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A B S T R A C T   

The learning process depends on the nature of the learning environment, particularly in the case of open-ended 
learning environments, where the learning process is considered to be non-linear. In this paper, we report on the 
findings of employing a multimodal Hidden Markov Model (HMM) based methodology to investigate the tem-
poral learning processes of two types of learners that have learning gains and a type that does not have learning 
gains in an open-ended collaborative learning activity. Considering log data, speech behavior, affective states 
and gaze patterns, we find that all learners start from a similar state of non-productivity, but once out of it they 
are unlikely to fall back into that state, especially in the case of the learners that have learning gains. Those who 
have learning gains shift between two problem solving strategies, each characterized by both exploratory and 
reflective actions, as well as demonstrate speech and gaze patterns associated with these strategies, that differ 
from those who don’t have learning gains. Further, the teams that have learning gains also differ between 
themselves in the manner in which they employ the problem solving strategies over the interaction, as well as in 
the manner they express negative emotions while exhibiting a particular strategy. These outcomes contribute to 
understanding the multiple pathways of learning in an open-ended collaborative learning environment, and 
provide actionable insights for designing effective interventions.   

1. Introduction 

Learning does not occur in a single moment, but is rather a dynamic 
process that evolves over time (Kapur, 2011; Reimann, 2009). This 
process, especially in open-ended learning environments such as 
inquiry-based learning and problem-based learning environments, is 
non-linear (Brooks & Brooks, 1993; Chow et al., 2015; Schulte, 1996). 
Researchers have proposed that learning contexts are in fact complex 
systems where elements at different levels, such as cognitive, intraper-
sonal and interpersonal, interact and this results in the emergence of 
learning (Jacobson et al., 2016). Therefore, understanding the condi-
tions for the emergence of learning in this complex system is important, 
as this will help identify those moments when an intervention could 
potentially be effective in improving learning. Within 
computer-supported collaborative learning (CSCL) research, there is 
now an emphasis to focus on how the CSCL process unfolds (Lämsä et al., 
2021). 

Further, learning is not a unimodal process and involves the inter-
play of cognition, emotions and actions. This is especially true in the 

case of collaborative learning which requires learners to sustain and 
regulate their cognition, emotions and actions in order to attain their 
goals (Järvelä et al., 2020). Previous research suggests that multimodal 
analysis can provide richer insights into the learning process compared 
to unimodal analyses (Nasir et al., 2021a; Blikstein & Worsley, 2016; 
Spikol et al., 2017). For instance, Olsen et al. (2020) found that 
combining eye gaze and audio modalities in a temporal analysis pro-
vides a more accurate prediction of collaborative learning than using 
single modalities alone. In Sinha (2021a), a multimodal learning ana-
lytic pipeline allows to not only infer the affective states that arise in a 
problem-solving followed by instruction (PS-I) activity, but also helps 
understand the temporal dynamics of such states and how they vary as 
the scaffolding strategies are manipulated. 

While pre and post-tests help ascertain how much knowledge a 
learner has gained, they do not help understand how this knowledge was 
gained in a particular context, i.e., the temporal and multimodal aspects 
of the learning process. These aspects of the learning process have been 
previously studied using methods such as microgenetic analysis (Siegler 
& Crowley, 1991), interaction analysis (Jordan et al., 1995) and 
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interactional ethnography (Castanheira et al., 2000) of learner discourse 
and actions, which track students conceptual development across an 
individual or collaborative learning activity. In an extensive review 
done by Chen et al. (2022) on the increasing use of Artificial Intelligence 
(AI) technologies in education, discourse analysis in CSCL was identified 
to be one of the most common trends and topics. However these quali-
tative methods can be time intensive. With technology-based learning 
contexts and multisensory data becoming increasingly widespread, re-
searchers are making use of multiple sources of behavioral data such as 
interaction logs, audio, video, eye gaze and physiological data, along 
with machine learning methods, to understand the process of learning as 
a function of time (Engelmann & Bannert, 2021; Olsen et al., 2020). For 
example, in Lämsä et al. (2020), the authors make use of log data and lag 
sequential analysis to highlight the potential of temporal analysis to 
identify differences in the inquiry-based learning processes of scaffolded 
and non-scaffolded groups. Specifically, they discover three temporally 
distinct inquiry-based learning transition patterns among the three 
experimental groups that indicate different ways of using the scaffolds 
that could explain their learning. Further, in Csanadi et al. (2018), the 
authors show that their proposed methodology accounting for tempo-
rality, provides more insights than the traditional code-and-count stra-
tegies to characterize the socio-cognitive activities of learning in CSCL 
environments. Specifically, they found that ‘evaluating evidence’ was a 
core epistemic practice for dyads but not for individuals, suggesting that 
students collaborating argued in a more evidence-focused manner 
compared to individuals. 

As demonstrated by the aforementioned studies, there is an 
increasing emphasis of AI in Education (AIEd). More specifically, au-
thors in Chen et al. (2020), which is a systematic review of influential 
AIEd studies, found that “there was a lack of studies that both employ AI 
technologies and engage deeply with educational theories” and suggest 
to put more emphasis on understanding the relationship between 
learners answers (actions) and the underlying concepts. In this paper, 
our goal is then to develop such a temporal and multimodal under-
standing of the learning process in an open-ended collaborative activity 
seen in Fig. 1. Our work builds on our previous work Nasir et al. (2021c) 
which is grounded in theories of impasse-driven collaborative learning. 
Therefore, we propose a Hidden Markov Model (HMM) based temporal 
analysis of multimodal behavioral data to unfold the differences and simi-
larities between the collaborative learning processes of groups who learn and 
those who do not. Our choice of using HMMs is motivated by the fact that 
HMMs allow us to model learning as a latent process based on our ob-
servations of student interaction with the learning activity, thus estab-
lishing a relationship between learner multimodal data and their 
collaborative learning. 

In the upcoming section, we first review the literature regarding 
temporal and multimodal analysis methods for learning. Then in Section 
3, we elaborate on the participants, the activity and the dataset used in 

this work, the experimental setup, as well as the adopted analysis 
methodology. This is followed by results, discussion, and conclusion in 
Section 4 and 5, respectively. 

2. Literature review 

When embedded in a learning activity, intelligent agents must 
intervene at the right moment and in the right manner to enhance the 
learners’ learning gains. Recent research suggests that student pop-
ulations are diverse based on their levels of motivation, anxiety, au-
tonomy, discipline and life experience (Lim, 2020). Therefore, we expect 
that these diverse populations learn in diverse ways and hence need to 
be supported differently from each other. Further, novel approaches to 
learning in the digital era such as citizen science initiatives (Ciasullo 
et al., 2022) and social media (Hosen et al., 2021) can result in different 
learning processes. As a result, in order to support learners better, we 
must have an ongoing comprehensive and deep understanding of the 
learners and learning situation. Temporal analysis of learners’ data, 
either their performance or behaviors, can provide such an 
understanding. 

2.1. Performance based systems 

2.1.1. Knowledge Tracing 
In Knowledge Tracing (KT) systems, temporal learner understanding 

is developed by estimating the learner’s knowledge from their perfor-
mance on past problems (Corbett & Anderson, 1994; Desmarais & Baker, 
2012). Bayesian Knowledge Tracing (BKT) determines if and when 
the learning of a skill occurs during problem-solving steps (Desmarais & 
Baker, 2012). It assumes a two-state learning model where each skill is 
either in the learned or unlearned state. Assuming that each step of each 
problem calls for a single skill, the student can either succeed or fail the 
step, and the tutor updates its estimate of the learners knowledge on the 
skill accordingly (Corbett & Anderson, 1994; Desmarais & Baker, 2012). 
BKT has been applied both in the form of a Hidden Markov Model as well 
as in the form of a Knowledge Tracing algorithm (van de Sande, 2013). 
While these approaches have been applied successfully to model student 
knowledge in well-structured problem-solving, they fail at more com-
plex open-ended learning activities (Wang et al., 2021). Hence, to in-
crease the representational power and better model complex problem 
structures, Käser et al. (2017) suggest a Dynamic Bayesian Network 
(DBN) model that incorporates skill topologies. In this, different skills of 
a learning domain are considered within a single model capturing the 
dependencies between them. Incorporating skill hierarchies yields a 
significant improvement in predicting students’ knowledge during 
complex problem solving, more accurately compared to the traditional 
KT models. 

Further, Deep Knowledge Tracing (DKT) Piech et al. (2015), an 
application of recurrent neural networks, has been shown to be able to 
learn the latent structure in skill concepts without the need for explicit 
human coding of domain knowledge. For this reason, it demonstrates a 
drastic improvement on the well-known BKT models over several data 
sets. Nonetheless, similar to BKT, the DBN model as well as DKT assume 
that each problem-solving step or action maps to an underlying skill that 
could be either learned or unlearned, which is not necessarily the case in 
open-ended learning environments. Moreover, these approaches assume 
that an incorrect answer implies not learning or “slipping”. However, it 
has been found that learners’ actions that may seem to suggest failure 
vis-à-vis conventional standards of efficiency, accuracy, and perfor-
mance quality may still lead to learning gains (Kapur & Kinzer, 2009). 
Thus, indicators other than in-task performance should be considered to 
model the learning process in open-ended learning activities. In Ram-
achandran, Huang, and Scassellati (2019), the authors suggest a link 
between motivation, actions, and the learning outcomes that underlies 
the learning process. They propose creating more effective tutoring in-
teractions by finding observable behaviors that correspond to Fig. 1. A team interacting in an open-ended collaborative activity JUSThink.  
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motivational factors and employing a robot to respond to these behav-
iors. In Nasir et al., (2021a), the authors found that teams achieving 
higher learning gains in a robot-mediated human-human collaborative 
learning activity, may not necessarily perform well in the task. However, 
their speech, actions and emotions are distinctive as compared to the 
teams with lower learning gains. Thus, behavioral analysis could allow 
for better discrimination between high and low learners which will be 
the focus of our next sub-section. 

2.2. Behavior based systems 

2.2.1. Qualitative methods 
When analyzing the learning process using learners’ behaviors, both 

qualitative and quantitative approaches have been employed. Qualita-
tive methods have been used to analyze, mainly, learners’ gestures and 
speech to see how their learning is evolving. For instance, Jordan and 
McDaniel (2014) employ discourse analysis to describe the issues about 
which learners experienced uncertainty as they pursue collaborative 
learning projects that include a cognitive feeling of uncertainty. They 
identified how language was used in these particular social contexts to 
create and reflect meaning and structure. In Voutsina et al. (2019), au-
thors used microgenetic task analysis to analyze the change in children’s 
verbal reports when their overall solving approach appears to remain 
stable during a mathematical problem-solving task. They found that in 
fact the phases of stability are underlain by dynamic changes in the way 
the same strategy is communicated and conceptualized. 

Although qualitative methods make it possible to contextualize and 
interpret the data based on human perception and analysis of the 
learning scenario, they sometimes overlook hidden factors that human 
observation cannot capture. Additionally, these methods are time and 
effort intensive, and as a result, do not scale up efficiently. With the 
development of sensors that capture data that is not perceivable by 
humans and the advancement in machine learning analysis techniques, 
there has been an increase in the deployment of quantitative ap-
proaches. Desmarais and Baker (2012) argue that as more and more 
learner data becomes available and methods for exploiting that data 
improve, there is potential for constant improvement of learner models. 
In this regard, researchers have attempted to gain an understanding of 
the learning process by considering multiple modalities and machine 
learning (ML) techniques as discussed below. 

2.2.2. Quantitative methods 
Perera et al. (2009) apply sequential pattern mining (SPM) on 

learners’ log actions in a collaborative learning environment to extract 
sequences of frequent events. This analysis revealed interesting patterns, 
such as the presence of frequent task-focused communication, charac-
terizing the teams ending up with positive and negative outcomes. 
Successful groups exhibit patterns suggestive of members giving 
frequent updates to the group while working on a task; such patterns are 
not present in the weaker groups. Kinnebrew et al. (2014) used SPM 
algorithms along with a hierarchical clustering algorithm to study the 
temporal evolution of the sequential patterns throughout the interven-
tion, and compare the similarities and differences of their use between 
the experimental groups interacting with distinct versions of the soft-
ware. The mined patterns allow for identifying and interpreting stu-
dents’ cognitive skills and learning behaviors. Besides, comparing these 
mined patterns with performance and context information, and tracking 
their temporal evolution better characterizes these behaviors as effec-
tive versus ineffective learning strategies. For instance, the importance 
of solution evaluation behaviors in complex learning tasks, is identified 
as one of the effective learning strategies. 

Process Mining (PM) has also been applied to behavioral data to 
examine the learning process. This technique was adopted to discover 
the underlying problem solving or learning process model from the 
learning activity interaction sequence. Paans et al. (2019) employs a 
fuzzy miner algorithm, on sequences of encoded verbal utterances 

within dyads in a collaborative learning activity and find that repeated 
occurrences of social challenges during collaboration harm the learning 
outcomes. Here social challenges are defined as the failure to get along, a 
lack of joint attention, being highly critical, and so on. In fact, pairs, who 
repeatedly have disagreements, are more easily distracted, more easily 
go off-topic, have trouble getting back on topic again, and thus, are at 
risk for lower assignment quality. 

Further, research suggests including more than one modality in the 
analysis because incorporating multimodal techniques would allow 
researchers to examine unscripted, constructionist, complex tasks in 
more holistic ways (Blikstein, 2013). Emerson et al. (2020) investigate 
this by analyzing log actions, facial expression of emotions, and eye gaze 
both separately and combined, and find that models utilizing multi-
modal data either perform equally well or outperform models utilizing 
unimodal data to predict learners’ posttest performance and interest in a 
game-based learning environment. Olsen et al. (2020) further incorpo-
rate data temporality by using a Long Short-Term Memory (LSTM) 
model on log, gaze, audio, and dialog temporal data to predict teams’ 
performance in a collaborative learning activity. The results indicate 
that combining various data streams from different time scales may be 
more beneficial than unimodal data. They also highlight the value of 
accounting for temporal aspects of the learning process as the temporal 
analysis of the gaze and audio measures provided accurate prediction of 
the normalized learning gain, while the averages and counts based 
analysis on the same features provided no information. Further, Gian-
nakos et al. (2019) highlight how fused multimodal data, consisting of 
eye tracking, EEG, video, and wrist band data in addition to click stream 
data, can considerably reduce the prediction error for learning perfor-
mance as compared to when only click streams are used in the design of 
learning technology. Lastly, in Yang et al. (2021, p. 2902), the authors 
have modelled the joint visual attention and with that the cognitive 
engagement of dyads using eye gazes and eye blinks data, and suggest 
that this multimodal temporal approach gives more and accurate in-
sights into the collaborative problem solving engagement. 

Another ML technique that has been used to temporally model the 
learning process with multimodal data is the Hidden Markov Model 
(HMM). In Sharma et al. (2020), the authors use a combination of HMMs 
and the Viterbi algorithm to predict learners’ effortful behaviors 
throughout the learning activity. They consider the effort categories as 
the hidden states and multimodal data-driven clusters as the observa-
tions. Results show that the suggested method outperforms the 
contemporary classification algorithms in classifying learners’ behav-
ioral patterns as effortful or effortless. Furthermore, this methodology 
highlights the exact moments when feedback is needed during the 
learning activity. 

Literature suggests several data-driven multimodal ML approaches 
that could be used to analyze temporal data. Choosing a particular 
approach depends on the assumptions made about the measured data 
and the learning process underlying it, the nature of the data, the volume 
of available data, the purpose of the analysis, and the interpretability of 
the obtained models. The purpose of our analysis is to build a multi-
modal temporal model of the underlying process of learning as it hap-
pens in an open-ended collaborative learning activity. Sequence mining, 
sequential pattern analysis, and stochastic methods such as lag- 
sequential analysis, for instance, do not include the assumption of a 
latent learning process governing the sequence of observations (Bannert 
et al., 2014). Thus, we do not consider such methods for our temporal 
multimodal behavioral data analysis. Process mining, on the other hand, 
does account for latent processes; however, it is usually used to identify, 
confirm, or extend process models on sequential event data, which are 
sequences of discrete data, and thus, are different in nature from the data 
we investigate, which includes multivariate continuous features. Then, 
Recurrent Neural Networks (RNN), particularly LSTMs, have been 
broadly employed in order to analyze temporal multimodal behavioral 
data while complying with the assumption of a hidden process con-
trolling the sequence of observations. Although promising (Spikol et al., 
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2018), these neural networks lack the interpretability for multi-variable 
data regarding variable importance and variable-wise temporal impor-
tance due to their opaque hidden states (Guo et al., 2019). HMMs 
however offer more interpretability as the hidden states are well defined 
by their transition probabilities and emissions distributions. Therefore, 
they allow for a better understanding of the latent learning process 
during the learning activity. 

Therefore, in this paper, we adopt the approach of building a Hidden 
Markov Model of the learning process, trained on learners’ multimodal 
behavioral data. Our goal is to examine how these behaviors evolve 
throughout the activity and lead to learning gains during an open-ended 
collaborative learning activity. Broadly, our research question is, “How 
do the learning behaviors of different types of learners evolve across an open- 
ended collaborative learning activity?” 

3. Methods 

3.1. Participants 

We make use of data from a previous study conducted with a robot- 
mediated open-ended collaborative learning activity called JUSThink 
(Nasir et al., 2020). The study1 was conducted in two international 
schools in Switzerland over two weeks. A total of 96 learners aged 9–12 
years old participated in the study. The participants were organized in 
teams of two, resulting in a total of 48 teams. However, to ensure data 
completeness and homogeneity, only data from 32 teams were used for 
this analysis. Specifically, all teams with incomplete or lost data in terms 
of log actions, audio or video data, pre/post tests were removed, leaving 
us with 34 teams (from which we generated our dataset elaborated in a 
section 3.4). Further, we removed two more teams that were outliers in 
terms of their behaviors (based on data driven behavior profiles that 
were generated in an earlier work as will be explained in section 3.5). 

3.2. Activity 

JUSThink aims to:  

● improve children’s computational skills by providing intuitive 
knowledge about minimum-spanning-tree problems  

● promote collaboration among the team via its scripted design. 

The learning task introduces the minimum-spanning tree problem 
through a gold mining scenario based on a map of Switzerland, where 
mountains represent gold mines and are nodes that should be connected 
by railway tracks, representing the edges, that each have a cost to build. 
The robot, playing the role of the CEO of a gold-mining company, re-
states the problem by asking learners to help it collect the gold by 
connecting the mines with railway tracks. The participants must 
collaboratively construct the solution by connecting the mines while 
spending as little money as possible on building the railway tracks. Our 
motivation for choosing the minimum spanning tree problem and 
computational thinking skills as the domain for this collaborative ac-
tivity is based on the recent push towards introducing CT skills in early 
education (Menon et al., 2019) as well as the idea that robots could be 
one possible effective tool for advancing these skills (Chalmers, 2018). 
Further, in the process of organizing this study, we received feedback 
from various teachers that such an activity can be complementary to the 
curriculum on optimization problems taught to the targeted age range; 
hence, this motivated our choice for the age range of students as 
mentioned in Section 3.1. 

We chose to have an open-ended collaborative activity where 
learners collaborate to solve an open-ended problem without receiving 

direct guidance, and this is inspired by the inherent characteristic of 
such problem-solving followed by instruction (PS-I) activities that 
encourage the awareness of knowledge gaps, stimulate knowledge 
construction processes and lead to increased learning gains (Loibl et al., 
2017; Sinha & Kapur, 2021). Additionally, it is known that collaborative 
activities need to be scripted for better collaboration and learning 
(Kollar et al., 2006; Vogel et al., 2017). Therefore, we designed a script 
based on partial information, role switching and complementarity. 
Concretely we implemented it by having two different views in the task: 
a figurative view and an abstract view, which provide complementary 
functionality as each gives only partial information to the user. On the 
one hand, the nodes and edges of the graph are shown as mountains and 
railway tracks in the figurative view. In this view, one can build and 
erase tracks. On the other hand, the abstract view has nodes and edges as 
circles and solid lines respectively, and deleted railway tracks are shown 
with dashed lines along with their cost so that one can view the cost of 
every track ever added (costs are revealed only when a track is first 
added). The learners can also access previous solutions and their costs 
and bring back a previous solution. Given the nature of the problem and 
the number of views, collaboration in twos was optimal for this scenario. 
Hence we had teams of two, with these two views being swapped be-
tween participants every two moves, enabling both team members to 
experience the thought process that comes with the view. Given this 
collaborative script, team members need to communicate in order to use 
the information in both the views, make decisions and build the solu-
tion. Furthermore, they need to agree on a solution spanning the whole 
graph, as they both need to press the submit button for it to be submitted 
to the robot for evaluation. The robot intervenes intermittently during 
the learning task to provide feedback on the progress, give hints, and 
lend support through minimal verbal and non-verbal behaviors. More on 
the task can be found in (Nasir et al., 2020). 

Teams of two children each took part in the activity that lasted 
approximately 50 min. First, the robot welcomes the children and ex-
plains the goal of the task. Participants then take an individual pre-test. 
Following the pre-test, the robot introduces the two game views and 
their functionalities. The learning task then begins and lasts around 25 
min, after which, children complete an individual post-test and a self- 
assessment questionnaire. Finally, the robot greets them goodbye. The 
robot thus mediates and automates the entire activity by giving in-
structions and by moving the activity from one stage to the next as 
required. It also provides some motivational feedback along the way. 

The pre and post-tests consist of questions with a context other than 
the learning task scenario and are based on variants of the graphics in 
the muddy city problem.2 

3.3. Experimental setup 

As seen in Fig. 1, the two team members sit across from each other 
with a touch screen placed horizontally in front of each one. They are 
separated by a barrier so as to be able to see each other but not each 
other’s screen. The humanoid robot (QTrobot) is placed on the side 
visible to both children. Data was collected throughout the activity using 
one environment camera to capture the whole interaction scene, two 
RGB-D front cameras, one for each participant to capture the face up- 
close, and two lavalier microphones to capture audio data. Two com-
puters, connected to the screens and the robot, manage the activity and 
the synchronous recording of the sensors. 

Each team member interacts with an instance of the JUSThink 
application. A separate robot application manages the robot. All of the 
applications communicate via Robot Operating System (ROS). Partici-
pants’ and robot’s actions are recorded using Rosbags. 

1 This study received the approval of the university’s ethics committee with 
reference number HREC No.: 051-2019. 2 https://classic.csunplugged.org/activities/minimal-spanning-trees/. 
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3.4. Dataset 

We make use of our open-source dataset PE-HRI_Temporal (Nasir 
et al., 2021b) generated from the data collected in the study mentioned 
in section 3.1. In the data set, for each team, the interaction of around 
20–25 min is organized in windows of 10 s; hence, we have a total of 
5048 windows of 10 s each. We report team level log actions, speech 
behavior, affective states, and gaze patterns for each window. More 
specifically, within each window, 26 features are reported in two for-
mats; hence, giving a total of 52 values. We make use of the non--
incremental format of the 26 features which means we look at the value 
of a feature in that particular time window without carrying any infor-
mation from previous time windows. For more details, please see Nasir 
et al. (2021b). The 26 features are listed in Tables 1–3. The rationale for 
using these features to analyze learning are explained in our previous 
publication (Nasir et al., 2021a). 

In addition to the features mentioned in Table 1, each window also 
includes a normalized_time feature which refers to the time when this 
window occurred with respect to the total duration of the task for a 
particular team. The dataset also consists of team level learning and 
performance metrics, where performance is measured based on the cost 
of a current solution relative to the optimal solution, while learning 
gains (absolute, relative or joint-absolute) are calculated by looking at 
the difference between the students scores on their post-tests and pre- 
tests. More detailed definitions are provided at Nasir et al. (2021b). 
Please note again that this dataset provides data for 34 teams, but for our 
current analysis we make use of data from 32 teams, as mentioned 
previously, giving us 4676 windows. Lastly, considering learning ana-
lytics and/or educational human-robot interaction studies with a robot, 
similar or even lower sample sizes are the norm (Belpaeme et al., 2018; 
Gordon et al., 2016; Ramachandran, Sebo, & Scassellati, 2019), as is the 
case with the type of analysis that we do in this work (for example, see 
Sharma et al. (2020). 

3.5. Analysis methodology 

Since the methodology of this paper builds on the outcomes of our 
previous work (Nasir et al., 2021c), we briefly describe it here. In the 

earlier work, we generated behavioral profiles based on the same fea-
tures described above in section 3.4, but aggregated across the entire 
activity. We found differences in the behaviors between those who learn, 
i.e., gainers and those who do not end up learning, i.e., non-gainers. 
Further, we also observed behavioral differences in the two types of 
gainers (Nasir et al., 2021c). We saw that while speech behavior was a 
discriminatory factor between gainers and non-gainers, it was actually 
the interplay between problem solving strategies and emotional ex-
pressivity that distinguished the different ways in which gainers learned. 

Table 1 
Log features from our PE-HRI-Temporal dataset.  

Log Features 

Feature Name Description 

T_add The number of times a team added an edge on the map in that 
window 

T_remove The number of times a team removed an edge from the map in 
that window 

T_ratio_add_rem The ratio of addition of edges over deletion of edges by a team in 
that window 

T_action The total number of actions taken by a team (add, delete, submit, 
presses on the screen) in that window 

Redundant_exist The number of times the team had redundant edges in their map 
in that window 

T_hist The number of times a team opened the sub-window with history 
of their previous solutions in that window 

T1_T1_add The number of times either of the two members in the team 
followed the pattern consecutively: I delete an edge, I add it back 
in that window 

T1_T1_rem The number of times either of the two members in the team 
followed the pattern consecutively: I add an edge, I then delete it 
in that window 

T1_T2_add The number of times the members of the team followed the 
pattern consecutively: I delete an edge, you add it back in that 
window 

T1_T2_rem The number of times the members of the team followed the 
pattern consecutively: I add an edge, you then delete it in that 
window 

T_help The number of times a team opened the instructions manual in 
that window  

Table 2 
Video based features from our PE-HRI-Temporal dataset.  

Video Features: Affective states and Gaze 

Feature Name Description 

Positive_Valence The average value of positive valence for the 
team in that window 

Negative_Valence The average value of negative valence for the 
team in that window 

Difference_in_Valence The difference of the average value of positive 
and negative valence for the team in that window 

Arousal The average value of arousal for the team in that 
window 

Gaze_at_Partner The average of the two team member’s gaze when 
looking at their partner in that window where 
each individual member’s gaze is calculated as a 
percentage of time in that window. 

Gaze_at_Robot The average of the two team member’s gaze when 
looking at the robot in that window where each 
individual member’s gaze is calculated as a 
percentage of time in that window. 

Gaze_other The average of the two team member’s gaze when 
looking in the direction opposite to the robot in 
that window where each individual member’s 
gaze is calculated as a percentage of time in that 
window. 

Gaze_at_Screen_Left The average of the two team member’s gaze when 
looking at the left side of the screen in that 
window where each individual member’s gaze is 
calculated as a percentage of time in that 
window. 

Gaze_at_Screen_Right The average of the two team member’s gaze when 
looking at the right side of the screen in that 
window where each individual member’s gaze is 
calculated as a percentage of time in that 
window. 

Gaze Ratio of Screen_Right and 
Screen_Left 

The average ratio of a team member looking at 
the right side of the screen over the left side in 
that window  

Table 3 
Audio based features from our PE-HRI-Temporal dataset.  

Audio Features: Speech 

Feature Name Description 

Speech_Activity The average of the two team member’s speech activity in 
that window where each individual member’s speech 
activity is calculated as a percentage of time that they are 
speaking in that window. 

Silence The average of the two team member’s silence in that 
window where each individual member’s silence is 
calculated as a percentage of time in that window. 

Short_Pauses The average of the two team member’s short pauses over 
their speech activity in that window. Each individual 
member’s short pause refers to a brief pause of 0.15 s and 
is calculated as a percentage of time in that window. 

Long_Pauses The average of the two team members long pauses over 
their speech activity in that window. Each individual 
member’s long pause refers to a pause of 1.5 s and is 
calculated as a percentage of time in that window. 

Speech_Overlap The average percentage of time the speech of the team 
members overlaps in that window. 

Overlap_to_Speech_Ratio The ratio of the speech overlap over the speech activity of 
the team in that window.  
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Based on that, we identified the two types of gainers as Expressive Ex-
plorers and Calm Tinkerers, and the non-gainers as Silent Wanderers. In 
this paper, we retain the same terminology. While the aforementioned 
behavioral profiles highlight the aggregate differences between all types 
of learners, in order to identify the differences between the learning 
process of those who learn and those who do not, we employ HMMs to 
generate multi-modal temporal behavioral profiles for each type of 
learners. This enables us to understand how the multimodal behaviors of 
each type of learners evolve throughout the interaction. 

An HMM is a doubly stochastic model with an underlying stochastic 
process that is not observable, but can only be observed through another 
set of stochastic processes that produce the sequence of observed sym-
bols. It is specified by a set of N states, an initial probability distribution, 
a transition probability matrix, and a sequence of emission probabilities. 
Additionally, HMMs require three assumptions: firstly, that the next 
state is dependent only on the current state, secondly, that the state 
transition probabilities are independent of the time of transition and 
finally, that the current observations are statistically independent of the 
previous outputs. In our case, our data is grouped into independent 10 s 
windows, with each window containing behaviors occurring in those 10 
s alone, and thus assumption 3 holds. Further, each hidden state of the 
HMM manifests a set of significantly different behaviors by which the 
state is characterized; this set of behaviors together signify a particular 
approach to learning. Hence, the next state or the approach to learning 
taken next by a pair of learners depends only on the current state 
(assumption 1) and the probability of transitioning to a different 
approach to learning is independent of when in the activity it occurs 
(assumption 2). Thus all the assumptions required to do an HMM 
analysis are valid for our data and learning context; hence, allowing us 
to proceed with HMM modeling. Our analysis consists of four main 
steps: 

3.5.1. Step1: Preprocessing 
As our features come from different kinds of behavioral modalities, 

they are on different scales. So we begin by applying a min-max scaler to 
normalize our data. 

3.5.2. Step2: Behaviors Clustering 
In order to have a starting point for the number of states of the HMM, 

we perform a clustering of the temporal behavioral features to identify 
significantly different behavioral clusters. We then assume that these 
clusters are emitted by distinct hidden states, and so the number of states 
is the same as the number of behavioral clusters. For clustering, a 
Principal Component Analysis (PCA) is conducted to compute the 
principal components, the first components are kept based on the elbow 
method on the proportion of variance explained. The Principal Com-
ponents are then clustered using the K-Means algorithm. The number of 
clusters is optimized based on the elbow method on inertia and the 
silhouette score. In order to confirm that the obtained clusters are 
actually different in terms of multimodal behaviors, we perform a 
Kruskal-Wallis test on the clusters’ behavioral features. This test further 
serves as a means to identify behaviors that significantly distinguish a 
cluster from the other. This step is summarized in Fig. 2. 

3.5.3. Step3: the HMM 
Since our temporal behavioral features are multivariate and most of 

them have continuous values, our emission probability distribution 
should be continuous multivariate. Thus, for this step, we use the 
GMMHMM model provided by the hmmlearn library,3 as it accounts for 
the aforementioned condition by representing the emission distribution 
as a mixture of multiple Gaussian densities. 

We set the number of hidden states to the number of clusters found in 

the previous step. The HMM is then trained using the Expectation- 
Maximization algorithm on the set of the teams’ sequences. Each 
sequence consists of all the observations of a team sorted in increasing 
order of time, where an observation consists of the normalized multi-
modal behavioral features and time at a given time window. We then 
apply the Viterbi algorithm on these sequences to recognize at which 
hidden state each observation is emitted. As a result, for each hidden 
state, we can construct the set of observations emitted by that state. 
Finally, we perform a Kruskal-Wallis test on each feature between each 
pair of these sets with the significance threshold set to 0.01. For each of 
the significantly different features between a pair of sets, we further 
compare the mean values across the sets and label the mean value of 
each set with one of the labels {Highest, High, Medium, Low, Lowest} 
based on a generated score in the following manner: 

For a significantly different feature x, we first define: 

min(x) = minimum of mean values of x across all sets  

max(x) = maximum of mean values of x across all sets 

Then, for a set i, we generate a score for the feature x as: 

score(x, i) =
(mean of x in i − min(x))

(max(x) − min(x))

Lastly, the feature x in i is labeled with:  

● ‘Highest’, if score(x, i) = 1.  
● ‘High’, if 2/3 ≤ score(x, i) < 1.  
● ‘Medium’, if 1/3 ≤ score(x, i) < 2/3.  
● ‘Low’, if 0 < score(x, i) < 1/3.  
● ‘Lowest’, if score(x, i) = 0. 

The significantly different features and their labels for a set i repre-
sent the manifestation of the hidden state corresponding to the set i and 
we subsequently use these labeled features to represent the state. This 
enables us to interpret the progression of the hidden learning states in 
terms of the values of the significantly differing observed behaviors. 
Fig. 3 outlines the processes employed to train and interpret the model. 

In conclusion, in this step, the HMM is trained in order to learn the 
hidden states that emit the observed multimodal behavioral features, 
and the significantly different features that characterize each state are 
identified. Interpreting these results allows for building the learning 
profiles that dyads go through during the activity. Furthermore, the 
model allows for learning the initial probability distribution as well as 
the probabilities to transition from one state to the other, which allows 
for building the temporal profile. 

This entire pipeline, as summarized in Fig. 4, is adopted to identify 
the temporal profiles for each type of learners separately.4 Its imple-
mentation is publicly made available in a Github repository. 

4. Results 

This section presents the results of the analysis methodology applied 
to the temporal multi-modal datasets of the Expressive Explorers, the 
Calm Tinkerers, and the Silent Wanderers. The clustering analysis, as 
discussed in the previous section, applied for the Expressive Explorers, the 
Calm Tinkerers, and the Silent Wanderers suggests the following number 
of components [PCs = 4, PCs = 4, PCs = 5 respectively] and the 
following number of clusters [ K = 2, K = 3, K = 3 respectively], based 
on the elbow method on inertia and the silhouette scores. These are 
considered as a starting point for the number of hidden states, and we 
further train Hidden Markov models with K+1 states to identify whether 
other non trivial states exist or not, that eventually suggests that we have 
three hidden states for each of these groups. Hence, we define the 

3 hmmlearn is a set of algorithms for unsupervised learning and inference of 
Hidden Markov Models, https://hmmlearn.readthedocs.io/. 4 Github repository’: https://github.com/chili-epfl/justhink-HMM. 
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following naming convention for the hidden states in each of the groups’ 
models:  

● InitialState: the state with the highest initial probability.  

● MoreProbableState: the state with the highest transition probability 
from the initial state.  

● LessProbableState: the state with the lowest transition probability 
from the initial state. 

Fig. 2. Behaviors Clustering step.  

Fig. 3. The HMM step.  

Fig. 4. The analysis methodology.  
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We further define the following conventions for the state diagrams:  

● The size of a state in the state diagrams is representative of its initial 
state probability. That is, the bigger the circle representing the state, 
the bigger its initial probability is. 

● The size of the font of the transition probabilities in the state dia-
grams is illustrative of its magnitude. Explicitly, higher transition 
probabilities have bigger font sizes. 

For each of the three groups, their HMM model, trained on sequences 
of observations of the respective group and the number of states set to 
three, is represented by the state diagrams in Figs. 5–7, respectively. For 
all groups, the probabilities suggest that once in InitialState, staying in 
that state has the highest probability compared to other possible tran-
sitions. However, once out of this state, going back to the InitialState 
from the LessProbableState and MoreProbableState generally has lower 
transition probabilities. The probabilities are especially low in the case 
of Expressive Explorers from both of the other states, and for both Calm 
Tinkerers and Silent Wanderers from the LessProbableState. On the other 
hand, the Silent Wanderers can still transition from MoreProbableState to 
InitialState with a non-trivial probability of 0.305 which is higher than 
the probability of going to LessProbableState from MoreProbableState. 
Similarly, the Calm Tinkerers also have a relatively higher transition 
probability to go back to the InitialState from their MoreProbableState; 
however, they still have a higher probability to transition to their Les-
sProbableState from this state. Furthermore, the findings from the 
Kruskal-Wallis analysis comparing the values of the multi-modal 
behavioral features between each pair of states, for each group of 
learners, is shown in tables next to the respective HMM models. The 
tables include the features which represent the manifestation of the 
hidden states. Note that the features that do not differ significantly be-
tween the states are not shown in these tables. This does not mean the 
absence of that feature in a state, rather that the feature does not differ 
significantly between states, i.e., the value of that feature does not 
oscillate between states significantly. We discuss further on these results 
in the upcoming section. 

5. Discussion 

5.1. Temporal multimodal behavioral profiles 

In this section, we describe the higher level understanding that the 

temporal analysis, based on the HMMs identified in the previous section, 
provides us of how the multi-modal behaviors of each group of learners 
evolve during the collaborative learning activity and what this says 
about their learning process. Based on the findings in Section 4, we 
observe two kinds of problem solving (PS) strategies namely:  

● Global PS Strategy: This strategy includes global level exploration 
and/or reflection characterized by addition actions and looking at 
past solutions (history).  

● Local PS Strategy: This strategy includes local level exploration and/ 
or reflection characterized by deletion actions and addition followed 
by deletion actions or vice versa. 

Previously, in the results section, we name our states on the basis of 
initial probability (InitialState) or transition probabilities from the initial 
state (LessProbableState, MoreProbableState). In this section, we try to 
understand the nature of the states and consequently, we name them 
based on their:  

1. Productivity  
2. Problem solving strategy 

With respect to 1, in our previous work (Nasir et al., 2021c), we 
found that the quantity and quality of speech was able to discriminate 
between productive and non-productive teams in terms of learning. 
Additionally, we found that when the behaviors were averaged across 
the entire interaction for each team, there were two problem solving 
strategies (Global PS Strategy and Local PS Strategy) that emerged and 
overall, one group of gainers displayed only one strategy, while the 
other group of gainers displayed the other. However, the temporal 
profiles of each group of learners help elaborate these findings further. 

Please note that in the upcoming figures of the profiles, the strength 
of the transition probabilities is represented by the strength of the ar-
rows and the unproductive, semi-productive and productive states and 
transitions are represented by the different colors as described in the 
legend of the figures. 

5.1.1. Expressive Explorers 
The temporal profile for Expressive Explorers is shown in Fig. 8 from 

which we see that these learners start, with the highest probability, at a 
state characterized by more technical help-seeking, fewer actions with 
the learning activity, and high silence. For these reasons, it appears to be 

Fig. 5. HMM State diagram for the Expressive Explorers.  
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a state of non-productivity. As opposed to the averages and frequency 
analysis in Nasir et al. (2021c), which suggests that Expressive Explorers 
learned by following a more global problem solving strategy, this tem-
poral analysis indicates that once they go out of the non-productive 
state, they employ both of the problem solving strategies: in the more 
probable state they follow a global problem solving strategy of adding 
edges and looking more at their previous solutions, and a less probable 
state where they follow a local problem solving strategy consisting of 
more removals in general, and removing each other’s last added edges in 
particular. What is interesting is that the latter state is more likely to 
occur at later times in the activity than the global problem solving state, 
suggesting that these students begin with a more global problem solving 
approach and move on to a more local strategy of making quick changes. 
This transition is also characterized by increasing negative emotions, 
such as frustration, that is perhaps brought on by the awareness of 
reaching the end of the activity and the allotted time. In the states of 
non-productivity (while trying to understand the activity) and global 
problem solving (while adding edges), the learners gaze at the screen is 
high, while in the state of local problem solving while removing edges, 
and in particular each others’ edges, the learners gaze at their partners is 
highest. However, both of the problem solving states are characterized 

by high speech and speech overlap which signifies good collaboration 
(Viswanathan & Vanlehn, 2018). Once Expressive Explorers reach a 
productive state, it is highly unlikely to get back to the non-productive 
one. 

5.1.2. Calm Tinkerers 
Calm Tinkerers as shown in Fig. 9 start, with the highest probability, 

at a state characterized by high technical help-seeking, fewer actions, 
and high silence. Due to these behaviors, it seems to be a state of non- 
productivity. Similar to Expressive Explorers, the temporal analysis 
done in this paper gives a richer insight into these learners behaviors. 
Contrary to the aggregate analysis which suggested that these learners 
adopt a local problem solving strategy, this analysis suggests that these 
type of gainers too go through two states of productivity: a less probable 
state of local problem solving and a more probable state of global 
problem solving. In the state of local problem solving, Calm Tinkerers do 
most removal actions, particularly removing each other’s last added 
edges, show lesser negative emotions, and their speech is at its highest. 
In the state of global problem solving, these learners do more addition 
actions, are more frustrated and their speech decreases but is still rela-
tively high. Contrary to Expressive Explorers, we find that in Calm 

Fig. 6. HMM State diagram for the Calm Tinkerers.  

Fig. 7. HMM State diagram for the Silent Wanderers.  
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Tinkerers the state of local problem solving is more likely to occur earlier 
in the activity than the state of global problem solving, suggesting that 
these learners begin with a local problem solving approach. However, 
similar to the Expressive Explorers, these learners change in problem 
solving strategies is also accompanied with an increase in negative 
emotions (see Fig. 9). 

In the state of non-productivity while trying to understand the ac-
tivity, the Calm Tinkerers gaze at their partner as well as the right side of 
the screen is high, in the state of global problem solving while adding 
edges the learners gaze on both sides of the screen is high and in the state 
of local problem solving while removing edges, including each others’ 
edges, the learners gaze at the robot and the left side of the screen is 

highest. We must note that the only difference between the left and the 
right sides of the screen is that if a previous solution is opened, it is 
displayed on the right side; whereas, the information on the total 
number of nodes and the number of edges currently present on the map 
is on the left side. Similar to Expressive Explorers both the productive 
states are characterized by high speech signifying good collaboration in 
both states (Viswanathan & Vanlehn, 2018). Further, similar to 
Expressive Explorers, the speech in the local PS state is highest and this is 
likely because this state involves the highest removal of each others’ 
edges which requires discussion and agreement among both partners, 
thus increasing the speech activity. Lastly, different from Expressive 
Explorers, these learners still have a medium probability to fall back to 

Fig. 8. Temporal profile for Expressive Explorers.  

Fig. 9. Temporal profile for Calm Tinkerers.  

J. Nasir et al.                                                                                                                                                                                                                                    



Computers and Education: Artificial Intelligence 3 (2022) 100093

11

the unproductive state from the state of global problem solving strategy. 

5.1.3. Silent Wanderers 
Similar to the two gainer groups, the Silent Wanderers (shown in 

Fig. 10) start with the highest probability at a non-productive state 
characterized by more technical help-seeking, high silence, and low 
actions with the learning activity. They go through a more probable 
state, occurring in the middle of the activity (suggested by medium 
normalized time), where they adopt a global problem solving strategy in 
which their speech increases and they do more addition actions. How-
ever there is no change in their reflective actions in this state, either in 
terms of looking at their previous solutions or removing their own or 
their partners added edges. Even from this state of productivity, they can 
still fall back to the state of non-productivity with a high transition 
probability. In the less probable state, which is more likely to occur 
towards the end of the activity and is characterized by a more local 
problem solving strategy, non-gainers do more removals and few addi-
tions. We may infer that this is a more reflective phase although their 
reflection, unlike the gainers, does not include a significant increase in 
the use of the solution history or each other’s last actions. However, this 
state is characterized by their highest speech. 

In terms of gaze, in the non-productive state while trying to under-
stand the activity these learners gaze at the left side of the screen is 
highest and this could be because the information on the number of 
nodes and the number of edges currently present on the map is located 
on the left. In the more probable state of doing additions, their gaze at 
their partner and the right side of the screen is highest, where the history 
is also located and it could be that learners were accessing their past 
solutions. Finally, in the less probable state of removing edges, their gaze 
at the right side of the screen is high, which could again indicate learners 
accessing their history. Interestingly, we find no difference in the 
learners frustration between the three states, indicating that their 
negative emotions were relatively stable regardless of whatever they 
were doing in the activity. Thus our analysis reveals that non-gainers go 
through a “slower” learning pathway characterized by an intermediate 
semi-productive state where actions on the activity and speech in-
creases, but reflection is generally unchanged. While they do reach a 
productive state of reflective problem solving and higher amount of 
discourse, it is reached late in the activity. However, this suggests that 

given time even the non-gainers could achieve higher learning gains 
since once they reach this productive state, similar to gainers, the 
probability of going back to the non-productive states is low. We hy-
pothesize that the lack of reflection in the intermediate state could be the 
reason why non-gainers do not have higher learning gains as it is known 
that reflection plays a crucial role in learning from problem solving 
(Do-lenh, 2012; Hmelo-Silver, 2004). 

Together our findings suggest that not only are there multiple 
behavioral profiles of learning (Nasir et al., 2021c), there are multiple 
behavioral pathways for learning, and learners who have learning gains 
do not adopt a single problem solving strategy, global or local, but 
indeed a combination of both. Further, they modify strategies based on 
the status of the problem solving and feedback obtained from the 
environment. Our findings also suggest an interplay between PS stra-
tegies and other behaviors which we explore in-depth in the next 
section. 

5.2. Interplay between PS strategies and other behaviors 

Now that the temporal learning profiles have been explained for each 
group, we would like to focus on how speech, affect and gaze evolve for 
each of these groups and interplay with the global vs the local problem 
solving strategies i.e., while performing addition actions predominantly 
or when removal actions are more frequent, respectively. This interplay 
between the problem solving strategies and behaviors of speech, gaze, and 
affect is shown in Table 4, which has been synthesized based on our 
results described in section 5.1. We note that this table does not include 
those behaviors that stayed consistent for a certain group of learners 
between the two strategies. For example, for Silent Wanderers, the fact 
that we do not see negative affect in the table indicates that there were 
not any significant oscillations for their negative valence between the 
two strategies, i.e., their negative emotions were more consistent irre-
spective of which problem strategy they used. 

When doing global problem solving consisting predominantly of 
additions, the two gainer groups Expressive Explorers and Calm Tinkerers 
have high speech, while Silent Wanderers speak relatively less. In this 
phase, the two gainer groups gaze at their screen is high, while the gaze 
towards their partner or the robot is lowest. On the other hand, for the 
non-gainer group Silent Wanderers, while the gaze towards the screen is 

Fig. 10. Temporal profile for Silent Wanderers.  
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high, their gaze towards their partner is highest in this phase. Lastly, in 
terms of affect, Expressive Explorers express medium level of negative 
emotions, Calm Tinkerers display both highest levels of positive as well as 
negative emotions in this phase, while the non-gainer group Silent 
Wanderers are associated with their highest levels of positive emotions in 
this phase. 

Next, we observe that when using the local problem solving strategy, 
i.e., more removals, an action indicative of reflection, each group’s 
speech activity is at their highest. In terms of gaze behavior, the two 
gainer groups Expressive Explorers and Calm Tinkerers gaze at their 
partners as well as the robot is high in this phase, while Silent Wanderers 
gaze towards their partner is lesser. Furthermore, Expressive Explorers 
gaze towards the screen is the lowest in this phase, while the other two 
groups gaze at the screen is medium. Lastly, Expressive Explorers show 
most negative emotions during this strategy, Calm Tinkerers are associ-
ated with medium emotions, while Silent Wanderers lean towards high 
positive emotions while removing. 

It is interesting to note that irrespective of the phase of problem 
solving, both gainer groups maintain a high level of verbal interaction as 
opposed to the non-gainer group Silent Wanderers who speak less during 
global problem solving and speak the most while in the local problem 
solving phase. This suggests that verbal interactions are important to be 
maintained during both the global and local problem solving phases, i.e. 
both when making additions, as well as when doing removals. The need 
for communication itself is not surprising as the collaborative problem 
solving task requires learners to share information for building a com-
mon ground and improving their understanding to construct a solution, 
monitor and reflect on the solution (Barron, 2003; Chang et al., 2017; 
Hausmann et al., 2004; Roschelle & Teasley, 1995). Our analysis re-
iterates the need for communication throughout collaborative problem 
solving, regardless of the PS strategy being applied. Nevertheless some 
phases may demand a higher level of interaction between partners. For 
instance, literature suggests an increase in interaction between partici-
pants during phases of socially shared regulation of learning which in-
volves reflection, monitoring the solution that has been built and 
evaluating whether to revise it (Isohätälä et al., 2017; Rogat & 
Linnenbrink-Garcia, 2011; Sinha et al., 2015). We also find similar be-
haviors in that we see an increase in speech activity of all learners in 
their most reflective phase of problem solving, which in our case is the 
local problem solving that involves continuously evaluating whether an 
added edge satisfies the requirement of minimising cost and removing it 
if not. This requires partners to share the information on their respective 
screens and discuss it with respect to the overall solution, thus leading to 
increase in speech. 

In terms of affect, all groups oscillate between different affective 

states and/or different levels of affect. Expressive Explorers oscillate be-
tween medium and very high negative valence levels during global and 
local phases respectively, i.e., showing a higher frustration during the local 
strategy. On the other hand, the second type of gainers, Calm Tinkerers 
oscillate between higher to medium level of arousal, with a mix of both 
positive and negative valence, when moving respectively between 
global and local problem solving, i.e, displaying higher levels of both 
excitement and frustration during the global strategy. Lastly, for Silent 
Wanderers, the oscillation is more in terms of arousal, that shifts between 
their relative levels of highest to high positive valence between global 
and local problem solving, respectively, i.e, being more excited during 
global problem solving. The changing dynamics of affective states over the 
entire problem solving is supported by the work of D’Mello and Graesser 
(2012); however, what is interesting is that both gainer groups experience 
negative emotions during both global and local problem solving phases. A 
meta-analysis of discrete affective states during learning with technol-
ogy indicates that negative states such as anger, contempt, sadness, 
anxiety, fear, etc. are relatively infrequently experienced when students 
engage with technology-enhanced learning contexts (D’Mello, 2013). 
However, these learning contexts are guided discovery learning contexts 
that usually employ success-driven scaffolding to nudge the learners 
towards the correct solution. Sinha (2021b), in a recent work suggested 
that in a problem-solving followed by instruction (PS-I) context, where 
the problem-solving phase is “naturally designed to be ill-structured and 
afford the generation of multiple suboptimal solutions (Kapur & Bie-
laczyc, 2012)”, some levels of negative emotions can in fact be beneficial 
as they can “keeps one alerted of challenges requiring more focused 
attention, and assists in comprehending conflicting information (Ivtzan 
et al., 2015; Kashdan & Biswas-Diener, 2014)”. Since our open-ended 
activity is also designed as a PS-I activity, the surfacing of absolute 
medium levels of negative emotions among gainers (the mean values can 
be seen in the Tables in the appendix; note that the labels highest, high, 
medium, low, lowest are relative within a group) can be considered as 
supporting what was reported in Sinha (2021b). In this work, we addi-
tionally point out when negative emotions increase during 
problem-solving, relative to other phases. 

Another point of interest is that while the interplay between problem 
solving strategy and affect was highlighted in our previous work (Nasir 
et al., 2021c), this work highlights that a particular affect is not strictly 
associated with a type of problem solving strategy but it also depends on 
the phase of the activity and a particular problem solving strategy 
applied at the later stages of the activity can lead to more negative 
emotions than would be otherwise observed. In D’Mello and Graesser 
(2012), the authors highlight that moving from a state of equilibrium or 
flow to a state of disequilibrium results in negative emotions such as 
confusion and frustration. Our findings of gainers emotions also suggests 
a similar behavior; for instance when Expressive Explorers change stra-
tegies from a global to a local one, it is accompanied by an increase in 
negative emotions and when Calm Tinkerers shift from a local to a global 
strategy they show an increase in negative emotions. This change in 
negative emotions in not very prominent among Silent Wanderers which 
could be because they did not pay as much attention to the task at hand 
or notice the gaps in their prior knowledge and the need for reflection 
(Sinha, 2021b). 

Oscillation of gaze between the partner and the screen, and the robot 
and the screen, is particularly interesting as we observe that for both 
gainer groups, they look the least at their partner or at the robot when 
employing the global PS strategy but highest during the local PS strat-
egy. On the contrary, the non-gainer group looks more to their partner 
and the robot when exhibiting global PS strategy compared to the local 
PS strategy. Literature suggests that gaze is a means of action moni-
toring, predicting intention, action co-ordination and planning in order 
to establish a common ground that can lead to better collaboration 
(Huang et al., 2015; Sebanz et al., 2006). Together our findings and 
literature suggest that in an environment that has both social (a partner) 
and task elements (screens), looking at your partner during the local PS 

Table 4 
Interplay between stages of problem solving strategies and behaviors of speech, 
gaze, and affect.  

When employing a global problem solving strategy 

Behavior Expressive 
Explorers 

Calm 
Tinkerers 

Silent 
Wanderers 

Speech High High Medium 
Gaze towards partner and/ 

or robot 
Lowest Lowest Highest 

Gaze towards the screen High High High 
Affect Medium Negative Highest both Highest 

Positive 

When employing a local problem solving strategy 

Behavior Expressive 
Explorers 

Calm 
Tinkerers 

Silent 
Wanderers 

Speech Highest Highest Highest 
Gaze towards partner and/ 

or robot 
Highest High Medium 

Gaze towards the screen Lowest Medium Medium 
Affect Highest Negative Medium both High Positive  
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strategy, which involves mostly removing what the team has already 
built and requires agreeing on which edges to remove, can support joint 
action. Since in this work we do not distinguish between moments when 
both partners are looking at each other and when one partner is looking 
at the other (both are considered when computing the feature “gaze at 
partner”), eye gaze could either be a way to confirm agreement on a 
bilaterally decided course of action or a way to negotiate to reach a 
consensus when a unilateral decision was taken. On the other hand, 
during the global PS strategy which involves series of additions, it is 
more productive to look at the screen rather than at the partner as the 
plan is already agreed on (global reflection/planning). 

5.3. Connections to computer-supported collaborative learning literature 

Within CSCL literature the temporal analysis of computer-supported 
collaborative learning (Lämsä et al., 2021) has predominantly focussed 
on the content of learners verbal communication/interaction/discussion 
and how it evolves during the learning activity, with the non-verbal 
activities such as actions within the technology-based learning envi-
ronment, serving to complement the analysis of verbal communication. 
In our work, we employ multimodal features to understand how pairs of 
students learn by working on an open-ended scripted collaborative 
problem-solving activity. For this, we consider the pair as a single unit 
and examine how their collective behaviors (speech activity, 
problem-solving actions, eye gaze and affect) change across the activity 
as they learn by problem-solving. Our analysis does not include any 
measure of the quality of the verbal discussion, but studies the temporal 
evolution of this units’ learning behaviors using only fully quantitative 
data and methods. Similar methods have been used in (Marti-
nez-Maldonado et al., 2013) where the authors were able to distinguish 
between high and low collaborating groups based on their action and 
speech sequences and our work adds to this literature by additionally 
considering affect and eye gaze, and modeling the temporal learning 
process of different types of learners. 

Further, using the quality of speech, with and without problem- 
solving actions, has allowed researchers to understand how learners 
temporally regulate their open-ended problem-solving (Chang et al., 
2017; Emara et al., 2021; Kapur, 2011; Malmberg et al., 2015; Sobo-
cinski et al., 2017) in face-to-face collaborative conditions. For instance, 
researchers identified that increased socially shared regulation across 
time corresponded with increased use of more systematic action se-
quences (Emara et al., 2021) and higher performance (Malmberg et al., 
2015). Similarly, Sobocinski et al. (2017) found that in low challenge 
sessions, learners transitioned between the forethought and perfor-
mance phases of self-regulated learning only once, while in high chal-
lenge sessions they transitioned between forethought and performance 
phases more frequently. Chang et al. (2017) identified that successful 
groups discourse transitioned more frequently from monitoring to 
formulating and exploring, along with doing exploratory actions, as 
opposed to less successful groups whose discourse suggested a more 
trial-and-error strategy. While we did not explicitly identify socially 
shared regulation, our findings did agree with the above findings in that 
increased speech activity was overall associated with increased reflec-
tive problem-solving actions, both global and local. In addition, our 
work offers a complementary view of how collaborative open-ended 
problem-solving proceeds, in terms of problem-solving strategies 
(local vs global) rather than problem-solving phases (exploring, 
formulating, planning and monitoring). The global problem solving 
strategy can be considered as one in which planning, exploring, 
formulating and monitoring happens on the scale of the entire problem. 
The local problem solving strategy is one in which the planning, 
exploring, formulating and monitoring happens on the scale of the next 
step towards the solution. Our work thus adds to CSCL literature by 
suggesting that learners seamlessly intertwine these two strategies in 
their productive collaborative problem-solving, and that neither is at the 
outset “better” than the other. 

5.4. Implications for design of adaptive learning interventions 

In this subsection, we highlight some implications of the findings 
discussed above for the design of adaptive learning interventions, both 
at a broader level for the CSCL community, and at the specific level of 
the intervention in our study. To summarize our observations from the 
temporal profiles, we find that:  

1. All learner groups have the highest probability to start with and stay 
in a state of non-productivity. However, once out of it, all learners 
have the lowest probability to return to this state.  

2. The non-gainers transition between states of non-productivity and 
productivity in a smoother manner with an intermediate semi- 
productive state in terms of time. In contrast, gainers’ transitions 
are sharper, in that they transition from the non-productive state to 
one of the two productive states. 

3. Expressive Explorers and Calm Tinkerers do not exclusively adopt a 
global or a local PS approach respectively throughout the activity, as 
suggested by the aggregate behavioral profiles in Nasir et al. (2021c). 
This analysis reveals that both these gainer types adopt both these ap-
proaches and switch between them throughout the interaction. One key 
difference is the stages of the interaction in which the two groups 
employ the strategies, with the Expressive Explorers adopting the global 
strategy earlier and then the local strategy, while the Calm Tinkerers 
adopting the reverse approach. 

4. Further, for the two gainer groups, each of the two problem 
solving strategies is associated with speech, gaze and affect in a unique 
way, that is in some ways comparable (speech and gaze) and in other 
ways opposing (affect). Diving deeper, the relationship of affect with a 
particular problem solving strategy does not seem to be as straightfor-
ward as suggested by aggregate behavioral analysis in .Nasir et al. 
(2021c) Both types of gainers seem to have increased emotional 
behavior relative to themselves towards the later part of the interaction 
irrespective of which problem solving strategy they are using. 

Following up from the above observations, (1) suggests that adaptive 
interventions should start early in the interaction, irrespective of the 
group. For example, all groups speak the least in the non-productive 
state and have yet not established either of the problem solving strate-
gies. An effective intervention could then be to try to induce commu-
nication between the dyad earlier in the interaction, that eventually 
could help with mitigating confusion, building a common ground, 
resolving conflict and pushing the team towards a more reflective set of 
behaviors, i.e., to follow either a global or local problem solving 
strategy. 

Further, going back more often (i.e., with a higher probability) into a 
non-productive state of low speech (as Silent Wanderers as well as Calm 
Tinkerers did) might suggest that the students have not yet established a 
shared understanding of the problem. Without an appropriate inter-
vention, the relevant team may take longer to have productive in-
teractions or transition to a productive state. Such an unstable behavior 
of moving back and forth between the non-productive and productive 
states need to be mitigated by an intervention targeted at inducing be-
haviors that would increase the chances of building a shared under-
standing. Further, observation of Silent Wanderers suggests that it is the 
lack of reflective actions such as looking back at their previous solutions 
and observing their own or their partners action, that might be the cause 
of a delayed shared understanding of the problem. Hence, such actions 
can be additionally suggested by an intelligent agent if the team is 
observed to be going back often to a state of lower speech that suggests 
being in a non-productive state. 

Lastly, as highlighted by (3) and (4), identification of a team as 
following a local or global PS strategy at the early stages of the inter-
action should be taken with caution. Instead continuous identification of 
the teams current PS strategy is necessary as the teams shift between 
multiple PS strategies and each problem solving strategy elicits different 
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speech, gaze and affective behavior in learners. Therefore, it is impor-
tant to inform the mechanism behind interventions of this sophisticated 
interplay and suggest interventions accordingly. For example, Expressive 
Explorers increase in their intensity of negative emotions as they move 
from global to local PS strategy and vice versa for the Calm Tinkerers; 
however, when looking at the time axis, in both cases this increase is 
towards the later phase of the interaction. Hence, the adaptive inter-
vention system does not always need to mitigate frustration, especially 
towards the end of the interaction as this level of frustration may be 
conducive to more productive behaviors. This can be an interesting 
avenue for further investigation by the community. As another example, 
both gainer groups looking more at the partner when moving from 
global to local PS strategy seems to suggest better collaboration quality; 
therefore, the adaptive intervention system can try to induce relevant 
gaze behaviors when the associated PS strategy is detected among 
learners potentially by sharing gaze among the peers as has been shown 
to be effective Schneider et al. (2018). 

6. Conclusion 

Concluding on our discussion, in this paper we contribute by 
applying an HMM based methodology to model and understand the 
collaborative learning process of gainer and non-gainer teams. However, 
there are some limitations with the current study. Firstly, in order to 
generalize the outcomes and inferences to collaborative settings in open- 
ended environments, there is a need of carrying out even more extensive 

studies, i.e., with more teams. Then, the current data is skewed when it 
comes to non-gainer teams, that is we have lesser non-gainer teams in 
our data than gainer teams and that can add to making our results less 
straightforward to generalize. Lastly, since the study is done at inter-
national schools in Switzerland, the students are from a selective pool 
coming from a certain economic and social background; hence, this 
requires us to be careful about the group we generalize it to. 

In our future work, our goal is to use these findings to build an 
adaptive intervention mechanism for a robot that can observe the 
multimodal behaviors of the students in soft real-time and provide 
effective interventions. With such a robot, we plan to collect more data 
to account for the aforementioned limitations, by both testing the 
effectiveness of our adaptive system, refining it as well as observing if 
the new data generalizes to similar (and even additional) profiles. 
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Appendix A  

Table 5 
Features’ Mean values in each of the Expressive Explorers’ states  

Feature InitialState MoreProbableState LessProbableState 

T_add 1.102384 × 10− 9 3.573773 × 10− 1 0.040838 
T_ratio_add_rem 4.183066 × 10− 9 9.9999931 × 10− 1 0.018960 
T_action 3.870495 × 10− 2 9.699460 × 10− 2 0.044758 
normalized_time 2.029434 × 10− 1 5.387081 × 10− 1 0.626040 
Speech_Overlap 2.723118 × 10− 1 4.758125 × 10− 1 0.567795 
Overlap_to_Speech_Ratio 5.461976 × 10− 1 6.965724 × 10− 1 0.804408 
Speech_Activity 4.099696 × 10− 1 5.986744 × 10− 1 0.665616 
Silence 6.541648 × 10− 1 4.866740 × 10− 1 0.410024 
T_remove 9.325293 × 10− 10 3.182062 × 10− 7 0.126406 
Gaze_at_Robot 4.343753 × 10− 2 9.518764 × 10− 3 0.045563 
redundant_exist 3.763263 × 10− 3 6.830674 × 10− 3 0.002477 
T1_T1_rem 1.027991 × 10− 17 3.735072 × 10− 20 0.116683 
Gaze_at_Partner 7.156486 × 10− 2 6.737566 × 10− 2 0.117361 
T_help 7.807358 × 10− 2 6.557370 × 10− 3 0.014712 
T1_T2_rem 1.478677 × 10− 15 4.773094 × 10− 7 0.043755 
T_hist 5.047627 × 10− 3 5.044131 × 10− 3 0.001290 
Gaze_at_Screen_Right 5.915012 × 10− 1 5.912295 × 10− 1 0.585986 
Gaze_at_Screen_Left 3.447677 × 10− 1 3.441521 × 10− 1 0.306201 
Long_Pauses 4.414569 × 10− 3 1.723356 × 10− 2 0.002917 
Arousal 2.705875 × 10− 1 3.101827 × 10− 1 0.375027 
Short_Pauses 1.685203 × 10− 1 1.542912 × 10− 1 0.116228 
Negative_Valence 2.056995 × 10− 1 2.568086 × 10− 1 0.308619 
Positive_Valence 3.375673 × 10− 1 3.469566 × 10− 1 0.412408 
Gaze_Other 8.812433 × 10− 2 5.841153 × 10− 2 0.062550 
T1_T2_add 0.000000 0.000000 0.000000 
Difference_in_Valence 5.507043 × 10− 1 5.013340 × 10− 1 0.513887 
T1_T1_add 0.000000 0.000000 0.000000   
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Table 6 
Features’ Mean values in each of the Calm Tinkerers’ states  

Feature InitialState MoreProbableState LessProbableState 

T_ratio_add_rem 2.673037 × 10− 10 1.000 000 4.172444 × 10− 3 

T_add 6.682594 × 10− 10 3.166667 × 10− 1 1.043111 × 10− 2 

Speech_Overlap 3.282486 × 10− 1 5.413534 × 10− 1 5.921923 × 10− 1 

Speech_Activity 4.855440 × 10− 1 6.827465 × 10− 1 7.096177 × 10− 1 

Silence 5.495654 × 10− 1 3.864979 × 10− 1 3.520730 × 10− 1 

T_action 1.260936 × 10− 2 5.866667 × 10− 2 2.662700 × 10− 2 

Overlap_to_Speech_Ratio 6.216050 × 10− 1 7.520540 × 10− 1 7.951161 × 10− 1 

normalized_time 3.205108 × 10− 1 5.447131 × 10− 1 5.415407 × 10− 1 

T_remove 1.266331 × 10− 2 3.999698 × 10− 15 1.701398 × 10− 2 

T1_T1_rem 1.168974 × 10− 12 8.479291 × 10− 18 6.258666 × 10− 2 

T1_T2_rem 1.347584 × 10− 7 2.299210 × 10− 21 2.086218 × 10− 2 

redundant_exist 1.747415 × 10− 3 1.458333 × 10− 2 5.336480 × 10− 3 

Positive_Valence 3.665011 × 10− 1 4.497916 × 10− 1 4.121070 × 10− 1 

Arousal 3.269324 × 10− 1 3.862492 × 10− 1 3.702702 × 10− 1 

Gaze_at_Robot 1.162740 × 10− 2 5.383023 × 10− 3 1.723160 × 10− 2 

Negative_Valence 2.549870 × 10− 1 2.911126 × 10− 1 2.905847 × 10− 1 

T_help 1.132622 × 10− 2 7.855360 × 10− 22 1.394327 × 10− 2 

Gaze_at_Screen_Right 5.173883 × 10− 1 5.228333 × 10− 1 4.819030 × 10− 1 

Short_Pauses 6.129101 × 10− 2 6.038230 × 10− 2 5.266563 × 10− 2 

Difference_in_Valence 5.511903 × 10− 1 6.026717 × 10− 1 5.586536 × 10− 1 

Gaze_at_Partner 1.790690 × 10− 1 1.355978 × 10− 1 1.555657 × 10− 1 

Gaze_at_Screen_Left 4.294050 × 10− 1 4.452297 × 10− 1 4.510707 × 10− 1 

Long_Pauses 1.474565 × 10− 2 9.933266 × 10− 3 1.916058 × 10− 3 

T1_T2_add 3.027555 × 10− 32 1.666667 × 10− 2 9.423054 × 10− 19 

Gaze_Other 5.388054 × 10− 2 7.411003 × 10− 2 6.656883 × 10− 2 

T_hist 9.891350 × 10− 3 8.333333 × 10− 3 2.176802 × 10− 2 

T1_T1_add 0.000 000 0.000 000 0.000 000   

Table 7 
Features’ Mean values in each of the Silent Wanderers’ states  

Feature InitialState MoreProbableState LessProbableState 

T_ratio_add_rem 1.312014 × 10− 2 9.999978 × 10− 1 6.729559 × 10− 3 

T_add 3.644306 × 10− 2 3.281263 × 10− 1 1.682390 × 10− 2 

Speech_Overlap 6.135501 × 10− 2 1.679682 × 10− 1 4.213296 × 10− 1 

Speech_Activity 2.082582 × 10− 1 3.460734 × 10− 1 5.755465 × 10− 1 

Overlap_to_Speech_Ratio 1.891342 × 10− 1 3.170220 × 10− 1 6.084412 × 10− 1 

Silence 7.586753 × 10− 1 6.372338 × 10− 1 4.604999 × 10− 1 

T_action 5.638728 × 10− 2 1.191416 × 10− 1 5.272196 × 10− 2 

normalized_time 3.157809 × 10− 1 4.738481 × 10− 1 7.326249 × 10− 1 

T_remove 1.092886 × 10− 1 1.552110 × 10− 6 1.347397 × 10− 1 

redundant_exist 3.997135 × 10− 2 5.468935 × 10− 2 2.257087 × 10− 2 

Gaze_at_Screen_Right 5.556238 × 10− 1 6.204418 × 10− 1 6.182313 × 10− 1 

Gaze_at_Screen_Left 2.746859 × 10− 1 2.511985 × 10− 1 2.227564 × 10− 1 

Positive_Valence 2.501105 × 10− 1 2.826254 × 10− 1 2.784481 × 10− 1 

T_help 3.497000 × 10− 2 6.249981 × 10− 3 1.707482 × 10− 10 

Gaze_at_Partner 1.141224 × 10− 1 1.443724 × 10− 1 1.290232 × 10− 1 

Difference_in_Valence 3.721043 × 10− 1 3.680229 × 10− 1 3.831570 × 10− 1 

Arousal 2.464960 × 10− 1 3.058044 × 10− 1 2.857545 × 10− 1 

T1_T1_rem 2.914167 × 10− 2 1.625856 × 10− 13 1.646490 × 10− 12 

T1_T2_rem 6.827181 × 10− 5 4.079701 × 10− 11 3.360833 × 10− 2 

Gaze_Other 4.831607 × 10− 2 1.046721 × 10− 1 5.910927 × 10− 2 

Gaze_at_Robot 8.571055 × 10− 2 4.328244 × 10− 2 4.276117 × 10− 2 

T1_T1_add 0.000 000 0.000 000 0.000 000 
Negative_Valence 2.408355 × 10− 1 3.125240 × 10− 1 2.792128 × 10− 1 

Short_Pauses 2.230099 × 10− 1 1.495351 × 10− 1 1.287077 × 10− 1 

T1_T2_add 5.158890 × 10− 15 6.249980 × 10− 2 6.094868 × 10− 10 

Long_Pauses 2.606827 × 10− 2 6.442913 × 10− 3 9.601131 × 10− 3 

T_hist 7.199166 × 10− 3 2.083376 × 10− 2 3.378669 × 10− 2   

Table 8 
p-values from Kruskal-Wallis test on the Expressive Explorers’ states   

LessProbableState- LessProbableState- MoreProbableState- LessProbableState- 

Feature MoreProbableState InitialState InitialState MoreProbableState-     

InitialState 

(continued on next page) 
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Table 8 (continued )  

LessProbableState- LessProbableState- MoreProbableState- LessProbableState- 

Feature MoreProbableState InitialState InitialState MoreProbableState-     

InitialState 

T_add 6.459889 × 10− 272 7.786821 × 10− 7 7.321670 × 10− 241 0.000 000 
T_ratio_add_rem 0.000 000 8.011061 × 10− 7 6.043280 × 10− 301 0.000 000 
T_action 3.229241 × 10− 62 1.116775 × 10− 12 1.255941 × 10− 128 2.724522 × 10− 134 
normalized_time 6.573843 × 10− 13 1.588430 × 10− 118 2.121637 × 10− 76 2.268858 × 10− 127 
Speech_Overlap 1.823268 × 10− 20 4.726497 × 10− 96 4.636181 × 10− 33 1.145578 × 10− 91 

Overlap_to_Speech_Ratio 2.359913 × 10− 16 4.714581 × 10− 82 2.061077 × 10− 29 8.026889 × 10− 78 

Speech_Activity 1.878127 × 10− 18 1.021272 × 10− 76 9.454754 × 10− 27 1.719850 × 10− 74 

Silence 4.052784 × 10− 11 1.423945 × 10− 69 4.624967 × 10− 33 8.671185 × 10− 69 

T_remove 1.923088 × 10− 30 8.584127 × 10− 11 3.403098 × 10− 8 1.086990 × 10− 34 

Gaze_at_Robot 2.408710 × 10− 20 2.522376 × 10− 1 1.119077 × 10− 13 4.107882 × 10− 21 

redundant_exist 6.323133 × 10− 13 5.619846 × 10− 1 5.410339 × 10− 12 5.495916 × 10− 18 

T1_T1_rem 1.071271 × 10− 9 1.175112 × 10− 6 NaN 7.707447 × 10− 14 

Gaze_at_Partner 8.078957 × 10− 11 4.279389 × 10− 8 8.546495 × 10− 1 1.426036 × 10− 11 

T_help 5.077449 × 10− 2 1.210030 × 10− 5 5.427370 × 10− 10 1.167470 × 10− 10 

T1_T2_rem 3.871818 × 10− 7 6.822129 × 10− 4 7.513610 × 10− 2 2.112531 × 10− 8 

T_hist 9.259736 × 10− 6 2.101519 × 10− 6 3.011715 × 10− 1 1.159495 × 10− 7 

Gaze_at_Screen_Right 3.147718 × 10− 7 6.138099 × 10− 2 1.809002 × 10− 3 8.358584 × 10− 7 

Gaze_at_Screen_Left 5.380571 × 10− 6 3.960269 × 10− 4 6.152767 × 10− 1 8.665531 × 10− 6 

Long_Pauses 3.314372 × 10− 4 1.312236 × 10− 3 9.461985 × 10− 1 4.948046 × 10− 4 

Arousal 4.132118 × 10− 3 4.371238 × 10− 4 3.136678 × 10− 1 7.750580 × 10− 4 

Short_Pauses 1.013922 × 10− 2 2.814769 × 10− 4 1.729218 × 10− 1 8.445037 × 10− 4 

Negative_Valence 3.444524 × 10− 3 5.710819 × 10− 3 8.727249 × 10− 1 3.942160 × 10− 3 

Positive_Valence 1.202900 × 10− 1 8.595192 × 10− 3 1.684401 × 10− 1 2.711117 × 10− 2 

Gaze_Other 6.718909 × 10− 1 6.410131 × 10− 2 1.878263 × 10− 2 5.268550 × 10− 2 

T1_T2_add 1.782952 × 10− 1 NaN 2.607401 × 10− 1 2.148112 × 10− 1 

Difference_in_Valence 1.769718 × 10− 1 7.301056 × 10− 1 3.636468 × 10− 1 3.731152 × 10− 1 

T1_T1_add 7.361626 × 10− 1 2.372005 × 10− 1 1.682336 × 10− 1 4.040213 × 10− 1   

Table 9 
p-values from Kruskal-Wallis test on the Calm Tinkerers’ states   

InitialState- InitialState- MoreProbableState- InitialState- 

Feature MoreProbableState LessProbableState LessProbableState MoreProbableState-     

LessProbableState 

T_ratio_add_rem 1.046633 × 10− 214 3.203160 × 10− 15 1.448010 × 10− 209 2.208200 × 10− 300 

T_add 8.825740 × 10− 194 2.671724 × 10− 15 1.084962 × 10− 136 2.779006 × 10− 241 

Speech_Overlap 2.486453 × 10− 26 1.140660 × 10− 105 4.815798 × 10− 22 3.079549 × 10− 103 
Speech_Activity 2.699760 × 10− 26 4.539962 × 10− 96 4.068440 × 10− 19 1.789244 × 10− 94 

Silence 6.369222 × 10− 31 1.859685 × 10− 91 9.868460 × 10− 16 7.74 × 10− 92 

T_action 2.530858 × 10− 96 9.718553 × 10− 15 3.560970 × 10− 28 2.236893 × 10− 84 

Overlap_to_speech_ratio 1.266769 × 10− 19 1.470592 × 10− 84 9.053385 × 10− 20 1.396038 × 10− 82 

Normalized_time 9.962378 × 10− 23 1.277583 × 10− 57 2.040765 × 10− 10 3.391638 × 10− 59 

T_remove 4.195097 × 10− 14 3.443724 × 10− 19 4.953212 × 10− 44 3.040368 × 10− 51 

T1_T1_rem 3.566311 × 10− 1 6.479934 × 10− 18 4.254322 × 10− 16 2.402922 × 10− 30 

T1_T2_rem 1.921375 × 10− 1 1.517800 × 10− 9 2.073554 × 10− 9 6.086552 × 10− 16 

Redundant_exist 7.350425 × 10− 13 2.140998 × 10− 2 2.082055 × 10− 7 1.988810 × 10− 13 

Positive_Valence 1.140000 × 10− 4 8.498930 × 10− 11 2.452327 × 10− 2 5.318031 × 10− 10 

Arousal 5.355177 × 10− 2 1.451686 × 10− 9 1.509734 × 10− 4 5.760692 × 10− 9 

Gaze_at_robot 9.302748 × 10− 8 4.740781 × 10− 3 4.274607 × 10− 3 5.047403 × 10− 7 

Negative_Valence 7.412760 × 10− 1 3.148931 × 10− 6 3.576009 × 10− 5 1.455941 × 10− 6 

T_help 6.274225 × 10− 5 2.649523 × 10− 4 3.834952 × 10− 1 5.631461 × 10− 6 

Gaze_at_screen_right 3.407637 × 10− 4 9.740129 × 10− 2 3.593597 × 10− 6 5.796425 × 10− 6 

Short_pauses 4.721115 × 10− 3 9.175213 × 10− 7 9.540181 × 10− 2 6.114326 × 10− 6 

Difference_in_Valence 4.211367 × 10− 6 6.285657 × 10− 3 5.459578 × 10− 2 2.763204 × 10− 5 

Gaze_at_partner 1.282025 × 10− 1 6.511073 × 10− 5 2.696452 × 10− 2 3.242851 × 10− 4 

Gaze_at_screen_left 1.130881 × 10− 3 4.568822 × 10− 1 1.584547 × 10− 2 4.372545 × 10− 3 

Long_pauses 6.461623 × 10− 1 1.588477 × 10− 2 3.468741 × 10− 3 8.647671 × 10− 3 

T1_T2_add 4.872548 × 10− 3 2.015286 × 10− 2 5.295830 × 10− 1 2.237594 × 10− 2 

Gaze_other 8.545218 × 10− 1 8.659117 × 10− 2 1.429300 × 10− 1 1.664223 × 10− 1 

T_hist 7.147372 × 10− 1 3.024626 × 10− 1 1.804699 × 10− 1 3.499533 × 10− 1 

T1_T1_add 8.703039 × 10− 1 5.027353 × 10− 1 4.142353 × 10− 1 7.077864 × 10− 1   
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Table 10 
p-values from Kruskal-Wallis test on the Silent Wanderers’ states   

InitialState- InitialState- LessProbableState- InitialState- 

Feature LessProbableState MoreProbableState MoreProbableState LessProbableState-     

MoreProbableState 

T_ratio_add_rem 4.589301 × 10− 1 5.220515 × 10− 122 6.663973 × 10− 130 5.535321 × 10− 183 
T_add 4.577846 × 10− 1 6.010859 × 10− 100 2.610590 × 10− 114 2.388349 × 10− 160 
Speech_overlap 5.892624 × 10− 97 7.100573 × 10− 18 9.712381 × 10− 31 2.760344 × 10− 98 

Speech_Activity 8.477783 × 10− 90 2.493802 × 10− 20 7.562644 × 10− 23 1.735427 × 10− 89 

Overlap_to_speech_ratio 7.595498 × 10− 72 3.505213 × 10− 11 6.190938 × 10− 30 1.645284 × 10− 75 

Silence 3.187753 × 10− 70 1.142510 × 10− 13 2.080269 × 10− 19 4.649497 × 10− 69 

T_action 1.056353 × 10− 1 3.188625 × 10− 32 1.079551 × 10− 44 3.200090 × 10− 49 

Normalized_time 1.518080 × 10− 46 3.510905 × 10− 9 5.506350 × 10− 15 2.159810 × 10− 46 

T_remove 6.971572 × 10− 1 1.116435 × 10− 11 6.037973 × 10− 11 1.127712 × 10− 10 

Redundant_exist 3.512804 × 10− 1 1.635185 × 10− 6 3.081867 × 10− 9 1.046462 × 10− 9 

Gaze_at_screen_right 4.238118 × 10− 1 2.854616 × 10− 7 1.300446 × 10− 5 4.386002 × 10− 7 

Gaze_at_screen_left 1.959077 × 10− 4 2.097955 × 10− 6 1.816661 × 10− 1 3.48 × 10− 6 

Positive_Valence 4.477664 × 10− 5 8.188481 × 10− 1 3.719569 × 10− 5 8.771086 × 10− 6 

T_help 2.145970 × 10− 4 4.619297 × 10− 3 5.533612 × 10− 1 1.305032 × 10− 4 

Gaze_at_partner 6.836966 × 10− 5 3.239169 × 10− 1 8.317920 × 10− 3 2.405678 × 10− 4 

Difference_in_Valence 5.798869 × 10− 4 7.765849 × 10− 1 4.280245 × 10− 3 9.162789 × 10− 4 

Arousal 3.133786 × 10− 2 2.050905 × 10− 1 4.771730 × 10− 4 2.053134 × 10− 3 

T1_T1_rem 2.168625 × 10− 1 4.151916 × 10− 3 3.627620 × 10− 2 1.568344 × 10− 2 

T1_T2_rem 6.483012 × 10− 1 1.048949 × 10− 2 4.416490 × 10− 3 2.137952 × 10− 2 

Gaze_other 1.069325 × 10− 2 4.460858 × 10− 2 8.001324 × 10− 1 2.297604 × 10− 2 

Gaze_at_robot 1.107108 × 10− 1 8.746928 × 10− 3 2.324421 × 10− 1 2.894125 × 10− 2 

T1_T1_add NaN 1.155100 × 10− 1 9.639491 × 10− 2 7.286920 × 10− 2 

Negative_Valence 9.084048 × 10− 1 6.888763 × 10− 2 3.284085 × 10− 2 8.004833 × 10− 2 

Short_pauses 3.175136 × 10− 1 9.025873 × 10− 2 2.226728 × 10− 1 1.799852 × 10− 1 

T1_T2_add 5.001169 × 10− 1 2.773726 × 10− 1 8.430488 × 10− 2 1.889137 × 10− 1 

Long_pauses 6.990590 × 10− 1 1.992827 × 10− 1 2.787486 × 10− 1 3.964593 × 10− 1 

T_hist 3.746288 × 10− 1 9.370430 × 10− 1 3.645077 × 10− 1 5.606479 × 10− 1  
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