 
On taking a closer look into the results, we can conclude that 
models trained on data of gainers vs. non-gainers beneft from 
personalization while models trained on data of type 1 gainers 
vs. type 2 gainers show an opposite trend. In the case of models 
trained on data including all profles, personalization provides a 
better outcome when compared to non-personalized analysis on 
average. 

In addition to the overall model evaluation presented in Table 
1, we report the results of each personalized learner profle-wise 
model on the corresponding profle, i.e., the results of training on 
the data corresponding to a single learner profle and predicting 
the engagement score of the teams belonging to the learner profle 
in question. These profle-wise results are reported in Table 2. The 
main aim is to further examine the performance of the personalized 
models on the diferent profles. This also allows us to compare the 
performance of the incremental and non-incremental for predicting 
the productive engagement scores for each profle. In all the three 
profles, the speech modality performs the best (EE: PCC = 0.309 

                                

Table 2: Performance evaluation of each personalized learner 
profle-wise model on the corresponding profle, i.e. the re-
sults of training on the data corresponding to a single learner 
profle and predicting the engagement score of the teams be-
longing to the learner profle in question. The results are re-
ported in terms of RMSE and PCC as follows: RMSE (PCC∗). 
(∗) corresponds to statistically signifcant results (p-value 
≤ 0.05). 

Profle Features INC NON INC 

EE 

All 
Log 
Gaze 
Afect 
Speech 

0.042 (0.039) 
0.047 (0.069*) 
0.054 (-0.145*) 
0.044 (0.060*) 
0.034 (0.272*) 

0.032 (0.148) 
0.032 (0.126*) 
0.033 (0.055*) 
0.032 (0.080*) 
0.028 (0.309*) 

CT 

All 
Log 
Gaze 
Afect 
Speech 

0.104 (0.081*) 
0.037 (0.026) 
0.068 (0.106*) 
0.057 (-0.102*) 
0.036 (0.102*) 

0.045 (0.174*) 
0.038 (0.051*) 
0.036 (-0.085*) 
0.039 (0.030) 
0.037 (0.341*) 

SW 

All 
Log 
Gaze 
Afect 
Speech 

0.037 (0.236*) 
0.032 (0.263*) 
0.032 (0.172*) 
0.063 (0.207*) 
0.025 (0.304*) 

0.026 (0.189*) 
0.024 (0.157*) 
0.022 (0.252*) 
0.022 (0.214*) 
0.02 (0.285*) 

[Non-inc, Speech] vs. 0.272 [Inc, Speech], CT: PCC = 0.341 [Non-inc, 
Speech] vs. 0.106 [Inc, Speech], SW: PCC = 0.304 [Inc, Speech] vs. 
0.285 [Non-inc, Speech]). 

For the gainer groups, the non-incremental features outperforms 
incremental features whereas for the non-gainer group, incremental 
features show a better performance. These outcomes are coherent 
with the previously discussed results and thus can also be explained 
by the reasoning’s given above. 

5.2.2 Multi-task Learning Personalization. Via the multitask learn-
ing personalization framework, we aim to investigate whether the 
joint classifcation of learner profles and the prediction of produc-
tive engagement scores can lead to an implicit personalization of 
productive engagement through weight sharing. Since we have 
four kinds of data instances (log, gaze, afect, and speech) each con-
veying a diferent form of information, we followed a multi-modal 
approach. 

Within the multi-modal approach, we performed two main tests: 
1) Taking the four features as four separate inputs and discarding 
the time feature in every input (TI-MT-NAS), and 2) Taking the 
four features as four separate inputs after removing time from each 
input and taking time as the ffth input (TD-MT-NAS). The main 
aim of these two experiments is to (i) compare and check whether 
the time modality is adding any bias to the predictions of the PE 
score, and (ii) check whether the prediction of user learner profles 
labels infuences the prediction of PE score. 

Table 3 presents the results of the multi-task experiments. Since 
we have performed both classifcation and regression, we report 
two types of losses: RMSE loss for regression and Cross-Entropy 
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Table 3: Multi-task results. The results are reported in terms of RMSE and PCC for productive engagement prediction. Accuracy 
and classifcation loss (cross-entropy) are reported for the classifcation of learner profles. (∗) corresponds to statistically 
signifcant results (p-value ≤ 0.05). Time-Independent (TI), Time-Dependent (TD). 

TI-MT-NAS 
NON-INC INC 

TD-MT-NAS 
NON-INC INC 

EE-CT-SW (NP) All features 
NON-INC INC 

MSE 
PCC 
Class. Acc. 
Class. Loss 

0.038 
0.232* 
0.53 
1.047 

0.104 
0.035* 
0.465 
2.093 

0.036 
0.266* 
0.512 
1.066 

0.099 
0.022 
0.448 
2.451 

0.037 
0.217* 
−− 
−− 

0.039 
0.194* 
−− 
−− 

loss for classifcation. From these results, we can observe that in 
the time-independent experiment, the non-incremental features are 
performing better than the incremental ones (PCC = 0.232 vs. 0.035). 
For the fve modalities experiment, the non-incremental is perform-
ing better than incremental (PCC = 0.266 vs. 0.022). Concerning the 
classifcation accuracy of the learner profles, we observe that for 
the TI-MT-NAS experiment, the non-incremental features perform 
better than the incremental ones (ACC = 0.53 vs. 0.465). The same 
pattern is noted for the TD-MT-NAS experiment (ACC = 0.512 vs. 
0.448). 

On comparing the two sets of experiments together, we can see 
that the fve modalities experiment is performing better than the 
time-independent case in terms of PCC and performs less better in 
terms of classifcation accuracy. But there is no signifcant diference 
between the two. This indicates that time does not add any specifc 
bias to the results. When we compare the MT results to the non-
personalized three-by-three analysis for all features, we can see 
that MT performs better compared to the latter. Similar to the past 
two experiment sets, the trend that the non-incremental features 
are outperforming the incremental ones is noted here too. 

6 CONCLUSION 
In this paper, we propose and compare personalized models for 
Productive Engagement (PE) recognition in the context of robot-
mediated learning scenario. Three learner profles identifed via a 
clustering technique from multimodal behaviours are used within 
an AutoML deep learning framework to personalize productive en-
gagement models. We investigate two approaches for this purpose: 
(1) Single-task Deep Neural Architecture Search (NAS) (ST-NAS), 
and (2) Multitask NAS (MT-NAS). 

In the former approach, personalized models for each learner 
profle are trained and compared to non-personalized models. More-
over, we analyze the performance by training two-by-two person-
alized models (EE-CT, EE-SW, and CT-SW) in order to underpin 
whether some profles add noise to the training. We notice that 
personalization outperforms non-personalized models in the case of 
three-by-three models and for the two-by-two models in case of the 
gainer-non-gainer combination but shows the contrary for gainer-
gainer groups. Our experimental results show that personalized 
models improve the recognition performance with respect to non-
personalized models. The speech modality is the most informative 
feature in the prediction of the PE score. 

In the MT-NAS approach, we investigate whether jointly clas-
sifying the learners’ profles with the engagement score through 

multi-task learning would serve as an implicit personalization of 
the productive engagement. These set of experiments prove that 
the time modality does not add any bias to the prediction of PE 
score. In both these approaches (ST-NAS and MT-NAS), it is noted 
that the non-incremental features performs much better than the 
incremental ones. 

As a future work, it might be interesting to compare the perfor-
mance with other personalisation strategies based on SVMs, such 
as Selective Transfer Machines [Chu et al., PAMI 2017]. 
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