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Abstract— Wizard of Oz, a very commonly employed tech-
nique in human-robot interaction, faces the criticism of being
deceptive as the humans interacting with the robot are told,
if at all, only at the end of their interaction that there was
in fact a human behind the robot. What if the robot reveals
the wizard behind itself very early in the interaction? We
built a deep wizard of Oz setup to allow for a robot to play
together with a human against a computer AI in the context of
Connect 4 game. This cooperative game interaction against a
common opponent is then followed by a conversation between
the human and the robot. We conducted an exploratory user
study with 29 adults with three conditions where the robot
reveals the wizard, lies about the wizard, and does not say
anything, respectively. We also split the data based on how
the participants perceive the robot in terms of autonomy.
Using different metrics, we evaluate how the users interact
with and perceive the robot in both the experimental and
perceived conditions. We find that while there is indeed a
significant difference in the participants willingness to follow
robots suggestions between the experimental conditions as well
as in the effort they put to prove themselves as humans (reverse
Turing test), there isn’t any significant difference in their robot
perception. Additionally, how humans perceive whether the
robot is tele-operated or autonomous seems to be indifferent to
the robot revealing its identity, i.e., the pre-conceived notions
may be uninfluenced even if the robot explicitly states otherwise.
Lastly, interestingly in the perception based conditions, absence
of statistical significance may suggest that, in certain contexts,
wizard of oz may not require hiding the wizard after all.

Keywords—human-robot interaction, Wizard of Oz, robot
perception, social robots

————————————-

I. INTRODUCTION

It has been a human fascination to build robots that
are capable of interacting autonomously and naturally with
their surroundings. However, there are still advancements
needed in the fields of artificial intelligence, natural language
processing and computer vision, among others, in order to
build such robots. To fill in these technical gaps, one of the
most widely used technique in human-robot interaction is
the Wizard of Oz (WoZ) [1], first introduced by [2], where
a human controls the robot remotely. This remote control
can vary in terms of the number of aspects that are being
controlled (speech, movement, expressions, gestures, etc.)
as well as along the spectrum of autonomy in each of the
aspects.

While this technique gives us the opportunity for witness-
ing ahead of time what fully autonomous interactions could
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look like, or how humans would behave with a particular
hypothetical “autonomous” robot, WoZ attracts criticism on
various grounds, including the validity of its implicit assump-
tion that findings obtained in a human-human interaction via
a robot also hold true for human-robot interactions [3]. Addi-
tionally, some researchers have pointed out that “relying on
WoZ as an experimental technique can make it all the more
difficult to build robots capable of successfully mitigating
errors on their own in the future [4]” [1]. Lastly, WoZ raises
an ethical concern due to its use of social deception, i.e., the
fact that human participants often find out only at the end of
the interaction, if at all, that the robot was controlled by a
human [5], [6], [7]. This article aims to tackle this last issue,
starting from a simple question: what if the robot reveals, at
the beginning of the interaction, that it is being controlled
by a human? Would this change the interaction? Indeed,
while the use of social deception in WoZ is motivated by the
assumption that human participants would be biased in their
interaction, to the best of our knowledge, this assumption
has not yet been investigated explicitly.

To investigate this question, we designed a simple human-
robot interaction scenario, in which the robot and the partici-
pant cooperate to beat a computer AI at the classic Connect4
game. During the game, the robot provides suggestions to the
human about the next best move, while at the end of the game
the robot engages the participant in a short conversation. In a
study with 29 participants, we compare (i) the case in which
the robot reveals to be controlled by a human, (ii) the case
in which it declares to be fully autonomous and (iii) the case
in which it says nothing, specifically seeking to explore:

Research Question: How does revealing the presence of a
person controlling the robot impact the participants’ behavior
towards the robot, as well as their perception of the robot?

II. RELATED WORK

Over the years, WoZ techniques have been employed in
various contexts within human-robot interaction ranging from
sociality, home environments, service robotics, to assistive
technology [8], [9], [10], [11]. Elaborating more on each
study, in [8], the authors propose and describe a method
to generate patterns for sociality in human-robot interaction,
using the WoZ technique to create compelling social situa-
tions between a robot and children and adolescents by specif-
ically teleoperating the speech and gestures. In [9], WoZ
is employed to explore the concept of socially intelligent
dialog systems in the home environment, i.e., controlling
verbal interaction, while [10] describes this technique in the
context of a service robot, particularly for the dialogue and
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navigation abilities, and discusses the simulation tools used
for giving the Wizard the possibility of easily controlling
such capabilities. In [11], WoZ is used to drive a small
humanoid robot, particularly it’s physical movements, in
a study that evaluates the effect of robots appearance on
facilitating interactions between autistic children and the
robot. Indeed, the review done by [1], revealed that among
the studies in HRI employing WoZ published between 2003-
2011, the most frequent types of Wizard control include natu-
ral language processing, non-verbal behavior, and navigation
and mobility, as can also be observed in the aforementioned
studies. Lastly, among the variations of WoZ that have
been proposed in the literature, “Oz of Wizard” proposes to
simulate humans to evaluate robot behaviors [12]. Further,
while not similar to our research question, in [13], where
one group of children interact with a teleoperated robot
and another with an autonomous robot, after revealing the
presence of the wizard at the end of the interaction for the
WoZ group, the participants were asked to fill a perception
questionnaire again. They found that the relevant group
decreased their perception of the robot’s intelligence after
finding out the truth. In short, there are those who use Woz,
there are those who criticize WoZ as pointed out in Section I,
but it doesn’t seem there is much work yet that simply
questions WoZ. To reiterate, while the technique itself is
very popular in HRI, to the best of our knowledge, there
does not seem to be a study on the effect of revealing the
human presence behind the robot early on in the interaction,
i.e., on the need of deceiving the participant.

In most HRI studies where one of the metrics under
investigation relates with the degree to which a participant
follows the suggestions of the robot, the participant has little
to no idea of the task at hand. In other words, a task that is
completely or partially outside the knowledge space of the
participants is usually chosen, to control for the effect that
the participants’ prior knowledge could have on their trust in
the robot. In [14] and [15], respectively, the acceptability of
a robot’s recommendations, based on its explicit or implicit
communications style and the participants’ cultural back-
ground, is tested in a scenario where the participants have
to assign a price to a given product and in another context
that requires the participants to make decisions regarding
an on-campus environment-friendly chicken cooperative/hen
house while collaborating with the robot that was presented
to have relevant expertise. Further, in [16] where the authors
compare two advice-giving strategies presented in videos
with human and robot helpers, the advice is being given
to a novice making cupcakes. Lastly, in another scenario of
completing or creating new recipes with given ingredients,
the robot tries to help the participants to complete the task by
giving its suggestions at various scales of proactivity [17]. In
our study, we control for the participants’ prior knowledge in
the opposite way, by asking them to engage in a well-known,
very simple game. This choice is motivated by the fact
that in a context that is unknown, participants might follow
the robot because they may not have any opinion of their
own especially at the beginning of the interaction; however,

in a context that is known, this kind of reasoning behind
accepting robots suggestions can hopefully be mitigated.

III. METHOD

A. Activity Design

1) Connect 4: Connect 4 is a grid based game (with 6
rows and 7 columns), as shown in Figure. 1, where two
players take turns to put colored (red or yellow) tokens, one
at a time. The red player always starts. Playing a token in
a certain column means it will fall from the top, stopping
at the highest empty slot along that column. A player wins
when they have 4 tokens of their color lined up vertically,
horizontally, or diagonally. While there are many variations
of this game, in our study, we stick to the classic version.

The game, while seemingly easy, actually has
4,531,985,219,092 possible tokens configurations. A
player, even an experienced one, cannot predict all of them
and, just like in chess, the computation capabilities of our
human intelligence are surpassed by those of computers
with enough computing power, that can predict all the
moves in advance thus guaranteeing the choice of the best
move at each turn. Furthermore, by design, the first player
can determine the outcome of the game. If both players play
perfectly, the first player can secure the central column, and
surely win the game. In our study, the participant and the
robot play as a team that controls the yellow player, while
a computer AI controls the red player.

For the purposes of our study, we implemented an online
version of the game as well as a Connect 4 probability AI,
based on Monte Carlo tree search (MCTS), that can predict
the probability of winning the round associated with a move.
Additionally and mainly, we used another Connect 4 solver
AI, an open-source turn resolution engine [18], to compute
the best next move from any game configuration. Please note
that both the computer AI controlling the red player as well
as the wizard that controls the robot make use of this latter
AI to pick a move, while the AI that provides the probability
is only used by the robot via the wizard. To elaborate a bit
more on how the robot uses the two AIs, the information
about the best move is used in the conversation that takes
place between the human participant and the robot, when the
robot tries to suggest a move. The associated probability of
the move is randomly used at times by the robot to motivate
its suggestion.

2) Simplified reverse Turing test: As part of the conver-
sation that takes place between the robot and the participant,
after the game, the robot follows a simplified reverse Turing
test [19] where the participant has to prove to the robot that
they are a human. While there is no right or wrong answer
to this question, we argue that the effort one puts in proving
themselves as a human to another human versus a machine
may be different.

B. Setup Design: Deep Wizard of Oz

Our setup design, as shown in Figure 2, consists of a
yellow team including the human participant assisted by the
robot, that play against the red player that is a computer AI.
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Fig. 1: An example instance of the game. It is the turn of the
yellow player. The best next move is in the column 5 (from
the left) and the second-best move is in the column 7. It is
practically impossible for a human to judge these options
correctly, since they will have impact in, at worst, the 13th
turn from this configuration.

Fig. 2: Experimental setup: the human participant and the
QTrobot are the yellow team, playing against the red player
that is a Computer AI. Both the computer AI as well as the
robot, that is remotely controlled by a human operator, make
use of an opensource AI, to make or suggest the next best
move, respectively.

The computer AI makes the next move based on AI Connect
4 solver shown in Figure 3. On the other hand, the robot,
QTrobot from LuxAI1, is remotely controlled by a human
operator who, in turn, also gets its guidance on the best move
by the AI Connect 4 solver and additionally information
on the probability of winning the round associated with a
move from the AI Connect 4 probability. With these layers
of control moving from an AI to a human operator to a robot
to a human participant, as shown in Figure 3, we believe
that this setup pushes the boundaries of the classical Wizard
of Oz method where a human operator controls the robot
interacting with the human participant; hence, we term this
setup as deep Wizard of Oz.

Lastly, to control the robot, we developed a web-based
Wizard of Oz interface, shown in Figure 4, allowing the
Wizard to quickly send pre-fabricated as well as on demand
instructions, comments or answers. Easy to navigate colored
and descriptive buttons helped to provide efficient generation
of relevant emotions and gestures.

C. User Study Design

In our user study, the robot is manipulated in three
different ways, corresponding to the three conditions that

1https://luxai.com/humanoid-social-robot-for-research-and-teaching/

Fig. 3: A diagram of the deep Wizard of Oz concept. The
additional AIs dictating moves as well as the probabilities
to the human operator constitute the difference w.r.t. the
”classical” Wizard of Oz paradigm.

Fig. 4: The control interface for the Wizard.

we will ellaborate here. The ground truth is that the robot is
always controlled by a Wizard; however, in Condition RA, it
untruthfully reveals to be a fully autonomous robot, whereas
in Condition RC, the robot truthfully reveals that it is being
controlled by a human. Lastly, in condition NR, the robot
does not reveal anything. In conditions RA and RC, the robot
discloses its status at the beginning of the interaction, right
before the game starts, in the form of a conversation where
it explicitly says either “I am being controlled by a human”
or “I am a fully autonomous machine”.

In all conditions, the robot and the participant compete
against the computer AI in three rounds of the Connect 4
game: the decision-making strategy of the robot and the
opposing computer AI are manipulated, in the three rounds,
as shown in Table I. In round 1, the robot always suggests
optimal moves, while the computer AI always picks a sub-
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TABLE I: Table of the intelligence repartitions and outcome
for each conditions, RA, RC and NR

Round 1 Round 2 Round 3

Robot AI Perfect Imperfect Perfect
Computer AI Imperfect Perfect Perf. → Imp.
Outcome Player wins Player loses Depends if

player follows

optimal move. This ensures that the participant will win the
round, more or less quickly according to how closely they
follow the robot’s suggestions. To elaborate a bit more on
the optimal and sub-optimal moves, when several optimal
moves are possible, one of them is chosen randomly. As for
a sub-optimal move, we decide on it with the criterion that
it is the second best move. The reason for not choosing the
worst move as our criterion for the sub-optimal move is that
it could easily be identified as a bad move by the participant
while the best sub-optimal (second best move) move is still
very difficult to identify and is rarely dissociable for a human
from the most optimal move; hence, allowing a more natural
game-play.

Conversely, in round 2, the robot always suggests a sub-
optimal move, while the computer AI always plays the best
move. Since the computer AI controls the red player (the
first to play), the participant is bound to lose, irrespective of
its adherence to the robot’s suggestions. Finally, in the last
round, both the robot and the computer AI initially always
suggest optimal moves. However, after the 5th turn, the com-
puter AI starts playing sub-optimal moves, thus giving the
participant high chances of winning if they follow the robot’s
suggestions. The motivation behind this design is to test the
effect of success and failure on the participants’ willingness
to accept robot suggestions. Indeed, any automation bias
towards the robot [20], [21] is expected to be broken after
the second round.

Lastly, when sub-optimal moves are given as a suggestion
to the participant or the computer AI makes these sub-
optimal moves in a given round, we start doing sub-optimal
moves only from the second turn. The motivation behind this
is that there is a high chance of the participant having the
intuitive understanding that starting from the center column
could lead to a higher likelihood of winning. In order to not
to immediately give away the correctness/intelligence of the
computer AI in the first round when the computer AI is sub-
optimal and is just starting the game, the computer AI starts
with the center column, i.e., the best move and then carries
on with sub-optimal moves. Then for consistency reasons we
kept this rule also for the second round when the robot is
otherwise sub-optimal but starts by suggesting the best move.

IV. USER STUDY

A. Setup and Participants

This between subject study was conducted with 29 partici-
pants (62% men and 38% women) enrolled among EPFL stu-
dents and personnel. Due to a few last-minute cancellations

Fig. 5: Participants interacting with our deep Wizard of Oz
connect 4 setup

and changes, we ended up with 9, 11, and 9 participants,
respectively, in condition RA, condition RC, and condition
NR. We had a wide age range of the participants with most
of the participants being in the 20-40 age range. Additionally,
35% of the participants were from engineering or equivalent
background, 35% from social sciences or close areas, while
the remaining 30% were from other backgrounds. The study
took place in a quiet corner inside one of the research build-
ings at EPFL, as shown in Figure 5. The wizard tele-operated
the robot from a booth located close to the setup, behind
the participant’s chair (so that while the participant was in
the wizard’s field of view, the opposite was not true) and
could hear the participant through an audio zoom session.
The overall interaction takes approximately 30 minutes for
each participant.

B. Evaluation Metrics

We use the following three evaluation metrics:
1) Following Index: To be able to effectively compare

how much a participant followed the suggestions of the
robot during the game, we designed a simple metric, called
the following index fi. This metric simply measures how
frequently the participants accept the suggestions of the robot
as:

fi:=


0 or low if li ϵ [0, 0.33]

0.5 or medium if li ϵ (0.33, 0.66)

1 or high if li ϵ [0.66, 1]

(1)

where

li =
1

n

n∑
i=0

ti (2)
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and

ti:=

{
1 if participant follows the robot at turn i

0 otherwise
(3)

n := max(participant moves, robot suggestions) (4)

Please note that fi can be calculated both at a global level
(for all rounds) as well as for each round.

2) Effort for Reverse Turing test: To differentiate partici-
pants’ responses to the robot’s question on the reverse Turing
test, we coded their responses on the basis of a simple criteria
referring to the length/effort they went into while responding:
people who chose to not respond or avoided the question
received a score of 0; participants who replied to the question
but didn’t provide an explanation (e.g. by answering: ‘yes, I
am a human”) were given a score of 1, while those who
answered the question including any form of explanation
received a score of 2. Please note that we did not rank the
quality of the answer.

3) Questionnaire: At the end of the session, the partic-
ipants fill a questionnaire with questions from the standard
Godspeed questionnaire [22]. In addition, we asked an ex-
plicit question on trust (How much did you trust the robot
to give the correct option? with 1 for not at all and 5 for
blindly). Then for manipulation check, we asked the question
The robot QT Robot was (most probably) entirely controlled
by humans or entirely autonomous with the scale ranging
from 1 to 5.

C. Hypotheses

Referring back to our research question and the method-
ology we employed, we put forth the following hypotheses:

1) H1(a): Revealing the presence of a person controlling
the robot has an effect on the willingness of the partic-
ipant to follow the suggestions, to prove that he or she
is a human, as well as on the perception of the robot.

2) H1(b): The participants’ willingness to follow the
robot’s suggestions will change after the second round,
i.e. the round in which trusting the robot leads to a loss,
because of the breaking of automation bias.

3) H2: Perceiving the presence of a person controlling the
robot (i.e., thinking this is so, regardless of what the
robot revealed) has an effect on the willingness of the
participant to follow the suggestions, to prove that he
or she is a human, as well as on the perception of the
robot.

To check for H1(a), a single round of the game could’ve
been sufficient but we are also interested to observe how the
trust in the robot’s suggestions changes dynamically, more
specifically how do participants recover in the third round
after the trust in the robot (that it’s suggestions are always
correct) is possibly broken in the second round. Hence, for
specifically testing that, we introduce H1(b). Furthermore,
H1(a) stands on the assumption that the perceived status
of the robot by the participants is the same as what we
manipulated the robot for; however, that may not be true.

In order to carry that manipulation check, we introduce H2,
the answer to which essentially reduces to the answer to
H1(a) in the case the perceived status is the same.

V. RESULTS

Our statistical analysis is based on several Kruskal Wallis
tests for which we provide more details below.

A. [H1] On the effects of the robot’s revelations

1) Willingness to follow robots suggestions: Here, the
dependent variable is the following index. Globally there
was no significant difference for the following index fi
across conditions, when grouping over all rounds, nor across
rounds, when grouping over all conditions. Note that all the
upcoming stacked bar plots will depict fi of the participants
where the height of a column corresponds to the number of
participants associated to that condition, and the color coding
denotes the number of participant displaying a low, medium
or high fi.

Then in Figure 6, we look at the following index fi across
each experimental condition within each of the three rounds
individually and then in Figure 7, we observe the behavior
of the participants for each round within a condition. In the
first round, participants seem to behave very similarly, irre-
spective of the condition they belong to: quite interestingly,
their acceptance for robot suggestions is either high or low,
with only one participant at medium level. Conversely, in the
second round, participants not only change behaviour w.r.t.
the first round, but also display a significant difference (H =
3.756, p-value = 0.05) between the condition RA and condi-
tion NR. Interestingly, the participants collaborating with a
robot that claims to be autonomous (condition RA), are less
willing to accept the sub-optimal suggestions of the robot
than those collaborating with a robot who didn’t say anything
(condition NR). In the third round, after losing in the second
round, interestingly the willingness to accept the robot’s
suggestions increases for condition RA and decreases for
condition RC, while it remains stable for the NR condition.
This could be because those participants, collaborating with
the robot pretending to be autonomous (condition RA), who
did not follow the robot’s suggestions in round 2 attribute
their loss to not trusting the robot, while those collaborating
with the robot revealing the human control (condition RC)
who trusted the robot in round 2 attribute to it their loss.
A statistically significant difference (H = 3.691, p-value =
0.05) is observed between condition RC and condition NR,
with participants in the condition of no revelation exhibiting
a higher acceptance of the robot’s suggestions. Lastly, it is
interesting to notice how the number of people falling in a
medium range of acceptance globally increases after round
1. All in all, as suggested by Figure 7, within condition
RA, the participants start with a high acceptance of the
suggestions from the robot that lowers in the second round
and increases again in the third as discussed previously.
Contrary to condition RA, in the group where the robot
reveals the human control (condition RC), the participants
are more willing to follow the sub-optimal suggestions in
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round 2 (almost equally as round 1) but that lowers in the
third round probably after their defeat. In the condition NR,
the distribution of acceptance ranges is most similar across
all 3 rounds. However, there are no statistically significant
differences so no concrete claims can be made.

2) Reverse Turing test: For the reverse Turing test, in
Figure 8, we can observe the level of elaboration on the
answers by the participants across conditions. Participants
seem to make a greater effort in answering the question when
the robot reveals itself to be autonomous (condition RA)
versus when the robot reveals that it is being controlled by a
human (condition RC). With a Kruskal Wallis test using the
coded responses as the dependent variable in each condition,
this difference is statistically significant (H = 4.265, p-value
= 0.039). The behaviour of the group where the robot does
not reveal anything seems closer to that of participants in the
condition RA. The result of this test suggests that humans put
more effort in explaining their humanness to an autonomous
robot, rather than when they know a human is teleoperating
it. This outcome suggests when deception can be useful,
i.e., in all studies/scenarios in which we want humans to
discuss human traits. Intuitively, between humans the “in-
group bias” makes it appear silly to put effort into answering
such a question, but there might be cases (e.g. for psychology
studies) where we want a person to discuss their or general
“humanness”, and the possibility to do so with a robot might
lead to deeper, more articulated answers.

3) Robot perception: The ratings for all conditions for
likeability, intelligence, and trust are shown in Figure 9. For
the statistical analysis using Kruskal Wallis tests, the ratings
on various aspects of the questionnaire are considered as
the dependent variable. It is interesting to see more diverse
ratings on likeability in the condition of no reveal while
for intelligence and trust, it is the opposite, i.e., participants
were more varied in their ratings for conditions in which the
robot revealed truthfully or when pretending. However, this
difference is not statistically significant.

B. [H2] On the effects of participants’ perceived robot status

While the previous section splits the data based on the 3
experimental conditions that we manipulated, we also split
the data set corresponding to how participants perceived the
robot to be in terms of autonomy, i.e., based on the manipu-
lation check question detailed in section IV-B.3; Thus, giving
us:

• Perceived Autonomous (PA): rating of 4 or 5
• Perceived Controlled (PC): rating of 1 or 2
• Perceived Unsure (PU): rating of 3
We ended up having 12, 9, and 8 participants in the PA,

PC, and PU conditions, distributed across the experimental
conditions as shown in Table II. Interestingly, there seems to
be little relation with what the actual condition was and what
the participants perceived the robot to be, thus suggesting
that the participants stuck to their pre-conceived notion on
the robot’s autonomy, without being influenced too much
by what the robot said explicitly. This outcome also raises
the question whether it is possible that humans attribution

TABLE II: The distribution of the participants from the
experimental conditions (RA, RC and NR) in the perceived
conditions (PA, PC, and PU).

Perceived Conditions Experimental Conditions

RA RC NR

PA 4 3 5
PC 4 3 2
PU 1 5 2

of autonomy to a robot may not be static but rather change
throughout and in response to the interaction.

For the analysis, we start off by observing the following
index over conditions, across rounds, for the perceived con-
ditions as shown in Figure 10. Quite interestingly, we see a
statistically significant difference w.r.t. how the participants
accept the suggestions of the robot when they perceive it
to be controlled by a human versus when they are unsure,
with more participants following the robot’s suggestions
with a high following index in the latter case. However,
similar to experimental conditions, we do not find any
statistically significant results when looking at the evolution
of the following index over rounds, across conditions. For
the perceived conditions, we also performed similar in-depth
statistical analysis as done with the experimental conditions;
however, since we did not find any statistical significance,
we do not report here due to lack of space.

C. Discussion

Going back to our hypotheses outlined in section IV-
C, based on the results in Section V-A, we can note that
in the latter rounds, in accordance with our hypothesis
H1(a), revealing, hiding or denying the presence of a person
controlling the robot has an impact on the willingness of the
participants to accept robot suggestions, as well as on their
effort to prove themselves as a human. However, contrary
to H1(a), there is no statistically significant difference in
the way people trust or perceive the robot. For H1(b), we
see an interesting pattern for all conditions where there is
a polarization in round 1 (participants falling either in the
high or low range) which is reduced already in round 2
where the distribution of participants is more dispersed (low,
medium, and high) and that continues in round 3. However,
since we did not observe a statistically significant difference
in how participants behave in round 3 in any of the three
experimental or perceived conditions; hence, H1 is only
partially supported. Furthermore for H2, we observe that
when the participants perceive the robot to be controlled
by a human versus when they are unsure, their behavior is
significantly different, with higher acceptance in the latter
case. This makes the lack of statistical significance in the
in-depth analysis of the perceived conditions particularly
interesting, as it may suggest that, at least in certain contexts,
revealing the presence of a human controlling a robot does
not have a strong effect on how humans perceive the robot
and respond to it. Hence, H2 is also only partially supported.
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Fig. 6: following index fi across each experimental condition within the three rounds

Fig. 7: following index fi across each round within the three experimental conditions

Fig. 8: Reverse Turing Test result for the three conditions

VI. CONCLUSION

In this paper, we deploy our deep Wizard of Oz setup in
a study with 29 participants that play the Connect 4 game
together with a robot against a Computer AI that is then
followed by an informal conversation between the participant
and the robot. With this, we investigate whether a robot
revealing the existence of a wizard controlling it, versus lying
about it or simply not saying anything has any effect on how
participants perceive and interact with the robot. We also
split the data based on how the robot is actually perceived
(teleoperated, autonomous, or unsure) by the participants
via a self-reported measure. For evaluation, we propose a
metric following index that quantifies the extent to which
the suggestions of the robot were accepted. We evaluate both
the experimental and perceived conditions by assessing: the
following index, to what extent the participants put an effort
in the reverse Turing test, and robots perception.

This exploratory study inspired us with a number of
broader considerations that could be interesting avenues for

further investigation by the community. Firstly, contrary to
what one may expect, humans seem to be less willing to
accept sub-optimal suggestions from a robot that claims itself
to be autonomous than when the robot does not say anything
or when the robot reveals the wizard; however, after a defeat,
humans reverse their behavior in either case. This suggests
that trust in robots may be dynamic and possibly dependent
on the attribution of responsibility while generally in HRI,
trust is measured statically. This is yet a rather unexplored
area within HRI that can yield very interesting outcomes
for how we model trust in robots. Secondly, the fact that
participants put more effort to prove their “humanness” when
speaking to a robot that claims to be autonomous opens
up a relatively novel use for social robots in social studies
contexts by enabling people to experience discussing deep
human topics with a non-human entity. These could be the
potential contexts when an autonomous or a robot that states
itself to be autonomous, being perceived as an “out-group
member”, can induce more honest and elaborate answers.
Thirdly, humans seem to hold on to their pre-conceived
notions of what they perceive a robot to be in terms of
autonomy much more strongly than one may expect. It is also
possible that participant’s perception of the robot’s autonomy
changes during the course of the interaction so while one
may begin with believing what the robot reveals but then
change their mind as the interaction unfolds. This calls for
more explicit assessment of the user’s perception of the
robot’s autonomy in HRI studies. Lastly, the general lack
of significance between perceived conditions could suggest
that the wizard behind the robot may not need to be hidden
in certain HRI contexts (as first pointed out in our second
consideration as to when it may be needed/more useful), thus,
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Fig. 9: Perception of the robot in terms of likeability, intelligence, and trust for the experimental conditions.

Fig. 10: following index fi for the three perceived conditions,
computed over all rounds.

allowing both for a less socially deceiving interaction while
still giving an idea of what interactions could be like with a
potentially autonomous robot in the future.

We must note here a limitation of our work in that
we measure the following index fi per round; however,
measuring its evolution over time in a round could give
deeper insights which we would like to explore in our future
work. Another limitation comes from the relatively smaller
pool of participants as well as the fact that the participants
belong to EPFL. We plan to conduct follow-up, focused
studies, with a larger pool of participants as well as with
a more generalized population, to consolidate our findings
and verify our conclusions.
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