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Abstract

We have all been one such student or seen such students who can maintain the ‘good student’

image while playing a video game under the table or those loyal backbenchers, seemingly

always distracted, who then ace their exams. These intricacies of human behaviors are just

a few examples of what makes it non-trivial and challenging even for expert teachers to

know how students’ visible behaviors relate with learning. As research investigates ways in

which robots and AI can support teachers and students, it is faced with the same challenge

of inferring students’ engagement; thus, making the investigation of this topic increasingly

popular in educational HRI. The state of the art usually explores the relationship between the

robot behaviors and the engagement state of the learner while assuming a linear relationship

between engagement and learning. However, is it correct to assume that to maximize learning,

one needs to maximize engagement? Furthermore, conventional supervised engagement

models require human annotators to get labels. This not only is laborious but can also

introduce subjectivity. Can we have machine-learning engagement models where annotations

do not rely on human annotators? Additionally, with the increase in open-ended learning

activities which by design employ the ‘learning by failing’ paradigm, in-task performance can

not be the best measure for learning. Can we instead rely on multi-modal behaviors?

In an effort to cater for these challenges, this thesis dives deep to identify and quantify the

relationship between learning and engagement, which we term as Productive Engagement

(PE). In order to develop, design, and evaluate our PE framework, (1) we first designed and de-

veloped an open-ended collaborative learning activity that served as a platform for evaluating

different robot variants over time. With 98 children interacting with the baseline version from

2 international Swiss schools, we showed that in-task performance and learning are indeed not

correlated. Thus, this showed the importance of not being limited to robot interventions that

affect only superficial measures of students’ learning. (2) Then, with learner’s multi-modal

behaviors, we showed that indeed there is a hidden link between learner’s behaviors and learn-

ing that can be quantified, i.e., validating the proposed concept of Productive Engagement.

(3) This quantifiable link surfaced three collaborative multi-modal learner profiles, by using a

forward and backward clustering and classification technique, two of which are linked to higher

learning. This technique gave a possibility to surface data driven labels for engagement; thus,
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evading the process of human annotations. We then identified similarities and differences

between these learner profiles both at an aggregate and at the temporal level. (4) Based on (3),

we constructed a PE score that can either be directly used as an assessment metric by a social

robot in real-time or as data driven labels for building more sophisticated regression models.

(5) With the learner profiles and the PE score, we designed and evaluated more advanced robot

variants for the final studies with ∼160 students from 7 international Swiss schools. With the

design of different robot variants that employ knowledge about the learner’s skills conducive

to learning, rather than domain knowledge, in order to provide interventions; we provided a

complementary perspective on the role of social robots in educational settings.

Keywords: Engagement, Human-Robot Interaction, Social Robotics, Educational Robotics,

Multi-modal Learning Analytics, Collaborative Learning, Time-series Analysis
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Résumé

Nous avons tous été ou vu de tels étudiants qui peuvent maintenir l’image de "bon étudiant"

tout en jouant à un jeu vidéo sous la table ou ces fidèles élèves d’arrière-ban, apparemment

toujours distraits, qui réussissent ensuite leurs examens. Ces subtilités du comportement

humain ne sont que quelques exemples de ce qui rend non trivial et difficile, même pour les

enseignants experts, de savoir comment les comportements visibles des élèves sont liés à

l’apprentissage. Alors que la recherche étudie les moyens par lesquels les robots et l’IA peuvent

aider les enseignants et les élèves, elle est confrontée au même défi de déduire l’engagement

des élèves, ce qui rend l’étude de ce sujet de plus en plus populaire dans le domaine des

Interactions Human-Robot. L’état de l’art explore généralement la relation entre les comporte-

ments du robot et l’état d’engagement de l’apprenant en supposant une relation linéaire entre

l’engagement et l’apprentissage. Cependant, est-il correct de supposer que pour maximiser

l’apprentissage, il faut maximiser l’engagement? En outre, les modèles d’engagement super-

visés classiques nécessitent des annotateurs humains pour obtenir des labels. Cela est non

seulement laborieux, mais peut également introduire de la subjectivité. Est-il possible d’avoir

des modèles d’engagement par apprentissage automatique où les annotations ne dépendent

pas des annotateurs humains? De plus, avec l’augmentation des activités d’apprentissage

ouvertes qui, de par leur conception, utilisent le paradigme "apprendre en échouant", la per-

formance en cours de tâche ne peut pas être la meilleure mesure de l’apprentissage. Peut-on

alors se baser sur les comportements multimodaux?

Dans un effort pour répondre à ces défis, dans cette thèse, nous nous efforçons d’identifier et

de quantifier la relation entre l’apprentissage et l’engagement, que nous appelons l’engage-

ment productif (EP). Afin de développer, de concevoir et d’évaluer notre cadre d’engagement

productif, (1) nous avons d’abord conçu et développé une activité d’apprentissage collabo-

rative ouverte qui a servi de plateforme pour évaluer différentes variantes de robots au fil

du temps. Avec 98 enfants interagissant avec la version de base provenant de 2 écoles inter-

nationales suisses, nous avons montré que la performance en tâche et l’apprentissage ne

sont effectivement pas corrélés. Ainsi, cela a montré l’importance de ne pas se limiter à des

interventions robotiques qui n’affectent que des mesures superficielles de l’apprentissage des

élèves. (2) Ensuite, avec les comportements multimodaux de l’apprenant, nous avons montré

qu’il existe en effet un lien caché entre les comportements de l’apprenant et l’apprentissage

qui peut être quantifié, validant ainsi le concept proposé d’engagement productif. (3) Ce lien
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quantifiable a fait apparaître trois profils d’apprenants multimodaux collaboratifs, en utilisant

une technique de classification et de regroupement progressive et retrogressive, dont deux

sont liés à un apprentissage supérieur. Cette technique a permis de faire apparaître des labels

d’engagement basées sur des données, évitant ainsi le processus d’annotation humaine. Nous

avons ensuite identifié les similitudes et les différences entre ces profils d’apprenants, tant au

niveau agrégé qu’au niveau temporel. (4) Sur la base de (3), nous avons construit un score EP

qui peut être soit directement utilisé comme une métrique d’évaluation par un robot social en

temps réel, soit comme des labels orientés donnés pour construire des modèles de régression

plus sophistiqués. (5) Avec les profils des apprenants et le score EP, nous avons conçu et évalué

des variantes de robots plus avancées pour les études finales avec 160 étudiants de 7 écoles

internationales suisses. Avec la conception de différentes variantes de robots qui utilisent

des connaissances sur les compétences de l’apprenant propices à l’apprentissage, plutôt que

des connaissances du domaine, afin de fournir des interventions; nous avons fourni une

perspective complémentaire sur le rôle des robots sociaux dans les environnements éducatifs.

Mots-clés : Engagement, interaction homme-robot, robotique sociale, robotique éducative,

analyse de l’apprentissage multimodal, apprentissage collaboratif, analyse des séries tempo-

relles.
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Zusammenfassung

Wir alle waren schon einmal ein solcher Schüler oder haben einen solchen Schüler gese-

hen, der das Image des "guten Schülersäufrechterhalten konntewährend er unter dem Tisch

ein Videospiel spielte oder jene loyalen Hinterbänkler, die scheinbar immer abgelenkt sind

und dann ihre Prüfungen mit Bravour bestehen. Diese Beispiele des menschlichen Verhal-

tens sind nur einige Beispiele dafür, dass es selbst für erfahrene Lehrer nicht trivial ist zu

wissen, wie das sichtbare Verhalten der Schüler mit dem Lernerfolg zusammenhängt. Die For-

schung untersucht wie Roboter und KI Lehrer und Schüler unterstützen können und steht hier

ebenfalls der Herausforderung gegenüber das Engagement der Schüler erkennen zu müssen.

Momentan fokussieren sich Forscher in der Regel auf die Beziehung zwischen dem Verhalten

des Roboters und dem Engagement des Lernenden, wobei gewöhnlich eine lineare Beziehung

zwischen Engagement und Lernerfolg angenommen wird. Ist es jedoch richtig anzunehmen,

dass eine Maximierung des Lernerfolges eine Maximierung des Engagements voraussetzt?

Zudem erfordern herkömmliche Engagement-Modelle die auf überwachtem Lernen basieren

menschliche Aufwand, um Labels zu erhalten. Dies ist nicht nur mühsam, sondern auch

subjektiv. Gibt es Engagement-Modelle die maschinelles Lernen benutzen und bei denen die

Labels nicht von menschlichen Annotatoren abhängen? Mit der Zunahme von Lernaktivitäten

die ein offenes Ende haben und die das Paradigma Lernerfolg durch Scheitern"verwenden

ist die Leistung wärend der Aktivität oft nicht das beste Maß des Lernerfolgs. Können wir

stattdessen multimodale Verhaltensweisen verwenden?

Um diesen Herausforderungen zu meistern gehen wir in dieser Arbeit in die Tiefe um die

Beziehung zwischen Lernerfolg und Engagement, welche wir als Productive Engagement

(PE) bezeichnen, zu identifizieren und zu quantifizieren. Um unsere PE-Methode zu ent-

wickeln, zu gestalten und zu evaluieren, (1) haben wir zunächst eine offene kollaborative

Lernaktivität konzipiert und entwickelt, die als Plattform für die Evaluierung verschiedener

Robotervarianten diente. Mit 98 Kindern aus zwei internationalen schweizer Schulen die

mit der Basisversion interagierten konnten wir zeigen, dass die der Erfolg bei der Aufgabe

tatsächlich nicht mit dem Lernerfolg zusammenhängt. Dies zeigte wie wichtig es ist sich nicht

auf Roboterinterventionen zu beschränken die sich nur auf oberflächliche Messungen des

Lernens von Schülern auswirken. (2) Anschließend haben wir anhand des multimodalen

Verhaltens der Lernenden gezeigt, dass es tatsächlich einen versteckten Zusammenhang zwi-

schen dem Verhalten der Lernenden und ihrem Lernerfolggibt und dass dieser quantifiziert
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werden kann, d. h. wir konnten das vorgeschlagene Konzept des produktiven Engagements

bestätigen. (3) Diese quantifizierbare Verbindung hat es uns ermöglicht mittels einer eine

Vorwärts- und Rückwärts-Clustering- und Klassifizierungstechnik drei kollaborative multi-

modale Lernerprofile aufzudecken von denen zwei mit höherem Lernerfolg verbunden sind.

Diese Technik ermöglichte es, datengesteuerte Labels für das Engagement zu erstellen und

so die Verwendung von menschlichen Labels zu umgehen. Anschließend haben wir Ähn-

lichkeiten und Unterschiede zwischen diesen Lernerprofilen sowohl auf aggregiertem als

auch auf zeitlichem Niveau ermittelt. (4) Auf der Grundlage von (3) haben wir einen PE-Score

konstruiert, der entweder direkt als Bewertungsmaßstab für einen sozialen Roboter in Echtzeit

oder als datengesteuerte Kennzeichnung für das Erstellen komplexerer Regressionsmodelle

verwendet werden kann. (5) Mit den Lernerprofilen und dem PE-Score haben wir fortgeschrit-

tenere Robotervarianten für die abschließenden Studien entworfen und mit 160 Schülern

aus 7 internationalen schweizer Schulen evaluiert. Damit eröffnen wir durch die Entwicklung

verschiedener Robotervarianten, die, anstatt Fachwissen, das Wissen über lernfördernde Fä-

higkeiten der Lernenden nutzen um Interventionen anzubieten, eine ergänzende Perspektive

auf die Rolle sozialer Roboter in Bildungsumgebungen.

Schlüsselwörter: Engagement, Mensch-Roboter-Interaktion, soziale Robotik, Bildungsrobotik,

Multimodale Lernanalyse, kollaboratives Lernerfolg, Zeitreihenanalyse
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Astratto

Tutti noi siamo stati uno di questi studenti o abbiamo visto studenti che riescono a mantenere

l’immagine di "bravo studente" mentre giocano a un videogioco sotto il tavolo o quegli irridu-

cibili dell’ultimo banco, apparentemente sempre distratti, che poi superano brillantemente

tutti gli esami. Questi sono solo alcuni esempi di ciò che rende non banale e impegnativo

anche per gli insegnanti esperti sapere come i comportamenti visibili degli studenti siano

in relazione con il loro apprendimento. Man mano che la ricerca indaga sui modi in cui i

robot e l’IA possono supportare insegnanti e studenti, si trova ad affrontare la stessa sfida di

dedurre l’apprendimento degli studenti dal loro comportamento, rendendo così l’indagine di

questo argomento sempre più popolare nell’HRI educativa. Lo stato dell’arte sull’argomento

esplora la relazione tra il comportamento del robot e il coinvolgimento dell’allievo nell’attività

didattica, assumendo una relazione lineare tra coinvolgimento e apprendimento. Tuttavia,

è corretto assumere che per massimizzare l’apprendimento sia necessario massimizzare il

coinvolgimento? Inoltre, i modelli usualmente adottati per l’analisi del coinvolgimento richie-

dono l’intervento di esperti che annotino i dati. Questo non solo è laborioso, ma può anche

introdurre soggettività. Possiamo avere modelli automatici per l’analisi del coinvolgimento e

dell’apprendimento, in cui le annotazioni non richiedono l’intervento di esperti? Inoltre, con

l’aumento delle attività di apprendimento esplorative, basate sul paradigma dell’"imparare fal-

lendo", il successo nell’attività non può essere considerato come misura per l’apprendimento.

Possiamo quindi affidarci, a questo scopo, all’analisi multimodale del comportamento?

Nel tentativo di rispondere a queste sfide, in questa tesi esploriamo come identificare e quan-

tificare la relazione tra apprendimento e coinvolgimento, che definiamo Coinvolgimento

Produttivo (PE dall’inglese “Productive Engagement”). Per sviluppare, progettare e valutare il

nostro sistema per l’analisi del PE, (1) abbiamo prima progettato e sviluppato un’attività di

apprendimento collaborativo ed esplorativo che è servita come piattaforma per valutare diver-

se varianti di comportamento del robot. Con 98 bambini di 2 scuole internazionali svizzere

che hanno interagito con la versione di base, abbiamo dimostrato che il successo nell’attività

e l’apprendimento non sono correlati. Ciò ha dimostrato l’importanza di non limitarsi a

interventi che influenzano solo misure superficiali dell’apprendimento degli studenti. (2) In

seguito, con l’analisi multimodale del comportamento degli studenti, abbiamo dimostrato

che esiste un legame nascosto tra il comportamento degli studenti e l’apprendimento, che

può essere quantificato, convalidando così il concetto proposto di Coinvolgimento Produttivo.
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(3) Questo legame ha portato all’individuazione di tre profili di studenti, due dei quali collegati

ad un migliore apprendimento, emersi utilizzando una tecnica di clustering e classificazione.

Da ciò abbiamo potuto estrarre annotazioni per il coinvolgimento, evitando così il passaggio

attraverso esperti. Abbiamo poi analizzato le somiglianze e le differenze tra questi profili, sia a

livello aggregato che temporale. (4) Sulla base di (3), abbiamo costruito un punteggio PE che

può essere utilizzato direttamente e in tempo reale come metrica di valutazione da un robot

sociale o come annotazione per la costruzione di modelli di regressione più sofisticati. (5) Con

i profili degli studenti e il punteggio PE, abbiamo progettato e valutato varianti di robot più

avanzate per gli esperimenti finali con 160 studenti di 7 scuole internazionali svizzere. Con

la progettazione di diverse varianti di robot equipaggiati con la conoscenza delle abilità che

favoriscono l’apprendimento, piuttosto che la conoscenza dei concetti da apprendere, questa

tesi fornisce una prospettiva complementare sul ruolo dei robot sociali in contesti educativi.
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1 Engagement in HRI: Deceptively Sim-
ple, Endlessly Complicated

“If our brains were simple enough for us to understand them, we’d be so simple that we couldn’t."

— Ian Stewart, The Collapse of Chaos: Discovering Simplicity in a Complex World

Did you ever talk with someone who was profusely nodding to your profound statements with

an attentive expression and a focused gaze only to realize many minutes after that they didn’t

hear a word you said? or with someone who looks bored to death when you speak but then

surprises you with an insightful comment? Being engaged in a certain situation/interaction

seems to be more of a hidden state that does not appear to manifest in the same way in all

humans given the complex species that we are. To say the very least, engagement and the way

it is surfaced in observable cues can depend on many varied factors such as the context, the

personality of the people involved and then their personal circumstances that day or hour, the

weather in the moment, or even political climate such as Trump becoming the president of

United States, etc.

Particularly in educational contexts, the engagement of a learner, in addition to the factors

mentioned above, can also be influenced by the use of technology, such as tablets, robots,

virtual agents, etc. that are now increasingly being incorporated in learning scenarios (Bel-

paeme et al., 2018; Elgarf et al., 2022; Johal, 2020; Krishna & Pelachaud, 2022; Stower & Kappas,

2021; Tatarian et al., 2020; Tulli et al., 2020). Since in such settings, the learner’s engagement

towards their learning environment is a means to an end, which is learning; it becomes partic-

ularly important for the human or the robot tutor or mediator to perceive it effectively and

intervene when required. While it is not possible to gauge all the aforementioned factors

on which engagement can depend, this thesis aims at proposing a new framework to con-

ceptualize, model, validate and utilize engagement based on multiple observable cues in a

learning context. Precisely, the context used in the thesis is that of an open-ended collaborative

human-human-robot learning activity in which the robot mediates the activity.

With regards to an extensive overview of engagement in Human-Agent interaction, the author

of this thesis contributed in:
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C. Oertel, G. Castellano, M. Chetouani, J. Nasir, M. Obaid, C. Pelachaud, and C. E. Peters,

“Engagement in Human-Agent Interaction: An Overview,” in Frontiers in Robotics and AI

(2020), 7:92 Oertel et al., 2020.

1.1 Concept of Engagement in Human Robot Interaction

Engagement is a concept widely investigated in Human-Robot Interaction (HRI) and yet still

elusive (Oertel et al., 2020). While some researchers see it as a process, others view it as a state.

Commonly adopted definitions include the one of Sidner et al. (Sidner et al., 2005) where

engagement is considered as “the process by which two (or more) participants establish, main-

tain and end their perceived connection during interactions they jointly undertake”, or the one

of Poggi et al. (Poggi, 2007) where engagement is considered as “the value that a participant

in an interaction attributes to the goal of being together with the other participant(s) and

continuing interaction”.

While there is a general consensus on the idea that engagement is a multi-dimensional con-

struct, opinions differ concerning the dimensions composing it. Castellano et al., investigating

predictors and components of engagement, regard engagement as characterised by both an

affect and an attention component (Castellano et al., 2014). Conversely, Salam et al., postulate

that “engagement is not restricted to one or two mental or emotional states (enjoyment or

attention). During the interaction, as the objective of the current sub-interaction differs, the

different concepts or cues related to engagement would differ” (Salam & Chetouani, 2015a).

Similarly, O’Brien et al. define “user engagement as a multidimensional construct comprising

the interaction between cognitive (e.g., attention), affective (e.g., emotion, interest), and be-

havioural (e.g., propensity to re-engage with a technology) characteristics of users, and system

features (e.g., usability)” (H. O’Brien et al., 2016; H. L. O’Brien & Toms, 2008).

Then with regards to the nature of the HRI scenario/context, there seems to be a social/task

distinction in the HRI engagement literature that is covered in the definition by Corrigan et

al. in Corrigan et al., 2013. They define engagement in terms of three contexts as follows:

“task engagement where there is a task and the participant starts to enjoy the task he is doing,

social engagement which considers being engaged with another party of which there is no task

included and social-task engagement which includes interaction with another (e.g., robot)

where both cooperate with each other to perform some task". That said, still in a vast amount

of literature, while defining the scenario, the distinction is often blurry since most interactions

involve both task as well as social components, intertwined with each other and possibly

co-dependent.

Lastly, there is a possibility for having a multi-party scenario, i.e., when there are two or more

people involved in the interaction. Since engagement itself is still rather ambiguous, as ex-

plained so far, having two participants adds the variable of "group engagement", for which,

too, multiple definitions exist. Salam et al. define group engagement as,“the joint engage-

ment state of two participants interacting with each other and a humanoid robot" (Salam

2



1.2 Challenges

& Chetouani, 2015b). Oertel et al. define group engagement as “a group variable which is

calculated as the average of the degree to which individual people in a group are engaged

in spontaneous, non-task-directed conversations” (Oertel et al., 2011) whereas Gatica et al.

define group interest as “the perceived degree of interest or involvement of the majority of the

group” in (Gatica-Perez et al., 2005).

1.2 Challenges

As with every evolving line of research, there are many open questions, challenges, and

limitations in the field of HRI when it comes to how engagement should be modelled (Oertel

et al., 2020) and especially how its understanding can be incorporated in a robot for providing

effective interventions for advancing learning. We have identified four challenges that serve

as the motivation for this thesis as well as what we tackle in this thesis.

1.2.1 Relationship between Engagement and Learning

Studying HRI engagement in educational applications is particularly challenging (and there-

fore interesting) because of the fact that the robot and the interaction with it is a means to

an end, which is learning. A long-term study (Park et al., 2019) in a story telling context

with a robot found that an affective policy trained using reinforcement learning approach

successfully personalized to each child and led to a boost in their learning outcomes and

engagement. Baxter et al., 2017 show “that students who interacted with a robot that simulta-

neously demonstrated three types of personalization (nonverbal behavior, verbal behavior,

and adaptive content progression) showed increased learning gains and sustained engage-

ment when compared with students interacting with a non-personalized robot". Szafir and

Mutlu, 2012 found that “adaptive robotic agent employing behavioral techniques (i.e. the use

of verbal and non-verbal cues: increased spoken volume, gaze, head nodding, and gestures)

to regain attention during drops in engagement (detected using EEG) improved student recall

abilities 43% over the baseline". In Brown et al., 2013, 24 students engage with the robot

during a computer-based math test and the results demonstrate increased test performance

with various forms of behavioral strategies while combining them with verbal cues result in a

slightly better outcome. These studies show how changing the robot’s behavior has an impact

on learning, while carrying a linear assumption that increasing users engagement leads to

increased learning, i.e., they manipulate engagement and see an improvement in learning.

Hence, the standard approaches in the literature look to maximize engagement itself.

But, is it correct to assume that maximizing engagement, as currently defined and modelled,

maximizes learning? We believe this relationship has not been explicitly or extensively

investigated in HRI. With the engagement framework that we propose in this thesis, we aim to

critically assess this relationship.
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1.2.2 Human Subjectivity when Modelling Engagement

For a robot to assist students, automatic detection of engagement would be a necessity so

that the robot could give immediate feedback to the learners. Currently in HRI, for building

such automatic models, one of the most popular methods is to employ several human experts

to annotate the data corpora where chunks of videos are annotated on different scales of

engagements. These scales can be nominal, ordinal, interval, or ratio. Studies by Rossi et al.,

2021; Salam, Çeliktutan, et al., 2017; Sanghvi et al., 2011a outline the process for their use case.

Once the annotation process is completed, inter-rater reliability is calculated using metrics like

Cohen’s Kappa or Krippendorf’s Kappa among others. However, keeping into consideration

the various ways in which engagement is defined and understood, there remains a huge risk

of subjectivity that can lead to low inter-rater reliability (Oertel et al., 2020).

In addition to the challenge of low inter-rate reliability, this process is also very time and effort

intensive. In our work, we aim at building a data driven pipeline for modelling engagement

that could surface labels without having a human expert in the loop; hence, moving away from

a method prone to subjectivity as well as that is time and effort intensive.

1.2.3 In-Task Performance as a Measure of Learning

Taking inspiration from Intelligent Tutoring Systems (ITS) or more generally educational soft-

ware, which provide a customized feedback to learners, a robot meant to provide interventions

in an educational HRI setting should be equipped with a student model and a pedagogical

model (Akkila et al., 2019; Nwana, 1990). The pedagogical model is responsible for making

appropriate intervention[s] in the activity (i.e., interventions that have a positive effect on

the student’s learning), knowing the details of the learning activity and being informed by

the student model about the student’s status. Bayesian Knowledge Tracing (BKT) (Corbett &

Anderson, 1995) is one of the most widely used approaches to model student knowledge (Des-

marais & Baker, 2012; Sabourin et al., 2016; Siemens & Baker, 2012). One of the assumptions

in BKT is that at each step, the "student can either succeed or fail the task", i.e. there is a

straightforward, binary mapping between performance in the task and learning, which makes

the approach most "relevant for tutors that use exercises and scaffolding as the main vehicle

for learning" (Desmarais & Baker, 2012). However, there is an increasing emphasis towards

incorporating more open-ended/constructivist learning activities that encourage the aware-

ness of the knowledge construction process, e.g. by promoting, among other things, Problem

Based Learning that requires the learners to devise a solution to a real world problem together,

and/or Cooperative Learning in which interdependence among group members is needed to

solve a problem; thus, violating the requirement of a chain of binary right/wrong steps towards

the goal (Brooks & Brooks, 1993; Schulte, 1996). The learners rather “become engaged by

applying their existing knowledge and real-world experience, learning to hypothesize, testing

their theories, and ultimately drawing conclusions from their findings" (Olusegun, 2015).
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As a consequence, in-task performance can no longer act as the sole indicator of learning in

scenarios that, by design, require the learners to fail and make mistakes along the way as they

explore and exploit their environment. Keeping this in mind, in this thesis, we aim to utilize

measures, other than in-task performance, to model students knowledge.

Our motivation to tilt towards an open-ended learning activity is exactly the idea that it is a

more complex learning environment and being able to asses learner’s engagement in such a

setting will allow us to build a more robust technique.

1.2.4 Real-time Constraints

With various sources of information on the behavioral data of the students, highly heteroge-

neous data is generated that requires synchronization before it can be processed or evaluated

(Crescenzi-Lanna, 2020; Sharma & Giannakos, 2020; Wagner et al., 2013). Further, some

sensor techniques are more intrusive than others such as eye-tracking, EEG, physiological

data and currently are not practical in classrooms due to being more expensive and needing

high expertise (Sharma & Giannakos, 2020), as well as sensors such as eye-tracking seem to

not be compatible for younger children (Crescenzi-Lanna, 2020). In settings where the timing

of feedback matters such as a robot in an educational setting or an Intelligent Tutoring System

(ITS), every sensor that is added to understand the situation comes at a computational cost.

However, learning happens in real-time and cannot be paused because the perception-to-

inference-to-action loop of the robot needs more time. To have a fast efficient system, which

is a challenge on its own, one needs to make a choice of what sensors to focus.

This choice is not very straightforward and cannot be made without prior knowledge on what

modality or modalities could be most useful in capturing learning best in a scenario. In our

framework, while we start off with a broader range of modalities to try to better understand

learning; for the purpose of evaluation in real-time, we plan to converge to a minimalist setup

to tackle the aforementioned constraints.

1.3 Research Goals

This thesis aims to critically investigate the relationship between engagement and learning in

educational settings. We envision a educational social robot that:

1. can detect what being engaged in the learning process looks like

2. can provide feedback to improve such engagement if and when required

3. can do so in soft real-time

4. can personalize/adapt its interventions
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Tying our vision of an educational social robot to the challenges highlighted in the last section,

we outline four broader research goals for this thesis:

1. Research Question 1: Given the learners behavioral patterns, can we reveal a quantita-

tive relationship that links them to learning?

2. Research Question 2: Which learner behaviors are predictive of learning and how?

3. Research Question 3: Can we build representations of engagement using the behaviors

identified in RQ2 that can then be used for its detection in real-time?

4. Research Question 4: How can a robot make use of these representations to induce the

relevant behaviors, found as a result of RQ2, in the learners?

In this thesis, we iteratively design robots from Ron to Harry to Hermione with the goal to not

only endow a robot with useful knowledge through our proposed engagement framework but

also to use it only in an if -and-when-needed fashion. We refer to the robot with the aforemen-

tioned names throughout the thesis to help referring to the different versions of the robot at

the different stages of development. Briefly and theoretically, as elaborated in Figure 1.1, what

we envision is that Ron helps to automate the entire interaction, provides basic motivational

feedback to the learner, and it does so while being least aware of its surroundings, i.e., the

sensory information coming from learners and the activity. Harry has all the capabilities that

Ron has and additionally it has an idea of what behaviors could be useful for learning in the

context of the learning activity. Hence, it suggests randomly one among those behaviors at

fixed times. Hermione too has all the capabilities of Ron and additionally it not only has the

knowledge of what behaviors could be useful for learning, like Harry, but it also has an idea of

when to suggest a particular behavior and why to suggest that specific behavior.

With the outlined RQs, we think this thesis lies at the intersection of the fields of educational

Human-Robot Interaction and Learning Analytics, particularly multi-modal and collaborative

learning analytics, and therefore could be of interest to researchers in both domains.

1.4 Organization of the Thesis

The rest of the thesis is organized in the following way:

Chapter 2: This chapter introduces the learning context that will be used throughout the

thesis. More precisely, it outlines the open-ended robot mediated collaborative learning

platform JUSThink that has been designed and implemented during this thesis together with

my colleague Utku Norman. The chapter also shows initial results from a data collection study,

also referred to in this thesis as the Ron study, conducted with the platform and the robot Ron.

Chapter 3: This chapter introduces the concept of Productive Engagement, ground it in

literature, and validate it in the context of the data collected with the JUSThink platform in the
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1.4 Organization of the Thesis

Automating the activity 
and motivational 

support

Ron

The WHAT robot The WHAT, WHEN & WHY robot   

Awareness of the learner’s state

Harry Hermione

Guys, 
let’s check our 
past solutions!

Going good! But 
guys, based on last 
few minutes, I think 

now 
we should look at 
our past solutions 

more!

Figure 1.1: Theoretical description of the three robot versions

study described in Chapter 2. The validation results in surfacing productively engaged groups

as well as a non-productive group of learners. Precisely, this chapter targets RQ1.

Chapters 4 and 5: In chapters 4 and 5, we investigate what the visible behavioral profiles of

these groups reveal about learning in a collaborative open-ended learning activity. In chapter 4,

we focus on looking at learner groups at an aggregate level (behaviors averaged over the entire

learning activity) whereas in chapter 5, we look at the evolution of behaviors to understand the

changes over time within the groups. The outcomes from chapters 4 and 5 identify behaviors

that might be more conducive to learning, i.e., indicative of Productive Engagement, in such

a collaborative learning context and thus constitute a fundamental reference for the robot

interventions. Hence, these chapters target RQ2.

Chapter 6: Building on chapters 3, 4 and 5, in this chapter, we investigate method(s) for

computing Productive Engagement reliably and online. Therefore, this chapter targets RQ3.

Chapter 7: Now that we have obtained some answers for our RQs 1, 2, and 3 through the

previous chapters, this chapter focuses on research question 4. We design and implement

action selection strategies for the robots Harry and Hermione that incorporate varying levels

of knowledge acquired via the Productive Engagement framework developed in chapters 3,

4, 5, and 6. This chapter also presents an extensive study with the robots endowed with the

concept of Productive Engagement to evaluate the effectiveness of their interventions. This

study is also referred to as the Harry and Hermione study. Precisely, this chapter targets RQ4.

Chapters 8 and 9 and : Chapter 8 discusses the ongoing work particularly some expansions

related to the thesis, and possible directions for future research while Chapter 9 synthesizes

the findings and contributions of this thesis along with the take-aways and limitations.
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2 Designing JUSThink platform for
building our Engagement Framework

In order to build our engagement framework and iteratively design the robot Hermione, we

first need to build an educational HRI activity with a rich context. In this chapter, we present

our novel robot-mediated, collaborative problem solving activity for school-children, called

JUSThink, aiming at improving their computational thinking skills. JUSThink will serve as a

reference for investigating how the robot’s behaviour can influence the engagement of the

children with the learning process, as well as their collaboration while working on it.

To this end, the JUSThink version serving as a baseline with a minimalist supportive robot,

presented in this chapter, aims at investigating (i) participants’ engagement with the activity

(Intrinsic Motivation Inventory—IMI), their mutual understanding (IMI-like) and perception

of the robot (Godspeed Questionnaire); (ii) participants’ in-task performance and learning

metrics. We carried out an extensive user study in two international schools in Switzerland,

in which 98 children participated in pairs in one-hour long interactions with the activity. We

observe that in-task performance is not correlated with learning. Furthermore, surprisingly,

while a teams’ in-task performance significantly affects how team members evaluate their own

competence, mutual understanding and task engagement, it does not affect their perception

of the robot and its helpfulness, a fact which highlights the need for baseline studies and

multi-dimensional evaluation metrics when assessing the impact of robots in educational

activities.

This work corresponds to the following publications:

J. Nasir*, U. Norman*, B. Bruno, and P. Dillenbourg, "When Positive Perception of the Robot

Has No Effect on Learning," in 29th IEEE International Conference on Robot and Human Inter-

active Communication (RO-MAN), Naples, Italy, 2020 (Nasir, Norman, Bruno, & Dillenbourg,

2020a).

J. Nasir*, U. Norman*, W. Johal, J. K. Olsen, S. Shahmoradi and P. Dillenbourg, "Robot Analytics:

What Do Human-Robot Interaction Traces Tell Us About Learning?," 28th IEEE International

Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India,
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2019, pp. 1-7 (Nasir et al., 2019).

*equal contribution of work.

2.1 Introduction

“Computational thinking (CT) is going to be needed everywhere. And doing it well is going to

be a key to success in almost all future careers.” The words of Stephen Wolfram1 capture the

urgency seen in the efforts to introduce CT in educational curricula before high school (Menon

et al., 2019). At the same time, the potential of robots is increasingly being explored in

educational settings across the globe, under the intuition that robots could be an effective tool

for advancing CT skills (Chalmers, 2018), as well as for increasing participants’ engagement

with the educational activity (Belpaeme et al., 2018) and collaboration (Hamamsy et al., 2019;

Ioannou & Makridou, 2018). However, crafting pedagogical designs and robot interventions

that truly succeed in achieving such objectives is a challenging and to-date open question.

Inspired by this challenge, the JUSThink platform2 (see Fig. 2.1) aims to:

1. improve the computational thinking skills of children by exercising their abstract rea-

soning with and through graphs (posed as a way to represent, reason about and solve a

problem),

2. promote collaboration between participants, by providing team members with different,

complementary information at all times during the activity,

3. serve as a platform for the design and evaluation of robot behaviours aiming to ulti-

mately improve learning, by improving participants’ engagement with the task as well

as collaboration and mutual understanding between them (Nasir, Norman, Bruno, &

Dillenbourg, 2020b).

From a research perspective, and in line with the objectives outlined above, the designed robot-

mediated activity is also aiming to surface cues relevant to (i) participants’ engagement with

the task at hand, their partner and the robot, (ii) mutual understanding and misunderstandings

between the participants.

The contribution of the first version of the JUSThink platform is twofold:

1. Provide a baseline for a robot-mediated human-human collaborative learning activity

in which the robot automates the entire interaction moving the activity from one phase

to another, gives instructions, and provides basic motivational feedback to the learner,

1https://blog.stephenwolfram.com/2016/09/how-to-teach-computational-thinking/
2https://www.epfl.ch/labs/chili/index-html/research/animatas/justhink/
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2.1 Introduction

Figure 2.1: QTrobot welcomes children to the JUSThink activity.

without causing unnecessary distractions (we will be referring to this version of the

robot as Ron);

2. Enable an analysis of the participants’ self-assessment of engagement, mutual under-

standing, and perception of the robot, both independently and in connection with

performance and learning in the collaborative activity.

The second contribution serves a double purpose. On the one hand, it is meant as a baseline

reference for future studies on the impact that robot behaviours have on participants’ learning,

performance, engagement, collaboration and mutual understanding. This is the reason why

the robot’s behaviour in this version is purposefully designed to be minimal and detached

from the participants’ situation. On the other hand, participants’ assessment of a “useless

robot”, especially if they are struggling with the task at hand, is an interesting insight into the

appropriateness of commonly adopted tools for robot evaluation in educational settings. For

this reason, in our analysis we complement standard HRI questionnaires with learning and

performance metrics.

Moreover, linking back to the distinction in the literature regarding the nature of the HRI

context, introduced in Chapter 1, we define our human-human-robot setting where a learning

task is present as a social-task engagement scenario.

Lastly, the choice to have two users in our setting, introducing social engagement with a

human, is because we want to grasp all facets of engagement, since we do not know yet which

ones will better relate to learning. Social engagement with a human is supported by the idea

that collaboration only produces learning if peers engage into rich verbal interactions such

as argumentation, explanation, mutual regulation (Blaye, 1988; Dillenbourg et al., 1996), or

11
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conflict resolution (Glachan & Light, 1982; Schwarz et al., 2000). To ensure that the interactions

of the user are as rich as possible, the activity has to envision another human as a counterpart.

Concretely, in this chapter, with the proposed JUSThink platform and a data collection study,

we address the following research questions:

1. RQ1: How do participants assess their engagement, mutual understanding and percep-

tion of the robot Ron, for the proposed JUSThink activity?

2. RQ2: Is the first version of the JUSThink activity effective in its pedagogical objective?

3. RQ3: Is there a correlation between the performance in the task, or the learning gain,

and participants’ self-assessment of engagement, mutual understanding, competence,

stress and, above all, the robot’s behaviour and its helpfulness?

From the above research questions, we derive the corresponding, following hypotheses:

1. H1: H1(a): Participants’ self-assessment of engagement and mutual understanding is

positive.

H1(b): Their self-assessment of the robot is negative because of its few and limited

interventions.

2. H2: Performance in the learning task positively correlates with learning gain.

3. H3: H3(a): Teams with high performance will rate their engagement, mutual under-

standing, self-competence higher than teams with low performance, and will have a

more positive perception of the robot.

H3(b): Teams with low performance will rate their stress higher than teams with high

performance, and will have a more negative perception of the robot and its helpfulness.

2.2 Background

Robots have been incorporated in collaborative learning activities to support the interaction

in various ways. For instance, a robot equipped with emphatic competencies was used to

support the interactions of a collaborative learning activity about sustainable development

through constructing a sustainable city in a group setting. The robot provided support by

considering the affective states of the participants (Alves-Oliveira et al., 2019). Within a

learning-by-teaching paradigm (Chase et al., 2009), robots were used: to promote children’s

responsibility in a collaborative learning activity in which children write on a tablet and the

robot gives corrective feedback (Chandra et al., 2015), to aid the reading of children where a

child and a robot collaboratively read stories (Yadollahi et al., 2018), and to be collaboratively

tutored by children in order to improve handwriting (Hamamsy et al., 2019).
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Table 2.1: Pipeline of the JUSThink activity.

Stage What are the participants supposed to do? What does the robot do? Level Duration

Welcome Enter their name, age and gender on the screen Welcome the participants, ask them for per-
sonal details

individual 2 min

Introduction Listen to the robot Introduce the task goal: connecting the gold
mines by spending as little money as possi-
ble

team 2 min

Pre-test Answer a list of multiple-choice questions on the
screen

Ask the participants to answer the pre-test
questions

individual ≤ 10 min

Demo Listen to the robot and follow the illustrations on
the screen

Explain the two game views and their func-
tionalities

team 3 min

Learning
Task

Find a cheapest railway network (a minimum
spanning tree) connecting all gold mines by:
i) drawing or erasing tracks that connect pairs of
gold mines
ii) submitting any agreed-upon solution to the
robot for evaluation and feedback

At the submission of a solution:
If the submitted solution is optimal, con-
gratulate the participants and move to the
post-test stage.
Otherwise, reveal the cost difference be-
tween the submitted solution and an op-
timal one and motivate the participants to
try harder. Point out the availability of the
history of submitted solutions if the partic-
ipants are not successful after several at-
tempts.

team ≤ 25 min

Post-test Answer a list of multiple-choice questions on the
screen

Ask the participants to answer the post-test
questions

individual ≤ 10 min

Questionnaire Rate on a 5-point Likert scale a set of items about
engagement, mutual understanding and the robot

Ask the participants to answer the question-
naire

individual ≤ 5 min

Goodbye See the robot wave goodbye Thank the participants for their help, say
goodbye

team ≤ 1 min

(a) Introductory Map (b) Map 1 (c) Map 2

Figure 2.2: (a) The introduction sheet to familiarize children with the Cellulo robot, specifically
how to move it and to distinguish various types of haptic feedback given by the robot. (b, c)
Map 1 and Map 2 used in the learning activity, where the goal on a map is to find the optimal
path from home represented with a clip-art of a house to (b) gym and (c) cinema. The source
and destination nodes, and the optimal paths are highlighted here with dashed circles and
dashed lines respectively.
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(a) A team of two children

(b) Several teams

Figure 2.3: Photos of (a) a single team while answering the collaborative quiz and (b) several
teams participating concurrently in the learning activity in our pilot study
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2.3 Activity Design

Here, we would like to note that the implications that the design of an activity has on enforcing

collaboration cannot be ignored: one cannot merely put two students together and expect

them to collaborate. This is something we practically experienced via the design of another

activity called Cellulo City (Nasir et al., 2019), as shown in Figure 2.2 and Figure 2.3. Cellulo City

is an open-ended collaborative learning activity using tangible haptic-enabled Cellulo robots

in a classroom-level setting where the idea is to highlight some of the core concepts involved in

path planning by exploratory behavior; hence, serving as an advance organizer (Ausubel, 1960)

to a conventional lesson or even as a stand alone session with some modifications. The pilot

study, spanning over approximately an hour, was conducted with 25 children aged between

11-12, playing in teams of two. While the study itself contributes to highlighting the potential

of the use of learning analytics in educational robotics, we noticed that the design did not

enforce collaboration. A more pro-active student in the team could just be doing all the work

while the other student passively observes, or one student could dominate the manipulation

of the robot, etc.

A careful activity design is thus needed to maximise the chances for the learning mechanisms

to occur. Therefore, in the second learning activity design while moving to a very different kind

of platform, our design enforces, through specific design choices (elaborated on in the next

section), collaboration between the team members while also leaving space for exploration:

thus, the participants are expected to have productive interactions (Dillenbourg, 1999) while

contributing to a solution together.

2.3 Activity Design

The JUSThink activity is organised in a sequence of stages as described in Table 2.1, the core

of which is the learning task.

2.3.1 Learning Task Design

Swiss Gold Mines Scenario

The objective of the JUSThink activity is to give participants an intuitive knowledge about

minimum-spanning-tree problems3 and how to solve them. To introduce the minimum-

spanning-tree problem to the participants as a game and with minimal terminology, we

created a scenario based on a map of Switzerland. On the map, gold mines are depicted with

mountains, animated with glittering gold on them, and labelled with names of Swiss cities (e.g.

“Mount Zermatt" and “Mount Zurich"): these make up the nodes V of the graph G = (V ,E).

3Let G = (V ,E) denote a connected, undirected, edge-weighted graph. V is the set of nodes, E ⊆V ×V is the
set of edges that connects node pairs, and c : E → R is the edge cost function for G . A subgraph of G is said to
“span" the graph G if it connects all nodes of G , i.e. each node is reachable from every other. The problem is to find
a subgraph T of G that spans G and minimises oT (T ) =

∑
e∈ET c(e). An optimal solution T is called a minimum

spanning tree for G .
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(a) Figurative view

(b) Abstract view

Figure 2.4: The contents of the screens of the participants, where one participant is in the
figurative view and the other participant is in the abstract view. The shown set of tracks forms
a minimum spanning tree for the network of gold mines to be constructed together by the
participants. Participants swap view after every 2 moves.
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At the start of the Learning Task stage, the robot Ron, acting as the CEO of a gold mining

company, reiterates the problem by asking the participants to help it collect the gold by

connecting the gold mines with railway tracks, spending as little money as possible on the

tracks. Then , the participants collaboratively construct a solution by drawing and erasing

tracks that connect pairs of gold mines, and submit it to the robot for evaluation (one of the

two optimal solutions is shown in Fig. 2.4). The cost function and the graph layout draw

inspiration from the muddy city problem4. Note that the cost function is strictly positive.

Scaffolding for Collaboration and Abstract Reasoning

We chose to have an open-ended collaborative activity where learners collaborate to solve an

open-ended problem without receiving direct guidance, and this is inspired by the inherent

characteristic of such problem-solving followed by instruction (PS-I) activities that encourage

the awareness of knowledge gaps, stimulate knowledge construction processes and lead to

increased learning gains (Loibl et al., 2017; T. Sinha & Kapur, 2021). Additionally, it is known

that collaborative activities need to be scripted for better collaboration and learning (Kollar

et al., 2006; Vogel et al., 2017). Therefore, we designed a script based on partial information,

role switching and complementarity. A number of design choices have been made in that

regard.

Firstly, the screens display two different views that present only partially observable informa-

tion to the participants, with a barrier preventing each participant from seeing the other’s

screen (see Fig. 2.1). At every point in time within the task, one of the participants is shown

the figurative view and the other is shown the abstract view (see Fig. 2.4) In the figurative view,

nodes are shown as mountains and edges as railway tracks connecting two gold mines. Edges’

costs are not visible. In the abstract view, nodes are shown as labelled circles, drawn edges as

solid lines, while edges drawn and then deleted appear as dashed lines, superimposed over

the figurative drawing as a semitransparent overlay. The costs of edges (solid or dashed) are

indicated as a number near their center point.

Secondly, the views offer complementary functionalities, allowing different actions for con-

structing a solution. In the figurative view, one can edit the graph by drawing a track or erasing

an existing track. In the abstract view, one can see the cost of the tracks, access the previous

solutions and their costs, and bring back a previous solution after discarding the current

selection. A track is explored after drawing it for the first time, and its cost is displayed in

the abstract view until the constructed solution is submitted. Hence, in order to make an

informed decision on which action to take (add/delete edges, submit), the participants need to

communicate their understanding of what the best move would be based on the information

available to them.

Thirdly, every two edits, the views of the participants are swapped, i.e. the participant in

the figurative view is then in the abstract view and vice versa. This is so that there are no

4 https://csunplugged.org/minimal-spanning-trees/
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permanent roles, and that the participants could participate equally in the thought process

associated with each view.

Fourthly, the participants can submit only if their solution spans the whole graph. The

participants can submit as many times as they want, until they find an optimal solution or the

allocated time is over. This allows the participants to experiment with different solutions. The

participants are informed of the remaining time only a few minutes before the allocated time

is over.

Fifthly, the cost of each track is initially hidden and revealed only after it is drawn. This could

promote reasoning about an edge in terms of a connection between two entities with an

associated cost.

Lastly, in order to submit a solution, both participants have to select submit (for the same

solution) by clicking the submit button on their respective screens. A selection for submission

is revoked by an edit on the solution. Thus, the participants need to agree on a solution.

2.3.2 The Robot’s Role

The robot’s role in the first version of JUSThink, i.e., Ron’s role is two fold: (i) mediate and

automate the entire interaction (see Table 2.1), pausing the participants’ applications, giving

instructions, and moving from a stage to the next upon its completion; as well as (ii) intervene

when a solution is submitted and support through minimal expressive behaviours (as men-

tioned in Table 2.1). The expressive behaviours include verbal support, using participants’

names, and the display of emotions and supporting gestures. Some of these behaviours can

be seen in Fig. 2.3.2.

2.3.3 Setup Design

Hardware Setup

The hardware layout required for the JUSThink activity is shown in Fig. 2.6. Two children

sit across each other, separated by a barrier. In front of each child, a touch screen is placed

horizontally. The humanoid robot (QTrobot5) is placed on the side, visible by both children.

The children can see each other but not their partner’s screen. The experimenter is at all

times in the room, ready to intervene. The interaction is recorded by three cameras: one

environment camera filming the whole scene and two RGB-D cameras each focused on a

child’s face. Audio is recorded with two lavalier microphones, clipped on the children’s shirts.

Two computers, connected to the two touchscreens and to the robot’s local network, manage

the activity and the synchronous recording of the cameras and microphones. The face cameras

are connected to a third computer to alleviate the burden of bandwidth in the local network.

5https://luxai.com/humanoid-social-robot-for-research-and-teaching/
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Table 2.2: Categorisation of the questions in the questionnaire.

No Question Group Category

1 I was trying very hard to find the best solution. Cognitive at Task Level (IMI) Task Engagement
2 It was important to me to do well at this task.
3 I thought this activity was quite enjoyable. Affective at Task Level (IMI)
4 I enjoyed trying to find the best solution.
5 I was trying very hard while discussing with my

friend about the activity.
Cognitive at Social Level (IMI) Social Engagement

6 It was important for me to discuss with my friend
while finding the best solution.

7 Discussions with my friend were quite interesting. Affective at Social Level (IMI)
8 I enjoyed discussing with my friend about the activ-

ity.
9 I think I did pretty well at this activity. Perceived Competence (IMI) Own Competence

10 I am satisfied with my performance at this task.
11 I felt tense while doing this activity. Pressure/Tension (IMI) Stress
12 I think my friend understood my instructions very

well.
Cognitive (IMI-like) Mutual Understanding

13 I think my friend understood my emotions very
well.

Affective (IMI-like)

14 I think the robot is competent (capable). Robot (Godspeed) Robot
15 I think the robot is intelligent.
16 I think the robot is friendly.
17 I think the robot is likeable.
18 I think the robot is distracting. Robot (Godspeed-like) Robot Behaviour
19 I think the robot should give more useful feedback.
20 I liked the robot.
21 I would like to play the same game with the same

friend.
Game and Friend

22 I would like to play the same game with another
friend.

23 I knew my friend well. Known Friend
24 How many minutes do you think you spent on the

part where you played with your friend to find the
best solution?

Perception of Time
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Figure 2.5: Various robot behaviours during the activity. On the top left, Ron is waving while
welcoming a team to the activity and on the top right, Ron is smiling after explaining the rules
of the goldmine scenario and all the gold the students will be collecting. On the bottom left
is a moment captured right after a team submits an optimal solution and Ron is excitedly
congratulating the team while the bottom right shows Ron exhibiting sadness after saying
goodbye to a team at the end of the activity.

Software Setup

Each participant interacts with an instance of the JUSThink participant application that

is written in Python and uses pyglet as the windowing and multimedia library. Hence, a

separate instance of the application is run for each participant in a team. The JUSThink robot

behaviour application is also developed in Python and governs what the robot does and when.

The applications communicate with each other via the Robot Operating System (ROS).

2.4 User Study

2.4.1 Evaluation Metrics

Learning Metrics

We generate our learning metrics from the scores of the pre-test and post-test, which are

defined in a context other than Swiss gold mines and based on variants of the graphics in the

muddy city4 problem.

Specifically, pre-test and post-test are composed of 10 multiple-choice questions, assessing

the following concepts:
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Figure 2.6: The layout of the hardware setup for JUSThink.
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Figure 2.7: Box plots showing the distribution of the ratings given in the questionnaire (N = 39
teams) for each question. The questions are listed in Table 2.2.
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• C1: (exists-or-not, 3 questions). If a spanning tree exists, i.e. if the graph is connected.

Example question: “In which map can a postman visit all the houses using only the

roads?"

• C2:(spans-or-not, 3 questions). If the given subgraph spans the graph. Example ques-

tion: “In which map can a postman visit all the houses using only the black roads?"

• C3:(minimum-or-not, 4 questions). If the given subgraph that spans the graph has a

minimum cost. Example question: “In which map can the city build another path with

fewer stones than the black path shown to visit all the houses?".

In C2 and C3, the black path illustrates the given subgraph. The questions are given here in

verbatim, where the emphases (here in italics) are presented to the participants in uppercase.

The post-test is obtained by randomly shuffling the questions and the response choices within

and across the questions related to the same concept, as well as vertically mirroring the images

given in the response choices.

On the basis of the pre- and post-test scores, we define two learning metrics:

• absolute learning gain, i.e. the difference between a participant’s post-test and pre-test

score, divided by the maximum score that can be achieved (10), which grasps how much

the participant learned of all the knowledge available,

• relative learning gain, i.e. the difference between a participant’s post-test and pre-test

score, divided by the difference between the maximum score that can be achieved and

the pre-test score, which grasps how much the participant learned of the knowledge

that he/she didn’t possess before the activity.

In the analysis, the absolute learning gains of two team members are averaged, to provide a

measure of the team’s absolute learning gain. The same procedure is used to obtain a team’s

relative learning gain.

Performance Metrics

Let error be the difference between the cost of a submitted solution and the cost of an op-

timal/correct solution (optimal cost), normalised by the optimal cost. Then, we define two

metrics to measure the task performance as follows:

• last error, i.e. error of the last submitted solution. Note that if a team has found an

optimal solution (error = 0) the game stops, therefore making last error = 0.

• minimum error, i.e. the minimum of the error values, considering all submitted solu-

tions. This metric is interesting since the last submission does not necessarily corre-

spond to the best solution of a team, in case they have not found an optimal solution.
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2.4 User Study

Questionnaire

The questionnaire consists of 24 questions as reported in Table 2.2. Among them, 11 belong to

the Intrinsic Motivation Inventory (IMI) (Ryan & Deci, 2000), which “is a multidimensional

measurement device intended to assess participants’ subjective experience related to a target

activity in laboratory experiments" and relate to engagement, own competence and stress,

5 are ad-hoc questions exploring mutual understanding and the relationship with the team

partner (Items 12, 13, 21-23), 4 belong to the Godspeed questionnaire (Bartneck et al., 2009), a

widely used instrument in HRI to assess the perception of the robot, which we complement

with 3 additional ad-hoc questions on the robot’s behaviour and its helpfulness. Question 24

is on the perception of time elapsed.

The Godspeed items concerning the perception of the robot refer to its competence, intel-

ligence, friendliness and likeability and are complemented by behavioural items on being

distracting and giving useful feedback. Engagement here entails the effort put in for solving the

task (cognitive engagement at task level - Items 1-2) as well as for discussions with the partner

to solve the given problem (cognitive engagement at social level - Items 5-6). It also includes

the enjoyment that the participants had with regards to the task (affective engagement at

task level - Items 3-4) as well as when discussing with their partner (affective engagement

at social level - Items 7-8). More on this division of engagement will be elaborated in the

upcoming chapter. Similarly, mutual understanding was also measured both in terms of their

understanding of each other’s instructions for solving the task (cognitive - Item 12) and their

understanding of each others’ emotions (affective - Item 13).

With respect to the Research Questions driving this study, the questionnaire by itself is meant

to investigate RQ1, the learning and performance metrics allow for investigating RQ2, while

all metrics together are used to investigate RQ3.

2.4.2 Participants

The Ron study was conducted with 96 children aged 9 to 12 years6. Due to technical issues

during the experiment, 18 participants are omitted from the analysis, resulting in a dataset of

78 children (41 females: M = 10.3,SD = 0.75; 37 males: M = 10.4,SD = 0.60). The experiment

took place over the span of two weeks in two international schools in Switzerland and the

participants participated in teams of two, in sessions lasting approx. 50 minutes. The activity

pipeline is summarised in Table 2.1. There were always two experimenters available in the

room but the system was fully automated to require the least intervention by the experimenters.

While the participants were generally familiar with robots as a part of their curriculum and

STEM activities, they did not have a prior experience with the robot platform used in this

study which could introduce some novelty effect; however, that is a well-known HRI problem.

6Ethical approval for this study was obtained from EPFL Human Research Ethics Committee (051-
2019/05.09.2019).
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2.5 Analysis and Discussion

It is to be noted that while the questionnaire and tests were done individually (N = 78 partici-

pants); for the purposes of our analyses, we report values as a team average (N = 39 teams).

2.5.1 RQ1: On Participants’ Self-assessment

In Fig. 2.7, we see the distribution of the team-averaged ratings for all questions in the ques-

tionnaire.

Engagement and Mutual Understanding

Participants rated themselves to be engaged highly at both task and social level (mean(1-8)=

4.43). Similar to engagement, the participants rated the understanding of their instructions

and emotions by their partners as very high (12, 13). These results support H1(a).

Perception of the Robot

Despite the robot having a basic role in the current setup, the participants rated it very

highly with regards to competence, intelligence, friendliness, and likeability (mean(14-17)=

4.78)—see 14-17 in Fig. 2.7. It must be noted that the interaction lasted 45 to 50 minutes;

hence giving ample time for the participants to form an opinion on the characteristics of the

robot (and their limitations). Also, despite a high number of teams not being successful in

finding an optimal solution, we see that the majority of them think that the robot does not

need to give more useful feedback (19). Furthermore, very few participants found the robot’s

behaviour as distracting (18). Hence, contrary to our expectations, H1(b) is rejected.

2.5.2 RQ2: On the Relation Between Performance and Learning Gain

We observe a spectrum of gains from negative to positive for the two learning gains described

in Sec. 2.4.1.

Fig. 2.8 shows the distribution of the learning and performance metrics. The error of a team

in their last submission is M = 20.2% (SD = 16.0%), where a team that has found an optimal

solution has last error = 0. Specifically, 8 out of 39 teams have found an optimal solution. The

minimum error achieved by a team has M = 11.2% (SD = 9.6%), absolute learning gain has M =

1.0% (SD = 11.1%), and relative learning gain has M = -7.1% (SD = 38.4%).

To have an in depth view, we calculated Spearman’s correlation between each pair of perfor-

mance and learning metrics; however we did not find any significant correlations.

In Fig. 2.9, we plot all the teams to see how they are scattered in the 2D space spanned

24



2.5 Analysis and Discussion

absolute relative
learning

−1.0

−0.5

0.0

0.5

1.0

le
ar

n
in

g
ga

in

last min
performance

0.0

0.1

0.2

0.3

0.4

0.5

er
ro

r

Figure 2.8: Distribution of learning and performance metrics.

by the last error and the relative learning gain. In line with Spearman’s correlation results

(rs = −0.08, p = 0.627), we observe that the relative gain that a participant achieves is not

proportional to their success in the game, which is an important observation for the design

of the robot’s interventions. In conclusion, participants who appear to be performing well

(left side of Fig. 2.9) may not necessarily be developing an understanding of the task, a finding

which does not support hypothesis H2.

Lastly, a possible explanation for the observed low learning gains, as well as the lack of a

relation between performance and learning gain, is that our pre- and post-tests rely on a high

transfer between the task and the test, which is not spontaneous. To elaborate, as mentioned

in section 2.4.1, the pre- and post-tests are in a different context where the questions are posed

differently than how the problem is presented in the Swiss goldmine task while testing the

same underlying concepts.

2.5.3 RQ3: On the Impact of Performance and Learning Gain on Participants’ Self-
and Robot assessment

In this section, we investigate whether performance or learning gains are related with par-

ticipants’ self-assessment on engagement, mutual understanding, perception of the robot,

self-competence, stress, and especially the need for the robot to give more feedback or

its assessment as a distraction. Spearman’s correlation reports three medium correlations

that are significant between last error and competence (rs = −0.369, p = .02), minimum er-

ror and competence (rs = −0.417, p = .008), and minimum error and mutual understanding

(rs = −0.336, p = .03). This indicates that 1) the higher the last error or the minimum error, the

lower would the participants rate their self competence, and 2) the higher the minimum error,

the lower mutual understanding is rated.
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Figure 2.9: Relative learning gain vs. last error plot for the teams (N = 39 teams). We denote the
teams that felt stressed (with team average rating ≥ 4) by a circle ‘O’, those that said the robot
was distracting (rating of 4 or above) by a cross ‘X’, and those that believed the robot should
give more useful feedback (rating of 4 or above) by a plus ‘+’, as rated for questions 11, 18 and
19, respectively. The line represents the linear regression line with a 95% confidence interval.
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2.6 Key Take-Aways

It is important to note here that there were no significant correlations found between self-

assessment metrics and the two learning gains: participants seem to have based their as-

sessment of self-competence on apparent representations of learning and achievement, e.g.

success-failure in the game, rather than the tests which are used to measure learning. A similar

result was reported in (Fry, 1976) where the authors observed that “subjects who experienced

success made significantly greater gains in positive self-assessments, and failure subjects

made significantly greater gains in negative self-assessments". Note that the participants did

not receive feedback on their scores in the tests.

We then performed a Kruskal-Wallis test to inquire if teams belonging to high and low in-task

performance groups report differently on the aforementioned questions. In line with our hy-

pothesis H3(a), high performing teams (in terms of last error) rated their task engagement sig-

nificantly higher than those who did not perform as well (H = 5.669, p = .017,Cohen’s d = 1.11).

Conversely, their perception of the robot is higher than that of low performing teams, but the

result is not significant (H = 2.785, p = .095,Cohen’s d = 0.68). For this reason, we deem H3(a)

to be only partially supported by our findings, and specifically to be rejected concerning the

perception of the robot.

Concerning H3(b), we see that there is no significant result neither with Spearman’s correlation

nor with Kruskal-Wallis test. Indeed, as shown in Fig. 2.9, teams that reported high levels of

stress, the robot being distracting, or wished for more useful feedback are dispersed through-

out the plot, regardless of their performance. As the figure shows, actually most of the teams

that perceived the robot to be distracting or wished for more useful feedback (marked in the

figure by a cross and a plus sign, respectively) lie more on the top-left area of the plot, which

denotes high learning and high performance (low error). This means that low performance

does not make the participants rate their stress higher, have a more negative opinion of the

robot or, interestingly, wish the robot could give more useful feedback.

2.6 Key Take-Aways

In this chapter, we presented a novel robot-mediated collaborative educational activity that is

evaluated in a user study involving 78 children aged 9-12. The user study aims at assessing

various performance and learning metrics, alongside task and social engagement, mutual

understanding between partners, self-perception of competence, stress, robot and robot

behaviour. We report three key findings: 1) in-task performance and learning are not correlated,

and also do not correlate similarly with other metrics; 2) while affecting how a participant

perceives their own competence, task engagement, and mutual understanding with their

partner, performance has no significant effect on the perception of the robot. Moreover, low

performance has no correlation with wishing the robot to give more useful feedback; 3) despite

Ron’s rudimentary behaviour, participants perceive it as highly competent, intelligent, friendly,

likeable, not distracting, and report not feeling a need for more feedback from the robot.

Such findings allow for drawing conclusions which, albeit far from definitive, provide insights
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for robot-mediated pedagogical activity design. Specifically:

1. The lack of correlation between learning and performance metrics highlights the impor-

tance of not being limited to robot interventions that affect (and refer to) only superficial

measures of students’ learning, such as in-task performance and rather also focus on

behavioural patterns that more solidly indicate whether participants would end up

learning or not. This links with one of the four challenges discussed in Chapter 1 section

1.2.3.

2. The fact that the performance, low or high, did not have any effect on the perceived

usefulness of the robot by the participants highlights the need for well-crafted domain

specific metrics to truly assess the effectiveness of the robot and complement the general

information provided by standard evaluation tools.

While the results are limited to the specific robot-mediated collaborative activity introduced

here; the conclusions drawn from them can be extended to other educational settings, specif-

ically highlighting the need for similar baseline studies and multi-dimensional evaluation

metrics when assessing the impact of various robot strategies. As a next step, we move on

to exploring and modelling the behavioural patterns, collected in this user study, that could

be indicative of higher understanding of the learning goal, and hence are indicative of an

engagement which is beneficial for the learning process in an open-ended collaborative robot

mediated educational setting. This will lead us to formally introduce the concept of Productive

Engagement.
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3 Productive Engagement

As stated in our introductory chapter, in educational HRI it is sometimes naively believed

that a robot’s behavior has a direct effect on the engagement of a user with the robot, and the

task at hand. Increasing this engagement is then believed to lead to increased learning and

productivity. State of the art studies usually investigate the relationship between the behavior

of the robot and the engagement state of the user while assuming a linear relationship between

user engagement and user learning. However, is it correct to assume that to maximise learn-

ing, one needs to maximise engagement? Furthermore, conventional supervised models of

engagement require human annotators to get labels. Besides being laborious, this introduces

further subjectivity in the already subjective construct of engagement. Can we have data

driven models for engagement detection where labels do not rely on human annotations? In

this chapter, looking deeper at the behavioral patterns, learning outcomes and performance of

the children involved in our user-study with Ron, we observe a hidden link between student’s

behavioral patterns and learning that we term as Productive Engagement. At this stage, we

theorize that a robot incorporating this knowledge will be able to 1) distinguish teams based

on engagement that is conducive of learning; and 2) adopt behaviors that might eventually

lead the users to increased learning by means of being more productively engaged. This

seminal link paves way for data-driven models of engagement in educational HRI.

This work corresponds to the following publications:

J. Nasir, B. Bruno, M. Chetouani, and P. Dillenbourg, "What if Social Robots Look for Productive

Engagement?.” in Int Journal of Soc Robotics (2021) (Nasir, Bruno, Chetouani, et al., 2021)

[Dataset] J. Nasir, U. Norman, B. Bruno, M. Chetouani, and P. Dillenbourg, “PE-HRI: a mul-

timodal dataset for the study of productive engagement in a robot mediated collaborative

educational setting.” Zenodo (2020). (Nasir et al., 2020a)
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Figure 3.1: Overview - Productive Engagement

3.1 Introduction

As highlighted in challenge 1 in Chapter 1, the standard approaches in the literature look to

maximize engagement. But is it enough to assume that maximizing engagement, as currently

defined, maximizes learning?

Inspired by the behaviour and pedagogical principles of human teachers, we propose a

paradigm shift for which at a given point in time, an engaging robot for education is the

one capable of choosing an action that is in line with enhancing the educational goals. We

postulate that to maximize learning, engagement need not be maximized, rather optimized.

This postulation draws inspiration from the idea of Productive Failure proposed by Kapur,

2008 where he theorizes that “Engaging students in solving complex, ill-structured problems

without the provision of support structures can be a productive exercise in failure". More often

that not, there are learners that consecutively fail in a constructivist design, apparently scoring

low on engagement and yet ending up with high learning as demonstrated by our Ron study.

Similarly, there are learners that seem to succeed in the activity but achieve lower learning.

An example of this can be observed in Do-lenh, 2012 where the authors design a tangible

tabletop environment for logistic apprentices for warehouse manipulation. They observe

that while the task performance is high compared to learners using the traditional method of

paper and pencil, there is no increase in the learning outcomes. This is due to a phenomenon

they termed as Manipulation Temptation where there is over-engagement with the task but

no high-level reflection. Hence, interventions are incorporated to disengage learners and

induce them to reflect more. Going back to the idea of engaging robot for education, as pointed

out by Belpaeme et al., 2018, designing one such robot is thus not an easy feat: indeed, even

experienced human instructors struggle to always make the best choice for an intervention.

We believe that the ability to distinguish actual engagement, that potentially will lead to higher

learning, from apparent engagement that has no, or even a detrimental effect on learning

plays a key role in the effectiveness of interventions.

If optimal engagement exists, higher learning should be reflected by certain behavioral pat-

terns of the users. These patterns can then be leveraged to inform the behavior of the robot.

This chapter makes the following contributions:

• Validate the existence of “a hidden hypothesis that links multi-modal behaviors of the

users to learning” that we term as Productive Engagement (See Figure 3.1).
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• The existence of the hidden hypothesis paves way to machine-learning based engage-

ment models for which the labels do not come from human annotators but instead can

emerge from the data itself.

3.2 Background

The paradigm shift we propose puts us at the crossroad of two fields, social robotics and

education. Therefore, this leads us to look at engagement literature from both perspectives of

HRI and Multi-modal Learning Analytics (MLA). While we did touch upon the literature from

the HRI perspective in Chapter 1, we briefly look at it from the learning analytics perspective.

It should be noted that in MLA, several studies target “motivation’ and its link to learning.

This is inspired by the positive relationship established in educational psychology between

motivation and success at learning (Deci, 2017; Wolters et al., 1996), For example, in the work

by Ramachandran, Huang, et al., 2019, they “demonstrate that motivation in young learners

corresponds to observable behaviors when interacting with a robot tutoring system, which,

in turn, impact learning outcomes". They observe a correlation between “academic motiva-

tion stemming from one’s own values or goals as assessed by the Academic Self-Regulation

Questionnaire (SRQ-A)" and observable suboptimal help-seeking behavior. The authors then

go on to show that an interactive robot that responds intelligently to the observed behaviors

positively impacts students learning outcomes. While motivation is not equivalent to engage-

ment, it could rather be the cause of engagement, i.e., if one is motivated to learn intrinsically

or extrinsically, one will engage more which is also in line with Maslow’s theory of human

motivation (Maslow, 1943). These studies are thus sometimes also viewed relevant in the

context of understanding engagement in educational settings.

In the literature coming from HRI and MLA, engagement is conventionally described as multi-

faceted, meaning that various aspects of the user can be used to model it. Some of the forms

found in literature, following the nomenclature proposed by Dewan et al., 2019, include

affective, behavioral, cognitive, academic, and psychological.

Various methods to measure engagement along these facets can then be found in the HRI

and MLA literature. In Dewan et al., 2019, the authors categorize these methods (for online

learning) into manual, semi-automatic, and automatic, and then divide the methods in each

category into sub-categories depending upon the modality(ies) of the data used. Adapting

the classification mainly from Dewan et al., 2019, we focus on the manual and automatic

categories:

3.2.1 Manual

Two of the most popular manual methods found both in HRI and MLA engagement literature

are: 1) Self-Reporting, where “the learners report their own levels of engagement, attention,
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distraction, motivation, excitement, etc." (H. L. O’Brien & Toms, 2010; Whitehill et al., 2014);

2) Observational Checklist, where external observers complete questionnaires on learners

engagement or annotate video or speech data (Kapoor & Picard, 2006; Parsons & LeahTaylor,

2011). While self-reporting is easy to administer and useful for “self-perception and other less

observable engagement indicators" (Whitehill et al., 2014), it brings about the issue of validity

that depends on several factors such as learners honesty, willingness, and self-perception

accuracy, etc. (D’Mello et al., 2014). On the other hand, disadvantages of the second type of

methods include the fact that they require a huge amount of time and effort by the observers,

as well as the risk of observational metrics to be affected by confounding factors. For instance,

as pointed out in Whitehill et al., 2014, “sitting quietly, good behavior, and no tardy cards

appear to measure compliance and willingness to adhere to rules and regulations rather than

engagement". Furthermore, while studies with a single observer might suffer from subjectivity,

studies with multiple observers might lead to low inter-rater agreement as engagement is a

highly subjective construct.

3.2.2 Automatic

Some of the most widely used methods in MLA and HRI for engagement modelling fall un-

der this category. They can be further sub-divided into: 1) Log-file Analysis, and 2) Sensor

Data Analysis methods. In Log-file Analysis, interaction traces are analyzed to extract users

engagement or disengagement, possibly alongside performance (in educational settings), via

behavioral indicators like the frequency of doing a particular behavior, the time taken on a

particular action or the confidence level associated with a submitted response, etc. (Alyuz

et al., 2016; Castellano et al., 2012; Cocea & Weibelzahl, 2009; Maqsood et al., 2022). Various

learning analytics and data mining approaches are used to perform log-file analysis in educa-

tional settings (R. Baker & Siemens, 2012) including prediction methods, structure discovery,

relationship mining, etc. While interaction traces are relatively easy to log and, hence, result

in considerable amount of data; they lack information that can be crucial to learning such as

where the user is looking at or how the user feels. In the second method, a number of cues

are investigated, most commonly through video and audio data: gaze, mutual gaze, joint-

attention, speech, posture, gestures, facial expressions, proxemics, personality etc. (Anzalone

et al., 2015; Benkaouar & Vaufreydaz, 2012; Castellano et al., 2009; Foster et al., 2017; Ishii &

Nakano, 2010; Ishii et al., 2011; Kim et al., 2016; Papakostas et al., 2021; Salam, Celiktutan,

et al., 2017; Sanghvi et al., 2011b). A number of work complement video and audio data

with physiological and neurological sensors to provide information such as: EEG, heart rate,

perspiration rate, etc. (Chaouachi et al., 2010; Kulíc & Croft, 2007). While collecting video and

audio data requires careful privacy considerations, the main advantage of relying on video and

audio data only is that the setup can be made relatively unobtrusive. On the other hand, while

physiological and neurological sensors may provide more accurate information about some

of the internal states of a learner (namely arousal, alertness, anxiety, etc.), they are specialized

sensors that are not very practical in classroom settings.
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Due to the multi-modality and diversity of the data collected, Sensor Data Analysis approaches

can differ significantly in terms of the chosen analysis methods. Commonly found solutions

include: 1) methods that look to detect the presence of specific engagement cues/events such

as directed gaze, back-channels, valence, smile (Gordon et al., 2016; Rich et al., 2010), 2)

supervised classifiers where the labels come from human annotators (Castellano et al., 2009;

Kim et al., 2016; Salam, Celiktutan, et al., 2017), and 3) deep-learning (Nezami et al., 2018)

and deep reinforcement learning (Oggi et al., 2019; Rudovic et al., 2019) approaches. The

deep-learning methods are relatively newer methods in HRI, motivated by the idea that the

traditional machine learning methods are not equipped to deal with high-dimensional feature

space, require expert engineering, and always rely on data annotation. While methods of

the first kind are relatively straight-forward to implement, they are limited to the detectable

cues, which are few and possibly affected by confounding factors. Even though supervised

classifiers are one of the widely used methods, they suffer from the problem of generalization

and accuracy since they are modeled in a specific context and the labels are provided by

multiple human annotators. We must also note that not many studies actually report the

annotation protocol. Lastly, the latest deep learning approaches generally suffer from the lack

of interpretability/explainability of results and require an abundance of data.

The brief state of the art review reported above emphasizes the benefits of multi-modal ap-

proaches, which are better suited to capture the nuances of engagement and less severely

affected by confounding factors, as well as the disadvantages of relying on human observer-

s/annotators, which introduce a hard-to-control-for subjectivity. Hence, in the proposed work,

we try to steer away from dependency on human annotators and lack of interpretability (intro-

duced by deep learning approaches) while still making use of multi-modal data as in (Perugia

et al., 2020). We propose an automatic machine learning method which relies on both log-files

and video/audio data, analysed with clustering techniques. This method generates labels for

engagement which can be utilized for training a supervised classifier.

Engagement research in HRI is usually studied as the standalone goal of an experiment and, to

the best of our knowledge, no study tries to explicitly link it to learning. On the other hand, a

large amount of contributions within MLA (and specifically coming from the field of Intelligent

Tutoring Systems - ITS) aims at capturing the knowledge state or skill level of the students

through the interactions with the system (R. Baker & Siemens, 2012; R. S. Baker et al., 2008;

Corbett & Anderson, 1995; Desmarais & Baker, 2012; Pardos & Heffernan, 2010) in addition to

modelling meta-cognitive behaviors, affective states, engagement, and motivation (R. S. Baker

et al., 2004; Beal et al., 2004; C. & H., 2009; Craig et al., 2007; Desmarais & Baker, 2012). The

reported MLA literature supports our hypothesis that it is possible to "glimpse" learning and

performance in the way learners engage with each other and the task at hand. This chapter

investigates this intuition, without forgetting the ultimate goal of turning what we find into

something that a robot can use online to drive its behavior to best support learning.
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3.3 Productive Engagement

In this section, we lay out our definitions for Productive Engagement (PE) in the light of the

distinctions made in the literature when defining engagement, as highlighted in Chapter 1.

Most of our definitions by necessity, due to the conceptions underlying PE where learning

needs to be incorporated in the definition, differ from the already existing definitions. Our

research is motivated by the following conceptions:

1. Maximizing engagement does not necessarily lead to increased learning outcomes, as

first noted in section 3.1.

2. As discussed in section 3.2, evaluating engagement in light of domain specific measures

like learning outcomes, that is a more objective construct, and relying upon multi-modal

data, can be more effective in open-ended educational settings than using classifiers

with labels from human observers.

We define Productive Engagement as the type of engagement that maximizes learning. Unpro-

ductive engagement can occur either due to over engagement (that can happen especially

when interacting with gamified educational setups or setups with a robot where the children

might not be engaged in what they are supposed to be engaged in) or under-engagement,

both socially or with the task. We make a distinction between the social and task aspects of an

interaction that happen in an educational setting, adapted from the work of (Corrigan et al.,

2013). Productive Engagement would then have the following components:

1. Social Engagement that we define as the quality and quantity of the verbal and non-

verbal social interaction of a person with other entities (learners and robots).

2. Task Engagement that we define as the quality and quantity of interactions of a person

with the task.

Furthermore, the choice to have two users in our setting as shown in Figure 2.1, introducing

social engagement with a human, is to allow us to grasp all facets of engagement, since we

do not know yet which ones better relate to learning. Particularly, social engagement with

a human is supported by the idea that collaboration only produces learning if peers engage

into rich verbal interactions such as argumentation, explanation, mutual regulation (Blaye,

1988; Dillenbourg et al., 1996), or conflict resolution (Glachan & Light, 1982; Schwarz et al.,

2000). Since two humans in this setting introduce the concept of group engagement, first

outlined in Chapter 1, in our human-human-robot setup, we adopt the definition by Oertel

et al., 2011 that is a “group variable which is calculated as the average of the degree to which

individual people in a group are engaged". Briefly, for the purpose of analyzing the hidden

hypothesis highlighted in the introduction of this chapter, we want to consider multiple facets

of engagement as well as have two human users in the setting to have richer interactions.
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3.4 Research Questions

As seen in Figure 3.1, learning and performance can be positive or negatively affected by

behavioral patterns pertaining to social and/or task engagement and vice versa. Furthermore,

we argue that the other distinction commonly adopted in HRI (cognitive and affective), as

seen in the review by (Belpaeme et al., 2018), comes under the umbrella of both task and

social engagement aspect of an interaction (elaborated more in our definitions below). To

shed more light on the motivation to use this distinction, we include the outcomes (what

the robot intervention targets and what the learning activity is designed for) classification

from the aforementioned review by Belpaeme et al., 2018. They showed that in most of the

studies carried out with robots in educational settings, the outcomes can be classified into

cognitive and affective (Belpaeme et al., 2018).“Cognitive outcomes focus on one or more of

the following competencies: knowledge, comprehension, application, analysis, synthesis, and

evaluation" while the “Affective outcomes refer to qualities that are not learning outcomes per

se, for example, the learner being attentive, receptive, responsive, reflective, or inquisitive".

Both of these outcomes have been reported to affect learning; however, a positive affective

outcome does not imply a positive cognitive outcome or vice versa (Belpaeme et al., 2018;

C.-M. Huang & Mutlu, 2014). Based on the definitions in the engagement literature (Chi &

Wylie, 2014; Henrie et al., 2015; H. O’Brien et al., 2016; H. L. O’Brien & Toms, 2008; Whitehill

et al., 2014) as well as our understanding that these distinctions fall under both social and task

engagement aspect of an interaction, we define them as follows:

1. Cognitive engagement refers to the effort that is put into understanding and analyzing

the learning concept including meta-cognitive behaviors like reflection. This can be

reflected in their in-task actions (task aspect) or conversations with their partner(s)

(social aspect).

2. Affective engagement encompasses feelings, enjoyment, attitude, the mood of the

learners, etc. This can be considered w.r.t how they feel towards the task itself (task

aspect) or how their partner(s) makes them feel (social aspect).

The above categorization of engagement facets is presented to ground our definition of

productive engagement in the context of existing engagement literature and to illustrate

our rationale for selecting engagement-related features. Furthermore, we are aware that

separating the cognitive and affective dimensions of interactions is a gross simplification. We

use this distinction as a convenient way to design the robot behavior as well as to analyse

data. Concretely, we propose that a feature can be labelled based on the type of engagement

(cognitive or affective in task and/or social space) we are using it to measure.

3.4 Research Questions

We consider our definition of Productive Engagement described in the previous section as

a hidden hypothesis that “links multi-modal behaviors of the users to learning and perfor-

mance". Briefly, the analysis in this chapter investigates the following research questions:
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• RQ1: Given the behavioral patterns, whether cognitive or affective, social- or task-

related, can we reveal a quantitative relationship that links them to learning or in-task

performance? i.e., do people that differ in their behavior also differ in their learning or

in-task performance?

• RQ2: To feed a machine-learning model of engagement with labelled data, can we

replace human annotated labels by measures extracted from learning outcomes?

The link between the contributions of this chapter, Productive Engagement and the research

questions is analogous to a cosco ladder. Previous work on educational HRI and MLA, as afore-

mentioned, agree in suggesting that there is a link between learner engagement and learning.

Then, the two fields differ: while the educational HRI side has mostly focused on investigating

the relationship between the robot’s behavior and learner’s engagement, a subset of MLA

literature has investigated the relation between learners behaviors (indicative of constructs

like engagement, motivation, effortful behavior, that have been used comparably (Sharma

& Giannakos, 2020)) and learning. In this chapter, we postulate that it is time to reunite

the two sides of the equation: robot behavior with user engagement with user learning. We

propose to do so via the concept of Productive Engagement that emerges by investigating such

domains in parallel. Productive Engagement is the type of engagement that the robot seeks

to raise in the user, because “it is the one that is expected to put the user in conditions likely

to trigger learning mechanisms, although there is no guarantee that the expected conditions

would occur"1. Aforementioned is the first half of the ladder, the one where we climb from the

literature to Productive Engagement. Now, on the second half, we descend from Productive

Engagement to experiments and implementation. For the full link to work: (1) the robot needs

to be able to automatically infer the user’s Productive Engagement (RQ2), and (2) there must

exist a link between said engagement and learning (RQ1), so that the robot can verify whether

the current user engagement is conducive to learning and plan its actions accordingly.

3.5 Generating an Open-Source Dataset: PE-HRI

From the Ron study described in the previous chapter, where we recorded video, audio and

log data of the children interacting with each other and the robot in the context of the JUS-

Think activity, we generated an open-source multi-modal data set called PE-HRI (Nasir et al.,

2020a). To ensure that data used for this analysis is complete and non-faulty across all sensing

modalities (i.e., video, audio and actions logs) as well as homogeneous (e.g., we excluded a

team in which participants were speaking French instead of English to communicate with

each other), we omitted 28 students, resulting in a corpus of 68 participants (i.e., 34 teams)

used for the analysis reported in this chapter.

1 This definition is inspired by Dillenbourg’s way of defining collaborative learning in (Dillenbourg et al., 1996)
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3.6 Evaluating the Hidden Hypothesis

RQ2 assumes that learning and performance data, respectively extracted from the pre- and

post-tests and the learning task itself, can provide labels to be used as a reference for the

analysis of the engagement features. Concretely, this means that learning and performance

data should allow for a separation of teams into different groups, with different learning

outcomes and performance. This analysis, which we call “backward” since it allows for

moving from learning to engagement (from learning outcomes back to the learning process),

is reported in Section 3.6.1. Following that, in Section 3.6.2, we first discuss the engagement-

related features extracted from video, audio and log data (see Table 3.1), then investigate the

existence of a link between behavior and learning and performance, by verifying whether

correspondences exist between the clustering of teams based on their behavior patterns

and the learning labels. This is what we call the “forward” approach, since it moves from

engagement features to learning outcomes and performance metric. We must point out that

by performance, we mean how the teams perform, i.e., fail or succeed at the activity and by

learning outcomes, we refer to how the learners score in there pre- and post-tests. For our

analysis, we make use of the sklearn machine learning library (Pedregosa et al., 2011).

3.6.1 Backward Analysis

We make use of the following learning outcomes and performance metric (first outlined in

Chapter 2, whose definitions are here reiterated for an easier read:

• last error: It is a performance metric, denoted by last_error, defined as the error of the

last submitted solution by a team. It is computed as the difference between the total

cost of the last submitted solution and the cost of the optimal solution. Note that if a

team has found an optimal solution (last_error = 0) the game stops, therefore making

last error = 0.

• relative learning gain: It is a learning outcome, calculated individually and not as a

team, defined as the difference between a participant’s post-test and pre-test score,

divided by the difference between the maximum score that can be achieved and the

pre-test score. This grasps how much the participant learned of the knowledge that

he/she didn’t possess before the activity. At team level, denoted by T_LG_relative, we

take the average of the two individual relative learning gains of the team members.

• joint learning gain: It is a learning outcome, denoted by T_LG_joint_abs, defined as the

difference between the number of questions that both of the team members answer

correctly in the post-test and in the pre-test, which grasps the amount of knowledge

acquired together by the team members during the activity. This is related to the notion

of shared understanding.

We calculate these measures for each team, normalize them to have unit variance, and then
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perform a K-means clustering on the metrics which yields the results shown in Figure 3.2. The

k = 4 is estimated based on the commonly used metric of inertia for analyzing how well the

clustering method did. For a better understanding of the resulting clusters, we also generate

pair plots for the three metrics in Figure 3.3. As the pair plots show, we have four clusters that

we can label, in accordance with terminology and concepts commonly adopted in the field of

learning and education (more specifically the terms productive/non-productive inspired by

the terminology of Productive Failure and Productive Success (Kapur, 2008, 2016)2), as:

• non-Productive Success, i.e. teams that performed well in the task but did not end up

learning; hence, with lower last errors and lower learning gains (BA cluster = non-PS in

blue in Figure 3.3).

• Productive Failure, i.e. teams that did not perform well in the task but ended up learning;

hence, with higher last errors and higher learning gains (BA cluster = PF in orange

in Figure 3.3).

• non-Productive Failure, i.e. teams that neither performed well in the task nor ended up

learning; hence, with higher last errors and lower learning gains (BA cluster = non-PS in

green in Figure 3.3).

• Productive Success, i.e. teams that performed well in the task and also ended up learn-

ing; hence, with lower last errors and higher learning gains (BA cluster = PS in red

in Figure 3.3).

In terms of the pedagogical goal as well as the apparent success in the activity, it is quite

interesting to see these four types of teams. However, the next question is whether behavioral

patterns of teams would cluster in a similar manner or not. In other words, would the different

behavioral patterns also indicate such a division among teams, i.e., do backward and forward

analyses match?

2 Our groups can be considered to have experienced, at some level, the various phenomenon, outlined in
(Kapur, 2016) even though we did not design for it.
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Figure 3.2: Clustering of teams in the PE-HRI dataset based on their learning and performance.

Figure 3.3: Pair plots of the clusters obtained through the backward approach. According to
their relative placement w.r.t. learning and performance (and in line with terms and concepts
used in Education), we can label the clusters as: non-Productive Success (non-PS), Productive
Failure (PF), non-Productive Failure (non-PF) and Productive Success (PS).

39



Table 3.1: Multi-modal features for the analysis of the participants’ engagement in the Forward
Approach

Feature Definition Feature Type

Log Features

Edge Addition The number of times a team added an edge on the map Task/Cognitive

Edge Deletion The number of times a team removed an edge from the map Task/Cognitive

Ratio of Edge Addi-
tion and Deletion

The ratio of addition of edges over deletion of edges by a team Task/Cognitive

Number of Actions The total number of actions taken by a team (add, delete, submit, presses on
the screen)

Task/Cognitive

History The number of times a team opened the sub-window with history of their
previous solutions

Task/Cognitive

Help The number of times a team opened the instructions manual Task/Cognitive

A_A_add The number of times a team, either member, followed the pattern consecu-
tively: I delete, I add back

Task/Cognitive

A_A_delete The number of times a team, either member, followed the pattern consecu-
tively: I add, I then delete

Task/Cognitive

A_B_add The number of times a team, either member, followed the pattern consecu-
tively: I delete, You add back

Task/Social/Cognitive

A_B_delete The number of times a team, either member, followed the pattern consecu-
tively: I add, You then delete

Task/Social/Cognitive

Redundant Edges The number of times they had redundant edges in their map Task/Cognitive

Video Features: Affective states and Gaze

Positive Valence The average value of positive valence for the team Task/Social/Affective

Negative Valence The average value of negative valence for the team Task/Social/Affective

Positive Minus Neg-
ative Valence

The difference of the average value of positive and negative valence for the
team

Task/Social/Affective

Arousal The average value of arousal for the team Task/Social/Affective

Smile The average percentage of time of a team smiling Task/Social/Affective

Gaze at Partner The average percentage of time a team has a team member looking at their
partner

Social/Cognitive/Affective

Gaze at Robot The average percentage of time a team is looking at the robot Social/Cognitive/Affective

Gaze (Other) The average percentage of time a team is looking in the direction opposite to
the robot

Social/Cognitive/Affective

Gaze at Screen_Left The average percentage of time a team is looking at the left side of the screen Task/Cognitive

Gaze at
Screen_Right

The average percentage of time a team is looking at the right side of the screen Task/Cognitive

Gaze Ratio of
Screen_Right and
Screen_Left

The ratio of looking at the right side of the screen over the left side Task/Cognitive

Audio Features: Speech

Speech Activity The average percentage of time a team is speaking over the entire duration of
the task

Social/Cognitive

Silence The average percentage of time a team is silent over the entire duration of the
task

Social/Cognitive

Small Pauses The average percentage of time a team pauses briefly (0.15 sec) Social/Cognitive

Long Pauses The average percentage of time a team makes long pauses (1.5 sec) Social/Cognitive

Speech Overlap The average percentage of time the speech of the team members overlaps
over the entire duration of the task

Social/Cognitive/Affective

Overlap to Speech
Activity Ratio

The ratio of the speech overlap over the speech activity Social/Cognitive/Affective
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3.6.2 Forward Analysis

Joint analysis of video, audio and log features

As explained in Section 3.2, in this work we focus on video, audio and log features since some

of the most commonly used features for engagement detection, such as speech, affective

states, and gaze come from such data. Table 3.1 lists and details the multi-modal features that

we use to analyze participants’ behavior in the forward approach. We also mark the feature

type as task/social and cognitive/affective, in line with the definitions and rationale outlined

in section 3.3. As a pre-processing step, we make sure that the logs, videos, and audios used for

generating all the features for a team are aligned and cut for the learning task duration only.

We briefly elaborate on how the behaviors are operationalised. We extract log behaviors from

the recorded rosbags while the behaviors related to gaze and affective states are computed

through the open-source library OpenFace (Baltrušaitis et al., 2016) that returns facial actions

units (AUs) and gaze angles. In Baltrušaitis et al., 2016, the authors validate their tool both in

terms of AU recognition and eye gaze estimation among other features. Facial Action Coding

System (FACS), first presented by Ekman and Friesen, 1978, is considered a major step in the

research on facial expressions and is also considered to be the most widely used method for

analysing facial expressions (Cohn, 2006). Facial Action Coding System made it possible to map

facial muscle movements, indicated by the AUs, to a corresponding displayed facial expression.

A detailed table on each AU, its description, the facial muscle it corresponds to, and an example

can be found at the IMotions blog3. The process of detecting AUs from human faces is now

automated by tools such as OpenFace. Certain combinations of these AUs can then be used

to infer an emotional state (Baltrusaitis et al., 2011; Benitez-Quiroz et al., 2016; El Kaliouby &

Robinson, 2004). We make use of the two dimensions of emotional states, valence and arousal,

often used in emotion research. Valence refers to the pleasantness and unpleasantness of

an emotional stimulus (Kauschke et al., 2019). Further each emotional state is also linked

to physiological arousal, such as anger and happiness being linked to increased autonomic

response while sadness and boredom, are linked to decreased autonomic response (Herman

et al., 2018). To generate quantitative values for positive and negative valence, we build on

AUs that correspond to positive and negative emotions, respectively, based on the findings

from IMotions. Authors in Benitez-Quiroz et al., 2016 also conclude on similar findings. The

AUs that we employ for positive and negative valence as well as their description and the

emotional states they correspond to are shown in Table 3.2. After smoothening the data for

each AU by employing exponential moving average, we take an average of the AUs to return

the valence values. To calculate arousal, we use the average of all of the AUs listed in Table 3.2.

For the smile extraction based on AUs, we base it on the findings from a smile authenticity

study conducted by Korb et al., 2014. OpenFace not only returns the presence of an AU but

also its intensity on a 5 point scale. Lastly, the gaze angles generated by OpenFace can be used

to determine the eye gaze direction in radians in world coordinates. This means that the given

x and y gaze angles in radians are relative to the position of the camera. In our case, a camera

3https://imotions.com/blog/facial-action-coding-system/
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Table 3.2: Actions units employed for the calculation of positive and negative valence

Constructs Action Units (AUs) Corresponding Description Corresponding Emo-
tional States

Positive Valence 1, 2, 5, 6, 12, 26 Inner Brow Raiser, Outer Brow Raiser, Upper Lid
Raiser, Cheek Raiser, Lip Corner Puller, Jaw Drop

happiness, amuse-
ment, surprised

Negative Valence 1, 2, 4, 5, 7, 15, 20, 23,
26

Inner Brow Raiser, Outer Brow Raiser, Brow Lowerer,
Cheek Raiser, Lid Tightener, Lip Corner Depressor,
Lip Stretcher, Lip Tightener, Jaw Drop

sad, angry, fear

is placed straight in front of a student, i.e., in total two cameras were used, one for each team

member. Using these gaze angles, it can be approximated if a person is looking straight ahead,

left or right as described in the wiki of OpenFace4.

For voice activity detection (VAD), that classifies if a piece of audio is voiced or unvoiced,

we made use of the python wrapper for the open-source Google WebRTC VAD. WebRTC is a

project that provides real-time communication capabilities for many different applications.

This project is actively maintained by the Google WebRTC team5 and due to it being open-

source as well as reportedly one of the best and well maintained, there are several wrappers

for it now, including for Python and Matlab. With the classification of voiced versus unvoiced

frames for each student’s audio channel, we can thus generate all the audio features listed in

Table 3.1.

Assessing Forward Clusters

To cluster teams based on their behavior pattern, as captured by the 28 features listed in

Table 3.1, we first apply Principal Component Analysis (PCA) on the normalized features (we

use min-max scaler to transform features by scaling each feature between a range of 0 and

1). We use the first three principal components identified by the PCA that account for 50% of

the variance within the features dataset. Please note, our criterion for selecting the number

of PCs is based on the variance in the dataset explained by each individual PC (see Figure

3.4), visualization possibility, and the motivation to reduce the size of the feature set given a

relatively smaller sample size compared to the number of features. Then, by applying K-means

clustering on the three PCs (with K=4 chosen in accordance with the inertia score), we end up

with four clusters as shown in Figure 3.5, where each cluster represents a different behavioral

pattern.

As outlined in the opening of this Section, to investigate RQ1 we compute the average perfor-

mance metric and learning outcomes for the teams in the clusters obtained from the analysis

of behavioral features as shown in Figure 3.6. In the rest of the analysis, we disregard cluster

F 2
al l since it is composed of only 2 data points. As the Figure shows, while the three clus-

ters F 0
al l , F 1

al l and F 3
al l have similar average performance, they significantly differ in terms

4https://github.com/TadasBaltrusaitis/OpenFace/wiki/Output-Format
5https://webrtc.org/
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Figure 3.4: Percentage of variance explained by each individual PC.

Figure 3.5: Clustering of teams based on their behavioural pattern (extracted from video, audio
and log features).
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Figure 3.6: Learning outcomes and performance metric (averaged within cluster) for the
clusters computed with the forward approach. Stars denote statistically significant differences
(p < 0.05) which exist for the pair (F 1

al l ,F 3
al l ). For the pair (F 0

al l ,F 1
al l ), the differences are only

marginally significant. Dashed horizontal lines indicate the metrics’ global averages.

of learning outcomes, with clusters F 0
al l and F 3

al l having higher averages than cluster F 1
al l

(i.e., F 0
al l and F 3

al l including teams that ended up with higher learning, while cluster F 1
al l

includes teams who ended up with lower learning). To validate these differences statistically,

we perform a Kruskal-Wallis (KW) test on these metrics between each pair of clusters. In

addition to the learning outcomes first defined in Section 3.6.1, we also include “absolute

learning gain" to further validate the results. It is calculated individually and is defined as

the difference between a participant’s post-test and pre-test score, divided by the maximum

score that can be achieved (10), which grasps how much the participant learned of all the

knowledge available. At team level, denoted by T_LG_absolute, we take the average of the two

individual absolute learning gains of the team members. Coming back to the KW test, for the

pair (F 1
al l ,F 3

al l ), there is a significant difference for absolute learning gain, relative learning

gain, and joint learning gain respectively as (mean_LG_abs: p = 0.025, mean_LG_rel: p = 0.016,

mean_LG_joint: p = 0.026). For the pair (F 0
al l ,F 1

al l ), albeit not statistically significant, there is a

difference in absolute learning gain, and relative learning gain, respectively, as (mean_LG_abs:

p = 0.073, mean_LG_rel: p = 0.067). These results seem to indicate that the teams that end up

having significantly higher learning gains behave differently from the teams ending up with

lower learning gains. In other words, this suggests that participants’ behavior is indicative of

the teams’ learning. This, in turn, supports our hypotheses of the existence of a link between

engagement and learning (RQ1) and its representability with features that do not require

human annotation (RQ2).
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Figure 3.7: Similarity matrix between the clusters computed on the learning outcomes and
performance metric (backward analysis - rows) and those computed on the engagement
features listed in Table 3.1 (forward analysis - columns).

Comparing Forward and Backward Clusters

In an effort to further assess our hypothesis, we compare the clusters formed by the backward

approach with those obtained in the forward approach. For this, we compute a similarity score

SF
B for each backward cluster B with each forward cluster F as:

SF
B =

common teams in both clusters

total teams in both clusters
(3.1)

which generates the Similarity Matrix shown in Figure 3.7. It must be noted here that in Fig-

ure 3.7, the naming order of the clusters on the axes is arbitrary, i.e., we don’t expect learners

in horizontal cluster non-PS to also be in vertical cluster F 0
al l , or more specifically we do not

expect the diagonal to be filled.

In order to interpret the matrix, let us look at Figures 3.3 and 3.6, along with Figure 3.7.

• Starting from the backward clusters, we can observe that the majority of the teams

belonging to low-learning clusters (i.e., cluster non-PS - non-Productive Success and

cluster non-PF - non-Productive Failure in Figure 3.3) fall in the forward cluster F 1
al l

(S1
non -PS = 0.37, S1

non -PF = 0.52), which in fact is the one with lowest average learning

gain values (see Figure 3.6 and Figure 3.7).
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• Similarly, the majority of the teams belonging to the high-learning clusters (i.e., cluster

PF - Productive Failure and cluster PS - Productive Success in Figure 3.3) fall in the

forward clusters F 0
al l (S0

PF = 0.40, S0
PS = 0.37) and F 3

al l (S3
PF = 0.46, S3

PS = 0.41) that have

significantly higher learning gain values (refer to Figure 3.6 and Figure 3.7).

This analysis shows that there are similarities in the composition of clusters generated by

evaluating the teams’ learning and performance and those generated by considering their

behavior, as captured by features extracted from logs, video and audio data. Concretely, in

both cases, teams with low learning are grouped together and separated from high-learning

teams. This indicates that, irrespective of performance during the task, teams that end up with

higher learning exhibit behavioral patterns that can be distinguished from those of teams that

do not end up learning. In accordance with the definition put forth in Section 3.3, we deem

the teams displaying behavioural patterns conducive to learning as Productively Engaged,

as opposed to those whose behaviour, albeit possibly appearing engaged and even leading

to good performance in the task, is not conducive to learning (non-Productively Engaged).

We conclude that the reported analysis supports our hypothesis of the existence of a link

between behavioral patterns and learning. Moreover, it paves the way for the design of robot

behaviours, via the definition of Productive Engagement, which aim at putting learners in the

best conditions for learning, by optimizing their engagement to that end.

Type-specific Forward Analysis

The forward analysis presented in the previous Section relies on features extracted from action

logs, video and audio data. In an effort to verify the robustness of our findings, as well as

restrict the feature set, we decided to replicate the forward analysis by first considering only

the features extracted from the logs and then only the features extracted from the video and

audio data. This separation is based on the idea that log-features are task-specific and, as

captured by Table 3.1, mostly cognitive, while the other two data sources provide mostly social

features (both cognitive and affective). Hence, an additional motivation for the analysis is to

check whether features of one type contribute more than the other to explaining the results

seen in Section 3.6.2.

Performing PCA and K-means clustering on the log features (first section of Table 3.1), returns 3

clusters along 2 significant PCs (accounting for 55% of the variance within the features dataset)

as shown in Figure 3.8. The similarity matrix given in Figure 3.10 between the backward (on

learning outcomes and performance metric) and forward (on log-based behavioral features)

clusters shows similar results w.r.t. those obtained when considering all features.

• The low-learning backward clusters (i.e., cluster non-PS - non-Productive Success and

cluster non-PF - non-Productive Failure in Figure 3.3) fall more in the forward cluster

F 1
log s (S1

non -PS = 0.44, S1
non -PF = 0.59).
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Figure 3.8: Clustering of teams based on their behavioural pattern (extracted from log features
only).

• The high-learning backward clusters (i.e., cluster PF - Productive Failure and cluster

PS - Productive Success in Figure 3.3) fall more in the other two forward clusters F 0
l og s

(S0
PF = 0.68, S0

PS = 0.40) and F 2
log s (S2

PS = 0.41) (see Figure 3.9 and Figure 3.10).

• However, a Kruskal-Wallis test run pairwise for the forward clusters over the learning

outcomes shown in Figure 3.9 reports no statistically significant difference, with only

near-significant results for the pair (F 0
log s ,F 2

l og s) (mean_LG_abs: p = 0.060, mean_LG_rel:

p = 0.065, mean_LG_joint: p = 0.096).

Similarly, following the backward and forward approach when using only the video and audio

features (see Figure 3.11, Figure 3.12, and Figure 3.13) with 3 clusters along 3 significant PCs,

we see the same conclusion as previously seen.

• The low-learning backward clusters (i.e., cluster non-PS - non-Productive Success and

cluster non-PF - non-Productive Failure in Figure 3.3) fall more in the forward cluster

F 2
v_a (S2

non -PS = 0.54, S2
non -PF = 0.44) which in fact is the one with lowest average learning

gain values.

• On the other hand, the high-learning backward clusters (i.e., cluster PF - Productive

Failure and cluster PS - Productive Success in Figure 3.3) fall more in the other two

forward clusters F 0
v_a (S0

PF = 0.42, S0
PS = 0.47) and F 1

v_a (S1
PF = 0.36) (see Figure 3.12 and

Figure 3.13) that have higher learning gain values.

• However, a Kruskal-Wallis test run pairwise for the forward clusters over the learning

outcomes shown in Figure 3.12 reports no statistically significant difference.
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Figure 3.9: Learning outcomes and performance metric (averaged within cluster) for the
clusters computed with the forward approach using log features only. Dashed horizontal lines
indicate the metrics’ global averages. No statistically significant difference between clusters is
found.

Figure 3.10: Similarity Matrix between the clusters computed on the learning outcomes and
performance metric (backward analysis - rows) and those computed on the log features listed
in the top section of Table 3.1 (forward analysis - columns).
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Figure 3.11: Clustering of teams based on their behavioural pattern (extracted from video and
audio features only).

Figure 3.12: Learning outcomes and performance metric (averaged within cluster) for the
clusters computed with the forward approach using video and audio features only. Dashed
horizontal lines indicate the metrics’ global averages. No statistically significant difference
between clusters is found.
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Figure 3.13: Similarity Matrix between the clusters computed on the learning outcomes and
performance metric (backward analysis - rows) and those computed on the video and audio
features listed in the middle and bottom sections of Table 3.1 (forward analysis - columns).

The results of the type-specific analyses suggest that (1) the results obtained in the global

analysis of Section 3.6.2 are robust (since type-specific analyses are in line with them, either

isolating high-learners or low-learners), and (2) the results obtained in the global analysis

are produced by the combined effect of all types of features (since type-specific analyses fail

to produce statistically significant results). The latter conclusion is a nice, indirect proof of

the multi-dimensional, multi-faceted nature of human engagement, which makes it such a

challenging and fascinating research topic.

3.7 Conclusion

As outlined in Section 3.3 and more generally in the motivations for this thesis, our goal is

to pave the way for a new way of designing social robots for learning. The behavior of these

robots is driven by the effects it will ultimately have on the user’s learning, via the effect

it has on the user’s engagement, inspired by the findings in the fields of Educational HRI

and Multi-modal Learning Analytics about the existence of a link between engagement and

learning. Fundamental pre-requisites for achieving that goal are (1) the possibility to compute

an approximation of user engagement which is devoid of human intervention, to allow for its

automatic extraction (RQ2); (2) the preservation of the link between the operationalization of

engagement obtained in step 1 and user learning (RQ1). The results we have obtained, reported

in Section 3.6, support both hypotheses. The analysis in this chapter explores the link between

engagement and learning and, proposes the concept of Productive Engagement, its validation

in an HRI data set (made publicly available), and considerations on its consequences.
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3.7 Conclusion

Firstly, we conclude that there are behavioral features, pertaining to task or/and social en-

gagement, that correlate with learning outcomes and that these features are sometimes

disconnected from performance in the task. To elaborate on the statement, in light of the

results in Section 3.3, we observe that the teams that end up achieving a higher learning

gain (i.e., cluster PF - Productive Failure and cluster PS - Productive Success in Figure 3.3) in

the JUSThink activity may or may not perform well in the task itself. However, irrespective

of their performance, the way those teams interact with the task and express themselves

through speech, facial expressions and gaze is distinct from the behavior of the teams who

achieve lower learning gains (i.e., cluster non-PS - non-Productive Success and cluster non-PF -

non-Productive Failure in Figure 3.3). Hence, these patterns of observable behaviors validate

the existence of the hidden hypothesis of Productive Engagement.

Secondly, we conclude that the existence of this hidden hypothesis paves the way for the

design of machine-learning engagement detection models where the labelling for the state of

engagement would not need a human annotator but rather comes from the data itself. Specifi-

cally, the link between the behavioral patterns and the learning outcomes and performance

metric, in the form of statistically significant differences found with KW and the similarity

matrix shown in section 3.6.2, allows us to label the teams in forward clusters F 0
al l and F 3

al l
as Productively Engaged and the teams in FA cluster F 1

al l as Non-productively Engaged. At

the same time, the results show that the proposed procedure seems better in characterizing

high-learners than low-learners (see results in Section 3.6.2 based on similarity matrix). This

finding seems to suggest that while the behavior of people closer to the pedagogical goal

of understanding the concept tends to be more distinctive and identifiable, the behavior

or people who are (and will end up) not learning is more varied and harder to characterize.

Intuitively, this finding reminds of Thomas Edison’s famous quote about the many ways in

which something can go wrong, and the only (or few) ways in which it can go right.

Additionally, while in-task performance is usually a biasing factor for humans when annotating

a subjective construct like engagement in collaborative learning activities; a robot enabled

with the aforementioned knowledge around Productive Engagement would thus not make its

interventions based on whether a team is failing in the task or not, but rather by observing more

sophisticated patterns of interaction of a team with the task and with the social environment

including the partner and the robot itself.

To determine what behavior to induce in the user while designing for effective robot interven-

tions, the immediate next logical step for this research is the characterization of the forward

clusters obtained in Section 3.6.2 in terms of the contributions of the single features, and

emerging differences between high- and low-learners. This takes us to our following two

chapters where we delve deeper into understanding how the productively engaged and non-

productively engaged groups look like in terms of the behaviors they exhibit. The aim is to

acquire a deeper understanding of the link between engagement and learning, and therefore

reach a refined and more solid definition for Productive Engagement that can be practically

put in use by a more sophisticated robot.
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4 Identifying multi-modal behavioral
profiles of collaborative learning in
constructivist activities

Now that we have surfaced multiple behavioral profiles depicting productive or unproductive

engagement, in this chapter, we formalize our technique that is a combined multi-modal

learning analytics and interaction analysis method. Concretely, this technique uses video,

audio and log data to identify multi-modal collaborative learning behavioral profiles of the

32 dyads that we have from our user study with Ron. These profiles, that we name Expressive

Explorers, Calm Tinkerers, and Silent Wanderers, confirm previous findings that in a collab-

orative setting, the amount of speech interaction and the overlap of speech between a pair

of learners are highly discriminating behaviors between learning and non-learning pairs. In

other words, overlapping speech while turn-taking can indicate engagement that is conducive

to learning. However, additionally considering learner affect and actions during the task helps

us identify that there exist multiple behavioural profiles exhibited even among those who learn.

Specifically, we discover that those who learn vary in their behaviors along the two dimensions

of problem solving strategy (actions) and emotional expressivity (affect), suggesting that there

is a relation between problem solving strategy and emotional behaviour; one strategy leads

to more frustration compared to another. These findings have implications for the design of

real-time learning interventions that support productive collaborative learning in open-ended

tasks.

This work corresponds to the following publications:

J. Nasir, B. Bruno, and P. Dillenbourg, "Is There ’ONE way’ of Learning? A Data-driven Ap-

proach.” In Companion Publication of the 2020 International Conference on Multimodal

Interaction (ICMI ’20 Companion). Association for Computing Machinery, New York, NY, USA,

388–391 (Nasir, Bruno, & Dillenbourg, 2020).

J. Nasir, A. Kothiyal, B. Bruno, and P. Dillenbourg, "Many Are The Ways to Learn: Identify-

ing multi-modal behavioral profiles of collaborative learning in constructivist activities” in

International Journal of Computer-Supported Collaborative Learning (IJCSCL), 2021 (Nasir,
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Kothiyal, et al., 2021).

[Dataset] Norman, U., Dinkar, T., Nasir, J., Bruno, B., Clavel, C., and Dillenbourg, P. (2021).

JUSThink Dialogue and Actions Corpus (v1.0.0). Zenodo.

4.1 Introduction

For effective collaborative learning to occur in open-ended learning environments, learn-

ers need to share and regulate their own and each others cognition, metacognition, affect

and motivations (Järvelä et al., 2020). This learning process is complex and its success has

been evaluated based on indicators of discourse, gestures, gaze, cognition and social skills

(Spikol et al., 2017; Stahl et al., 2013). As first highlighted in Chapter 3, recent research has

suggested that multi-modal data, i.e. integrating multiple of the behavioral indicators listed

above, provides an opportunity to more comprehensively characterize learning in open-ended

learning environments such as those involving engineering design (Blikstein & Worsley, 2016;

Spikol et al., 2017). In this thesis, we consider a behavior as an action or expression (verbal or

facial) of the learner while interacting with the learning environment or their team member.

Further, we refer to multi-modality as the application and interplay of multiple semiotic modes

in order to help understand a specific process, in this case, learning. In our previous chapter

(more specifically in (Nasir, Bruno, Chetouani, et al., 2021)), we found that in an open-ended

collaborative learning activity, multi-modal behaviors better distinguish those who learn from

those who do not as compared to when only a single modality was used. Further, we argue that

it is not straightforward to classify a certain behavior as absolutely good or bad for learning.

For example, D’Mello and Graesser, 2012 propose a model to explain the dynamics of affective

states that emerge during deep learning. Based on their studies, they suggest that frustration

regulation in learners is important as it is considered a negative state (D’Mello & Graesser,

2012; Hone, 2006; Klein et al., 2002). On the other hand, R. S. Baker et al., 2010 suggest that

remediation of boredom is more important than frustration. This is also supported by the work

of Mentis et al., 2007 who proposes that frustration only needs to be remediated when it occurs

due to events that are not under the control of the user, for example, a system bug. Further, the

literature on learning by failure suggests that “productive confusion” is conducive to learning

as it enables learners to become aware of knowledge gaps and identify deep features (Lodge

et al., 2018; Loibl et al., 2017).

The findings above together suggest that there is an interplay between behaviours in their effect

on collaborative learning; specifically, the role of a behaviour, such as an affective state, in

collaborative learning depends on the context and the accompanying behaviours. This points

to the need to examine multiple behaviours together to build a more robust understanding

of learning, instead of relying on a single behavior. This is especially important when we

have to intervene and scaffold learners appropriately during an activity. This motivates us

to explore the use of multi-modal behavioral data to build comprehensive learning vs non-

learning profiles in an open-ended collaborative learning setting. In this chapter, we present
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an approach for identifying the collection of behaviors associated with learning. Specifically,

we consider the corpus of multi-modal behavioral data collected during JUSThink that follows

the problem-based learning paradigm (Barron et al., 1998). Our goal in this chapter is to

explore the role of multi-modality and identify specifically the multi-modal behaviours which

characterize learning and non-learning. We argue that a collection of multi-modal behaviours

may offer a richer characterization of collaborative learning in an open-ended activity, so

that we may then use these learning profiles to build real-time robot interventions which can

scaffold learners.

We investigate the following research question:

RQ: What do learners’ visible behaviours reveal about learning in a collaborative

open-ended learning activity?

4.2 Related Work

Research on problem-based learning suggests that learners collaboratively working on au-

thentic, open-ended problems is effective for conceptual understanding (Barron et al., 1998;

Kirschner et al., 2011). Furthermore, impasses have been shown to play an important role

in learning (Kapur, 2008; Schwartz & Bransford, 1998; Schwartz & Martin, 2004; VanLehn

et al., 2003); for instance, during coached problem solving, more often than not learning

happens when learners reach an impasse (VanLehn et al., 2003). Similarly, when learners

solve authentic, open-ended problems collaboratively they often fail, but this failure is produc-

tive for learning and leads to deep conceptual understanding and improved transfer (Kapur,

2008; Schwartz & Martin, 2004). Therefore in this work, we broadly adopt the impasse-driven

theories of learning such as productive failure which suggest that

• Performance in problem solving is not necessarily an indicator of learning (Loibl &

Rummel, 2014).

• Learning is driven by the mechanisms of becoming aware of ones’ knowledge gaps,

followed by recognition of deep knowledge structures that is engendered in moments of

failure during problem solving (Lodge et al., 2018; Loibl et al., 2017).

• Learning while working on activities collaboratively and encountering failures, requires

learners to sustain and regulate their own and the teams’ cognition, meta-cognition,

emotions and behaviours towards completing the task and learning through impasses

(Järvelä et al., 2020).

The theory above highlights the need to identify the multiple constructs that are together

responsible for the success of collaborative impasse-driven learning. The effectiveness of

collaborative learning depends on many factors such as team members speech, their actions
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within the learning environment and their eye gaze (Spikol et al., 2017; Stahl et al., 2013).

Further, in impasse-driven learning paradigms, as learners work on complex problems, there

is a “zone of optimal confusion” (Lodge et al., 2018) where learners become aware of their

knowledge gaps and subsequently recognize the deep features of the underlying concept (Loibl

et al., 2017). In this zone, confusion can be productive. However if learners’ confusion persists,

it can become unproductive and lead to frustration and then disengagement (D’Mello &

Graesser, 2012). Thus the regulation of emotions becomes crucial in impasse-driven learning

situations to ensure that learners do not transcend into disengagement. Putting these factors

together we argue that learning while collaborating in a technology-based open-ended activity

depends on sharing and regulating learners speech, actions, gaze and emotions. Based on

this theoretical framing, we choose to focus on these four indicators and their interplay to

characterize collaborative learning. Below we elaborate on the literature related to the effect

of each of these indicators on collaborative learning and then argue why it is necessary to

integrate these indicators to build comprehensive profiles.

4.2.1 Indicators of collaborative learning

While collaboration can make learning more effective, especially in open-ended learning

activities, several researchers stress that this depends on the quality of the interaction. Dil-

lenbourg et al., 2009 emphasize that in collaborative settings, particular forms of interactions

among people, such as productive verbal elaborations, are expected to occur, which could

trigger learning mechanisms, but there is no guarantee that the expected interactions will

actually occur. Other work (Barron, 2003; Lou et al., 2001; Meier et al., 2007) similarly suggests

that the conditions under which collaborative learning is effective are diverse and complex.

Hence, researchers have attempted to understand the collaborative learning mechanisms

using various indicators of collaboration such as learners’ speech (for instance, (Weinberger &

Fischer, 2006)), eye gaze (Jermann & Nüssli, 2012), physiological measures (Schneider et al.,

2020) and actions (Popov et al., 2017), and identified conditions for productive collaborative

learning. Below we describe some of these indicators and their relationship to productive

collaborative learning.

Speech: Speech plays a very important role in collaborative learning as it is primarily through

dialogue that learners build a joint understanding of the shared problem space and engage

in knowledge construction (Barron, 2003; Roschelle & Teasley, 1995; Teasley, 1997). Within

learner dialogue (speech or chats), it has been found that the quantity (eg, number and length

of utterances, and talk time) and heterogenity and transactivity of verbal participation (eg,

turn taking and building on each others reasoning), along with features of speech such as

voice inflection, are indicative of good collaboration (Martinez et al., 2011; Reilly & Schneider,

2019; Viswanathan & VanLehn, 2017; Weinberger & Fischer, 2006). Pauses are also considered

an essential part of speech and dialogue as sometimes one pauses to breathe, to plan, or

to check whether someone else wants to speak (Fors, 2015; Maroni et al., 2008). Research

has shown that shorter pauses (200 - 500 ms), relative to longer pauses (>1000 ms), tend to
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be linked with positive perception of speech, the ease of understanding speech as well as

memorisation (Fors, 2015). All of these aspects help with better communication, that is related

to better collaboration and learning.

Eye gaze: Eye gaze has been used, often along with dialogue, to evaluate collaborative learning

(Jermann et al., 2011; Schneider & Pea, 2013; Sharma et al., 2021). Research has shown that

measures of joint visual attention, such as cross-recurrence (Jermann et al., 2011; Jermann

& Nüssli, 2012; Schneider et al., 2016) and gaze similarity (Sharma et al., 2015; Sharma et al.,

2021) are related to increased collaboration quality and learning outcomes. On the other hand,

a measure of gaze dispersion is found to be related to misunderstandings (Cherubini et al.,

2008) and unbalanced gaze participation is negatively correlated with learning outcomes

(Schneider et al., 2018). Similarly, sharing gaze among collaborators is related to improved

collaboration (improved transactivity in learner dialogue) and learning gains (Schneider &

Pea, 2013, 2015).

Actions: Interaction logs within technology-enhanced learning environments are used to

examine the state of learners performance and learning in both individual and collaborative

conditions. In collaborative learning, learners clickstream or touch traces are used, often

along with their dialogue, to identify productive actions and patterns (Evans et al., 2016;

Martinez-Maldonado et al., 2013a; Popov et al., 2017; Rodríguez & Boyer, 2015; Viswanathan

& VanLehn, 2017). Research has shown that analytics of task-specific actions when learners

collaborate in complex problem-solving environments can be used to distinguish high and low

performers in collaborative learning (Emara et al., 2018; Kapur, 2011; Perera et al., 2008). For

instance, while collaborating around an interactive tabletop, while the number or symmetry

(participation of each member of a team) of actions and speech was not found to relate to

collaboration quality, certain sequences of actions and speech were found to be indicative of

quality of collaboration (Martinez-Maldonado et al., 2013a). Specifically, low collaborating

groups were found to act in parallel, without discussing, while high collaborating groups were

found to work together on task-related objects while discussing. Other work has found that the

combination of touches to unrelated objects on the screen and multiple users interacting with

the screen at the same time can predict collaboration quality (Evans et al., 2016). However,

in a chat-based collaborative learning environment, researchers (Popov et al., 2017) found

that neither alignment of learner actions (synchrony) nor learners building on each others’

reasoning (transactivity) was related to performance on the task, but other factors such as

group dynamics and prior knowledge played a more critical role. Thus the role of symmetry,

synchrony and transactivity in actions during collaborative learning appears to depend on the

context.

Affect: Affect play an important role in learning and so investigating the role of affect or

emotions during collaborative learning is an important area of research within collaborative

learning (Järvelä & Hadwin, 2013). Arousal and valence, which indicate affect (Russell, 2003),

can be inferred from video data and used to evaluate collaborative learning (Dindar et al.,

2020; Hayashi, 2019). For instance, Dindar et al., 2020 attempted to characterize collabora-
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tion quality by identifying leaders and followers in a collaborative task using the degree of

emotional mimicry. Hayashi, 2019 identified that the process of developing mutual under-

standing during a collaborative task is correlated with negative emotions. Additionally, the

relationship between physiological synchrony and collaboration quality has been explored

(Malmberg, Haataja, et al., 2019; Pijeira-díaz et al., 2019; Schneider et al., 2020) and initial

results suggest that physiological synchrony can be an indicator for collaboration quality. For

instance, Schneider et al., 2020 used electrodermal data and identified a metric related to the

number of cycles between low and high synchronization to be significantly correlated with

collaboration quality and learning outcomes. Together this research suggests that the role of

affective and physiological indicators on collaborative learning is still unclear and mediated

by other factors. Hence it is important to look at these indicators along with other indicators

such as speech and actions, while evaluating collaborative learning.

4.2.2 Building multi-modal models of collaborative learning

The literature above shows that several indicators impact collaborative learning, sometimes in

contradictory ways. For instance, while some research suggests that transactivity in actions is

not related to good collaboration (Popov et al., 2017), other research shows that transactivity

in dialogue is indeed related to collaborative learning outcomes (Schneider & Pea, 2015).

Another example is that while Popov et al., 2017 suggest that synchrony in actions is not

related to good collaboration, other research suggests that synchrony in gaze is indicative of

high quality of collaboration (Schneider & Pea, 2013). These complicated findings suggest

that the effectiveness of collaborative learning in open-ended activities depends on multiple

interconnected indicators. Recent research therefore investigates collaborative learning by

combining multiple indicators obtained through multi-modal data sources in order to develop

a richer and more comprehensive understanding of the learning mechanisms. Empirical

results suggest that combining multiple sources of data can provide better predictions of

collaborative learning outcomes than any single modality of data alone (Emerson et al., 2020a;

Giannakos et al., 2019; K. Huang et al., 2019; Liu et al., 2018; Malmberg, Järvelä, Holappa, et al.,

2019; Olsen et al., 2020a; Spikol et al., 2018; Vrzakova et al., 2020; Worsley & Blikstein, 2018).

Vrzakova et al., 2020, for instance, examined collaborative problem solving among triads and

explored combinations of speech, actions and body posture patterns which correlate with

task performance. They found that certain multi-modal patterns are better than unimodal

patterns for predicting performance. Olsen et al., 2020a investigated collaborative learning

outcomes in an intelligent tutoring system and found that combining modalities such as dual

gaze, tutor log, audio and dialog provides more accurate prediction of learning gains than

models using a single modality.

While multi-modal learning analytics explores different combinations of data streams along

with various machine learning methods, what is not yet clear is how these combinations of

indicators characterize collaborative learning. In order to develop a richer understanding of

the collaborative learning processes, it is necessary to develop multi-modal learning profiles
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of groups of learners collaborating. K. Huang et al., 2019 did this by combining eye gaze,

physiological sensor and motion sensing data, and identified three multi-modal states and the

transitions between them, that are significantly correlated with task performance and learning

gains. In this part of the thesis, we add to this line of research by proposing an approach to

build multi-modal collaborative learning profiles of dyads as they work on an open-ended task

around interactive tabletops with a robot mediator.

4.3 Methods

4.3.1 Dataset and preprocessing

We use our PE-HRI multi-modal dataset, first presented in Chapter 3; hence we have 28 multi-

modal behaviors extracted from log, video and audio data, alongside performance metrics

and various learning gains of the 32 teams. Although, the features themselves have already

been described in the previous chapter, we describe them here again in Table 4.1 as in this

work, we group them under certain constructs found to be linked to learning.

As discussed in the previous section, several learner measures can be used as indicators of

collaborative learning. These can be divided into 1) behaviors, and 2) constructs. As described

earlier, we consider a behavior as an action or expression (verbal or facial) of the learner while

interacting with the learning environment or their team member. We extract them from the log,

audio, and video data streams of each participating dyad. These behaviors are representative

of constructs that are non-observable but have been linked to the process of learning, such as

attention, exploration, reflection, frustration, confusion, excitement, synchrony or turn-taking

(Cherubini et al., 2008; Dindar et al., 2020; Hayashi, 2019; Martinez et al., 2011; Nasir et al.,

2019; Sharma et al., 2015; Sharma et al., 2020; Weinberger & Fischer, 2006).

To begin with, the popular Russel’s Core Affect Framework (Russell, 2003) states that an affect

has a valence as well as an arousal component. Based on this widely adopted framework,

negative valence and moderate to high levels of arousal are often linked with confusion and

frustration, respectively, whereas positive valence and high arousal are indicative of excitement

(R. S. Baker et al., 2010; Sharma et al., 2020). Inspired by this we consider four features (Positive

Valence, Negative Valence, Difference in Valence and Arousal) related to the emotional state of

the team. The feature Difference in Valence is of interest as it immediately highlights that a

team with a higher value has a positive emotional state. Please note that in this work, we do

not distinguish between conceptual confusion and frustration as it is not straightforward to

separate these accurately on the basis of the values of valence and arousal alone. For these

reasons, we use the terms interchangeably when discussing our findings.

Similarly, gaze patterns have often been analyzed to gauge the attention of learners in collab-

orative settings (Schneider et al., 2016; Sharma et al., 2021). Therefore, here we extract the

attention of the team to various parts of the screen, their partner, and the robot. Furthermore,

in collaborative settings, speech measures have been widely used to measure the dynamics
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of the collaboration between the team members (Bassiou et al., 2016; Martinez et al., 2011;

Viswanathan & VanLehn, 2017). We make use of several of these speech measures such as

Speech Activity, Short Pauses, Long Pauses, Speech Overlap and Overlap_to_Speech_Ratio to

capture talk time, and heterogeneity of verbal participation. The length of the Short Pauses

and Long Pauses is based on findings from Campione and Véronis, 2002 that, when analysing

pauses in various languages, found that pauses seem to support a categorization into brief (<

200 ms), medium (200-1000 ms), and long (>1000 ms) pauses. This is also echoed by the work

of Heldner and Edlund, 2010.

When it comes to interaction with a learning activity, log data such as frequency of actions

has been used as an approximation for various constructs such as attention, engagement,

interest, exploration, etc (Martinez-Maldonado et al., 2013a; Popov et al., 2017; Viswanathan

& VanLehn, 2017). With our activity, we make use of frequency of actions such as additions,

deletions, redundant edges on the map (T_add, T_remove, T_ratio_add_del, Redundant_exist).

Furthermore, we are interested in actions or patterns that can indicate reflection. Consulting

previously explored solutions is an indicator of reflection (Veenman, 2013). In addition to that,

certain action patterns can also be indicative of reflecting on self or partner’s actions. Hence,

we also consider such behaviors of looking at past solutions (T_hist), and correcting one’s own

or partner’s actions on the go (T1_T1_add, T1_T2_add, T1_T1_delete, and T1_T2_delete) as in-

dicators of reflection. Please note that we use T_help as an indicator of usability confusion, i.e.,

confusion with regards to the user interface and not as an indicator of conceptual confusion

that has been discussed previously.

In addition to these behaviors, we make use of one performance metric last_error and several

types of learning gains that have already been defined in the thesis. For convenience of the

reader, we reiterate here. The performance metric gives the error of the last submitted solution

where error can be defined as the difference between the cost of a submitted solution and

the cost of an optimal/correct solution (optimal cost), normalised by the optimal cost (for

an optimal solution, error will then be 0). Further, the three types of learning gains absolute,

relative, and joint absolute learning gains that, respectively, measure how much the participant

learned of all the knowledge available, how much the participant learned of the knowledge

he/she did not possess before the activity, and the amount of knowledge acquired together by

the team members during the activity. The team level values for the first two learning gains are

calculated by taking the average of the individual learner values. It is important to mention

that we distinguish between performance and learning such that performance measures the

success/failure in the task itself via last_error whereas learning (absolute, relative, and joint

absolute) measures the amount of knowledge gained during the interaction via a pre- and

a post-test. Both the tests are composed of 10 multiple-choice questions assessing various

concepts for the minimum spanning tree problem. The three types of learning gains are

plotted versus the last error for all 32 teams in Figure 4.1.
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Table 4.1: Multi-modal features that represent behaviors and constructs

Construct Marker Behavior

Log Features

Exploration T_add The number of times a team added an edge on the map

Exploration T_ratio_add_rem The ratio of addition of edges over deletion of edges by a team

Exploration T_action The total number of actions taken by a team (add, delete, submit, presses on the
screen)

Exploration Redundant_exist The number of times they had redundant edges in their map

Reflection
(Metacognition)

T_remove The number of times a team removed an edge from the map

Reflection
(Metacognition)

T_hist The number of times a team opened the sub-window with history of their previous
solutions

Reflection
(Metacognition)

T1_T1_add The number of times a team, either member, followed the pattern consecutively: I
delete, I add back

Reflection
(Metacognition)

T1_T1_delete The number of times a team, either member, followed the pattern consecutively: I
add, I then delete

Reflection
(Metacognition)

T1_T2_add The number of times a team, either member, followed the pattern consecutively: I
delete, You add back

Reflection
(Metacognition)

T1_T2_delete The number of times a team, either member, followed the pattern consecutively: I
add, You then delete

Usability Confu-
sion

T_help The number of times a team opened the instructions manual

Video Features: Affective states and Gaze

Emotional State Positive Valence The average value of positive valence for the team

Emotional State Negative Valence The average value of negative valence for the team

Emotional State Difference in Valence The difference of the average value of positive and negative valence for the team

Emotional State Arousal The average value of arousal for the team

Emotional State Smile The average percentage of time of a team smiling

Attention Gaze at Partner The average percentage of time a team has a team member looking at their partner

Attention Gaze at Robot The average percentage of time a team is looking at the robot

Attention Gaze (Other) The average percentage of time a team is looking in the direction opposite to the
robot

Attention Gaze at Screen_Left The average percentage of time a team is looking at the left side of the screen

Attention Gaze at Screen_Right The average percentage of time a team is looking at the right side of the screen

Attention Gaze Ratio of
Screen_Right and
Screen_Left

The ratio of looking at the right side of the screen over the left side

Audio Features: Speech

Communication Speech Activity The average percentage of time a team is speaking over the entire duration of the
task

Communication Silence The average percentage of time a team is silent over the entire duration of the task

Communication Short Pauses The average percentage of time a team pauses briefly (0.15 sec) over their speech
activity

Communication Long Pauses The average percentage of time a team makes long pauses (1.5 sec) over their speech
activity

Communication Speech Overlap The average percentage of time the speech of the team members overlaps over the
entire duration of the task

Communication Overlap to Speech Ratio The ratio of the speech overlap over the speech activity
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Figure 4.1: Learning gains vs performance. All values here are non-normalized.

This dataset, with multi-modal behaviors as well as performance metric and learning gains,

has been publicly made available (Nasir, Norman, Bruno, Chetouani, et al., 2021). It must

be noted that, in our dataset, all behaviors are treated as averages and frequencies over the

entire duration of the task and that it is not temporal data. The average value for the team for

various behaviors is calculated by taking an average of the individual behaviors by each team

member. Furthermore, for all the behaviors, data has been normalized across the teams with

each behavior having values between 0 and 1. This would mean that a value of 0 would be

the lowest value of a behavior across all teams. Similarly, a value of 1 would be the highest

value of a behavior across all teams. With respect to our work in Chapter 3 (Nasir, Bruno,

Chetouani, et al., 2021), for the analysis in this chapter, we made slight changes to two of the

behaviors Short Pauses and Long Pauses in the original dataset (Nasir et al., 2020a). Originally,

the two pause behaviors were not normalized with respect to the teams speech activity over

the interaction. The change is motivated by the belief that normalizing the pause time gives a

more accurate measure.

4.3.2 Analysis Approach

The goal of this work is to build and understand comprehensive multi-modal profiles of dyads

who learn and those who don’t as they work on JUSThink. To this end, we developed an

analysis approach consisting of two parts: a quantitative approach and a qualitative approach.

The quantitative approach is a learning analytics technique that we extend, and formalize

here, from our forward and backward approach first presented in the previous chapter (Nasir,

Bruno, Chetouani, et al., 2021). It helps identify groups of learners who have learning gains

and those who don’t. Using this approach we are able to build the multi-modal behavioral
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Figure 4.2: Overview of our technique in Nasir, Bruno, and Dillenbourg, 2020.

profiles for each group of learners. The goal of the qualitative approach is to allow us to

better interpret the multi-modal profiles and understand the learning mechanisms at play

within each group of learners previously identified. We do this by interaction analysis of cases

wherein we study the multi-modal behaviours from dyads within specific episodes of activity

in each group of learners. We then unpack the likely multi-modal learning mechanisms at

play. The choice of episodes will be based upon the findings of the quantitative approach;

specifically we will focus on episodes where certain behaviours of interest identified in the

quantitative approach are highlighted. Further details are in 4.3.2.

Multi-modal Learning Analytics

The technique is visually presented in Figure 4.2. It consists of two approaches: 1) approach A,

which can be considered as a backward approach as it connects the learning outcomes back to

the behaviors observed during the learning process and 2) approach B, that can be considered

as a forward approach as it helps to move from multi-modal behaviors to learning outcomes.

For the remainder of our thesis, we will generally refer to them as approach A and approach B.

This technique adopts a data-driven approach to identify labels linking behavioural profiles

and learning. It must be noted that in our work, we use the term gainers to refer to learners

who end up having learning gains while the term non-gainers refers to learners that do not

have positive learning gains.

Approach A:
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This approach starts with clustering on the learning as well as performance metrics of the

teams as shown in step A-1. We then use these cluster labels as the ground truth for a classifier

trained on multi-modal behaviors of the learners as shown in A-2 and A-3. This approach

has been applied within learning analytics to identify the behavioural profiles of gainers vs

non-gainers or high vs low performers (Kinnebrew et al., 2013; Worsley & Blikstein, 2011). In

our case, the clustering reveals four clusters (more details on the four clusters in appendix A).

Then, as a step towards building profiles, we perform a Kruskal-Wallis analysis on each pair

of clusters to identify the significantly discriminating behaviors between each pair. However,

we observe no significantly discriminating behavior between each pair. Such analysis on the

four clusters from approach A can raise a misunderstanding that all learners, irrespective of

learning or performance, exhibit similar multi-modal behaviors. It must be noted however,

that this approach assumes by design that each of the learning and performance profiles (given

by one cluster) is associated with a unique set of behaviors. However, what if teams with

similar learning and performance actually exhibit two or more different sets of behaviors?

This is the motivation for adopting Approach B, which represents a perspective shift to take

such a possibility into account.

Approach B:

As depicted in step B-1 (Figure 4.2), this approach begins with clustering the teams based

on their multi-modal behaviors in order to identify the different behavioural profiles existing

within the data. We then compare these behavioral clusters in terms of the learning gains and

performance metric of the teams (B-2) in order to identify differences between the behavioural

profiles in terms of their learning and performance. This is followed by comparing the clusters

obtained in both approaches with respect to the teams they consist of. If, as we hypothesized,

there are indeed multiple sets of behaviors associated with learning then 1) we should observe

significant differences among some of the approach B clusters in regards to their learning

gains (requirement 1) as well as 2) there should to be a one-to-many or many-to-many compre-

hensible mapping between the clusters from both approaches (requirement 2). This second

requirement would mean that approach B provides us with distinct variants of behavioral

profiles for the same learning profiles. To reiterate, while requirement 1 highlights that indeed

gainers and non-gainers have different behaviors, requirement 2 is necessary to validate the

existence of multiple behavioral profiles for the same type of learning profile, which is the

motivation behind this approach. If the two requirements are met, the cluster labels from

approach B can be employed as ground truth for a classifier as shown in steps B-3 and B-4.

Thus this approach allows us to unearth the differences that exist within both learning and

behaviour data, and align them to create multiple learning profiles.

The classification results are reported in the appendix A. As we obtained excellent classification

results from approach B, in our work, we focus in-depth on building behavioral profiles from

the clusters resulting from this approach. As shown in Table 4.2, Approach B gives 3 behavioral

clusters with the first two exhibiting high learning and the third lower learning; hence, with
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respect to learning, the groups can be named as type 1 gainers, type 2 gainers, and non-gainers,

respectively. Note that the performance (Last_Error) in the task is very similar for each group.

As done with the Approach A clusters, we now proceed to compare the resulting clusters in

terms of their multi-modal behaviors by first performing a variance analysis on the three

clusters obtained in approach B and then by performing a Kruskal-Wallis analysis on each

pair of clusters to identify the significantly discriminating behaviors between them. Indeed,

we observe several discriminating behaviors between each pair, and so with respect to these

behaviours that will be seen in more detail in the upcoming sections, we name the groups

of type 1 gainers, type 2 gainers, and non-gainers as Expressive Explorers, Calm Tinkerers,

and Silent Wanderers, respectively. From this point on, we will use the two types of names

interchangeably. Based on these quantitative findings, we then qualitatively analyse each

group of learners as described in the following subsection.

Interaction Analysis of Multi-modal Cases

In order to better interpret the multi-modal behavioural profiles identified above and elab-

orate the likely learning mechanisms occurring in each group of learners, we qualitatively

analyse a learning episode from each group. To do the analysis, we select episodes when a

“behaviour of interest” is high. The exact behaviour of interest will depend on the results of

the quantitative analysis which we described in Section 4.3.2, but the rationale is to unpack a

behaviour which discriminates students who learn from those who don’t, and whose effect on

learning is not straightforwardly understood. We analyse three episodes, one each from one

randomly selected dyad belonging to a different group of learners. As our quantitative results

aggregate behaviours over the entire activity, these cases are meant to be illustrative of the

likely underlying learning mechanisms during certain episodes when a behaviour of interest

is high and so we choose a random dyad from each group in order not to bias this illustration.

We begin by extracting the dialogue of the learners during this episode. The full transcripts can

be found in the publicly available JUSThink dialogue and actions corpus by Norman, Dinkar,

Nasir, et al., 2021. This corpus relies on manual transcription, due to the poor performance

of state-of-the-art automatic speech recognition systems on this dataset which consists of

children’s speech with music playing in the background. A graduate student completed two

passes on each transcript, which were then checked by another native English speaking

graduate student with experience in transcription/annotation tasks. We augment the dialogue

transcript with average values of other behaviours during this episode to build a multi-modal

transcript. We then interleave the dialogue, action and affective states to unpack how learning

is happening within each episode. We perform interaction analysis of each episode with the

analytic focus of turn-taking. The goal is to understand how turn-taking leads to learning

during the episode, specifically the relationship between the content of the speech, the actions,

the affect of the learners and their learning outcomes. Thus, with both the quantitative and

qualitative methods aforementioned, we make an attempt to answer the question, what do

learners’ visible behaviours reveal about how learning happens in a collaborative constructivist
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Table 4.2: The three clusters in approach B with mean values for learning gains (LG) as well as
the last error. The significantly different learning gains are represented in bold.

Cluster name Last_Error Absolute_LG Relative_LG Joint_Absolute_LG N

Approach B

Expressive Explorers 0.461 0.678* 0.693* 0.714* 14
Calm Tinkerers 0.393 0.616 0.604 0.607 12

Silent Wanderers 0.393 0.383* 0.348* 0.428* 6

learning activity.

4.4 Results

4.4.1 Pairwise Significantly Distinct Behaviors

From Figure 4.3, we observe that the behaviours with the highest variance among the three

clusters come from all three modalities pertaining to log, speech and affective features. Overall,

it is clear that the manner in which each of the group interacted with the task (T1_T2_add,

T_remove, T_action) is unique. Speech behavior (speech_overlap, speech_activity, silence,

overlap_to_speech_ratio), on the other hand, is similar in the two gainer groups but very

different from the Silent Wanderers. An interesting observation with regards to the affective

features (negative_valence, arousal) is that the Silent Wanderers exhibit very similar arousal

and negative valence behaviors to Expressive Explorers and both these groups differ from the

Calm Tinkerers in this behavior. We elaborate on the differences between each pair of groups

below. Note that in the upcoming figures, for the ease of comprehension, each modality is

represented by a unique pattern and each behavior within a modality by several shades of the

same color.

Expressive Explorers and Silent Wanderers

Figure 4.4 shows the features that are significantly distinct between Expressive Explorers

and Silent Wanderers. The corresponding p-values are listed in Table 4.3. Concerning log

features, we observe that Expressive Explorers, relative to Silent Wanderers, do significantly

fewer actions of the sort where one team member deletes an edge and the other adds it back

(T1_T2_add). At the same time, they look at their previous solutions (T_hist) significantly more

than Silent Wanderers. This suggests that Expressive Explorers perform more global reflection,

i.e., reflection on their previously constructed solutions, while Silent Wanderers do more local

reflection, i.e., reflection on their most recent actions.

Apart from this difference, the two groups are also significantly different in their speech

behavior. Expressive Explorers not only speak more between themselves (Speech Activity), but
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Table 4.3: p-values for the Kruskal-Wallis analysis on each pair with significance level of 0.05

Markers Expressive Explorers and
Silent Wanderers

Calm Tinkerers and Silent
Wanderers

Expressive Explorers and
Calm Tinkerers

Log Features

T_add 0.14 0.85 0.03*

T_remove 0.13 0.42 0.00*

T_ratio_add_rem 0.05* 0.16 0.00*

T_action 0.07 0.37 0.00*

T_hist 0.04* 0.60 0.01*

T_help 0.45 0.14 0.46

T1_T1_remove 0.50 0.03* 0.00*

T1_T1_add 0.92 0.73 0.76

T1_T2_remove 0.80 0.39 0.04*

T1_T2_add 0.01* 0.19 0.00*

Redundant_exist 0.07 0.00* 0.83

Video Features: Affective states and Gaze

Positive Valence 0.74 0.07 0.00*

Negative Valence 0.80 0.00* 0.00*

Difference in Valence 0.62 0.22 0.16

Arousal 0.93 0.00* 0.00*

Smile 0.93 0.05* 0.01*

Gaze at Partner 0.28 0.45 0.12

Gaze at Screen_Left 0.11 0.01* 0.23

Gaze at Screen_Right 0.02* 0.22 0.53

Gaze Ratio of Screen_Right and
Screen_Left

0.28 0.45 0.83

Gaze at Robot 0.50 0.22 0.16

Gaze (Other) 0.45 0.16 0.04*

Audio Features: Speech

Speech Activity 0.00* 0.00* 0.71

Silence 0.00* 0.00* 0.71

Short Pauses 0.04* 0.16 0.23

Long Pauses 0.01* 0.01* 0.60

Speech Overlap 0.00* 0.00* 0.68

Overlap to Speech Ratio 0.00* 0.00* 1.00
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Figure 4.3: Features with highest variance between all three behavioral clusters. For the ease of
comprehension, each modality is represented by a unique pattern and each behavior within a
modality by several shades of the same color.

also have lower number of short and long pauses (Short Pauses, Long Pauses) when they speak

and a higher degree of overlap (Speech Overlap, Overlap_to_Speech_Ratio) when interacting.

Finally the two groups show no significant difference in their affective features, as seen by the

fact that both Expressive Explorers and Silent Wanderers displayed very similar valence and

arousal behaviors (which is high arousal and high negative valence).

Calm Tinkerers and Silent Wanderers

Looking at the significantly distinct behaviors between Calm Tinkerers and Silent Wanderers

(see Figure 4.5 and Table 4.3 for the p-values of the KW tests), we observe that the differences

lie in the way in which they interact with the task itself, their speech behavior and also their

affective features. Relative to Silent Wanderers, the Calm Tinkerers do more of local reflective

actions, where a team member adds an edge and then removes it right after (T1_T1_rem).

Moreover, while Calm Tinkerers carefully minimize the number of redundant edges (i.e., two

alternative paths connecting location A with location B) present at any time on their map in

the task, Silent Wanderers allow for such redundancies to be present on the map significantly

more.

In terms of their speech behavior, Calm Tinkerers have higher speech activity (Speech Activ-

ity), lower number of long pauses (Long Pauses) and higher speech overlap (Speech Overlap,

Overlap_to_Speech_Ratio) than Silent Wanderers (who are non-gainers in terms of learning). It

is important to remark that the same difference was observed between Expressive Explorers

and Silent Wanderers, thus suggesting that speech behaviours can allow for distinguishing

gainers from non gainers. Lastly, this group of gainers displays significantly lower negative
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Figure 4.4: Significantly distinctive features between the Expressive Explorers and the Silent
Wanderers.

valence and arousal (negative_valence, arousal) compared to the Silent Wanderers, indicating

that Calm Tinkerers are relatively calmer.

Expressive Explorers and Calm Tinkerers

Lastly, we compare the significantly distinct behaviors between two types of gainers (see

Figure 4.6 and Table 4.3 for the p-values of the KW tests). We observe that the two groups of

gainers significantly differ in most of their log behaviors. If we look closely at these behaviors,

we observe that Expressive Explorers do more actions (T_action) in general, specifically doing

more edge additions (T_add) and, consequently, displaying a higher ratio of adding to deleting

edges (T_ratio_add_rem). Furthermore, they open their history significantly more times

(T_hist). Calm Tinkerers, on the other hand, have more deletion actions (T_remove) and

a higher number of addition-deletion action patterns of the type T1_T1_rem, T1_T2_rem

and T1_T2_add. These findings suggest that Expressive Explorers enact a global exploratory

approach characterized by global reflection on previous solutions while Calm Tinkerers exhibit

a local exploratory approach where they carry out in-the-moment reflection and correct their

own and their partners’ actions on the go, which can be described as local reflection. For

example, Expressive Explorers successively add edges on the map and then look at the cost

effectiveness of their constructed map by comparing it with their past solutions, while Calm

Tinkerers show a pattern of adding an edge and then deleting it right after or vice versa which

may be triggered due to reflection. A specific example will follow in the case studies discussed

in section 4.4.2.

Moreover, Expressive Explorers have higher average values of valence and arousal compared

to the Calm Tinkerers, suggesting that they were more expressive in their interactions. These

69



Chapter 4. Identifying multi-modal behavioral profiles of collaborative learning in
constructivist activities

Figure 4.5: Significantly distinctive features between the Calm Tinkerers and the Silent Wan-
derers.

results show that gainers can exhibit a frustrated profile or a calm one. Lastly, notice how none

of the speech behaviors is significantly different between the two types of gainers, once again

pointing to the fact that gainers, irrespective of their other behaviors, all had a similar speech

behavior quantitatively.

4.4.2 Interaction Analysis of Multi-Modal Cases

As shown above, speech overlap is a behaviour which distinguishes Silent Wanderers (who do

not overlap with one another as much) from both types of gainers (who overlap significantly

more). Specifically, our results suggest that a high amount of overlapping speech can be more

productive for learning relative to when there is less speech overlap. It has been reported

in literature (Bassiou et al., 2016) that speech overlap is one of the speech features that

distinguishes the quality of collaboration. However, literature also suggests that the frequency

of overlaps is negatively correlated with collaboration in children (Kim et al., 2015). Given these

contradictory findings on the role of overlapping speech in collaborative learning, we consider

“speech overlap” as a behaviour of interest for qualitative analysis. We seek to understand the

nature of overlapping speech and turn-taking during the task. Specifically, for one randomly

selected team from each group of learners, we pick a chunk of dialogue of a few seconds, that

corresponds to the first time a team reaches the highest level of speech overlap to speech

ratio (overlap_to_speech_ratio) consecutively for the whole duration of the chunk. We report

below the dialogues taking place between the team members, along with the averages of their

actions and affect in this duration. The blue and red colored rectangles, in the upcoming

figures highlighting dialogue, indicate the duration in which learner A and B are speaking,

respectively; hence, highlighting speech overlap when the rectangles overlap. The start and

the end time for the dialogues (in seconds) are also indicated in the figures. Right next to the

dialogues, in these figures, we also report other behaviors for each chunk. Our temporal data
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Figure 4.6: Significantly distinctive features between the two type of gainers.

for this qualitative analysis is organized in 10 second windows. We use the values in these

windows to report both the average of these behaviors over the entire interaction and within

the chosen chunks (that range from 30-60 seconds), one for each team in the case studies. Note

that we do not include gaze behaviors as gaze was not found to be a significant behavior in

our quantitative analysis.

Episode from Expressive Explorers

This dialogue excerpt, shown in Figure 4.8, occurs right after the team submitted a solution

and were informed by the robot that it is not the optimal solution yet. Hence, what the

participants see on their screens at the time when this dialogue starts is an empty map, as

shown in Figure 4.7, i.e. a map that has been cleared after submitting a solution. The team can

now start building a new solution on this empty map.

We observe that both team members interject each other. However, the content of the dialogue

builds on their partner’s conceptual ideas, which is indicative of the emergence of novel

solution ideas. The high speech overlap is thus not caused by a lack of collaboration but a high

degree of understanding between the team members, owing to which they are “completing

each other’s sentences”. In addition we observe that the average values of arousal and negative

valence during this exchange are lower (0.22 and 0.20 respectively) than the average values

(0.34 and 0.28) of this team over the entire task, suggesting a shift towards low arousal states

such as “neutral", “boredom" or even “sadness" right after hearing feedback on their solution.

This is interesting because Expressive Explorers exhibit a higher level of frustration overall.

Now looking at the log actions of this team during this chunk with respect to the whole task,

we observe that the team employs a more global exploration strategy with an increase in both
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Figure 4.7: The two views of the JUSThink game, namely figurative and abstract, as shown on
the screens of the participants when they are empty.

addition actions and reflection in terms of looking more at their history. As seen in the bold

section of the dialogue, the team reassesses the foundations on their approach and revises

it. Further, looking at the ratio between additions and deletions actions in this chunk versus

over the whole task, we note that the team is only doing additions. This maybe because in

this time the team is starting from an empty map and building a new solution. Connecting

these observations back to the overall solution strategies of these types of gainers, this episode

provides deeper multi-modal insights for how these type of gainers learn through a more

global exploratory approach and reflection on their overall solution strategy.

Episode from Calm Tinkerers

This snippet of dialogue, shown in Figure 4.10, from a random team of Calm Tinkerers occurs

approximately one minute after they submitted their first solution and were told it is not the

optimal solution yet. The two views on their respective screens, at the time this dialogue starts,

are as shown in Figure 4.9.
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A: I think, we did the exact same one as we did
before. 

B: no really?

A: wait. wait, maybe we shouldn't start, wait

B: (umm) actually, no we ....first one second

A: (Name of B), maybe we should try starting
somewhere different

B: yeah
A: like not at mount montreux

B: maybe
A: maybe like somewhere in the middle so

B: we could go mount luzern... that's in the
middle you can go five places.

A: luzern yeah...try it try it...wait, i'll try

B: you are the (uhh)...how about mount luzern to
mount zermatt to mount bern to mount (zu-) noA: wait wait...to mount luzern to mount zermatt?

t1 = 1315 sec

t2 = 1354 sec

Average over entire
interaction  

Average over the
chunk

Arousal 0.34 0.22

Negative Valence 0.28 0.20

Addition 0.22 0.4

Deletions 0.13 0

History 0.09 0.12

Local Reflective
actions

0 0

Figure 4.8: The dialogue for an Expressive Explorers team where the blue and red rectangles
indicate the duration in which learner A and B are speaking, respectively. Speech overlap
is indicated by the overlapping rectangles. Other relevant log and affective features are also
shown in a parallel table.

In this excerpt, the team members are attempting to optimize the solution by adding a partic-

ular edge (“Bern to Interlaken”) to the solution. Firstly, when both team members agree upon

the overall strategy, they both speak over each other to complete the steps to be taken towards

the solution. Secondly, when there is disagreement about the next action, there is a high

overlap of speech; however the dialogue leads to an agreement on the action to be taken. Thus

the high degree of overlap seems to be related to these cycles of proposal-negation-agreement,

which could be one mechanism by which the locally reflective problem solving strategy is

manifested in this group of learners. Indeed, as the dialogue shows, the team members imme-

diately reflect and correct each others actions. This is a sign of negotiation that is inherent in a

collaborative problem solving session and that leads to mutual understanding of the solution

space.

Zooming into the teams’ affective state during this exchange, we find that the average arousal

and negative valence in this chunk was 0.38 and 0.30 respectively which is higher than the

team’s average arousal and negative valence (0.32 and 0.23 respectively) over the entirety of

the interaction. This indicates that during this period of high speech overlap, the team was in

a higher state of arousal, which could possibly indicate a state of disequilibrium as suggested

by previous research (D’Mello & Graesser, 2012; Lodge et al., 2018). Recall that Calm Tinkerers

overall exhibit lesser frustration than the other two types of learners.

In terms of actions, we see that in this chunk the teams’ ratio of deletions to additions is

higher than over their entire interaction. This could be because by this time the team had

already added several edges towards a potential solution and were deleting edges through

the negotiation and optimization process seen in the dialogue above. Further we see that

none of the other actions signifying reflection, such as looking at their history or deleting
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Figure 4.9: The two views of the JUSThink game, namely figurative and abstract, as shown on
the screens of the participants from a team belonging to the group of Calm Tinkerers.

their own or their partners edges is seen here. Connecting back to Calm Tinkerers overall

solution strategy, we see that this chunk demonstrates how these teams learn through a local

exploration strategy of additions and deletions, rather than reflecting on overall strategy.

Episode from Silent Wanderers

This dialogue, shown in Figure 4.11, takes place within a team of Silent Wanderers right after

they submitted a solution and were told by the robot that it is not optimal. Hence, when the

dialogue starts, the screens for this team also shows empty maps, as in Figure 4.7. The team

can now start building a new solution.

In this dialogue we observe that the team first agrees on the goal to achieve (a solution cost of

24). However the initial idea put forth by a team member (B) is not taken up by A, which leads

to a cycle of proposal-negation-agreement. The negotiation between the team takes longer

compared to Calm Tinkerers but they eventually come to an agreement about the first action

to take while building a new solution (connecting “Basel to Zurich”). During this negotiation

the team members speak over each other, as also seen with the Calm Tinkerers and it indicates
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B: I have to go to neuchatel..i have to go to
neuchatel though..oh yes i can erase that erase
mount basel to neuchatel

A: I know, (uhh) bern to interlaken

B: so we have to go like that
A: mount interlaken , to neuchatel 

B: and then bern to interlaken ... and then
interlaken , to montreux , but then we have
neuchatel missing.

B: this is the exact same 

B: oh we have less look with 3

t1 = 301 sec

t2 = 330 sec

B: I can't go there
A: it's from bern (stutter)

A: and this is the same ... (uhh) mount 

A: you have 3 left 

A: yeah (stutter) ... no it's not , it's not same it's
not same 

Average over entire
interaction  

Average over the
chunk

Arousal 0.32 0.38

Negative Valence 0.23 0.30

Addition 0.31 0.25

Deletions 0.12 0.12

History 0.10 0

Local Reflective
actions

0.75 0

Figure 4.10: The dialogue for a Calm Tinkerers team.

B: 46 how much do we need ? ... oh we have to
get to 24

A: oh okay ... so so how much was the last price?

B: it is 46 
A: 46 ?

B: okay let me try something , go 
A: oh so we need oh okay 

B: i've got an idea 

A: how much is that? 

B: 5
A: oh there ... done 

t1 = 707 sec

t2 = 763 sec

B: how much we have passed it? 

A: what have I done , oh wait 

A: we are already 2 ... okay wait wait wait 
B: go to ... trust me 

A: okay we have okay 
B: basel to zurich 

B: and now to (umm) bern ... basel to bern 

A: how much? 
B: (umm) 3

A: wait okay there 
B: we are 5 6 7 ... where next? 

A: yeah yeah ... (ummm) neuchatel, to montreux

B: neuchatel to ? 

A: montreux ... montreux, i dont know B: we can't do that 
A: yeah we can B: no we can't 

Average over entire
interaction  

Average over the
chunk

Arousal 0.51 0.50

Negative Valence 0.37 0.40

Addition 0.24 0.2

Deletions 0.12 0

History 0.07 0.07

Local Reflective
actions

0 0

Figure 4.11: The dialogue for a non-gainer team of Silent Wanderers.
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constructive collaboration because this non-gainer team also reaches an agreement on a path

forward to the solution. Overall, however, as seen from our quantitative analysis, the duration

of such speech overlap is significantly lesser in the Silent Wanderers.

It is interesting to note that the arousal of this non-gainer team sees an increase followed

by a dip (ranging from 0.57 to 0.45) during this exchange, compared to the teams’ average

arousal of 0.51. The dip in arousal during that occurs right after getting the feedback on

their solution (which is very far from the optimal) suggests a tendency towards low arousal

emotions such as “neutral", “sadness" or “boredom". On average, however, this teams arousal

and negative valence over this chunk (0.5 and 0.4 respectively) is similar to their arousal and

negative valence over the entire task (0.51 and 0.37 respectively). We recall that non-gainer

teams on average exhibit higher frustration than the gainer teams.

In terms of actions, we observe that in this chunk where they begin from an empty map the

team performs only additions and no deletions as they try to negotiate and build a better

solution. Further their reflection actions (looking at history and deleting their own or their

partners actions) are similar to their reflection actions across the entire task. Recall that

non-gainer teams on average do fewer reflective actions of any type.

To summarize, while the non-gainer team, similar to the two gainer teams, also exhibits con-

structive communication during an episode of high speech overlap, they do not demonstrate

any change in their reflective actions during this chunk right after a “failure” or any change in

their affective states. Further, they have significantly lesser duration of such speech overlap

over the entire task duration compared to both types of gainers. This, along with the fact that

they have fewer reflective actions overall, could be a reason for their learning process not

being as effective as the gainers.

4.5 Discussion

The goal of this paper is to build a multi-modal understanding of learning vs non-learning as it

happens in a collaborative open-ended activity. Our combined multi-modal learning analytics

and interaction analysis methodology enabled us to identify two multi-modal profiles of

learners who have learning gains and one multi-modal profile of learners who do not have

learning gains. Now that we have quantitatively compared the profiles pair-wise in section 4.4.1

and qualitatively compared three teams, one from each profile, separately in section 4.4.2, in

this section, we begin by discussing each of the three profiles of learners with respect to each

modality. Next, we discuss how multi-modality furthers our understanding of collaborative

learning and how the outcomes contribute to designing effective interventions in similar

computer-supported collaborative learning (CSCL) settings.
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4.5.1 Speech Behaviors

In terms of speech behaviours, both types of gainers exhibit a very similar behavior quantita-

tively, that is significantly different from the one displayed by the Silent Wanderers. The same is

true for other speech behaviors including speech overlap between team members, the overlap

to speech activity ratio, and short and long pauses over the entire speech activity. Overall

we find that there is a lot more verbal interaction within the teams that end up with higher

learning gains, as observed in previous research on collaborative learning (Bassiou et al., 2016;

Praharaj et al., 2021; Weinberger & Fischer, 2006). This is not surprising because the nature of

the collaborative activity requires the learners to communicate, share information and build

a common ground to construct a solution (Barron, 2003; Roschelle & Teasley, 1995). As we

highlighted in the episodes of high speech overlap dialogue, we observe two mechanisms of

verbal interaction that support collaborative learning. In one case, the dyad demonstrates a

high degree of transactivity, which is known to be good for learning (Teasley, 1997). This is

seen by completion of each others’ sentences and the speech overlap is a way to align on their

plan for solution building. In the other two cases, we observe proposal-negation-agreement

cycles (Barron, 2003; Roschelle, 1992) in the team members’ dialogue during these periods

of high speech overlap, indicating that the process of proposal discussion and uptake was

happening, which is also indicative of good collaboration (Barron, 2003). Hence, contrary to

the literature that suggests that the frequency of overlaps is negatively correlated with collabo-

ration in children Kim et al., 2015, speech overlap in children seems to be an indicator of the

negotiation that is inherent in the collaborative learning process as also found by (Bassiou

et al., 2016; Praharaj et al., 2021). The difference in the learning of the Silent Wanderers could

be because of fewer such productive collaborative episodes within this group. Lastly, both

types of gainers show significantly lesser percentage of long pauses in their speech relative

to Silent Wanderers which again, as suggested by previous research (Fors, 2015), tends to be

indicative of better communication which is essential for good collaboration.

4.5.2 Log Actions

In terms of actions, it is clear that the two types of gainers do not exhibit the same exploratory

approach with Expressive Explorers showcasing a more global exploratory approach of building

a solution, testing and reflecting on their previous solutions before building a new one, while

Calm Tinkerers displaying a more local exploratory approach of adding edges, reflecting on

and possibly deleting an edge in-the-moment, as they build the solution. On the other hand,

Silent Wanderers seem to not be adhering strictly to either of the two strategies and rather are

displaying a mix of both. However, as we observe, both approaches incorporate some form of

reflection, that is generally lesser in the non-learning group both in terms of reflective-in-the

moment and reflection-on-prior actions. This may be why there are more redundancies

present on the map for them at a given point in time. Hence, in terms of interaction with

the task, it is the act of regulating their solution building approach through reflection that is

differentiating the gainers from the Silent Wanderers. This is not surprising since reflection
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has been found to play a pivotal role in learning from problem based learning environments

(Barron et al., 1998; Do-lenh, 2012; Etkina et al., 2010; Hmelo-Silver, 2004).

As suggested by research, regulating ones’ own and a partners’ cognition, metacognition,

behaviours and emotions is important for productive collaborative learning (Järvelä et al.,

2016). Our findings related to speech and actions together suggest that the gainers regulated

their learning by verbally interacting with each other and reflecting on their solution approach,

thus obtaining learning gains. The Silent Wanderers, on the other hand, had less verbal

interaction and reflection, which could be the reason for not having learning gains.

4.5.3 Affective Behaviors

When it comes to affective behaviors, we observe that Expressive Explorers exhibit high arousal

and negative valence (possible confusion/frustration) similar to the non-learning group Silent

Wanderers and significantly different from the second group of gainers Calm Tinkerers. This

suggests that confusion/frustration itself may not be the reason for not learning and that it is

rather the set of other behaviors, which accompany this frustration, that define if a team would

end up learning or not in an open-ended collaborative activity. This outcome is contrary to

the more popular belief that views frustration as something to alleviate (D’Mello & Graesser,

2012; Hone, 2006; Klein et al., 2002) but rather is in line with the work of R. S. Baker et al.,

2010 and Mentis et al., 2007 that have suggested that in some cases, frustration may not

need remediation. However, an important question that arises here is whether the Expressive

Explorers end up learning despite frustration or because of it. The answer to this question is

out of the scope of this thesis; however, it can be an interesting question to explore for the

community.

Further, as highlighted by the interaction analysis, both types of gainers show a change

in their average emotional states right after submitting a sub-optimal solution, together

with a phase of high speech overlap. The team of Expressive Explorers show a dip in their

emotional state while the team of Calm Tinkerers show an increase in their emotional state.

The latter case can be explained by the model proposed by D’Mello and Graesser, 2012 for

the dynamics of affective states during complex learning, where the authors suggest that

learners states oscillate between a state of equilibrium (flow) and disequilibrium (confusion)

when an impasse is detected. In the episode we analysed, as the Calm Tinkerers discover

that their solution is incorrect, this can lead to confusion (higher emotional states). The

case of the Expressive Explorers team is interesting because it is not directly explained by the

model of D’Mello and Graesser, 2012. However, it must also be noted that this team in general

showed higher frustration during the activity and thus this can be considered their state of

equilibrium. Hence, on receiving feedback about the sub-optimality of their solution, they

switched to a lower emotional state, which for them is a state of disequilibrium. In the case

of both types of gainers however, we see an attempt to regulate the state of disequilibrium

via effortful reasoning and problem solving (Järvelä et al., 2016). This leads to an increase in
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verbal interaction with interjections while discussing revised problem solving strategies. It

is interesting that the Silent Wanderers team showed no change in their affective state in the

episode of high speech occurring after submitting a sub-optimal solution. It is worth exploring

further what this lack of change in affective state at a moment of impasse means for learning.

4.5.4 Gaze Behaviors

When it comes to gaze patterns, we did not observe any significant differences between the

two gainer groups, suggesting that they have a very similar behavior when paying attention to

the screen as well as when looking at their partner or the robot. Moreover, when comparing

the two types of gainers with the Silent Wanderers, the only significant difference observed

was with respect to looking more on the right (where the previous solutions can be displayed

upon clicking on a button) or the left side of the screen, while there are no differences among

the gaze patterns when looking towards their partner, the robot or the opposite side of the

robot. This suggests that, for the gaze behaviours we considered, a “productive” gaze pattern

does not emerge from the data.

4.5.5 Tying it All Together: How the Different Modalities Interplay?

Going back to our research question on multi-modal behavioural profiles of learning in a

collaborative constructivist activity, we have identified two types of gainer profiles based on

our pair-wise analysis in section 4.4. The first gainer profile, Expressive Explorers consists of

effective communication as seen by their high amount of verbal interaction between the team

members, periods of high overlap in speech of the team members, fewer longer pauses in the

speech; a global exploratory approach consisting of adding a lot more edges while solving the

task followed by reflection by opening their past solutions; and exhibiting a state of frustration

seen by high arousal and negative valence. The second gainer profile, Calm Tinkerers, similar

to the first one, is characterized by effective communication. However, differently from the

first one, it consists of a local exploration approach in which team members remove a lot more

edges while constructing a solution; local reflection or reflection-in-the moment, represented

by a higher number of sequence actions such as a team member adding or removing their own

or their partners’ recently added edge; and a relatively calm emotional state characterized by

low arousal and negative valence. Finally, the non-gainer profile, i.e., that of Silent Wanderers,

is characterized by poorer communication meaning significantly less verbal interaction and

less speech overlap, and more long pauses compared to the two types of gainer profiles.

In addition, similar to Expressive Explorers, Silent Wanderers exhibit frustration; however,

compared to both the gainer profiles, they reflect less both on prior solutions (open their

history less) and recent actions (have less sequence actions such as a team member adding or

removing their own or their partner’s actions). This third profile lends further support for the

need of regulation of learners’ problem solving strategies and frustration via reflection and

verbal communication in order for effective collaborative learning to happen (Järvelä et al.,

2016).
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The fact that only two out of three identified multi-modal behavioural profiles learned, is in line

with literature which suggests that while collaboration can scaffold learning, it is contingent

upon the quality of the interactions (Dillenbourg et al., 2009), and diverse and complex

conditions (Lou et al., 2001; Meier et al., 2007). Furthermore we found, similar to literature,

that while impasses and failures can offer the conditions for learning to happen, whether

it actually does happen depends on learners’ cognitive (Barron, 2003; Lodge et al., 2018;

Loibl et al., 2017), social (Weinberger & Fischer, 2006) and emotional behaviours (D’Mello &

Graesser, 2012) as a response to the moment of encountering an impasse. Our work identifies

two possible collections of actions, speech and affective behaviours under which effective

collaborative impasse-driven learning can occur and one collection of behaviours under which

it does not. Thus through this work, we provide a more holistic assessment of the behaviours

underlying collaborative impasse-driven learning that can contribute to refining the theories

of both collaborative learning and impasse-driven learning as we elaborate below.

Our findings confirm some of the findings in the CSCL literature in the context of an open

ended collaborative activity: (1) verbal interaction, not just in terms of amount of speech but

also overlap of speech between team members, in a constructivist collaborative activity emerges

to be a discriminatory factor between gainers and non-gainers but (2) it is not always one single

behavior that discriminates gainers from non-gainers; rather it is a set of behaviors which

may not always be obvious when observed by experts such as a teacher or observer in such

exploratory collaborative activities. Furthermore, it must also be noted that half of the gainers

in Expressive Explorers and Calm Tinkerers groups actually fail at the task, and the same ratio

holds in the Silent Wanderers group, suggesting once more that (3) performance in the task,

which often influences human experts in their evaluation of a learner’s progress, is not always a

reliable predictor of learning.

What is relatively less clear from literature is when high and low reflection or emotions are

productive for learning. Our work makes a step in that direction, as the aggregate multi-modal

behavioural profiles of learners highlight that certain kinds of reflection (reflection-in-the-

moment) is accompanied by calmer emotions, while other kinds of reflection (reflection-

on-action) is accompanied by more expressive emotions. That is, in our work, we discover

that there exists a relationship between two of the modalities, i.e., problem-solving strategy

and emotional expressivity, that can discriminate multiple ways of achieving the learning

goal. The fact that the strategies differ among the two types of gainers is not a surprise as

problem-solving strategies have been studied in CSCL literature; however, the fact that the

arousal and valence are interplaying with the different types of strategies is a novel contribution

of this work. More specifically, we observe the interplay in the diagonal shown in Figure 4.12,

that suggests that expressivity of emotions could be related to the problem-solving strategy. A

certain strategy leads to more episodes of frustration than the other, and examining multiple

modalities simultaneously allows us to unearth this relationship. It also raises an interesting

question as to why there are no gainer teams in the cross diagonal. Is this where the non-

gainers lie? While the Silent Wanderers do exhibit a higher emotional expressivity, they do

not strictly adhere to either of these two problem-solving strategies as they exhibit lower level
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Figure 4.12: The interplay between the problem-solving strategies and the emotional expres-
sivity for the gainer teams.

of both local and global reflection. Hence, they too do not lie in this cross diagonal. Then

the question to consider is whether the cross-diagonal would have learning or non-learning

profiles.

Hence, the insights from our current results can inform CSCL designers regarding what inter-

play between problem solving strategies and emotional expressivity may be more conducive to

learning in such a CSCL setup in addition to the more obvious behavior of speech activity. This

can help in making a more informed design of a robot or an autonomous agent for adaptive

interventions which can first use simple speech activity measures to identify non-gainers.

Other speech measures such as semantics of speech, that might be more descriptive, need

manual work by humans that cannot always be done in real time. Hence, the easier automatic

assessment in real-time with speech activity measures makes them a great choice for guiding

effective interventions by intelligent systems. Once an ’unproductive state’ is identified via

speech, the agent/robot can use information provided by the other modalities to try and

scaffold the learners towards either of the gainer profiles. For example, if a team is following a

more tinkering problem-solving strategy and they continuously start displaying higher levels

of frustration on average, there may be a need to remediate this frustration, as it could push

them to a non-gainer profile. Conversely, frustration displayed by a team displaying a more

global exploratory problem strategy may not need remediation.

We must point out that our analysis in this chapter is limited in certain aspects. The data

driven clusters are imbalanced meaning that with our pipeline, the non-learning cluster that

emerges has lesser number of teams. This may be one of the reasons why the gainer profiles

are clearer compared to the Silent Wanderers profile. Secondly, while current learning profiles

tie back to literature both in terms of behaviors and constructs as we see above, the limitation

lies in the fact that the profiles are only based on a snapshot of learning at the end of the process.

Ultimately, these behaviours are not constant across the activity and learning is inherently

characterized by episodes of both reflection-on-action and reflection-in-action (Lavoué et al.,

2015) and both positive and negative emotions (T. Sinha, 2021). To better understand the

evolution of these behaviors and constructs, i.e. to elaborate the process of learning and to

further build theories of impasse-driven collaborative learning, in our next two chapters, we

81



Chapter 4. Identifying multi-modal behavioral profiles of collaborative learning in
constructivist activities

aim to investigate temporal data from the same Ron study to develop temporal understanding

of the learning process. If by analysing deeper at temporal level using the needed modalities

for the goal at hand, we obtain similar findings, this could further strengthen the intervention

framework. The eventual goal is then to incorporate these insights for real-time intervention

in constructivist collaborative activities.
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5 Temporal Pathways to Learning
How Learning Emerges in an Open-ended Collaborative
Activity

Now that we have established 3 profiles of collaborative learning in the last chapter, when

looking at the aggregate team level data; in this chapter, we advance our understanding of the

process of learning by focusing on temporal data. We report on the findings of employing a

multi-modal Hidden Markov Model (HMM) to investigate the temporal learning processes

of the gainers and non-gainers. Considering log data, speech behavior, affective states and

gaze patterns, we find that all learners start from a similar state of non-productivity, but once

out of it they are unlikely to fall back into that state, especially in the case of the learners that

have learning gains. Unlike what we concluded in the last chapter, gainer groups actually

shift between both the problem solving strategies, each characterized by both exploratory

and reflective actions, as well as demonstrate speech and gaze patterns associated with these

strategies, that differ from those who don’t have learning gains. Further, gainers also differ

between themselves in the manner in which they employ the problem solving strategies over

the interaction, as well as in the manner they express negative emotions while exhibiting

a particular strategy. These outcomes contribute to understanding the multiple pathways

of learning in an open-ended collaborative learning environment, and provide actionable

insights for designing effective interventions.

This work corresponds to the following publications:

J. Nasir, M. Abderrahim, A. Kothiyal, and P. Dillenbourg, "Temporal Pathways to Learning:

How Learning Emerges in an Open-ended Collaborative Activity.” in Computers Education:

Artificial Intelligence, 2022 (Nasir, Abderrahim, et al., 2022).

[Dataset] Jauwairia Nasir, Barbara Bruno, Pierre Dillenbourg. (2021). PE-HRI-temporal: A

Multimodal Temporal Dataset in a robot mediated Collaborative Educational Setting. Zenodo.

https://doi.org/10.5281/zenodo.5576058. (Nasir, Bruno, & Dillenbourg, 2021a).
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5.1 Introduction

Learning does not occur in a single moment, but is rather a dynamic process that evolves

over time (Kapur, 2011; Reimann, 2009). This process, especially in open-ended learning

environments such as inquiry-based learning and problem-based learning environments,

is non-linear (Brooks & Brooks, 1993; Chow et al., 2015; Schulte, 1996). Researchers have

proposed that learning contexts are in fact complex systems where elements at different levels,

such as cognitive, intrapersonal and interpersonal, interact and this results in the emergence

of learning (Jacobson et al., 2016). Therefore, understanding the conditions for emergence of

learning in this complex system is important, as this will help identify those moments when an

intervention could potentially be effective to improve learning. Within computer-supported

collaborative learning (CSCL) research, there is now an emphasis to focus on how the CSCL

process unfolds (Lämsä et al., 2021).

While pre and post-tests help ascertain how much knowledge a learner has gained, they do not

help understand how this knowledge was gained in a particular context, i.e., the temporal and

multi-modal aspects of the learning process. These aspects of the learning process have been

previously studied using methods such as microgenetic analysis (Siegler & Crowley, 1991),

interaction analysis (B. Jordan et al., 1995) and interactional ethnography (Castanheira et al.,

2000) of learner discourse and actions, which track students conceptual development across

an individual or collaborative learning activity. However these qualitative methods can be

time intensive. With technology-based learning contexts and multisensory data becoming

increasingly widespread, researchers are making use of multiple sources of behavioral data

such as interaction logs, audio, video, eye gaze and physiological data, along with machine

learning methods, to understand the process of learning as a function of time (Engelmann &

Bannert, 2021; Olsen et al., 2020b). For example, in Lämsä et al., 2020, the authors make use of

log data and lag sequential analysis to highlight the potential of temporal analysis to identify

differences in the inquiry-based learning processes of scaffolded and non-scaffolded groups.

Specifically, they discover three temporally distinct inquiry-based learning transition patterns

among the three experimental groups that indicate different ways of using the scaffolds

that could explain their learning. Further, in Csanadi et al., 2018, the authors show that their

proposed methodology accounting for temporality, provides more insights than the traditional

code-and-count strategies to characterize the socio-cognitive activities of learning in CSCL

environments. Specifically, they found that ‘evaluating evidence’ was a core epistemic practice

for dyads but not for individuals, suggesting that students collaborating argued in a more

evidence-focused manner compared to individuals.

To reiterate, in this chapter, our goal is to develop a temporal and multi-modal model of the

learning process in our open-ended collaborative activity. Towards this goal, we propose a

Hidden Markov Model (HMM) based temporal analysis of multi-modal behavioral data to

identify the differences and similarities between the learning processes of those who learn and

those who do not. Our choice of using HMMs is motivated by the fact that HMMs allow us to

model learning as a latent process based on our observations of student interaction with the
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learning activity.

In the upcoming section, we will review literature regarding temporal and multi-modal analy-

sis methods for learning. Then in Section 5.3, we elaborate on the participants, the activity

and the dataset used in this work, the experimental setup, as well as the adopted analysis

methodology. This is followed by results, discussion, and conclusion in Section 5.4 and 5.5,

respectively.

5.2 Literature Review

When embedded in a learning activity, intelligent agents must intervene at the right moment

and in the right manner to enhance the learners’ learning gains. To do so, the system must have

an ongoing comprehensive and deep understanding of the learners and learning situation.

Temporal analysis of learners data, either performance or behaviors, can provide such an

understanding.

5.2.1 Performance Based Systems

Knowledge Tracing

In Knowledge Tracing (KT) systems, temporal learner understanding is developed by estimat-

ing the learner’s knowledge from their performance on past problems (Corbett & Anderson,

1994; Desmarais & Baker, 2012). Bayesian Knowledge Tracing (BKT) determines if and when

the learning of a skill occurs during problem-solving steps (Desmarais & Baker, 2012). It

assumes a two-state learning model where each skill is either in the learned or unlearned

state. Assuming that each step of each problem calls for a single skill, the student can either

succeed or fail the step, and the tutor updates its estimate of the learners knowledge on the

skill accordingly (Corbett & Anderson, 1994; Desmarais & Baker, 2012). BKT has been applied

both in the form of a Hidden Markov Model as well as in the form of a Knowledge Tracing

algorithm (van de Sande, 2013). While these approaches have been applied successfully

to model student knowledge in well-structured problem-solving, they fail at more complex

open-ended learning activities (Wang et al., 2021). Hence, to increase the representational

power and better model complex problem structures, Käser et al., 2017 suggest a Dynamic

Bayesian Network (DBN) model that incorporates skill topologies. In this, different skills of a

learning domain are considered within a single model capturing the dependencies between

them. Incorporating skill hierarchies yields a significant improvement in predicting students’

knowledge during complex problem solving, more accurately compared to the traditional KT

models.

Further, Deep Knowledge Tracing (DKT) (Piech et al., 2015), an application of recurrent neural

networks, has been shown to be able to learn the latent structure in skill concepts without the

need for explicit human coding of domain knowledge. For this reason, it demonstrates a drastic
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improvement on the well-known BKT models over several data sets. Nonetheless, similar to

BKT, the DBN model as well as DKT assume that each problem-solving step or action maps to

an underlying skill that could be either learned or unlearned, which is not necessarily the case

in open-ended learning environments. Moreover, these approaches assume that an incorrect

answer implies not learning or “slipping”. However, it has been found that learners’ actions

that may seem to suggest failure vis-à-vis conventional standards of efficiency, accuracy, and

performance quality may still lead to learning gains (Kapur & Kinzer, 2009). Thus, indicators

other than performance should be considered to model the learning process in open-ended

learning activities. In Ramachandran, Huang, et al., 2019, the authors suggest a link between

motivation, actions, and the learning outcomes that underlies the learning process. They

propose creating more effective tutoring interactions by finding observable behaviors that

correspond to motivational factors and employing a robot to respond to these behaviors. In

Nasir, Bruno, Chetouani, et al., 2021, the authors found that teams achieving higher learning

gains in a robot-mediated human-human collaborative learning activity, may not necessarily

perform well in the task. However, their speech, actions and emotions are distinctive as

compared to the teams with lower learning gains. Thus, behavioral analysis could allow for

better discrimination between high and low learners which will be the focus of our next

sub-section.

5.2.2 Behavior Based Systems

Qualitative Methods

When analyzing the learning process using learners’ behaviors, both qualitative and quan-

titative approaches have been employed. Qualitative methods have been used to analyze,

mainly, learners’ gestures and speech to see how their learning is evolving. For instance, M. E.

Jordan and McDaniel Jr, 2014 employ discourse analysis to describe the issues about which

learners experienced uncertainty as they pursue collaborative learning projects that include a

cognitive feeling of uncertainty. They identified how language was used in these particular

social contexts to create and reflect meaning and structure. In Voutsina et al., 2019, authors

used microgenetic task analysis to analyze the change in children’s verbal reports when their

overall solving approach appears to remain stable during a mathematical problem-solving

task. They found that in fact the phases of stability are underlain by dynamic changes in the

way the same strategy is communicated and conceptualized.

Although qualitative methods make it possible to contextualize and interpret the data based

on human perception and analysis of the learning scenario, they sometimes overlook hidden

factors that human observation cannot capture. Additionally, these methods are time and

effort intensive, and as a result, do not scale up efficiently. With the development of sensors

that capture data that is not perceivable by humans and the advancement in machine learning

analysis techniques, there has been an increase in the deployment of quantitative approaches.

Desmarais and Baker, 2012 argue that as more and more learner data becomes available and
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methods for exploiting that data improve, there is potential for constant improvement of

learner models. In this regard, researchers have attempted to gain an understanding of the

learning process by considering multiple modalities and machine learning (ML) techniques

as discussed below.

Quantitative Methods

Perera et al., 2009 apply sequential pattern mining (SPM) on learners’ log actions in a collab-

orative learning environment to extract sequences of frequent events. This analysis revealed

interesting patterns, such as the presence of frequent task-focused communication, charac-

terizing the teams ending up with positive and negative outcomes. Successful groups exhibit

patterns suggestive of members giving frequent updates to the group while working on a

task; such patterns are not present in the weaker groups. Kinnebrew et al., 2014 used SPM

algorithms along with an hierarchical clustering algorithm to study the temporal evolution

of the sequential patterns throughout the intervention, and compare the similarities and

differences of their use between experimental groups interacting with distinct versions of

the software. The mined patterns allow for identifying and interpreting students’ cognitive

skills and learning behaviors. Besides, comparing these mined patterns with performance

and context information, and tracking their temporal evolution better characterizes these

behaviors as effective versus ineffective learning strategies. For instance, the importance of

solution evaluation behaviors in complex learning tasks, is identified as one of the effective

learning strategies.

Process Mining (PM) has also been applied to behavioral data to examine the learning process.

This technique was adopted to discover the underlying problem solving or learning process

model from the learning activity interaction sequence. Paans et al., 2019 employs a fuzzy

miner algorithm, on sequences of encoded verbal utterances within dyads in a collaborative

learning activity and find that repeated occurrences of social challenges during collaboration

harm the learning outcomes. Here social challenges are defined as the failure to get along,

a lack of joint attention, being highly critical, and so on. In fact, pairs, who repeatedly have

disagreements, are more easily distracted, more easily go off-topic, have trouble getting back

on topic again, and thus, are at risk for lower assignment quality.

Further, research suggests including more than one modality in the analysis because incorpo-

rating multi-modal techniques would allow researchers to examine unscripted, construction-

ist, complex tasks in more holistic ways (Blikstein, 2013). Emerson et al., 2020b investigate

this by analyzing log actions, facial expression of emotions, and eye gaze both separately and

combined, and find that models utilizing multi-modal data either perform equally well or

outperform models utilizing unimodal data to predict learners’ posttest performance and

interest in a game-based learning environment. Olsen et al., 2020a further incorporate data

temporality by using a Long Short-Term Memory (LSTM) model on log, gaze, audio, and

dialog temporal data to predict teams’ performance in a collaborative learning activity. The

results indicate that combining various data streams from different time scales may be more
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beneficial than unimodal data. They also highlight the value of accounting for temporal

aspects of the learning process as the temporal analysis of the gaze and audio measures

provided accurate prediction of the normalized learning gain, while the averages and counts

based analysis on the same features provided no information. Further, Giannakos et al., 2019

highlight how fused multi-modal data, consisting of eye tracking, EEG, video, and wrist band

data in addition to click stream data, can considerably reduce the prediction error for learn-

ing performance as compared to when only click streams are used in the design of learning

technology. Lastly, in Yang et al., 2021, the authors have modelled the joint visual attention

and with that the cognitive engagement of dyads using eye gazes and eye blinks data, and

suggest that this multi-modal temporal approach gives more and accurate insights into the

collaborative problem solving engagement.

Another ML technique that has been used to temporally model the learning process with multi-

modal data is the Hidden Markov Model (HMM). In Sharma and Giannakos, 2020, the authors

use a combination of HMMs and the Viterbi algorithm to predict learners’ effortful behaviors

throughout the learning activity. They consider the effort categories as the hidden states and

multi-modal data-driven clusters as the observations. Results show that the suggested method

outperforms the contemporary classification algorithms in classifying learners’ behavioral

patterns as effortful or effortless. Furthermore, this methodology highlights the exact moments

when feedback is needed during the learning activity.

Literature suggests several data-driven multi-modal ML approaches that could be used to

analyze temporal data. Choosing a particular approach depends on the assumptions made

about the measured data and the learning process underlying it, the nature of the data,

the volume of available data, the purpose of the analysis, and the interpretability of the

obtained models. The purpose of our analysis is to build a multi-modal temporal model of

the underlying process of learning as it happens in an open-ended collaborative learning

activity. Sequence mining, sequential pattern analysis, and stochastic methods such as lag-

sequential analysis, for instance, do not include the assumption of a latent learning process

governing the sequence of observations (Bannert et al., 2014). Thus, we do not consider

such methods for our temporal multi-modal behavioral data analysis. Process mining, on the

other hand, does account for latent processes; however, it is usually used to identify, confirm,

or extend process models on sequential event data, which are sequences of discrete data,

and thus, are different in nature from the data we investigate, which includes multivariate

continuous features. Then, Recurrent Neural Networks (RNN), particularly LSTMs, have been

broadly employed to analyze temporal multi-modal behavioral data while complying with the

assumption of a hidden process controlling the sequence of observations. Although promising

(Spikol et al., 2018), these neural networks lack the interpretability for multi-variable data

regarding variable importance and variable-wise temporal importance due to their opaque

hidden states (Guo et al., 2019). HMMs however offer more interpretability as the hidden

states are well defined by their transition probabilities and emissions distributions. Therefore,

they allow for a better understanding of the latent learning process during the learning activity.
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Therefore, in our work, we adopt the approach of building a Hidden Markov Model of the

learning process, trained on learners’ multi-modal behavioral data. Our goal is to examine

how these behaviors evolve throughout the activity and lead to learning gains during an

open-ended collaborative learning activity. Broadly, our research question in this chapter

is, “How do the learning behaviors of different types of learners evolve across an open-ended

collaborative learning activity?"

5.3 Methods

5.3.1 Dataset

We make use of our open-source temporal dataset PE-HRI-Temporal (Nasir, Bruno, & Dillen-

bourg, 2021b) generated from the data collected in the Ron study that has been elaborated

previously in Chapters 3 and 4. In this data set, for each team, the interaction of around 20-25

minutes is organized in windows of 10 seconds; hence, we have a total of 5048 windows of 10

seconds each. We report team level log actions, speech behavior, affective states, and gaze

patterns for each window. More specifically, within each window, 26 features are reported

in two formats; hence, giving a total of 52 values. We make use of the non-incremental for-

mat of the 26 features which means we look at the value of a feature in that particular time

window without carrying any information from previous time windows. For more details,

please see Nasir, Bruno, and Dillenbourg, 2021b. The 26 features are listed in Tables. 5.1, 5.2,

and 5.3. The rationale for using these features to analyse learning are explained in our previous

chapters (specifically referring to the chapters 3 and 4).

In addition to the features in the aforementioned tables, each window also includes a normal-

ized_time feature which refers to the time when this window occurred with respect to the total

duration of the task for a particular team. The dataset also consists of team level learning and

performance metrics, where performance is measured based on the cost of a current solution

relative to the optimal solution, while learning gains (absolute, relative or joint-absolute) are

calculated by looking at the difference between the students scores on their post-tests and

pre-tests. More detailed definitions are provided at Nasir, Bruno, and Dillenbourg, 2021b.

Please note again that this dataset provides data for 34 teams, but for our current analysis we

make use of data from 32 teams giving us 4676 windows. We removed two teams that were

outliers in terms of their behaviors (based on data driven behavior profiles that were generated

in the last chapter). Lastly, considering learning analytics and/or educational human-robot

interaction studies with a robot, similar or even lower sample sizes are the norm (Belpaeme

et al., 2018; Gordon et al., 2016; Ramachandran, Huang, et al., 2019), as is the case with the

type of analysis that we do in this work (for example, see Sharma and Giannakos, 2020.
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Table 5.1: Log features from our PE-HRI-Temporal dataset

Log Features

Feature Name Description

T_add The number of times a team added an edge on the map in that window

T_remove The number of times a team removed an edge from the map in that window

T_ratio_add_rem The ratio of addition of edges over deletion of edges by a team in that window

T_action The total number of actions taken by a team (add, delete, submit, presses on the screen) in that window

Redundant_exist The number of times the team had redundant edges in their map in that window

T_hist The number of times a team opened the sub-window with history of their previous solutions in that
window

T1_T1_add The number of times either of the two members in the team followed the pattern consecutively: I delete
an edge, I add it back in that window

T1_T1_rem The number of times either of the two members in the team followed the pattern consecutively: I add
an edge, I then delete it in that window

T1_T2_add The number of times the members of the team followed the pattern consecutively: I delete an edge,
you add it back in that window

T1_T2_rem The number of times the members of the team followed the pattern consecutively: I add an edge, you
then delete it in that window

T_help The number of times a team opened the instructions manual in that window

Table 5.2: Video based features from our PE-HRI-Temporal dataset

Video Features: Affective states and Gaze

Feature Name Description

Positive_Valence The average value of positive valence for the team in that window

Negative_Valence The average value of negative valence for the team in that window

Difference_in_Valence The difference of the average value of positive and negative valence for the team in that window

Arousal The average value of arousal for the team in that window

Gaze_at_Partner The average of the the two team member’s gaze when looking at their partner in that window where
each individual member’s gaze is calculated as a percentage of time in that window.

Gaze_at_Robot The average of the the two team member’s gaze when looking at the robot in that window where each
individual member’s gaze is calculated as a percentage of time in that window.

Gaze_other The average of the the two team member’s gaze when looking in the direction opposite to the robot in
that window where each individual member’s gaze is calculated as a percentage of time in that window.

Gaze_at_Screen_Left The average of the the two team member’s gaze when looking at the left side of the screen in that
window where each individual member’s gaze is calculated as a percentage of time in that window.

Gaze_at_Screen_Right The average of the the two team member’s gaze when looking at the right side of the screen in that
window where each individual member’s gaze is calculated as a percentage of time in that window.

Gaze Ratio of Screen_Right
and Screen_Left

The average ratio of a team member looking at the right side of the screen over the left side in that
window
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Table 5.3: Audio based features from our PE-HRI-Temporal dataset

Audio Features: Speech

Feature Name Description

Speech_Activity The average of the two team member’s speech activity in that window where each individual
member’s speech activity is calculated as a percentage of time that they are speaking in that
window.

Silence The average of the two team member’s silence in that window where each individual member’s
silence is calculated as a percentage of time in that window.

Short_Pauses The average of the two team member’s short pauses over their speech activity in that window.
Each individual member’s short pause refers to a brief pause of 0.15 seconds and is calculated as
a percentage of time in that window.

Long_Pauses The average of the two team members long pauses over their speech activity in that window.
Each individual member’s long pause refers to a pause of 1.5 seconds and is calculated as a
percentage of time in that window.

Speech_Overlap The average percentage of time the speech of the team members overlaps in that window.

Overlap_to_Speech_Ratio The ratio of the speech overlap over the speech activity of the team in that window.

5.3.2 Analysis Methodology

In our previous chapter, we generated behavioral profiles based on the same features de-

scribed above in section 5.3.1, but aggregated across the entire activity. We found differences

in the behaviors between those who learn, i.e., gainers and those who do not end up learning,

i.e., non-gainers. Further, we also observed behavioral differences in the two types of gainers

(Chapter 4). We saw that while speech behavior was a discriminatory factor between gainers

and non-gainers, it was actually the interplay between problem solving strategies and emo-

tional expressivity that distinguished the different ways in which gainers learned. Based on

that, we identified the two types of gainers as Expressive Explorers and Calm Tinkerers, and the

non-gainers as Silent Wanderers. In this Chapter, we retain the same terminology. While the

aforementioned behavioral profiles highlight the aggregate differences between all types of

learners, in order to identify the differences between the learning process of those who learn

and those who do not, we employ HMMs to generate multi-modal temporal behavioral profiles

for each type of learners. This enables us to understand how the multi-modal behaviors of

each type of learners evolve throughout the interaction.

An HMM is a doubly stochastic model with an underlying stochastic process that is not observ-

able, but can only be observed through another set of stochastic processes that produce the

sequence of observed symbols. It is specified by a set of N states, an initial probability distri-

bution, a transition probability matrix, and a sequence of emission probabilities. Additionally,

HMMs require three assumptions: firstly, that the next state is dependent only on the current

state, secondly, that the state transition probabilities are independent of the time of transition

and finally, that the current observations are statistically independent of the previous outputs.

In our case, our data is grouped into independent 10 second windows, with each window con-

taining behaviors occurring in those 10 seconds alone, and thus assumption 3 holds. Further,

each hidden state of the HMM manifests a set of significantly different behaviors by which the
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state is characterized; this set of behaviors together signify a particular approach to learning.

Hence, the next state or the approach to learning taken next by a pair of learners depends

only on the current state (assumption 1) and the probability of transitioning to a different

approach to learning is independent of when in the activity it occurs (assumption 2). Thus all

the assumptions required to do an HMM analysis are valid for our data and learning context;

hence, allowing us to proceed with HMM modeling. Our analysis consists of four main steps:

Step1: Preprocessing

As our features come from different kinds of behavioral modalities, they are on different scales.

So we begin by applying a min-max scaler to normalize our data.

Figure 5.1: Behaviors Clustering step

Step2: Behaviors Clustering

In order to have a starting point for the number of states of the HMM, we perform a clustering

of the temporal behavioral features to identify significantly different behavioral clusters. We

then assume that these clusters are emitted by distinct hidden states, and so the number of

states is the same as the number of behavioral clusters. For clustering, a Principal Component

Analysis (PCA) is conducted to compute the principal components, the first components

are kept based on the elbow method on the proportion of variance explained. The Principal

Components are then clustered using the K-Means algorithm. The number of clusters is

optimized based on the elbow method on inertia and the silhouette score. In order to con-

firm that the obtained clusters are actually different in terms of multi-modal behaviors, we

perform a Kruskal-Wallis test on the clusters’ behavioral features. This test further serves as a

means to identify behaviors that significantly distinguish a cluster from the other. This step is

summarized in Figure 5.1.
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Figure 5.2: The HMM step

Step3: the HMM

Since our temporal behavioral features are multivariate and most of them have continuous

values, our emission probability distribution should be continuous multivariate. Thus, for this

step, we use the GMMHMM model provided by the hmmlearn library1, as it accounts for the

aforementioned condition by representing the emission distribution as a mixture of multiple

Gaussian densities.

We set the number of hidden states to the number of clusters found in the previous step. The

HMM is then trained using the Expectation-Maximization algorithm on the set of the teams’

sequences. Each sequence consists of all the observations of a team sorted in increasing order

of time, where an observation consists of the normalized multi-modal behavioral features

and time at a given time window. We then apply the Viterbi algorithm on these sequences

to recognize at which hidden state each observation is emitted. As a result, for each hidden

state, we can construct the set of observations emitted by that state. Finally, we perform

a Kruskal-Wallis test on each feature between each pair of these sets with the significance

threshold set to 0.01. For each of the significantly different features between a pair of sets, we

further compare the mean values across the sets and label the mean value of each set with one

of the labels {Highest, High, Medium, Low, Lowest} based on a generated score in the following

manner:

1hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models,
https://hmmlearn.readthedocs.io/
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For a significantly different feature x, we first define:

mi n(x) = minimum of mean values of x across all sets

max(x) = maximum of mean values of x across all sets

Then, for a set i, we generate a score for the feature x as:

scor e(x, i ) =
(mean of x in i −mi n(x))

(max(x)−mi n(x))

Lastly, the feature x in i is labeled with:

• ‘Highest’, if scor e(x, i ) = 1.

• ‘High’, if 2/3 ≤ scor e(x, i ) < 1.

• ‘Medium’, if 1/3 ≤ scor e(x, i ) < 2/3.

• ‘Low’, if 0 < scor e(x, i ) < 1/3.

• ‘Lowest’, if scor e(x, i ) = 0.

The significantly different features and their labels for a set i represent the manifestation of

the hidden state corresponding to the set i and we subsequently use these labeled features to

represent the state. This enables us to interpret the progression of the hidden learning states

in terms of the values of the significantly differing observed behaviors. Figure 5.2 outlines the

processes employed to train and interpret the model.

In conclusion, in this step, the HMM is trained in order to learn the hidden states that emit

the observed multi-modal behavioral features, and the significantly different features that

characterize each state are identified. Interpreting these results allows for building the learning

profiles that dyads go through during the activity. Furthermore, the model allows for learning

the initial probability distribution as well as the probabilities to transition from one state to

the other, which allows for building the temporal profile.

This entire pipeline, as summarized in Figure 5.3, is adopted to identify the temporal profiles

for each type of learners separately.

5.4 Results

This section presents the results of the analysis methodology applied to the temporal multi-

modal datasets of the Expressive Explorers, the Calm Tinkerers, and the Silent Wanderers. The

clustering analysis, as discussed in the previous section, applied for the Expressive Explorers,
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Figure 5.3: The Analysis Methodology

the Calm Tinkerers, and the Silent Wanderers suggests the following number of components

[PCs = 4, PCs = 4, PCs = 5 respectively] and the following number of clusters [ K=2, K=3, K=3

respectively], based on the elbow method on inertia and the silhouette scores. These are

considered as a starting point for the number of hidden states, and we further train Hidden

Markov models with K+1 states to identify whether other non trivial states exist or not, that

eventually suggests that we have three hidden states for each of these groups. Hence, we

define the following naming convention for the hidden states in each of the groups’ models:

• InitialState: the state with the highest initial probability.

• MoreProbableState: the state with the highest transition probability from the initial

state.

• LessProbableState: the state with the lowest transition probability from the initial state.

We further define the following conventions for the state diagrams:

• The size of a state in the state diagrams is representative of its initial state probability.

That is, the bigger the circle representing the state, the bigger its initial probability is.

• The size of the font of the transition probabilities in the state diagrams is illustrative of

its magnitude. Explicitly, higher transition probabilities have bigger font sizes.

For each of the three groups, their HMM model, trained on sequences of observations of the

respective group and the number of states set to three, is represented by the state diagrams

in Figure 5.4, 5.5, and 5.6, respectively. For all groups, the probabilities suggest that once

in InitialState, staying in that state has the highest probability compared to other possible

transitions. However, once out of this state, going back to the InitialState from the LessProba-

bleState and MoreProbableState generally has lower transition probabilities. The probabilities
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Figure 5.4: HMM State diagram for the Expressive Explorers

are especially low in the case of Expressive Explorers from both of the other states, and for

both Calm Tinkerers and Silent Wanderers from the LessProbableState. On the other hand, the

Silent Wanderers can still transition from MoreProbableState to InitialState with a non-trivial

probability of 0.305 which is higher than the probability of going to LessProbableState from

MoreProbableState. Similarly, the Calm Tinkerers also have a relatively higher transition proba-

bility to go back to the InitialState from their MoreProbableState; however, they still have a

higher probability to transition to their LessProbableState from this state. Furthermore, the

findings from the Kruskal-Wallis analysis comparing the values of the multi-modal behavioral

features between each pair of states, for each group of learners, is shown in tables next to the

respective HMM models. The tables include the features which represent the manifestation of

the hidden states. Note that the features that do not differ significantly between the states are

not shown in these tables. This does not mean the absence of that feature in a state, rather

that the feature does not differ significantly between states, i.e., the value of that feature does

not oscillate between states significantly. We discuss further on these results in the upcoming

section.

5.5 Discussion

5.5.1 Temporal Multi-modal behavioral Profiles

In this section, we describe the higher level understanding that the temporal analysis, based

on the HMMs identified in the previous section, provides us of how the multi-modal behaviors

of each group of learners evolve during the collaborative learning activity and what this says
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Figure 5.5: HMM State diagram for the Calm Tinkerers

Figure 5.6: HMM State diagram for The Silent Wanderers
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about their learning process. Based on the findings in Section 5.4, we observe two kinds of

problem solving (PS) strategies namely:

• Global PS Strategy: This strategy includes global level exploration and/or reflection

characterized by addition actions and looking at past solutions (history).

• Local PS Strategy: This strategy includes local level exploration and/or reflection charac-

terized by deletion actions and addition followed by deletion actions or vice versa.

Previously, in the results section, we name our states on the basis of initial probability (Initial-

State) or transition probabilities from the initial state (LessProbableState, MoreProbableState).

In this section, we try to understand the nature of the states and consequently, we name them

based on their:

1. Productivity

2. Problem solving strategy

With respect to 1, in the previous chapter (specifically, Chapter 4), we found that the quantity

and quality of speech was able to discriminate between productive and non-productive teams

in terms of learning. Additionally, we found that when the behaviors were averaged across the

entire interaction for each team, there were two problem solving strategies (Global PS Strategy

and Local PS Strategy) that emerged and overall, one group of gainers displayed only one

strategy, while the other group of gainers displayed the other. However, the temporal profiles

of each group of learners help elaborate these findings further.

Please note that in the upcoming figures of the profiles, the strength of the transition proba-

bilities is represented by the strength of the arrows and the unproductive, semi-productive

and productive states and transitions are represented by different colors as described in the

legend of the figures.

Expressive Explorers

The temporal profile for Expressive Explorers is shown in Figure 5.7 from which we see that

these learners start, with the highest probability, at a state characterized by more technical

help-seeking, fewer actions with the learning activity, and high silence. For these reasons, it

appears to be a state of non-productivity. As opposed to the averages and frequency analysis in

Chapter 4, which suggests that Expressive Explorers learned by following a more global problem

solving strategy, this temporal analysis indicates that once they go out of the non-productive

state, they employ both of the problem solving strategies: in the more probable state they

follow a global problem solving strategy of adding edges and looking more at their previous

solutions, and in the less probable state they follow a local problem solving strategy consisting
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Figure 5.7: Temporal profile for Expressive Explorers

of more removals in general, and removing each other’s last added edges in particular. What

is interesting is that the latter state is more likely to occur at later times in the activity than

the global problem solving state, suggesting that these students begin with a more global

problem solving approach and move on to a more local strategy of making quick changes. This

transition is also characterized by increasing negative emotions, such as frustration, that is

perhaps brought on by the awareness of reaching the end of the activity and the allotted time.

In the states of non-productivity (while trying to understand the activity) and global problem

solving (while adding edges), the learners gaze at the screen is high, while in the state of local

problem solving while removing edges, and in particular each others’ edges, the learners gaze

at their partners is highest. However, both of the problem solving states are characterized by

high speech and speech overlap which signifies good collaboration (Viswanathan & Vanlehn,

2018). Once Expressive Explorers reach a productive state, it is highly unlikely to get back to

the non-productive one.

Calm Tinkerers

Calm Tinkerers as shown in Figure 5.8 start, with the highest probability, at a state characterized

by high technical help-seeking, fewer actions, and high silence. Due to these behaviors, it

seems to be a state of non-productivity. Similar to Expressive Explorers, the temporal analysis

done in this chapter gives a richer insight into these learners behaviors. Contrary to the
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Figure 5.8: Temporal profile for Calm Tinkerers

Figure 5.9: Temporal profile for Silent Wanderers
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Table 5.4: Interplay between stages of problem solving strategies and behaviors of speech,
gaze, and affect

When employing a global problem solving strategy

Behavior Expressive Explorers Calm Tinkerers Silent Wanderers

Speech High High Medium
Gaze towards partner and/or robot Lowest Lowest Highest

Gaze towards the screen High High High
Affect Medium Negative Highest both Highest Positive

When employing a local problem solving strategy

Behavior Expressive Explorers Calm Tinkerers Silent Wanderers

Speech Highest Highest Highest
Gaze towards partner and/or robot Highest High Medium

Gaze towards the screen Lowest Medium Medium
Affect Highest Negative Medium both High Positive

aggregate analysis which suggested that these learners adopt a local problem solving strategy,

this analysis suggests that these type of gainers too go through two states of productivity: a less

probable state of local problem solving and a more probable state of global problem solving.

In the state of local problem solving, Calm Tinkerers do most removal actions, particularly

removing each other’s last added edges, show lesser negative emotions, and their speech is at

its highest. In the state of global problem solving, these learners do more addition actions, are

more frustrated and their speech decreases but is still relatively high. Contrary to Expressive

Explorers, we find that in Calm Tinkerers the state of local problem solving is more likely to

occur earlier in the activity than the state of global problem solving, suggesting that these

learners begin with a local problem solving approach. However, similar to the Expressive

Explorers, these learners change in problem solving strategies is also accompanied with an

increase in negative emotions.

In the state of non-productivity while trying to understand the activity, the Calm Tinkerers

gaze at their partner as well as the right side of the screen is high. In the state of global problem

solving, while adding edges, the learners gaze on both sides of the screen is high. In the state

of local problem solving, while removing edges, including each others’ edges, the learners gaze

at the robot and the left side of the screen is highest. We must note that the only difference

between the left and the right sides of the screen is that if a previous solution is opened, it is

displayed on the right side; whereas, the information on the total number of nodes and the

number of edges currently present on the map is on the left side. Similar to Expressive Explorers

both productive states are characterized by high speech signifying good collaboration is both

states (Viswanathan & Vanlehn, 2018). Further, similar to Expressive Explorers, the speech in

the local PS state is highest and this is likely because this state involves the highest removal

of each others’ edges which requires discussion and agreement among both partners, thus

increasing the speech activity. Lastly, different from Expressive Explorers, these learners still

have a medium probability to fall back to the unproductive state from the state of global

problem solving strategy.

101



Chapter 5. Temporal Pathways to Learning

Silent Wanderers

Similar to the two gainer groups, the Silent Wanderers start with the highest probability at

a non-productive state characterized by more technical help-seeking, high silence, and low

actions with the learning activity. They go through a more probable state, occurring in the

middle of the activity (suggested by medium normalized time), where they adopt a global

problem solving strategy in which their speech increases and they do more addition actions.

However there is no change in their reflective actions in this state, either in terms of looking

at their previous solutions or removing their own or their partners added edges. Even from

this state of productivity, they can still fall back to the state of non-productivity with a high

transition probability. In the less probable state, which is more likely to occur towards the end

of the activity and is characterized by a more local problem solving strategy, non-gainers do

more removals and few additions. We may infer that this is a more reflective phase although

their reflection, unlike the gainers, does not include a significant increase in the use of the

solution history or each other’s last actions. However, this state is characterized by their

highest speech.

In terms of gaze, in the non-productive state while trying to understand the activity these

learners gaze at the left side of the screen is highest and this could be because the information

on the number of nodes and number of edges currently present on the map is located on the

left. In the more probable state of doing additions their gaze at their partner and the right

side of the screen is highest, where the history is also located and it could be that learners

were accessing their past solutions. Finally, in the less probable state of removing edges their

gaze at the right side of the screen is high, which could again indicate learners accessing their

history. Interestingly, we find no difference in the learners frustration between the three states,

indicating that their negative emotions were relatively stable regardless of whatever they were

doing in the activity. Thus our analysis reveals that non-gainers go through a “slower” learning

pathway characterized by an intermediate semi-productive state where actions on the activity

and speech increases, but reflection is generally unchanged. While they do reach a productive

state of reflective problem solving and higher amount of discourse, it is reached late in the

activity. However, this suggests that given time even the non-gainers could achieve higher

learning gains since once they reach this productive state, similar to gainers, the probability of

going back to the non-productive states is low. We hypothesize that the lack of reflection in

the intermediate state could be the reason why non-gainers do not have higher learning gains

as it is known that reflection plays a crucial role in learning from problem solving (Do-lenh,

2012; Hmelo-Silver, 2004).

Together our findings suggest that not only are there multiple behavioral profiles of learning

(Chapter 4), there are multiple behavioral pathways for learning, and learners who have

learning gains do not adopt a single problem solving strategy, global or local, but indeed a

combination of both. Further, they modify strategies based on the status of the problem

solving and feedback obtained from the environment. Our findings also suggest an interplay

between PS strategies and other behaviors which we explore in-depth in the next section.
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5.5.2 Interplay between PS Strategies and other behaviors

Now that the temporal learning profiles have been explained for each group, we would like

to focus on how speech, affect and gaze evolve for each of these groups and interplay with

the global vs the local problem solving strategies i.e., while performing addition actions pre-

dominantly or when removal actions are more frequent, respectively. This interplay between

the problem solving strategies and behaviors of speech, gaze, and affect is shown in Table. 5.4,

which has been synthesized based on our results described in section 5.5.1. We note that this

table does not include those behaviors that stayed consistent for a certain group of learners

between the two strategies. For example, for Silent Wanderers, the fact that we do not see

negative affect in the table indicates that there were not any significant oscillations for their

negative valence between the two strategies, i.e., their negative emotions were more consistent

irrespective of which problem strategy they used.

When doing global problem solving consisting predominantly of additions, the two gainer

groups Expressive Explorers and Calm Tinkerers have high speech, while Silent Wanderers

speak relatively less. In this phase, the two gainer groups gaze at their screen is high, while the

gaze towards their partner or the robot is lowest. On the other hand, for the non-gainer group

Silent Wanderers, while the gaze towards the screen is high, their gaze towards their partner is

highest in this phase. Lastly, in terms of affect, Expressive Explorers express medium level of

negative emotions, Calm Tinkerers display both highest levels of positive as well as negative

emotions in this phase, while the non-gainer group Silent Wanderers are associated with their

highest levels of positive emotions in this phase.

Next, we observe that when using local problem solving strategy, i.e., more removals, an

action indicative of reflection, each group’s speech activity is at their highest. In terms of gaze

behavior, the two gainer groups Expressive Explorers and Calm Tinkerers gaze at their partners

as well as the robot is high in this phase, while Silent Wanderers gaze towards their partner is

lesser. Furthermore, Expressive Explorers gaze towards the screen is the lowest in this phase,

while the other two groups gaze at the screen is medium. Lastly, Expressive Explorers show

most negative emotions during this strategy, Calm Tinkerers are associated with medium

emotions, while Silent Wanderers lean towards high positive emotions while removing.

It is interesting to note that irrespective of the phase of problem solving, both gainer groups

maintain a high level of verbal interaction as opposed to the non-gainer group Silent Wan-

derers who speak less during global problem solving and speak the most while in the local

problem solving phase. This suggests that verbal interactions are important to be maintained

during both the global and local problem solving phases, i.e. both when making additions,

as well as when doing removals. The need for communication itself is not surprising as the

collaborative problem solving task requires learners to share information for building a com-

mon ground and improving their understanding to construct a solution, monitor and reflect

on the solution (Barron, 2003; Chang et al., 2017; Hausmann et al., 2004; Roschelle & Teasley,

1995). Our analysis reiterates the need for communication throughout collaborative problem
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solving, regardless of the PS strategy being applied. Nevertheless some phases may demand a

higher level of interaction between partners. For instance, literature suggests an increase in

interaction between participants during phases of socially shared regulation of learning which

involves reflection, monitoring the solution (Isohätälä et al., 2017; Rogat & Linnenbrink-Garcia,

2011; S. Sinha et al., 2015). We also find similar behaviors in that we see an increase in speech

activity of all learners in their most reflective phase of problem solving, which in our case is the

local problem solving that involves continuously evaluating whether an added edge satisfies

the requirement of minimising cost and removing it if not. This requires partners to share the

information on their respective screens and discuss it with respect to the overall solution, thus

leading to increase in speech.

In terms of affect, all groups oscillate between different affective states and/or different levels

of affect. Expressive Explorers oscillate between medium and very high negative valence levels

during global and local phases respectively, i.e., showing a higher frustration during the local

strategy. On the other hand, the second type of gainers, Calm Tinkerers oscillate between

higher to medium level of arousal, with a mix of both positive and negative valence, when

moving respectively between global and local problem solving, i.e, displaying higher levels of

both excitement and frustration during the global strategy. Lastly, for Silent Wanderers, the

oscillation is more in terms of arousal, that shifts between their relative levels of highest to

high positive valence between global and local problem solving, respectively, i.e, being more

excited during global problem solving. The changing dynamics of affective states over the

entire problem solving is supported by the work of D’Mello and Graesser, 2012; however,

what is interesting is that both gainer groups experience negative emotions during both global

and local problem solving phases. A meta-analysis of discrete affective states during learning

with technology indicates that negative states such as anger, contempt, sadness, anxiety,

fear, etc. are relatively infrequently experienced when students engage with technology-

enhanced learning contexts (D’Mello, 2013). However, these learning contexts are guided

discovery learning contexts that usually employ success-driven scaffolding to nudge the

learners towards the correct solution. T. Sinha, 2021, in a recent work suggested that in a

problem-solving followed by instruction (PS-I) context, where the problem-solving phase

is “naturally designed to be ill- structured and afford the generation of multiple suboptimal

solutions (Kapur & Bielaczyc, 2012)", some levels of negative emotions can in fact be beneficial

as they can “keeps one alerted of challenges requiring more focused attention, and assists in

comprehending conflicting information (Ivtzan et al., 2015; Kashdan & Biswas-Diener, 2014)”.

Since our open-ended activity is also designed as a PS-I activity, the surfacing of absolute

medium levels of negative emotions among gainers (the mean values can be seen in the Tables

in the appendix B; note that the labels highest, high, medium, low, lowest are relative within a

group) can be considered as supporting what was reported in T. Sinha, 2021. In this work, we

additionally point out when negative emotions increase during problem-solving, relative to

other phases, for the different types of gainers.

Another point of interest is that while the interplay between problem solving strategy and

affect was highlighted in our previous Chapter 4, this work highlights that a particular affect
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is not strictly associated with a type of problem solving strategy but it also depends on the

phase of the activity. A particular problem solving strategy applied at the later stages of the

activity can lead to more negative emotions than would be otherwise observed. In D’Mello

and Graesser, 2012, the authors highlight that moving from a state of equilibrium or flow to a

state of disequilibrium results in negative emotions such as confusion and frustration. Our

findings of gainers emotions also suggests a similar behavior; for instance when Expressive

Explorers change strategies from a global to a local one, it is accompanied by an increase in

negative emotions and when Calm Tinkerers shift from a local to a global strategy they show

an increase in negative emotions. This change in negative emotions in not very prominent

among Silent Wanderers which could be because they did not pay as much attention to the

task at hand or notice the gaps in their prior knowledge and the need for reflection (T. Sinha,

2021).

Oscillation of gaze between the partner and the screen, and the robot and the screen, is

particularly interesting as we observe that for both gainer groups, they look the least at their

partner or at the robot when employing the global PS strategy but highest during the local PS

strategy. On the contrary, the non-gainer group looks more to their partner and the robot when

exhibiting global PS strategy compared to the local PS strategy. Literature suggests that gaze

is a means of action monitoring, predicting intention, action co-ordination and planning in

order to establish a common ground that can lead to better collaboration (C.-m. Huang et al.,

2015; Sebanz et al., 2006). Together our findings and literature suggest that in an environment

that has both social (a partner) and task elements (screens), looking at your partner during

the local PS strategy, which involves mostly removing what the team has already built and

requires agreeing on which edges to remove, can support joint action. Since in this work we

do not distinguish between moments when both partners are looking at each other and when

one partner is looking at the other (both are considered when computing the feature “gaze

at partner”), eye gaze could either be a way to confirm agreement on a bilaterally decided

course of action or a way to negotiate to reach a consensus when a unilateral decision was

taken. On the other hand, during the global PS strategy which involves series of additions, it is

more productive to look at the screen rather than at the partner as the plan is already agreed

on (global reflection/planning).

5.5.3 Connections to Computer-supported Collaborative Learning Literature

Within CSCL literature the temporal analysis of computer-supported collaborative learn-

ing (Lämsä et al., 2021) has predominantly focussed on the content of learners verbal com-

munication/interaction/discussion and how it evolves during the learning activity, with the

non-verbal activities such as actions within the technology-based learning environment,

serving to complement the analysis of verbal communication. In our work, we employ multi-

modal features to understand how pairs of students learn by working on an open-ended

scripted collaborative problem-solving activity. For this, we consider the pair as a single unit

and examine how their collective behaviors (speech activity, problem-solving actions, eye
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gaze and affect) change across the activity as they learn by problem-solving. Our analysis

does not include any measure of the quality of the verbal discussion, but studies the temporal

evolution of this units’ learning behaviors using only fully quantitative data and methods.

Similar methods have been used in (Martinez-Maldonado et al., 2013b) where the authors

were able to distinguish between high and low collaborating groups based on their action and

speech sequences and our work adds to this literature by additionally considering affect and

eye gaze, and modeling the temporal learning process of different types of learners.

Further, using the quality of speech, with and without problem-solving actions, has allowed

researchers to understand how learners temporally regulate their open-ended problem-

solving (Chang et al., 2017; Emara et al., 2021; Kapur, 2011; Malmberg et al., 2015; Sobocinski

et al., 2017) in face-to-face collaborative conditions. For instance, researchers identified that

increased socially shared regulation across time corresponded with increased use of more sys-

tematic action sequences (Emara et al., 2021) and higher performance (Malmberg et al., 2015).

Similarly, Sobocinski et al., 2017 found that in low challenge sessions, learners transitioned

between the forethought and performance phases of self-regulated learning only once, while

in high challenge sessions they transitioned between forethought and performance phases

more frequently. Chang et al., 2017 identified that successful groups discourse transitioned

more frequently from monitoring to formulating and exploring, along with doing exploratory

actions, as opposed to less successful groups whose discourse suggested a more trial-and-

error strategy. While we did not explicitly identify socially shared regulation, our findings did

agree with the above findings in that increased speech activity was overall associated with

increased reflective problem-solving actions, both global and local. In addition, our work

offers a complementary view of how collaborative open-ended problem-solving proceeds,

in terms of problem-solving strategies (local vs global) rather than problem-solving phases

(exploring, formulating, planning and monitoring). The global problem solving strategy can

be considered as one in which planning, exploring, formulating and monitoring happens

on the scale of the entire problem. The local problem solving strategy is one in which the

planning, exploring, formulating and monitoring happens on the scale of the next step towards

the solution. Our work thus adds to CSCL literature by suggesting that learners seamlessly

intertwine these two strategies in their productive collaborative problem-solving, and that

neither is at the outset “better” than the other.

5.5.4 Implications for Design of Adaptive Learning Interventions

In this subsection, we highlight some implications of the findings discussed above for the

design of adaptive learning interventions, both at a broader level for the CSCL community,

and at the specific level of the intervention in our setting. To summarize our observations

from the temporal profiles, we find that:

1. All learner groups have the highest probability to start with and stay in a state of non-

productivity. However, once out of it, all learners have the lowest probability to return to
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this state.

2. The non-gainers transition between states of non-productivity and productivity in

a smoother manner with an intermediate semi-productive state in terms of time. In

contrast, gainers’ transitions are sharper, in that they transition from the non-productive

state to one of two productive states.

3. Expressive Explorers and Calm Tinkerers do not exclusively adopt a global or a local PS

approach respectively throughout the activity, as suggested by the aggregate behavioral

profiles in Chapter 4. This analysis reveals that both these gainer types switch between

the two approaches throughout the interaction. One key difference is the stages of the

interaction in which the two groups employ the strategies, with the Expressive Explorers

adopting the global strategy earlier and then the local strategy, while the Calm Tinkerers

adopting the reverse approach.

4. Further, for the two gainer groups, each of the two problem solving strategies is asso-

ciated with speech, gaze and affect in a unique way, that is in some ways comparable

(speech and gaze) and in other ways opposing (affect). Diving deeper, the relationship of

affect with a particular problem solving strategy does not seem to be as straightforward

as suggested by aggregate behavioral analysis in Chapter 4. Both types of gainers seem

to have increased emotional behavior relative to themselves towards the later part of

the interaction irrespective of which problem solving strategy they are using.

Following up from the above observations, (1) suggests that adaptive interventions should start

early in the interaction, irrespective of the group. For example, all groups speak the least in the

non-productive state and have yet not established either of the problem solving strategies. An

effective intervention could then be to try to induce communication between the dyad earlier

in the interaction, that eventually could help with mitigating confusion, building a common

ground, resolving conflict and pushing the team towards a more reflective set of behaviors,

i.e., to follow either a global or a local problem solving strategy.

Further, going back more often (i.e., with a higher probability) into a non-productive state of

low speech (as Silent Wanderers as well as Calm Tinkerers did) might suggest that the students

have not yet established a shared understanding of the problem. Without an appropriate

intervention, the relevant team may take longer to have productive interactions or transition

to a productive state. Such an unstable behavior of moving back and forth between the

non-productive and productive states need to be mitigated by an intervention targeted at

inducing behaviors that would increase the chances of building a shared understanding.

Further, observation of Silent Wanderers suggests that it is the lack of reflective actions such as

looking back at their previous solutions and observing their own or their partners action, that

might be the cause of a delayed shared understanding of the problem. Hence, such actions

can be additionally suggested by an intelligent agent if the team is observed to be going back

often to a state of lower speech that suggests being in a non-productive state.
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Lastly, as highlighted by (3) and (4), identification of a team as following a local or global PS

strategy at the early stages of the interaction should be taken with caution. Instead continuous

identification of the teams current PS strategy is necessary as the teams shift between multiple

PS strategies and each problem solving strategy elicits different speech, gaze and affective

behavior in learners. Therefore, it is important to inform the mechanism behind interventions

of this sophisticated interplay and suggest interventions accordingly. For example, Expressive

Explorers increase in their intensity of negative emotions as they move from global to local

PS strategy and vice versa for the Calm Tinkerers; however, when looking at the time axis, in

both cases this increase is towards the later phase of the interaction. Hence, the adaptive

intervention system does not always need to mitigate frustration, especially towards the end

of the interaction as this level of frustration may be conducive to more productive behaviors.

This can be an interesting avenue for further investigation by the community. As another

example, both gainer groups looking more at the partner when moving from global to local PS

strategy seems to suggest better collaboration quality; therefore, the adaptive intervention

system can try to induce relevant gaze behaviors when the associated PS strategy is detected

among learners potentially by sharing gaze among the peers as has been shown to be effective

(Schneider et al., 2018).

Concluding on our discussion, in this chapter we contribute by applying an HMM based

methodology to model and understand the collaborative learning process of gainer and non-

gainer teams. However, there are some limitations with the current analysis some of which

have also been highlighted in previous chapters. Firstly, in order to generalize the outcomes

and inferences to collaborative settings in open-ended environments, there is a need of

carrying out even more extensive studies, i.e., with more teams. Then, the current data is

skewed when it comes to non-gainer teams, that is we have lesser non-gainer teams in our data

than gainer teams and that can add to making our results less straightforward to generalize.

Lastly, since the study is done at international schools in Switzerland, the students are from a

selective pool coming from a certain economic and social background; hence, this requires us

to be careful about the group we generalize it to.

Now that we have explored and investigated in depth the collaborative behavioral profiles,

both at an aggregate level as well as at the temporal level, extracted through our forward and

backward technique proposed in the Productive Engagement framework; in the upcoming

chapters, we will focus on how we can utilize this information to design our envisioned

adaptive goal-centric robot for real-time interventions.
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6 A Speech-based Productive Engage-
ment Metric for Real-time Human-
Robot Interaction in Collaborative
Educational Contexts

“Simplicity is a great virtue but it requires hard work to achieve it and education to appreciate

it. And to make matters worse: complexity sells better.”

— Edsger Wybe Dijkstra

Our motivation to move forward is as follows: to construct a simplistic measure that is both

sufficient to gauge the state of the learners as well as efficient in real time. In this Chapter, we

propose and validate a metric for the real-time analysis of the behaviour of learners, allowing

to assess whether they are engaged in meaningful learning behaviours. Specifically, building

on our proposed concept of Productive Engagement, that inherently links learning with

engagement, we hereby propose methods to quantify and compute it reliably in real-time. The

training and testing of the methods is done using the open access PE-HRI-temporal dataset

introduced in the previous Chapter.

This work corresponds to the following publications:

J. Nasir, B. Bruno, M. Chetouani, and P. Dillenbourg, "A Speech-based Productive Engagement

Metric for Real-time Human-Robot Interaction in Collaborative Educational Contexts.” under

revision in IEEE Transactions on Affective Computing (Nasir, Bruno, Chetouani, et al., 2022).

6.1 Introduction

The learning assessment, i.e., the process by which available information is used to inform the

behavior and/or interventions of the robot, is currently approached from multiple angles. Ac-

cording to a survey by Belpaeme et al., 2018, the type of information typically used by the robot

for the assessment is cognitive or affective or both. In some cases, with the aforementioned
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type of information in addition to other behavioral data, the robot assesses constructs such

as attention, motivation, etc. that, by the HRI and learning analytics literature, are broadly

classified under the umbrella of engagement or interchangeably referred to as engagement.

These constructs are then considered to be representative of learning.

Among the former group, i.e. cognitive, in Leyzberg et al., 2014, the robot uses the in-task

performance of students solving grid-based logic puzzles to build personalization models

allowing it to provide the most relevant lesson corresponding to their weakest skill. In a

comparison against a non-personalizing approach, the authors saw a one-sigma improvement

in the post-tests between the experimental and control group. Similarly, in Ramachandran

et al., 2017, a robot that looks at the students’ performance in mathematical concepts to

provide personalized, non-task related, breaks for cognitive rest, reveals benefits both in

terms of efficiency and accuracy in completing the problems. In-task performance is also

used in Ramachandran, Sebo, et al., 2019, where the robot maintains a belief about students’

mastery of the mathematical problems at hand as well as their engagement in the task using

an Assistive Tutor POMDP, which drives its decisions concerning whether and how to provide

help. Higher learning gains were found for students who interacted with such adaptive robot,

compared to those who interacted with a robot adopting a fixed help action strategy. While

these references agree on and highlight the benefits arising from taking in-task performance

into account in the robot’s real-time intervention strategy, this metric might not always be

available. Indeed, in-task performance as a learning assessment measure assumes that most (if

not all) actions taken by the learner during the learning activity can unequivocally be labelled

as either right or wrong, an assumption which does not necessarily hold true for constructive

and/or exploratory problem solving activities.

Further, in Leite et al., 2014, a social robot, in a chess playing long-term scenario with primary

school students, adapts its actions (expressive behaviors and speech utterances) according

to the affective state of the child. It does so based on both visual cues in addition to a cogni-

tive source of information that is the state of the game. The robot is evaluated on children’s

perception of social presence, social support and engagement. Then in the context of second

language learning in Gordon et al., 2016, a robot that personalizes its motivational strategies

based on its affective reinforcement learning algorithm that takes the child’s valence and

engagement as input signals, was found to be increasing the valence of the students signifi-

cantly more than those who interacted with a non-personalizing robot. Another long-term

study (Park et al., 2019) in story telling context found that an affective policy trained using

reinforcement learning approach successfully personalized to each child and led to a boost

in their learning outcomes and engagement. Szafir and Mutlu, 2012 show that a robot that

evaluates user attention, in a memory task, using EEG and tries to regain diminishing attention

levels improves student recall abilities by 43% over the baseline. Similarly, Bourguet et al., 2020

proposed an affect (using facial images) and behavior (using pose estimation) recognition

system to capture the dynamics of a classroom setting whereby the state of each student in the

classroom is used by a robot teacher to decide an appropriate action to choose. They found

that while such a robot leads to no significant improvement over the baseline conditions when
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it comes to understanding of the lectures speech content, it does lead to an increase in, what

they define as, engagement. Then, in Ramachandran, Huang, et al., 2019, the authors show

how motivation in learning, evaluated through a self-reported questionnaire, is linked with

observable sub-optimal help seeking behaviors in a mathematical problem and later demon-

strate how a tutoring robot uses this information to improve behavior and learning outcomes.

A lot more supervised engagement models, annotated by labels provided by human observers,

can be found in non-educational and/or non-HRI settings (Atamna & Clavel, 2020; Foster

et al., 2017; Ishii & Nakano, 2010; Ishii et al., 2011; Kim et al., 2016; Salam, Celiktutan, et al.,

2017) where the idea is to build them for the robot to automatically assess user engagement in

real-time.

As the afore-discussed literature suggests, measures of engagement could be the way to obtain

a real-time assessment of a learner’s status that is, at least to some extent, independent from

the learning activity at hand. However, as was pointed out at the start of this thesis, state-of-

the-art models of engagement in learning scenarios often look to increase engagement with

the agent as a way to mediate the learning outcomes.

In this Chapter, we investigate method(s) for computing Productive Engagement reliably and

online, allowing a robot to gauge in real-time the level of engagement that is conducive to

learning and adapt its behaviour accordingly. Please note that real-time in this work means

the inputs for audio and video are received every second, for log data every time an action is

performed, while the output, information that a robot can use, is calculated every ten seconds.

Concretely, the contribution of this Chapter is twofold: (1) we investigate how real-time

metrics allowing a robot to assess whether learners are engaged in meaningful learning

behaviours can be constructed, using the Productive Engagement framework as a reference;

(2) we implement several data-driven methodologies for the computation of such Productive

Engagement metrics, measuring and discussing their performance on our publicly available

dataset. Thus, this makes the Chapter predominantly a methodology one.

6.2 Revisiting Productive Engagement

Here, we would like to remind the reader about the gaps and challenges that motivated the

concept of Productive Engagement (PE) and then how did we tackle some of those challenges

and what is left to be tackled; thus, forming the focus of this Chapter.

1. While it is often assumed that engagement and learning, as previously discussed, have a

linear relationship, this is not proven.

2. Many automatic models of engagement rely on human annotators and often suffer from

low inter- and intra-rater agreement because of the subjective nature of this construct.

3. Open-ended learning environments typically envision failure as a means towards learn-

ing and do not allow for the definition of straightforward in-task performance metrics.
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4. Learning happens in real-time and cannot wait just because the sensors or the robot

need more time. As a consequence, reliable and fast real-time assessment of the stu-

dents’ learning is crucial.

In our previous Chapters we define engagement with the learning process, i.e. Productive En-

gagement, as the engagement that should be maximized in order to maximize learning (Nasir,

Bruno, Chetouani, et al., 2021). Endowing a robot with the ability to track such an engage-

ment measure would also inform it about when not to intervene and let the children be, i.e.,

ensuring that all of its interventions are effective.

With respect to the different approaches for engagement definition outlined in Chapter 1

section 1.1, since learning is a process (Reimann, 2009), we consider productive engagement

as a process and consisting of both a social and a task element (Nasir, Bruno, Chetouani,

et al., 2021). More specifically, we define the social element of productive engagement as the

evolution of the quality and quantity of the verbal and non-verbal social interactions with other

entities (learners and robots) whereas its task element is defined as the evolution of the quality

and quantity of the interaction with the task.

Concretely, building on our multi-modal dataset (Nasir, Norman, Bruno, Chetouani, et al.,

2021), in Chapter 3, we validated, the existence of a hidden link between students’ behaviours

and their learning; hence, moving away from performance driven metrics catering for (3).

Simply put, students closer to understanding indeed behaved differently from those who did

not end up learning. More specifically, targeting challenge (1) highlighted above, in Chapter 4,

we identify that out of the three distinct sets of behaviours displayed by the students during

the activity, two sets are linked with higher learning, i.e., are displayed by those students who

are productively engaged with the activity (denoted as Type 1 gainers and Type 2 gainers), while

the latter set is displayed by the non-productively engaged teams, denoted as the non-gainers.

High speech activity, high speech overlap and fewer longer pauses are the behavioral charac-

teristics that distinguish both types of gainers from the non-gainers. Conversely, the difference

between the two types of gainers seem to relate to the interplay between their problem solving

strategies and emotional states, with one type of gainers exhibiting more global patterns

of exploration-exploitation and expressing more frustration than the other. Based on these

characteristics, we termed the two types of gainers and non-gainers as Expressive Explorers,

Calm Tinkerers, and Silent Wanderers, respectively.

Going back to the the analysis method of automatic assessment of engagement described in

section 3.2.2, we use data-driven methods to surface the labels automatically which can either

be used to build models like in (2) or directly be used as an assessment metric depending on

the constraints of the setup; hence, reducing to a metric that is generated based on certain cues

found conducing to the engagement we require the robot to seek. Keeping the aforementioned

methods of automatic assessment of engagement as well as our definition for productive

engagement, quality of interactions would then refer to those behaviors that discriminate

learning whereas quantity of interactions would refer to where on the continuum do those
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behaviors lie, i.e., should that behavior be more or less.

This is where we start off by breaking down our research question, in the next section, to

navigate better through the problem at hand that is reliable real-time assessment of productive

engagement catering for (4).

6.3 Problem Statement

As defined above, Productive Engagement can be considered as behavioral patterns conducive

to learning. In the following, we will focus on each of the terms, also referred to as factors of

our problem statement, in this definition individually to clarify the boundaries of the problem

at hand, i.e.,:

• ways of representing learning

• ways of mapping behavioral patterns to learning

6.3.1 Treatment of Learning

Students’ learning during the activity can be represented in two different ways:

• as an undivided process with a single label. Intuitively, this approach assumes that

learning occurs in unforeseeable modes throughout the activity and thus no discretiza-

tion is meaningful. Systems for the analysis of learning should thus consider the whole

interaction as a single data point. This also implies that such systems would then have

one output label for the whole interaction.

• as a collection of individually labelled time-stamped windows. The intuition behind

this approach is that learning “builds up over time” during the activity, and thus dis-

cretization is meaningful. Under this light, each time-stamped window on its own can

provide meaningful information about the amount of progress in learning made within

that time. Systems for the analysis of learning thus view a single interaction as composed

of multiple, sequential data points. This also implies that each data point would then

have an individual output label.

In the latter case, there are multiple ways to consider the link between one window and the next,

making it more or less strong. Non-incremental approaches envision the data corresponding

to a window to only refer to what happened within that window, with the timestamp being the

only feature retaining information about the ordering of windows. Incremental approaches,

conversely, envision the data corresponding to a window to refer to everything that happened

until that window, with all features thus retaining information about the ordering of windows.
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Figure 6.1: Representation of evolution of learning: in the left hand side figures, it is assumed
that learning evolves linearly while in the right hand figures, the assumption is that learning
evolves non-linearly where t, L, g, and ng represent time, learning, gainers and non-gainers.
The thicker/green lines correspond to the gainers.
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Figure 6.2: Representation of a direct mapping between behavioral patterns and learning.
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Figure 6.3: Representation of an indirect mapping between behavioral patterns and learning.
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While the view of learning as a continuous, indivisible process is closer to the perspective of

learning science (Kapur, 2011; Reimann, 2009), interventions need to occur before the end

of the activity to be meaningful. Hence, the second approach is closer to the perspective of

practitioners and designers of systems, such as social robots, aiming to have a direct impact on

the learning process while it occurs. The use of incremental approaches might be an effective

compromise between the two perspectives.

When we talk about the ways in which behavioral patterns can be conducive to learning, we

can assume learning to evolve either linearly or non-linearly, as represented in Figure 6.1.

To elaborate, linear modelling would entail that we assume the learning process to be linear;

and hence, use the information available at the end of the process, i.e., if the learners ended

up learning or not, to generate a label for the full sequence of the team (when looked as

a whole) as well as for each window in that sequence. With such labels, classifiers can tell

if a team would end up as gainers or not. However, even those who are predicted to be

gainers may oscillate between productive and unproductive phases, i.e., here the assumption

is that learning evolves non-linearly as represented in the right-hand side graphs in Figure 6.1;

hence, extracting information at the end of the process is not enough. For this, we require a

continuous quantity for each team that is affected by the information available in the current

point in time.

For the former case, we make use of our previous results in Chapter 4 where the label gener-

ating approach returns one label for each team. The label indicates if the team will end up

being productively engaged or not. On the other hand, to generate a continuous quantity, we

utilize those features that we found to be discriminatory between gainers and non-gainers

(see Chapter 4 for more details) to generate a value ∈ [0,1] that tries to quantify productive

engagement. This will be elaborated in the upcoming sections.

6.3.2 Treatment of Behavioral Patterns

As shown in Figures 6.2 and 6.3, there are also two ways to envision the mapping between

behavioural patterns and learning:

• the direct mapping approach, as shown in Figure 6.2, envisions differences in behaviors

to directly relate to differences in learning. Under this assumption, the analysis of differ-

ences in learning can be done in the space of the behavioural data itself via clustering

methods such as K-nearest neighbours (KNNs) or in a transformed space but such that

the transformation is linear, for example, with dimensionality reduction methods such

as PCA followed by clustering methods.

• the indirect mapping approach, as shown in Figure 6.3, envisions differences in behav-

iors to indirectly relate to differences in learning, thus necessarily requiring a transfor-

mation from the space of the behavioural patterns to the space of learning where we

115



Chapter 6. A Speech-based Productive Engagement Metric for Real-time Human-Robot
Interaction in Collaborative Educational Contexts

Table 6.1: Characterization of Productive Engagement

Characterization of PE Description Outcome

PE Labels By generating one label for each sequence or
all windows in that sequence as explained in
Chapter 4

A team is predicted to end up as a produc-
tively or non-productively engaged team.

PE Score By generating a different score for each win-
dow in a sequence

A team is assessed/predicted to be produc-
tively or non-productively engaged at this
moment in time.

Table 6.2: Factors of our problem statement and their associated Characteristics

Factors Values they can as-
sume

Assumption(s) Methods How is PE character-
ized?

Mapping between
behaviors and
Learning

Direct Raw input data itself can
surface meaningful repre-
sentations

Clustering with
or without dimen-
sionality reduction
techniques like KNN,
PCA, respectively

Using either direct rep-
resentations of behav-
ioral clusters or PE La-
bels

Indirect Mapping to a new space
can introduce generaliz-
ability

Classification tech-
niques like SVM, RF,
LSTM

Learning Undivided process
with a single label

Learning occurs in unpre-
dictable times and modes

Systems that analyze
sequential data (clas-
sifiers)

PE Labels

Collection of indi-
vidually labelled
time-stamped win-
dows

Each smaller window
holds information about
the process of learning

Systems that analyze
discrete data (clas-
sifiers, regressors,
dynamic assessment,
clustering)

PE labels/PE Score

Evolution of Learn-
ing

Linear Learning process is linear Classifiers PE Labels

Non-linear Learning process evolves
non-linearly

Regressors, dynamic
assessment

PE Score

have little to no idea about how the transformation looks like and the transformation is

non-linear. Classification methods such as Support Vector Machine (SVM), Random

Forests (RF) and Long Short-Term Memory (LSTM) Neural Networks inherently perform

such transformation.

Tying everything altogether in this section, we first recap the ways of characterizing Productive

Engagement (PE) in Table 6.1. Then, all the factors in the problem statement, values that they

can take, the assumptions those values carry, methods to formalize the values, and how PE is

being characterized for each of them is summarized in Table 6.2. Briefly, the afore-discussed

section provides the motivation for selecting the various methods for our analysis.
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Table 6.3: Log features from our PE-HRI-Temporal dataset

Feature Name Description

Log Features

T_add/(_inc) The number of times a team added an edge on the map in that window/(until that window)

T_remove/(_inc) The number of times a team removed an edge from the map in that window/(until that
window)

T_ratio_add_rem/(_inc) The ratio of addition of edges over deletion of edges by a team in that window/(until that
window)

T_action/(_inc) The total number of actions taken by a team (add, delete, submit, presses on the screen)
in that window/(until that window)

Redundant_exist/(_inc) The number of times the team had redundant edges in their map in that window/(until
that window)

T_hist/(_inc) The number of times a team opened the sub-window with history of their previous solu-
tions in that window/(until that window)

T1_T1_add/(_inc) The number of times either of the two members in the team followed the pattern consecu-
tively: I delete an edge, I add it back in that window/(until that window)

T1_T1_rem/(_inc) The number of times either of the two members in the team followed the pattern consecu-
tively: I add an edge, I then delete it in that window/(until that window)

T1_T2_add/(_inc) The number of times the members of the team followed the pattern consecutively: I delete
an edge, you add it back in that window/(until that window)

T1_T2_rem/(_inc) The number of times the members of the team followed the pattern consecutively: I add
an edge, you then delete it in that window/(until that window)

T_help/(_inc) The number of times a team opened the instructions manual in that window/(until that
window)
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Table 6.4: Video features from our PE-HRI-Temporal dataset

Feature Name Description

Video Features: Affective states and Gaze

Positive_Valence/(_inc) The average value of positive valence for the team in that window/(until that window)

Negative_Valence/(_inc) The average value of negative valence for the team in that window/(until that window)

Difference_in_Valence/(_inc) The difference of the average value of positive and negative valence for the team in that
window/(until that window)

Arousal/(_inc) The average value of arousal for the team in that window/(until that window)

Gaze_at_Partner/(_inc) The average of the the two team member’s gaze when looking at their partner in that
window/(until that window). Each individual member’s gaze is calculated as a percentage
of time in that window/(until that window).

Gaze_at_Robot/(_inc) The average of the the two team member’s gaze when looking at the robot in that win-
dow/(until that window). Each individual member’s gaze is calculated as a percentage of
time in that window/(until that window).

Gaze_other/(_inc) The average of the the two team member’s gaze when looking in the direction opposite to
the robot in that window/(until that window). Each individual member’s gaze is calculated
as a percentage of time in that window/(until that window).

Gaze_at_Screen_Left/(_inc) The average of the the two team member’s gaze when looking at the left side of the screen
in that window/(until that window). Each individual member’s gaze is calculated as a
percentage of time in that window/(until that window).

Gaze_at_Screen_Right/(_inc) The average of the the two team member’s gaze when looking at the right side of the screen
in that window/(until that window). Each individual member’s gaze is calculated as a
percentage of time in that window/(until that window).

Table 6.5: Audio features from our PE-HRI-Temporal dataset

Feature Name Description

Audio Features: Speech

Speech_Activity/(_inc) The average of the two team member’s speech activity in that window/(until that window).
Each individual member’s speech activity is calculated as a percentage of time that they
are speaking in that window/(until that window).

Silence/(_inc) The average of the two team member’s silence in that window/(until that window). Each
individual member’s silence is calculated as a percentage of time in that window/(until
that window).

Short_Pauses/(_inc) The average of the two team member’s short pauses over their speech activity in that
window/(until that window). Each individual member’s short pause refers to a brief
pause of 0.15 seconds and is calculated as a percentage of time in that window/(until that
window).

Long_Pauses/(_inc) The average of the two team members long pauses over their speech activity in that
window/(until that window). Each individual member’s long pause refers to a pause of 1.5
seconds and is calculated as a percentage of time in that window/(until that window).

Speech_Overlap/(_inc) The average percentage of time the speech of the team members overlaps in that win-
dow/(until that window).

Overlap_to_Speech_Ratio/(_inc) The ratio of the speech overlap over the speech activity of the team in that window/(until
that window).
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6.4 Methods

6.4.1 Dataset

For this paper, we rely on our multi-modal temporal dataset (Nasir, Bruno, & Dillenbourg,

2021b) that is described in Chapter 5. Linking with Section 6.3.1, the features in our dataset

are represented in two ways:

• non-incremental: A non-incremental type would mean the value of a feature in that

particular time window while

• incremental: an incremental type would mean the value of a feature until that particular

time window. The incremental type is indicated by an "_inc" at the end of the feature

name.

Without going into the details of the dataset already provided in the last Chapter, here, we only

define the features both in their incremental and non-incremental version in Tables 6.3, 6.4,

6.5 as that was not done previously.

6.4.2 Analysis

Clustering

With the clustering approach we treat learning as a collection of time-stamped windows

using non-incremental features and assume a direct mapping between behavioural data

and learning. The reasoning behind not treating learning as an undivided process (sequence

as a data point) here is because with 26 features per team when the total data points are only

32 would lead to a very complex search space for which the data would be insufficient. We

follow the following steps for clustering analysis on the data where each window is considered

as a data point:

• We start off with Principal Component Analysis (PCA) on the normalized features that

returns 4 principle components (PCs) which account for approximately 75 percent

variance within features.

• Then, on the 4 PCs, we apply k-mean clustering where the number of clusters k is given

by the inertia score. Based on this menthod, k=3 is chosen.

• The 3 clusters are shown in Figure 6.7, as a 3D figure with the first 3 PC’s as the 3 axis,

where we perform statistical tests to identify the significantly distinct behaviors between

the clusters.
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Classification

Depending on the classification model employed, classification can be considered both as

direct mapping or indirect mapping as first described in Section 6.3. Furthermore, for classifi-

cation, we can treat learning either as a continuous process or as sequence of time-stamped

windows. As for the evolution of learning, we start off with assuming that it evolves linearly;

hence, one label is returned for each team indicating if the team is a gainer or a productively

engaged team, i.e., those who end up learning, or a non-gainer team (non-productively en-

gaged) that is those who do not end up learning (Chapter 4). We use the label both for the full

sequence and for each window in that sequence.

• Regardless whether the entire sequence or a window is one data point, we feed them as

inputs to several classifiers.

• For each classifier, we tune the parameters by a grid search. With the best parameters re-

turned, we perform a k-fold cross validation (k= 5 folds) as well as generate the accuracy

and F1-score for the test set.

• In the latter case when each window is a data point, we further differentiate while

dividing the training and testing data: windows from all team are randomly mixed

between training and testing data or windows from some teams are not at all present in

the training data (leave some out strategy).

• Motivated by Section 6.3, we then test with commonly employed classifiers such as State

Vector Machines (SVM), Random Forests (RF), K-nearest Neighbors (KNNs), as well as

LSTMs. When using sequences as data points, we utilize the library tslearn (Tavenard

et al., 2020) for SVM and KNN and the library keras (Chollet et al., 2015) for LSTMs. In

the other case, we use classifiers from the sklearn library (Pedregosa et al., 2011). We

tested with various forms of LSTMs such as a vanilla LSTM, stacked LSTM, bi-directional

LSTM, and multi-step LSTM. For conciseness reasons, we report the results for the best

LSTM model only.

Dynamic Assessment

Going back to our framing of the problem, when learning is assumed to evolve non-linearly,

we highlighted the need of having a more dynamic assessment and for that, we proposed

a productive engagement score. More precisely, we generate a linear combination of those

features that are discriminatory between non-gainers and both types of gainers to give us

a productive engagement score PE_Score. The PE_Score in itself can either 1) serve as the

continuous quantity a regressor predicts or better even 2) it can stand on its own because to

drive an intervention in an educational scenario, dynamic assessment by itself can be enough;

we do not need the prediction necessarily. For generating this Productive Engagement (PE)

score:
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• We start off with identifying the features that significantly distinguish both types of

gainers from non-gainers. Tying it to our definition of PE in Section 6.2, this links with

the quality of interaction.

• We then generate an equation which is a linear combination of the identified features

(S = Speech, SO = Overlap_to_Speech_Ratio, LP = Long_Pauses). Interestingly, note

that while our analysis is multi-modal, the features that end up being significantly

discriminating between both gainer types and non-gainers are speech based. Further,

the equation is scaled based on variance analysis done for the two groups: gainer teams

and non-gainer teams. This variance analysis gives us the contribution of each feature

to the variance in the data.

The PE score is then given as follows:

PE_Scor e = S ∗ α(SO)+β(1−LP )

α+β
(6.1)

where β =α/2 as LP contributes half as much as SO to the variance in the data. Furthermore,

the signs with SO and LP in this equation are based on the fact that gainer teams are linked to

higher amount of SO and lower amount of LP and vice versa. This scaling as well as assigning

signs links back to the quantity of interaction. As mentioned previously, the PE_Score can

take a value ∈ [0,1]. We generate this score for each time window within a sequence; hence,

giving a sequence of output values for each team. Figures 6.4, 6.5, and 6.6, in which we analyse

our equation, further illustrate how our proposed equation for the PE_Score behaves as a

function of its 3 contributing factors, respectively. As observed in Figure 6.4, PE_Score is most

sensitive to the amount of speech activity which is a desirable and an expected behavior

since the amount of speech is the basis of all the other features too. This is illustrated by the

lowest values of the PE_Score when the controlling variable is at 0.5 (in the middle sub-figure

of Figure 6.4) as we traverse through the space with the values of LP and SO ranging from 0

to 1. Furthermore, Figures 6.5, and 6.6 highlight that the score is positively affected by the

increasing amount of overlaps in the speech of the two team members and negatively affected

by the long pauses exhibited in the speech, respectively. Note that the effect of long pauses is

lesser than the effect overlaps in the speech have on the PE_Score, as desired. Specifically, this

can be observed clearly when SO is 0 in Figure 6.5 and LP is 1 in Figure 6.6.

Furthermore, we perform three tests to validate if the score can be considered a legitimate form

of evaluating the productively engaged state of the teams. For the first test, we do a Kruskal

Wallis analysis between the averages of the PE_Scores as well as all the points in a PE_Score

sequence for all the gainer teams verses the non-gainer teams. Secondly, we generate a

Dynamic Time Warping (DTW) distance matrix where the DTW distance is calculated between

the PE_Score sequence of each team with every other team. This DTW distance matrix is then

given as an input to hierarchical agglomerative clustering to see if the gainer and non-gainer

121



Chapter 6. A Speech-based Productive Engagement Metric for Real-time Human-Robot
Interaction in Collaborative Educational Contexts

0 0.2 0.4 0.6 0.8 1

SO

0

0.2

0.4

0.6

0.8

1
L
P

S=0

0 0.2 0.4 0.6 0.8 1

SO

0

0.2

0.4

0.6

0.8

1

L
P

S=0.5

0
.0

5
0
.1

0
.1

5

0
.1

5

0
.2

0
.2

0
.2

5

0
.2

5

0
.3

0
.3

0
.3

5

0
.3

5 0
.4

0
.4

5

0 0.2 0.4 0.6 0.8 1

SO

0

0.2

0.4

0.6

0.8

1

L
P

S=1

0
.1

0
.2

0
.3

0
.3

0
.4

0
.4

0
.5

0
.5

0
.6

0
.6

0
.7

0
.7

0
.8

0
.9

PE score(SO,LP) for different S values

Figure 6.4: Behavior of the proposed PE_Score when keeping speech level at 0, 0.5 and 1,
respectively
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Figure 6.5: Behavior of the proposed PE_Score when keeping the Overlap_to_Speech_Ratio
level at 0, 0.5 and 1, respectively
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Figure 6.6: Behavior of the proposed PE_Score when keeping the Long_Pauses level at 0, 0.5
and 1, respectively

122



6.5 Results

teams are clustered separately indicating that the PE_Score sequences of gainer teams are

different than those of the non-gainer teams. As a third test, we do a Kruskal Wallis test

between the DTW distances of every gainer team 1) with every non-gainer team and 2) with

every gainer team, as well as between the DTW distances of every non-gainer team 1) with

every gainer team and 2) with every non-gainer team.

Lastly, notice that while the PE labels incorporate information from all modalities (audio,

video and logs), the PE score is reduced to one modality (speech), as it aims to incorporate

only necessary and sufficient information to discriminate the desired engagement making it

computationally lighter in real-time.

6.5 Results

6.5.1 Clustering

The clustering provided 3 clusters as shown in Figure 6.7. Upon inspection, utilizing Kruskal-

Wallis test to identify the significantly different behaviors in each pair of clusters, we find

that cluster C2 is significantly different from the other two in terms of the amount of speech

(Speech_Activity) and speech overlap (Speech_Overlap), with the mean values for both features

being significantly lower in this cluster than in the other two C _0 and C _1.

• For C _2: Speech_Activity = 0.302, Speech_Overlap = 0.132

• For C _0: Speech_Activity = 0.583, Speech_Overlap = 0.443

• For C _1: Speech_Activity = 0.479, Speech_Overlap = 0.325

C2 is also associated with lower average normalized time (For C _2: 0.357) relative to the other

two clusters (For C _0: 0.577 and for C _1: 0.523) indicating that most of the data points in this

cluster occur at an earlier point in time in the interaction. Lastly, most data points in this

cluster are contributed by the non-gainer teams. Please note that the values for all features are

normalized and hence lie within the range [0,1] as well as the p-values for all the tests are less

than 0.01.

6.5.2 Classification Models

Sequence as a data point

In this case, we have n = 32. The accuracy and F1-scores for both the validation and test sets

can be seen in Table 6.6. We observe that SVM and KNN perform similarly on the test set, with

an accuracy of 0.75 and an F1-score of 0.69. While the results appear to be good, upon closer

inspection it becomes evident that the two gainer classes (Expressive Explorers and Calm

Tinkerers, which constitute about 80 percent of the total teams) are identified correctly, while
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Figure 6.7: k-means clustering on the principle components generated from the behavioural
windows.

Table 6.6: Classification Results I for when we consider each sequence as a data point. Please
note that there is one multi-variate sequence per team

n=32 sequences

Classifier k-fold cross-validation test-set

Accuracy F1-score Accuracy F1-score

SVM 0.75 0.73 0.75 0.69
KNN 0.83 0.80 0.75 0.69

Multi-step LSTM 0.54 0.36 0.57 0.51

the non-gainer class, Silent Wanderers, is almost always misclassified. It is also interesting to

notice that, contrary to expectation, the results with LSTM variants on sequence data is never

above 0.60 both in terms of accuracy as well as F1-score. This may be due to our dataset being

too small for a complex model such as LSTMs.

Each time window in a sequence as a data point

When treating each window from the 32 sequences as a data point, we end up with n = 4676.

Table 6.7 and Table 6.8 show results for both the validation and test sets when using non-

incremental and incremental type features, respectively.

As shown in Table 6.7, the classification results with non-incremental features seem to be

marginally better when the data is randomly mixed compared to the leave some out situation,

albeit being generally poor. This suggests that when the classifier has seen some windows

from a team, it is able to recognize and thus better classify new incoming windows from the
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Table 6.7: Classification Results II for when we consider each window (non-incremental) in a
sequence as a data point

n=4676 windows

Classifier k-fold cross-validation test-set

Accuracy F1-score Accuracy F1-score

Randomly mixed

SVM 0.60 0.60 0.59 0.59
KNN 0.66 0.64 0.65 0.65

RF 0.60 0.58 0.61 0.61

Leave some out

SVM 0.59 0.59 0.60 0.60
KNN 0.67 0.66 0.59 0.59

RF 0.62 0.61 0.55 0.55

Table 6.8: Classification Results III for when we consider each window (incremental) in a
sequence as a data point

n=4676 windows

Classifier k-fold cross-validation test-set

Accuracy F1-score Accuracy F1-score

Randomly mixed

SVM 0.98 0.98 0.98 0.98
KNN 1 1 1 1

RF 0.99 0.99 1 1

Leave some out

SVM 0.98 0.98 0.74 0.75
KNN 1 1 0.78 0.78

RF 0.99 1 0.60 0.59
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Figure 6.8: Raw PE scores for two random gainer (top) and non-gainer teams (bottom)

same team. With incremental features, the results improve drastically (see Table 6.8) for the

randomly mixed case. Upon inspection, it is realized that this is due to the incremental nature

of the features. One can attribute this to the closeness between values in the windows as the

features are incremental as well as the fact that the training set has windows from all teams.

However, in the leave some out case, this property cannot be taken advantage of as the teams

in the test set do not appear in the training set nor in the validation test. In this case, the

performance is still higher than when using non-incremental data.

6.5.3 PE score

In Figure 6.8, we show the PE_Score of two random teams from the gainers and the non-gainers

group. In general going over all 32 teams, we see a positive slope indicating that the PE_Score

increases as the interaction proceeds. This is suggestive of more speech overlap among the

team members as well as lesser number of long pauses, as the interaction unfolds. Another

observation is that generally the slope is more steep for the non-gainer teams. This suggests

that with time, the non-gainer teams exhibited a more contrasting behavior with regards to

their speech behavior compared to how they were at the beginning of the interaction.

In addition to these qualitative observations, as mentioned in Section 6.4.2, we perform 3

validation tests of the PE_Score.
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Table 6.9: Validation test 1: Kruskal Wallis tests for the averages (test 1a) as well as for all the
points (test 1b) in PE score sequences of the gainers (G) and non-gainers (NG)

test 1a

Group mean standard deviation n

G 0.40 0.09 26
NG 0.23 0.03 6

p-value= 0.000353

test 1b

Group mean standard deviation n

G 0.40 0.18 3741
NG 0.23 0.15 935

p-value= 4.823950e−140

Validation test 1

For the first test, we do a Kruskal Wallis analysis between the averages of the PE_Scores for

the gainer (G) and non-gainer (NG) teams (G vs NG) as well as all the points in a PE_Score

sequence for the gainer teams versus the non-gainer teams (G vs NG), denoted as test 1a and

test 1b, respectively, in Table. 6.9. In both cases, we get statistically significant results.

Validation test 2

As our second validation test, we perform a hierarchical agglomerative clustering technique

on a 32 x 32 DTW distance matrix where the DTW distance is calculated between the PE_Score

sequence of each team with every other team. As shown in Figure 6.9, we observe one of the

team being clustered separately and all others being clustered into two clusters when the

threshold, minimum distance required to be a separate cluster, is set between the values of 6

and 8 on the y-axis. On closer inspection, we observe that all the teams from the non-gainer

group are present in the same cluster (smaller cluster on the left). One of the gainer teams

is clustered together with the non-gainer teams, which indicates the need to be careful of

outliers.

Validation test 3

Lastly, we again employ Kruskal Wallis, with test 3a being done between the DTW distances of

every gainer team 1) with ever non-gainer team (NG) and 2) with every gainer team (G) while

test 3b is done between the DTW distances of every non-gainer team 1) with every gainer team

(G) and 2) with every non-gainer team (NG). The results are shown in Table. 6.10, and similar

to test 1, we find statistically significant results in both.
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Figure 6.9: Two clusters returned by agglomerative clustering where the numbers on the x-axis
represent the team index. The smaller cluster on the left consists all of the non-gainer teams

Table 6.10: Validation test 3: Kruskal Wallis tests between the DTW distances of gainers (G)
with the two groups (test 3a) as well as the non-gainers (NG) with the two groups (test 3b)

test 3a

Group mean standard deviation n

NG 1.51 0.46 676
G 1.69 0.54 156

p-value= 0.000134

test 3b

Group mean standard deviation n

G 1.69 0.54 156
NG 1.01 0.47 36

p-value= 5.897200e−15
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6.6 Discussion

Based on the results of the 3 validation tests, we can conclude that 1) the PE_Scores of the gainer

and non-gainer teams are significantly different, 2) clustering based on the DTW distance

between the PE_Score sequences of the teams divides non-gainers and gainers in two separate

groups indicating that indeed the way the PE_Score of the gainers evolves is different from

that of non-gainers, and 3) the DTW distance between each gainer team with a non-gainer

team PE_Score is significantly different than the DTW distance between each gainer team with

another gainer team.

6.6 Discussion

The clustering analysis provides us meaningful representations of behaviors and how these

representations link with learning. However, such direct mapping still comes with limitations

when aiming to assess the productively engaged state of the learners, such as the need to set

an upper bound on the number of clusters. The insights provided by these methods regarding

the learning process, however, can still be leveraged when building an intervention strategy.

Classification methods, falling under direct mapping as well as indirect mapping, can be used

in real-time to assess learners. Classifiers that take a full sequence as an input, by their nature,

may not be very effective when trying to predict early on in the interaction if the team would

end up as a productively engaged team or not, since the model is trained on long sequences

encapsulating the entire interaction. However, this limitation can be overcome by treating

learning as a sequence of time-stamped windows as shown with both the incremental and non-

incremental features when assuming that learning evolves linearly. Indeed, such methods can

go as far as predicting where the team will end up (gainer or non-gainer) given their current

behavior. When assuming that learning evolves non-linearly, we can use a regressor instead

in the same way to predict a continuous quantity, for example, a Productive Engagement

score. This can enable to better predict the current state of the learners; however, to drive

the intervention, we do not necessarily need this prediction, but in fact just the dynamic

assessment itself,i.e., generating the score directly, can be sufficient. This is to say that we get

the same outcomes but without having to put up with the computational cost of regression

in real-time as that cost would still be more compared to a linear equation that generates

the score directly. Hence, we did not train regressors. The validation analyses conducted on

the PE_Score allow us to conclude that it can serve as an efficient, fast and lightweight way

of tracking the teams’ “Productive Engagement” state, that can serve as the first indicator

of when and whether an intervention is needed as it has the ability to discriminate between

moments that might be productively engaging versus those that are not.

6.7 Conclusion

In this work, we first investigate how real-time metrics allowing a robot to assess whether

learners are engaged in meaningful learning behaviors can be constructed, using the Pro-

129



Chapter 6. A Speech-based Productive Engagement Metric for Real-time Human-Robot
Interaction in Collaborative Educational Contexts

ductive Engagement framework as a reference. Secondly, we implement several data-driven

methodologies for the computation of such Productive Engagement metrics, among which is

the Productive Engagement score. These methods are then evaluated on our publicly available

dataset.

Our key findings and take-away conclusions can be summarised as follows. Firstly, the quantity

and quality of speech is sufficient for assessing Productive Engagement, implying that we could

use simpler uni-modal features instead of multi-modal features with great computational

benefits for real-time systems. Secondly, teams change over the course of their interaction,

i.e., they alternate between moments of high productive engagement with moments of low

(or lower) productive engagement. A system that is to provide effective interventions is more

concerned with when the team is not productively engaged. As highlighted in our results

section, such dynamics are surfaced in the PE score, unlike methods relying on the PE labels

where the prediction is about what the team may end up being instead of what they are in the

moment. At the same time, the PE labels can indicate which of the three identified groups a

team may belong to, while the PE score does not provide that information. Lastly, following

the previous point and considering the requirements of an intervention system, one can build

systems that only assesses the PE score, or only predicts the PE label, or does both. This choice

would then affect the computational cost of the system accordingly.

We emphasize here that our focus when developing the Productive Engagement score is not

to give a complete representation of what learning looks like in our multi-modal open-ended

collaborative activity context, but rather provide with what is necessary or sufficient to allow

the robot to guide its actions, i.e., when the robot should intervene. With this information

at hand, the next question is then what suggestions should the robot provide to the learners

when it identifies their PE score to be low. Eventually, the idea is for a social robot to use

this information with an action selection algorithm and then test the effectiveness of its

interventions in a user study, that we present in the next chapter.
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7 Designing and Evaluating Au-
tonomous Social Robots using the
Productive Engagement Framework

In this chapter, we focus on the design of the Hermione and Harry robots that would incor-

porate and leverage different levels of information acquired via the Productive Engagement

framework. With the design of the robots, we try to answer our research question 4 (see

Chapter 1) that is how can a robot make use of the representations of Productive Engagement

learned so far to induce the relevant behaviors in the learner? We also present an HRI user

study, that evaluates the two robots, conducted across multiple schools in Switzerland with

136 students aged 9-14 years old. More precisely, in this Chapter, we will make use of the

outcomes of Chapters 4, and 6: behavioral profiles, and the Productive Engagement score.

7.1 Theoretical Description of the Robots

In Chapter 1, the three robot versions were introduced (Figure 7.1 shown here again) while

then in Chapter 2, we went into the details of the role and capabilities of the Ron version. To

reiterate briefly, Ron helps to automate the entire interaction, guides the learners between the

various phases of the activity, and provides basic motivational feedback as well as the scores of

submitted solutions, and it is least aware of its surroundings. Harry has all the capabilities that

Ron has and additionally it has an idea of what behaviors could be useful for learning in the

context of this activity. Hence, it suggests randomly one among those behaviors at fixed times.

Hermione too has all the capabilities of Ron and additionally it not only has the knowledge

of what behaviors could be useful for learning, like Harry, but it also has an idea of when to

suggest a particular behavior and why to suggest that specific behavior.

It must be noted that even with these capabilities, both of the two new robot versions are

unaware of the solution to the learning task at hand. Therefore, one cannot call them as

informed peers as typically done in HRI. If we were to have two different axis, as shown in

Figure 7.2, one on domain knowledge and the other on knowledge on student behaviors that
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now 
we should look at 
our past solutions 

more!

Figure 7.1: Theoretical description of the three robot versions

are conducive to learning, generally the most common robots in HRI happen to fall on the left

side of this 2d space, or on the vertical axis, such as a novice robot, an informed peer, a tutor, etc.

In our case, we envision robots leaning further on the behavioral knowledge axis, i.e., having an

understanding of student behaviors that are conducive to learning; thus classifying the robots

as skilled ignorant peers. This means they have the needed skills, i.e., an understanding of

what behaviors could help us to do better in such a computational thinking and collaborative

task, but are as aloof and novice as the students to the solution of the underlying learning

problem at hand. In that regard, we show where the three of the robots designed in this thesis

are placed on the horizontal axis. We must note that social robots that perceive and try to

influence the affective states of the children to provide social support based on the assumption

that being in a certain affective state will help improve learning, for example (Gordon et al.,

2016; Leite et al., 2014), would also fall on this horizontal axis and may or may not have a

y-component depending on the domain knowledge they possess.

The difference between the two robots Harry and Hermione is mainly motivated by the argu-

ment that the timing of the intervention is just as important as the content of the intervention.

While the content of the intervention is shaped by the robot having an understanding of

what learner behaviors might help in better understanding the learning concepts, the tim-

ing of providing that suggestion is shaped by the robot’s ability to access the absence of the

desired behaviors at the right time and fast (as highlighted in our challenge number four

introduced in Chapter 1) and then respond accordingly. This is represented by the when

aspect of Hermione. In order to experimentally evaluate this aspect, Harry then serves as a

hard baseline for Hermione as it only focuses on the content.
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Figure 7.2: The placement of our robots Ron, Harry and Hermione on the space of domain
knowledge and behavior knowledge

7.2 Designing Harry and Hermione

In this section, we first describe smaller components of the full architecture that enables

the intended interaction for both Harry and Hermione and then towards the end we bring it

altogether. Briefly, in section 7.2.1, we describe the pool of robot behaviors that will be used by

both Harry and Hermione followed by the generation of the PE score in section 7.2.2 as well as

comparison of learner profiles in real-time in section 7.2.3 where the outcomes of both of these

methods will be employed by Hermione. Next, we outline the robot control architecture for

both of the robots in section 7.2.4 that also includes the action selection techniques for each

of the robots. Please note that in this Chapter, by training data we mean the data generated in

the Ron study (see Chapter 2 and the associated datasets (Nasir, Bruno, & Dillenbourg, 2021a;

Nasir et al., 2020a)) which we have used for validating the concept of Productive Engagement,

for generating behavioral profiles, as well as for designing and generating the PE score in the

previous chapters.

7.2.1 Designing Pool of Robot Behaviors

Each robot behavior, that serves as an intervention/suggestion, is comprised of verbal and non-

verbal components where the non-verbal component consist of gestures and facial expressions

(some of them are shown in Figure 7.3). The content of these interventions is designed in a

way as to induce those behaviors in the team that have been found to be conducive to learning

in this activity (see Chapter 4 for the details of the behaviors). In this regard, the interventions
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Figure 7.3: Facial expressions of QTrobot in horizontal order from top left corner: neutral,
smiling, happy, sad, confused, surprised, bored/yawning, puffing cheeks/being cute, and
winking.
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can be categorized into the following three types where we list some examples for each type in

Table 7.1:

1. Exploration Inducing: these suggestions by the robot are explicitly designed to induce

the behavior of Edge Addition in the learners.

2. Reflection Inducing: these suggestions are explicitly designed to induce the behaviors

of Edge Deletion, History, A_A_add, A_A_delete, A_B_add, and A_B_delete that we believe

are accompanied with some form of reflection (see Chapter 4).

3. Communication Inducing: these suggestions are explicitly designed to induce Speech

Activity or more generally communication among the team.

It must be noted that any of the three types of the suggestions given by the robots can im-

plicitly induce other behaviors in the learners too as all the behaviors are intertwined. For

example, Exploration Inducing or Reflection Inducing suggestions can indirectly induce an

increase in communication between the team members that could lead to an increase in the

behaviors that these intervention types are explicitly designed for or vice versa. Similarly,

Communication Inducing suggestions can indirectly induce certain exploration or reflection

related actions in the learners as they start communicating more about the next steps or

their internal understanding of what may need to be removed or added. While the three

types above define the content of the robot’s interventions, their style is always supportive,

i.e. the robot always conveys the suggestion using positive and supportive language. We have

designed 8 interventions to induce communication related learner behaviors. For all other

learner behaviors (eg. Edge Addition or Edge Deletion), we have designed 4 interventions.

More number of interventions for the communication related learner behaviors is because

it is the intervention type that might get triggered more than the others so we aim to avoid

repetitions (details in upcoming section 7.2.4). This gives us a total of 36 interventions with

8, 4, and 24 interventions in the type Communication Inducing, Exploration Inducing, and

Reflection Inducing, respectively.

Additionally, we also design a pool of idle behaviors that are non-verbal robot actions, consist-

ing of gestures and facial expressions. These behaviors are triggered every few seconds to give

the feeling of a lively robot as well as to provide a more natural feel to the interaction. These

behaviors are only executed when no other task of a higher priority is being executed (more

on this later). A few examples of such behaviors include: 1) the robot looking side to side to

the two team members, 2) the robot scratching its head, 3) the robot looking confused, 4) the

robot folding arms behind its back as if observing the situation, etc.

7.2.2 Generation of the PE Score in Real-Time

For the generation of the PE score in real-time, we employ the pipeline shown in Figure 7.4.

Within a team, each learner’s speech is fed through the laptops microphone to a Voice Activity
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Table 7.1: Examples of Robot Interventions

Type Robot’s Speech Facial Expression Gesture

Exploration Inducing Guys, we may not be exploring all the rail-
tracks. Why don’t we connect more gold
mines to see how much they cost?

Puffing its cheeks Putting both arms
ahead to gesture while
moving head side to
side to look at both
learners

Exploration Inducing Are there some tracks we haven’t explored
yet? If yes, why don’t we explore other tracks
too?

Smile Moving head side to
side to convey looking
at both learners

Reflection Inducing Guys! I have this idea. Why don’t we remove
the rail-tracks we do not need? What do you
think?

Puffing its cheeks Moving head side to
side while swiping its
arm from left to right

Reflection Inducing Oh hey, may be we have already explored
some of these rail-tracks. Should we check
our history? I think we did not look at it much
in the last few minutes

Smile Moving head side to
side while pointing at
the front

Reflection Inducing Guys, I am a bit lost. I would like you to tell
me why is it that you removed the last rail-
track?

Confused Moving head side to
side while putting its
arms at the back on the
hips

Communication Induc-
ing

So Alice, why dont you tell us about what you
think we need to do, and then Bob, you tell
us what you think.

Neutral expression Moving head side to
side while swiping the
right arm

Communication Induc-
ing

So my friends, based on the last few minutes,
I feel like we are not communicating much
with each other, and that may be important
for us to solve this problem.

Confused Moving head side to
side while shifting the
left arm in a natural
movement

Detector (VAD) for which we used the open-source python wrapper for Google WebRTC

VAD1. The VAD returns a vector for each team member that consists of voiced and unvoiced

frames. These vectors are then used by a feature extraction module to generate all the relevant

features such as Speech Activity, Speech Overlap, and Long Pauses (see Chapter 3 for details on

VAD, and our proposed feature extraction). Following that, the features are normalized with

respect to the training data which is the corpus of data collected in the Ron study. Finally, with

these normalized features, the productive engagement score is calculated as described by the

equation 6.1 in Chapter 6 section 6.4.2.

As will be seen in section 7.2.4, the PE score of a team is compared against a threshold which

decides if an intervention is needed or not. This threshold is generated as:

τPE =
a +b

2
(7.1)

where a = average PE score of the gainers, teams with higher learning gains, and b is the average

PE score of the non-gainers, teams with lower learning gains, from the training data. The value

for τPE is then set to 0.32 according to equation 7.1.

1https://webrtc.org/
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Figure 7.4: Pipeline for the generation of the PE score

We must note that in this pipeline, by real-time, we mean every 10 seconds. Hence, we have

a PE score for the team every 10 seconds. Before using this pipeline in real-time, we verified

that the different way we process audio offline and online does not yield a difference in the

output. We do this by comparing the outcome generated by the PE score pipeline online with

direct sound input through a microphone versus when the same speech content is stored as

a .wav file and then fed as an input for post-hoc analysis. This latter method is exactly what

was employed in all our post-hoc analysis in the previous chapters. For validation, we used a

30 minute long audio session giving us 180 windows, each of ten seconds, where for each of

the windows we have a PE Score value generated online as well as offline. Between the two PE

score vectors, we observe a mean difference (offline vector subtracted from online) of −0.162

and a standard deviation of 0.243.

7.2.3 Profile Comparison in Real-Time

The profile comparison pipeline can be seen in Figure 7.5. Every time an action takes place on

a participants application, the application shares that with the log features extraction module

that generates all the relevant features such as Edge Addition, Edge Deletion, History, A_A_add,

A_A_delete, A_B_add, A_B_delete (see Chapter 3). These features are then fed to a profile

generation and comparison module that buffers the incoming features. Then every 5 minutes,

it averages all the features until that point in time and normalizes them with respect to the

training data. After that, the module does an euclidean distance based comparison between

the normalized log features vector and the reference log features vectors of the profiles of

the two gainer types Expressive Explorers (EE), and Calm Tinkerers (CT) generated from our

training data. This allows to classify the team’s current problem solving strategy into one of

the strategies identified previously in the thesis, i.e., global exploratory approach, or local

exploratory approach.

To elaborate, at time t, the euclidean distance d g
t of the current feature vector cv t of a team is

calculated with the two reference profiles pg
t where g ∈ [EE ,C T ]. Based on the lower distance

returned for g ∈ [EE ,C T ], the current feature vector cv t is classified as that gainer profile cpt
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if and only if the distance d g
t is lower than a threshold τ

g
t . This means not only do we check

for which gainer profile is the current feature vector closest to but if it is also close enough to be

classified as that gainer profile. Precisely at each t ∈ [10,15,20,25] minutes:

cpt = argmin [d g
t (cvt , pg

t )] ⇐⇒ min d g
t < τ

g
t (7.2)

Once a profile is chosen, the profile comparison module returns an ordered list of features,

from the one in which the incoming vector is farthest to the reference, to the one where it is

closest (more on this in the upcoming section 7.2.4). In the case the distance d g
t is not close

enough, the cv t is not classified as belonging to any gainer type profile.

While the previous paragraphs elaborate on what happens in the pipeline for profile compari-

son in run-time, the aforementioned thresholds τg
t are generated a priori using the training

data. For each gainer type g ∈ [EE ,C T ]:

τ
g
t =

d i ntr a
t +d i nter

t

2
(7.3)

where d i ntr a
t is the average intra group (teams within the gainer group) euclidean distance

with the average profile vector vt for the type of gainers at time t and d i nter
t is the average

inter group (teams within the other gainer group) euclidean distance with the average profile

vector vt for the type of gainers at time t . All the thresholds for τg
t are listed in Table 7.2 under

the column ’Original Value’ where as the column ‘After Validation’ will be explained later in

section 7.4.4. The idea to generate an average profile vector at ever 5 minutes is to incorporate

temporal changes. In the training data collected in the Ron study, we noticed that for each

gainer type, the profile generated every 5 minutes after time t = 10 minutes is consistent with

the average profile of the gainer type over the entire activity. The consistency is in terms of

the differences between the two types of profiles (EE, CT), i.e., the differences among the two

gainer types remain consistent at every additional 5 minute mark. However, the values of

each individual feature within a gainer type profile still oscillate. In order to consider that,

we choose to check a profile every 5 minutes. For example, the feature of opening up history

(T_hist) always has a higher value in EE profiles compared to CT profiles at every 5 minute

mark. However, within the EE profiles at the different time marks, the value for the feature

changes.

Now that we are aware of how a profile is chosen at run-time as well as the thresholds, we

conclude this section with an example. Let’s suppose at time t = 15 minutes, the distances

d EE
15 and dC T

15 of cv15 are 0.57 and 0.83, respectively. The distance 0.57 of cv15 with g = EE

is lower and it is also lower than the τEE
15 that is 0.613. Hence, at 15 minutes into the game
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Figure 7.5: Pipeline for the generations of profiles

Table 7.2: Threshold values for Hermione where EE and CT stand for Expressive Explorers and
Calm Tinkerers respectively and the numbers represent the minutes into the game.

Threshold Original Value After Validation

τEE
10 0.532 0.638
τEE

15 0.613 0.735
τEE

20 0.703 0.843
τEE

25 0.638 0.765
τC T

10 0.818 0.981
τC T

15 0.759 0.910
τC T

20 0.771 0.925
τC T

25 0.797 0.956

interaction, the team should be classified as exhibiting the global exploratory strategy based

on their current actions in the game.

7.2.4 Robot Control Architecture

For both Harry and Hermione, their behavior is controlled via two modules: 1) a basic module,

and 2) a control module. Each robot module is responsible for specific tasks for the robot

where every task is blocking as well as has a priority. By blocking we mean that once the task

has started to execute, it would go on to completion without getting interrupted regardless of

any other task being triggered. In regards to priority, a task with a higher priority is selected

if two tasks are triggered at the same time. Except the idle behaviors of the robot that have

a lower priority, all the other tasks have the same priority. This means that if two tasks of

the same priority are triggered at the same time, they will be executed one after the other. A

summary on the division of the tasks by the two modules is shown in Table 7.3.

The basic module is responsible for automating the entire activity and for handling fixed
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events occurring during the game play while the control module controls the selection and

execution of all interventions by the robot, Harry or Hermione, as well as the idle behaviors

during the game play. Automating the entire activity means, based on the low level activity

events such as what is pressed, submitted, etc., the robot takes the team through the different

stages of the activity pipeline (explained in Chapter 2 and Table 2.1) as well as gives supportive

comments at various points. During the game play, every time a solution is submitted by

a team, the basic module generates the score and then the robot iterates the score as if it

is reading the score from a screen. In addition to this, the basic module helps the robot to

generate reminders for the team on the possibility of submitting multiple solutions as well as

on the remaining time (the game play is for limited time, i.e., 30 minutes). The same module

is also responsible for pausing the game whenever an intervention is triggered by the control

module. As for the control module, all the interventions as well as idle behaviors are selected

and executed through it. The communication between the two modules allows for handling

all the tasks in a smooth manner while taking into consideration the blocking nature as well

as the priority of the tasks. Also notice that if the control module is removed, the robot is

essentially reduced to Ron.

These two modules interact with the environment as well as with each other, as shown in the

Figure 7.6, through the Robot Operating System (ROS). Precisely, for both Harry and Hermione,

the basic module receives information from the two apps as well as from the control module.

For executing the tasks assigned to the basic module when a task is triggered, it sends the

chosen robot task to the built-in service controllers of the robot. Additionally, it also sends

a message to the control module to let it know that the robot resources are busy and thus

pausing any other commands the control module might want to trigger.

While the basic module for the two robots has the exact same functionality, the control modules

differ. For the control module for Harry, it implements the algorithm described below in

section 7.2.4 and algorithm 1 for selecting an intervention. In the case of Hermione, the

control module receives information from the PE score generation module as well as the profile

comparison module. With this information, it is able to identify the course of action for

Hermione according to the algorithm described later in section 7.2.4. In the case of both of

the robots, the control module also generates idle behaviors, communicates its assigned task

to the built-in service controllers of the robot and also notifies the basic module about the

resources being busy.

After an intervention is executed by a robot, Harry or Hermione, a pop-up is displayed on

the screens of the two students prompting them to individually select either “I found the

robot’s suggestion useful" or “I found the robot’s suggestion not useful". A suggestion_usefulness

score sui for intervention i is generated which can be 0, 0.5, or 1 depending whether both of

the team members found the suggestion not useful, one of them found it useful, or both of

them found it useful, respectively. The robot then responds correspondingly to their feedback

such as “Good to know we all agree on the suggestion" or “Oh, so you guys do not agree with

my suggestion". The following metrics, detailed out later in this section, are evaluated and
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Figure 7.6: Robot Control Architecture for both Harry and Hermione

stored after each intervention i : the gain in PE score PE g ai n
i , the associated weight wi , and the

suggestion_usefulness score sui . These metrics are then used in the post-hoc evaluation of the

two robots.

With the general architecture for both of the robots laid out, we now dive deeper into the robot

specific action selection techniques.

Action Selection Technique for Harry

The action selection technique for Harry, described in Algorithm 1, is simple: the counter c

for the intervention is set to r and(0,2), i.e., every 0 to 2 minutes, an intervention is randomly

Table 7.3: Robot tasks for both Harry and Hermione

Basic Module Control Module

Task Priority Activity Stage Task Priority Activity Stage

Automates the entire activity 1 All Selects and executes Interven-
tions

1 Game Play

Generates score feedback 1 Game Play Selects and executes Idle behav-
iors

2 Game Play

Generates reminders 1 Game Play Manages feedback on sugges-
tions usefulness

1 Game Play

Pauses the game when an inter-
vention is taking place

1 Game Play
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selected from the pool of behaviors and is executed. After an intervention is executed, Harry

will always wait for a minimum of 2 minutes before the counter is reset to a new value

c = r and(0,2). In principle, this means the interventions will happen every 2 to 4 minutes

except the first one which can happen within 2 minutes after the start of the game session. The

choice of a gap of a minimum of 2 minutes between two interventions is arbitrary and based

on the idea of letting a reasonable time pass in between interventions. This time allows to

gauge the effectiveness of an intervention keeping in mind the granularity of all the behaviors

under question (learner’s speech behaviors are measured every 10 seconds; however their

actions on the game are sparser than speech behaviors).

Lastly, we must note that while Harry does not make use of the two pipelines (PE score

generation module and the profile comparison module) in its action selection technique, we

do still run these pipelines for post-hoc analysis.

Algorithm 1 Action Selection Technique for Harry

1: a = Exploration inducing interventions
2: b = Reflection inducing interventions
3: c = Communication inducing interventions
4: Every rand(0,2) minutes:
5: Pick an intervention i by rand(a,b,c)
6: Harry executes i
7: Wait for 2 minutes
8: Calculate and store wi , PE g ai n

i , sui

Action Selection Technique for Hermione

The action selection technique for Hermione is described in the algorithm 2 whereas a simpli-

fied visualization of the technique is shown in Figure 7.7. The decision process for Hermione

is relatively more complex as it takes a layered approached. At the first layer, in order to

decide whether the robot should intervene or not, the exponentially weighted moving average

(EWMA) of the team’s Productive Engagement score is calculated. The EWMA of the PE score of

the team is calculated with a sliding window of 2 minutes to keep coherent with our choice

of a minimum gap of 2 minutes between interventions. This average is then compared to

the τPE and if it is above the threshold, the robot does not intervene in order to not provide

unnecessary distractions to the learning process. In the case the PE score is lower than the

threshold, and depending on the phase of the activity (less than 10 minutes since the start of

the game play), or if the game play is at a later stage but the incoming profile cpt of the team is

not close enough to any reference profile, Hermione randomly picks one of the communication

inducing behavior. On the other hand, after 10 minutes into the interaction, when the team

is matched to either Expressive Explorers or Calm Tinkerers (distance returned is less than

the τg
t ), Hermione chooses an exploration inducing or a reflection inducing behavior. This

behavior is based on the weakest log action based feature (with highest distance as explained

in section 7.2.3) of the matched profile. Initially, all the interventions start with a default
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Algorithm 2 Action Selection Technique for Hermione

1: a = Exploration inducing interventions
2: b = Reflection inducing interventions
3: c = Communication inducing interventions
4: ∀i , wi = 0, Si = 0
5: if PE Score ≥ τPE then
6: Do nothing
7: else if PE Score < τPE then
8: if t ≤ 10 minutes or cpt ̸= any g ∈ [EE ,C T ] then
9: if ∀i ∈ c, Si = 1 then

10: Sort i based on wi in descending order
11: Set Si = 0 for ∀i ∈ c
12: else if ∀i ∈ c, Si ̸= 1 then
13: Pass
14: end if
15: Pick the first intervention i of type c such that Si = 0
16: Hermione executes i
17: Wait for 2 minutes
18: Update wi , PE g ai n

i , sui

19: Set Si = 1
20: else if t > 10 minutes and cpt = any g ∈ [EE ,C T ] then
21: if ∀i ∈ a or b, Si = 1 then
22: Sort i ∈ a or b based on wi in descending order
23: Set Si = 0 for ∀i ∈ a or b
24: else if ∀i ∈ a and b, Si ̸= 1 then
25: Pass
26: end if
27: Identify the weakest log action based feature of the matched profile
28: Pick the first corresponding intervention i of type a or b such that Si = 0
29: Hermione executes i
30: Wait for 2 minutes
31: Update wi , PE g ai n

i , sui

32: Set Si = 1
33: end if
34: end if
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weight of 0. To avoid repeatability, every time an intervention of a particular type is used, it

is not used again (a flag Si is raised to 1) until the robot has made a full pass over the set of

that intervention type (exploration, reflection or communication). Once all interventions of

that type have been used once by the robot (which is quite rare in a 30 minute activity), all the

flags are reset to 0. After that, the interventions of one particular type are chosen based on

the decreasing order of the weight associated with the intervention, i.e., the intervention with

the highest wi is chosen. The weight wi of an intervention when it is used for the ith time for

i ∈ [1,2,3, ..,n] is updated as follows:

wi = wi−1 +PE g ai n
i (7.4)

where

PE g ai n
i = PE a f ter

i −PE be f or e
i (7.5)

where w0 is the default weight of 0, PE a f ter
i and PE be f or e

i are the values of the PE score

calculated as an exponentially weighted moving average in the 2 minutes window after and

before an intervention, respectively. The choice of an exponentially weighted moving average

in this technique instead of a simple average is to give more weight to the recent quantity and

quality of the communication between the team members.

7.2.5 Validation of robot behaviors with Harry in a small online study

Before the final Harry and Hermione study, we did a small online study with Harry to mainly get

feedback on the content of our pool of robot suggestions to refine them. The aforementioned

pool of robot suggestions in section 7.2.1 is a result of the feedback received in this online

study.

Due to the COVID-19 pandemic and with the schools not allowing researchers on campus,

we needed to adapt the original setup of JUSThink for online experiments. The online setup

is shown in Figure 7.8. In the online setup, Harry and the experimenter are situated in the

lab with two laptops and two RGB cameras. The student team as well as a teacher (in the

background) are present together in a classroom at the school with two laptops, one for each

child. They sit in a way that does not allow them to see each other’s screens. Each child

is connected to one of the laptops in the lab on Zoom and can see and hear Harry on the

video and audio stream, respectively. On each of the two laptops in the lab, there is also an

instance of the JUSThink application running that can be controlled by the student via the

remote control setting provided by zoom. This setup allowed for the schools to participate in
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Figure 7.7: A simplified visualization of the action selection technique for Hermione

the online study without installing anything at their end except for the video conferencing

software Zoom.

22 participants, (gender: 12 males and 8 females with a median age of 10.5), interacted with

the activity from two Swiss schools. All the students had prior experience with STEM activities

including robotics.

In addition to all the evaluation metrics listed in Chapter 2, we conducted open-ended semi-

structured interviews with each team which typically lasted between 5-10 minutes depending

on how long their answers were. We addressed questions on similar topics as those in the

quantitative questionnaire (see Chapter 2), e.g., their thoughts on the activity, the interaction

with the robot, the suggestions by the robot, their trust in the robot’s suggestions and in

general. More precisely, the questions are listed below:

• What did you think of the activity/robot?

• What did you think about the robot’s suggestions?

• Which suggestions helped you to think harder or carefully?

• Did you trust the robot’s suggestions?

• Do you think you can trust the robot generally?

The motivation behind doing an open-ended questionnaire was to have unconstrained user

responses that would help understand better how the robot interventions are perceived. This
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Figure 7.8: Setup adapted for an online study with Harry

perception would eventually facilitate improving the robot interventions as well as the overall

activity. Here we highlight some of the changes taken into account when refining the pool

of robot behaviors based on the most recurrent feedback in the interviews as well as based

on our analytical observations. Please note that for the questions on trust, albeit receiving

interesting answers, we will not discuss the outcomes in this thesis for the sake of keeping

things to the point.

1. The number of interventions within each type of interventions were increased as well as

worded in very different ways to avoid the robot sounding repetitive. This was based

on answers by teams such as “Early on suggestions were good later on it repeated" and

“Sometimes they were repetitive that would distract me".

2. Originally, within each type of interventions, we also had suggestions that were meant

to reduce a relevant behavior, i.e., the robot saying things like “I think we should not

add any more rail-tracks for a few minutes, and think about what we already added."

Through analytical observations, as well as feedback like “Could have been better if the

robot gave better suggestions .. about what to do", we realized that it is easier for people

to do rather than not do. If the robot tells the students what not to do in order to improve,

they have multiple possibilities of what to do instead and thus might feel confused about

which action to pick. Hence, we removed those interventions that were suggesting to

the students to reduce a certain behavior and rather we only kept the ones suggesting to

the students to increase a certain behavior.

3. We increased the interrogative style of the suggestions where the robot asks the team

members to explain their previous action or what they are about to do. This was based

on how well the students responded to such suggestions in terms of verbalizing their

reasoning as well as pointing to such interrogative suggestions when asked which

146



7.3 Hypotheses

suggestions helped them think harder or carefully. This question was asked to the

students as a follow up question to their answers such as “Suggestions pushed us to

think harder and made us to think more carefully", “Robots suggestions helped us to think

harder, probably even overthink at times".

4. We incorporated the notion of time within some of the suggestions such as “Based on

the last few minutes,...". This was to highlight that the current suggestion by the robot

is based on just a slice of time and not the entire past duration. An example feedback

that inspired this is “(The robot) was kind of like a mother or a father, giving helpful

suggestions at times, sometimes just reminding what we are already doing or have done"

7.3 Hypotheses

Moving on to our final user study with Harry and Hermione, we make the following hypotheses:

• H1: (a) Hermione will lead to higher learning gains as well as (b) a higher number of

teams achieving a higher learning gain as compared to Harry.

• H2: Teams that interact with Hermione will display higher Productive Engagement scores

compared to the teams that interact with Harry.

• H3: Hermione will be rated higher on competence as compared to Harry.

• H4: Robot interventions will have an effect on the PE score in both the robots.

• H5: Robot interventions will have the desired effect on learner behaviors, i.e., we will

observe a visible increase in the desired behaviors.

7.4 User Study

While generally the collaborative learning activity is the same as first outlined in Chapter 2, the

version of the activity used in Harry and Hermione study will be referred to as JUSThink-Pro.

This is due to the addition of real-time assessment modules based on our Productive Engage-

ment framework, replacement of Ron with either Harry or Hermione, and a few refinements

such as addition of a pop-up box for feedback on the perception of the usefulness of each

intervention.

7.4.1 Participants

As mentioned before, the COVID-19 pandemic made it increasingly difficult to conduct HRI

user studies especially with children. With an intensive effort over multiple months to reach

out to international schools, especially targeting boarding schools, we were successful in
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Figure 7.9: Children interacting with JUSThink-Pro at the six schools that participated in the
Harry and Hermione study

taking our setup to six schools across Switzerland for the Harry and Hermione study2. Figure

7.9 shows students from each school interacting with JUSThink-Pro with a zoomed in view of

the setup in Figure 7.10. More specifically, in this two-month long user study, 136 students

(74 male, 62 female) with the age range 9-14 years (median age: 12 years old) interacted with

our JUSThink-Pro activity over 70 hours. This gave us a total of 68 teams out of which the

first 19 teams were used for validation (more on this below in section 7.4.4) leaving us with 54

teams for the experimental evaluation. For technical reasons such as data completeness, 2

more teams were discarded so we have a total of 52 teams with 26 teams in each condition.

We must mention that as part of our agreement with some of the participating schools, after

the study, we got back to the schools that were interested with a personalized feedback report

on how their students performed in the study with the different robots (see appendix C for an

anonymized example of such a report).

7.4.2 Real-time setup

Just like in JUSThink setup, here too, each participant interacts with an instance of the

JUSThink-Pro participant application that is written in Python and uses pyglet as the win-

dowing and multimedia library. Hence, a separate instance of the application is run for each

participant in a team. The robot behaviour applications are also developed in Python and gov-

ern what the robot does and when as explained in section 7.2.4. All the real-time assessment

applications for both log and speech features are also developed in Python. Lastly, all the ap-

plications communicate via the Robot Operating System (ROS). For the sound input, we make

use of the built-in microphones of the laptops that are just placed next to the participants as

shown in Figure 7.10.

2Ethical approval for this study was obtained from EPFL Human Research Ethics Committee (051-
2019/05.09.2019)
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Figure 7.10: A zoomed in view of the JUSThink-Pro setup at one of the schools

7.4.3 Evaluation Metrics

For evaluation purposes, in addition to the usual learning gains and in-task performance such

as joint absolute learning gain T_LG_joint_abs, and last error as well as the robot perception

questionnaire (see Chapters 2 and 3 for more details); we also made use of PE score, and

suggestion_usefulness score. In the robot perception questionnaire, for this study, we added a

few more questions to our questionnaire on robot competence that fall under the group Robot

(Godspeed-like) and the category Robot Behavior based on Table 2.2 in Chapter 2:

• I think the robot was giving us the right suggestions.

• I think the robot gave us suggestions at the right time.

The first question is specifically targeting the WHAT aspect (what is it that the robot suggested

us) while the second question targets the timing of the suggestion, i.e., the WHEN aspect.

Please note that the choice to focus on joint absolute learning gain T_LG_joint_abs is because

it captures the shared understanding between the team that, as established previously in the

thesis, is relevant for collaborative learning.

7.4.4 Validation of the thresholds

We utilized the first 19 teams out of the 68 teams for validating our thresholds (τPE , τg
t ). Please

note that 5 of these teams in which Harry was used were also kept in the experimental data set

since the the action selection technique for Harry does not utilize these thresholds; hence, the
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Figure 7.11: Validation of the thresholds for profile classification

validation of these thresholds only matters for Hermione. Naturally, the remaining 14 out of 19

teams that interacted with Hermione were discarded from the experimental data. For τPE , we

wanted to make sure that the values in the validation data span between the entire range of

0 and 1 (see Chapter 6)) as it did in the training data. For the various τg
t , we were interested

to observe the number of times an incoming profile was detected to be close enough. This

was to ensure that the system was not too strict and never classifying an incoming profile

as either Expressive Explorers or Calm Tinkerers. The Figure 7.11 shows that for the original

thresholds (represented by the value of 1 on the x-axis), around 30-40% teams were classified

at least once as either of the two gainer profiles. As the thresholds are increased or decreased

by a percentage on the x-axis, the percentage of teams that are classified as belonging to a

gainer profile at least once are depicted on the y-axis. We see that the original thresholds seem

to be almost at the vertical asymptote of the curve. At the end of this validation, we chose

to increase the thresholds of the type τg
t by 20% to allow for at least 50% of the teams being

classified as either of the two gainer type at least once during the course of interaction. The

Table 7.2 in section 7.2.3 lists down the thresholds after this increase in the ‘After Validation’

column.

7.5 Results

First of all in order to validate the relationship between the Productive Engagement score and

the learning gain T_LG_joint_abs, which serves as a basis of our design and reasoning behind

the Productive Engagement framework, we perform a linear regression analysis. We do so by

using ordinary least squares (OLS) methods with the statsmodels library (Seabold & Perktold,

2010). The results are shown in Figure 7.12 between the two variables in both conditions with

the PE score as the independent variable and the learning gain as the dependent variable. In

case of Harry, it seems that PE score significantly predicts the learning gain (β: 0.39, p-value:
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Figure 7.12: Linear regression between the the PE scores and the learning gains of the teams
that interacted with Harry (on the left) and Hermione (on the right). For the former, the PE
score significantly predicts the learning gain with a β of 0.39 and a p-value of 0.01 while for the
latter, we do not find a significant result.

0.01) with the fitted regression model as 0.38 + (0.39*PE score); however, it is not such in the

case of Hermione (β: 0.09, p-value: 0.625). This means that for Harry, an increase of one in the

PE score is associated with an increase of 0.39 in the learning gain.

7.5.1 Comparing Harry and Hermione on the Evaluation Metrics

Next, to evaluate our hypotheses H1-H3, we start off by doing a Kruskal Wallis test between the

two conditions for the aforementioned evaluation metrics. As shown in Figure 7.13, there is

no difference in terms of the joint absolute learning gain, that signifies shared understanding,

between the two conditions. This means that the teams achieve similar learning gains in both

conditions. Hence, H1(a) is not supported. Furthermore, contrary to our expectations, we

observe that the Productive Engagement score is significantly higher (p-value: 0.03, H: 4.66)

for the teams that interacted with Harry than those who interacted with Hermione. Thus

hypothesis H2 is rejected. On the other hand, the teams that interacted with Hermione did

rate the robot higher both on the suggestions being right as well as being at the right time,

albeit non-significantly; however, the rating for the suggestion_usefulness score is higher for

Hermione with marginal significance (p-value: 0.06, H: 3.52) than for Harry. Hence, hypothesis

H3 is partially supported.

High and Low Learning Groups Between conditions

In order to dive a bit deeper to understand and explain the afore-discussed outcomes and

hypotheses, we are interested to unveil where does the difference arise between the two robots

in terms of the Productive Engagement score as well as the suggestion_usefulness score. Our

first intuition is to observe whether the differences come from the differences in the learning

gains within each condition. We split the two conditions into high and low learning gain

groups. For this, we use a mean split by calculating the average T_LG_joint_abs of the entire
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Figure 7.13: Comparison of Harry and Hermione in terms of our evaluation metrics where the
asterisk on the graph represents a significant difference on the Kruskal Wallis test. There is a
significant difference between the two robots in terms of the PE score (p-value: 0.03) and the
suggestion_usefulness score (p-value: 0.06).

data set, which is 0.559 (normalized between 0 and 1), and then we use that to split the teams

in each condition into high and low learning groups. To validate this mean split, we observe

via Kruskal Wallis tests, that indeed the learning gains of the low learning groups in Harry as

well as Hermione conditions differ significantly from the high learning groups in the respective

conditions (For Harry, p-value: 4.77e−05, H: 16.53; for Hermione, p-value: 1.28e−05, H: 19.03).

Interestingly, we note that in the group that interacted with Harry, 18 out of 26 teams ended

up with higher learning gains while in the group that interacted with Hermione, 13 out of 26

teams ended up with higher learning gains. Thus, H1(b) is rejected.

Now that the split based on the learning gain has been validated, we compare the low and

high learning groups between the two conditions on the same metrics as in section 7.5.1 using

Kruskal-Wallis tests. As shown in Figures 7.14 and 7.15, between the two conditions, there

is no difference in terms of any metric between the low learning groups, i.e., low learning

groups behave similarly irrespective of the robot they interact with. However, as suspected,

the difference in the Productive Engagement score as well as the suggestion_usefulness score

is indeed as a result of the high learning groups, i.e., the high learning group in the Harry

condition displays a significantly higher PE score (p-value: 0.004, H: 8.07) while rate the robot

significantly lower on the usefulness of the suggestions (p-value: 0.05, H: 3.81) as compared to

the high learning group in the Hermione condition (see Figure 7.15).

152



7.5 Results

Figure 7.14: Comparison between the low learning teams in the two conditions. None of the
metrics differ with statistical significance.

* *

Figure 7.15: Comparison between the high learning teams in the two conditions where the
asterisk on the graph represents a significant difference on the Kruskal Wallis test in terms of
the PE score (p-value: 0.004) and the suggestion_usefulness score (p-value: 0.05).
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Figure 7.16: Comparison of the intervention types received by the high learning teams in the
two conditions where Harry received significantly more exploration inducing (p-value: 0.03)
and reflection inducing (p-value: 0.0019) interventions while Hermione received significantly
more communication inducing (p-value: 1.64e−05) interventions

7.5.2 Comparing Harry and Hermione on Robot Interventions

In order to answer the hypothesis H4, we are first interested to identify what kind of robot

interventions were received by the students in each condition. More specifically, we observe

the two high learning groups who interacted with Harry and Hermione as that is where we

see the differences surfacing from in terms of PE score and suggestion_usefulness score. We

inspect this again with Kruskal Wallis test, where a box plot is shown in Figure 7.16. Indeed, the

teams interacting with Harry received significantly more exploration inducing interventions

(p-value: 0.03, H: 4.32) as well as reflection inducing interventions (p-value: 0.0019, H: 9.60)

while the teams that interacted with Hermione received significantly more communication

inducing interventions (p-value: 1.64e−05, H: 18.56). These tests highlight the differences in

terms of the interventions the teams in high learning groups of the two conditions received.

However, the relationship between these type of interventions and the PE score cannot yet

be established as a general rule. Hence, at this stage, we cannot claim anything definitive

regarding whether it is indeed the differences in these types of interventions that leads to the

differences in the PE score for the two robot conditions.

To unearth this, we perform linear regression analysis, between the type of interventions

as the independent variable and the PE score as the dependent variable for all teams in

each condition. Referring to the Figure 7.17 and the Table 7.4, we observe that for Harry

with all the teams, none of the intervention types (exploration inducing, reflection inducing,
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Table 7.4: Regression tests for both Harry and Hermione

Independent variable dependent variable coefficient p-value intercept p-value

Regression tests for Harry

Exploration inducing PE score -0.42 0.317 0.56 0.00*
Reflection inducing PE score 0.36 0.37 0.25 0.35

Communication inducing PE score 0.03 0.93 0.49 0.00*

Regression tests for Hermione

Exploration inducing PE score -1.48 0.14 0.37 0.00*
Reflection inducing PE score -0.46 0.02* 0.41 0.00*

Communication inducing PE score 0.42 0.02* -0.007 0.96

communication inducing,) are statistically significant predictors of the PE score. On the other

hand, for Hermione, when looking at Figure 7.18 and the Table 7.4, we observe that both

the intervention types of reflection inducing and communication inducing are statistically

significant predictors of the PE score; however, they effect the PE score in opposite ways. The

increase of one in communication inducing intervention type seems to be associated with

an average increase of 0.42 in the PE score while the increase of one in the reflection inducing

intervention type seems to be associated with an average decrease of 0.46 in the PE score.

This is quite interesting as, in accordance to our design principle behind the action selection

technique of Hermione, the interventions are designed with the goal of increasing the PE score

and an intervention is triggered when the PE score is detected to be lower than the τPE . We

see that happening in the case of communication inducing interventions, which by design

specifically target effective communication between the team members. However, we also

observe that the increase in the reflection inducing interventions is negatively affecting the

PE score of the team members. With these outcomes for Harry and Hermione, H4 is partially

supported as the interventions do have an effect on the PE score in the case of Hermione.

For H5, we evaluate the effectiveness of the interventions, i.e., if the relevant learner behavior

increases after the intervention is suggested in the following two minutes compared to the

two minutes that preceded the intervention. If that is the case, the intervention is considered

effective. In this way, for the three types of interventions, we calculate the percentage of inter-

ventions that were effective as shown in Figure 7.19. For both robots, while the communication

inducing and the exploration inducing interventions are effective in a medium range (30-60

%); however, very few (6-10 %) of the reflection inducing interventions seem to have been

effective. Hence, H5 is only partially supported.

7.6 Discussion

To interpret our results, we go back to the analogy of the cosco ladder we presented in Chapter

3 that linked robot behaviors to user engagement to user learning via the concept of Productive

Engagement. For the second part of the ladder that goes from engagement to learning, while

we indeed observe a linear relationship between the PE score and the learning gain when
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Figure 7.17: Linear regression between the three intervention types and the PE score for the
teams that interacted with Harry. None of the intervention types are statistically significant
predictors of the PE score

Figure 7.18: Linear regression between the three intervention types and the PE score for the
teams that interacted with Hermione. communication inducing and are statistically significant
predictors of the PE score with p-values of 0.02 and 0.02, respectively.
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Figure 7.19: Percentage of effective interventions for the two robots: 42% and 33% of the inter-
vention type Exploration inducing, 6% and 10% of the intervention type Reflection inducing,
and 53% and 48% of the intervention type Communication inducing are effective for Harry
and Hermione, respectively.

teams interacted with Harry, we do not see such a relationship when teams interact with

Hermione. We make the following two hypotheses that may provide possible explanations for

this behavior:

1. PE score needs to be above a certain level to have that linear relationship with the learn-

ing gain. Note that in the condition with Hermione, the PE score is not only significantly

lower than Harry, but generally lies in a lower range with a mean value of 0.33 which is

just around the same value as the τPE , i.e., 0.32 (see Table 7.2 in section 7.2.3).

2. There is a need to refine our definition of the Productive Engagement score that currently

may not be capturing the complete dynamics of the relationship with learning. The new

refined definition may then not have a linear relationship.

We pose both of the aforementioned hypotheses as open questions for the community as

well as our own future work. Further, for the first part of the ladder that connects robot

behaviors to user engagement, interestingly, we find that in the case of Harry that has a

very simplistic model for making suggestions, none of the types of intervention significantly

predict the PE score. On the other hand with Hermione, indeed the reflection inducing as well

as communication inducing intervention types significantly predict the PE score; however,

in opposite ways. The communication inducing interventions have a positive correlation

with the PE score indicating that as these interventions increase, the mean of the dependent
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variable, i.e., PE score, also increases. This directly validates: (a) the communication inducing

interventions that are explicitly designed to induce communication as well as (b) our design

choice for Hermione providing this intervention type at the initial phase of the game as well

as when no profile is close enough, i.e., when the robot is unsure of the problem solving

strategy the learners are exhibiting. Conversely, the reflection inducing interventions have a

negative correlation meaning that as these interventions increase, the mean of the PE score

decreases. While reflection related behaviors (Edge Deletion, History, A_A_add, A_A_delete,

A_B_add, and A_B_delete) that this intervention type is supposed to induce in the learners

have been established to be effective for learning (see Chapter 4), it is possible that: (a) either

the suggestions are not effective in inducing those behaviors, or (b) the timing is off. For

(a), indeed as seen in Table 7.19, we found that only 6% of reflection inducing interventions

were effective. In both cases (a) and (b), this could lead to a negative correlation of reflection

inducing interventions with the PE score.

Tying our main findings altogether, both robots induce similar learning outcomes (H1a) and

similar level of effective interventions (H5). Harry generates higher Productive Engagement in

the students (H2) while Hermione’s interventions are perceived more useful (H3) and have

an effect on the Productive Engagement (H4). To reiterate, for Harry, a robot that leverages

much less information than Hermione, there exists a relationship between the PE Score and

the learning gain as well as more teams interacting with Harry end up with higher learning

gains (H1b). However, the PE Score does not seem to be explained by the interventions of the

robot (H4) as well as the robot’s suggestions are perceived less useful by the learners (H3).

On the other hand, for Hermione, there exists a relationship between some of the robot’s

interventions and the PE Score (H4) as well as the suggestions are perceived more useful by

the learners (H3). However, there is a lack of a relationship between the PE Score and the

learning gain. These results raise some interesting reflections and hypotheses for us regarding

the 1) relationship between the Productive Engagement score currently defined and learning,

2) design and effectiveness of the robot interventions, and 3) action selection techniques in

particular for Hermione. For (1), we have laid down some hypotheses earlier in the section.

For (2) and (3), we put forth the following comments:

1. A more conscious action selection strategy, i.e., that of Hermione, indeed significantly

influences the variable of interest Productive Engagement showing the potential of such

robots over a hard baseline.

2. In order to truly establish relationships between intervention types and Productive

Engagement, there is a need to refine the design of interventions in a way that the inter-

ventions are effective to some extent in surfacing learner behaviors they are explicitly

designed for. Currently, we did not see that for the reflection inducing intervention type.

3. Based on the findings and specifically what we found in terms of interventions and

their relation or lack of relation with the PE score, we hypothesize that timing could be

extremely crucial to define this relationship. Specifically, in Harry, the interventions
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effects seem to even out while for Hermione, the interventions that had a good timing

or were more effective accumulated their positive effect while the ones that were badly

timed accumulated a negative effect on the PE score.

With this chapter, we close the loop by evaluating the effect of robots, endowed with vari-

ous levels of understanding of Productive Engagement, on the learning of the students in

our collaborative activity. In the upcoming chapters, we synthesize the main findings and

contributions of this thesis, as well as the ongoing and future work.
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8 Broadening The Horizon

At the end of the previous chapter, we hinted at some intended future work in regards to

extending our understanding of Productive Engagement, and its possible refinements. In

this chapter, we briefly discuss some expansions related to this thesis. More specifically we

broaden our understanding on the two branches: 1) when the robot should intervene or 2)

how the robot should intervene. In total, there are three ideas (listed below) covered in this

chapter where the first two relate with point (1) and the last with point (2):

• An alternate design for the robot Hermione,

• Personalization models for productive engagement, and

• Incorporating personality in an educational robot.

8.1 An Alternate Design for the robot Hermione

In Chapter 6, with the PE score, we showed one possible way to construct a metric for the

assessment of the Productive Engagement, i.e., a way to link learner’s behaviors with learning.

Then, in Chapter 4, we identified aggregate learner profiles. Together, the score and the profiles

were used to design an action selection strategy for Hermione in Chapter 7. We observed

that the PE score based system worked in some ways while still surfacing some shortcomings

or needed refinements. In our ongoing effort, we are working towards building an alternate

system with a focus on a new action selection strategy for the robot Hermione (the what

and when robot). This alternate system makes use of a non-Productive Engagement score,

thereafter referred to as nPE score, that is constructed using an HMM based methodology.

This methodology is inspired by the outcomes of Chapter 5 in this thesis where HMM based

temporal profiles were built for the three group of learners. To differentiate the Hermione

robot previously discussed and the robot making use of this new system, we will refer to the

robot here as Snape. Theoretically, while the intentions of the robot Snape are good just like

Hermione, its actions are triggered by the presence of unproductive events.
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This system differs in several ways from the already designed and evaluated strategy for

Hermione:

1. In the PE based system, the speech generates the PE score and then the log features

generate the profiles that are then used to intervene accordingly. In the alternate system,

the speech and log features together generate a hidden state, and looking at a sequence

of hidden states, the system intervenes accordingly. In short, we employ an HMM based

technique that generates a current hidden state, given the team’s behaviors.

2. Instead of looking at the PE score as a deciding factor for intervening, the system relies

on an nPE score, proposed in this ongoing work. We consider the nPE score as another

metric for characterizing Productive Engagement in addition to the PE labels and the PE

score. Based on a particular sequence of unproductive states, a non-Productive Engage-

ment score is incremented and eventually leads to an intervention (more details later).

Therefore, the actions of a robot incorporating an nPE score based system are triggered

by the presence of unproductive events while the actions of a robot incorporating a PE

score based system are triggered by the absence of productive events.

These differences in how the system utilizes speech and log information form the motivation

behind the new strategy. In particular, we are interested to investigate:

• How does a robot incorporating this alternate system, alongside the when aspect like

Hermione, affect the children’s learning?

• And how effective are its interventions?

• How similar and dissimilar are the two systems (PE and nPE based) in terms of inducing

interventions? , i.e., how do the two systems validate and complement each other?

8.1.1 Construction of the nPE score

The nPE score is aimed at looking for patterns, a sequence of states, that are indicative of

possible unproductiveness. To begin, we use our publicly available dataset PE-HRI-Temporal

(Nasir, Bruno, & Dillenbourg, 2021a) as the training data just like for Hermione. Here, without

going into details, we will briefly highlight the analysis methodology that leads to the construc-

tion of the nPE score. We briefly walk through the steps shown in a flow diagram in Figure

8.1:

• steps 1 and 2: First of all, we train an HMM using speech and log features to obtain the

set of observations emitted at each state. Similar to our results in Chapter 5, 3 hidden

states exist that could be interpreted as an unproductive state, a global problem solving

strategy state, a local problem solving strategy state.
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• steps 3, 4, and 5: Upon inspecting patterns of state transitions of length 6 (pertaining to

one minute) using sequence mining and frequency analysis, we identify some patterns

that are significantly more present among the non-gainers (p-values < 0.01) than in

the gainer teams while some patterns only exist for the non-gainers. We notice that

most of such patterns of state transitions that were more prevalent or only existing

for non-gainers include the unproductive state (low communication, low exploration,

low reflection). Another interesting observation we make is in terms of when such

patterns appear. We observe that at the very beginning of the interaction, both gainers

and non-gainers have very similar distribution of these patterns which then changes

drastically for the gainers particularly after 3 minutes into the interaction. However, the

non-gainers still display such patterns. Please note that the aforementioned choice of

one minute is arbitrary and based on having an appropriate time period that neither

corresponds to a very short period nor a very long phase of interaction.

• steps 6: As a further step, we study the effect of such patterns on the learning gains. We

do a regression analysis, using Ordinary Least Square (OLS) method, with the total num-

ber of occurrences of all significant patterns as the predictor and each of the learning

gains as the outcome. We observe that the total number of occurrences explains around

20% of the variance in each learning gain and has a negative, statistically significant

coefficient (with all p-values < 0.01). We then perform regression for each individual

pattern and observe similar results for 8 particular patterns in terms of explaining the

variance and having negative significant coefficient. We term these 8 patterns as the

particularly significant patterns.

Based on this analysis, we define an nPE score that is an alternate metric to characterize being

productively engaged. In short, the score starts at zero and it updates as follows: 1) For each

occurrence of a particularly significant pattern (the 8 patterns), the score is incremented by

the sum of the significant coefficients of its OLS models, 2) For each occurrence of other

significant patterns, the score is incremented by the sum of the coefficients of the global

OLS model. Since the coefficients are negative as the correlation between these patterns and

learning gain is negative, the score is thus negative. This means the smaller the score gets, the

less productively engaged the team is gauged to be.

The robot Snape aims at minimizing the absolute value of the nPE score in real-time, i.e., will

try to bring the nPE score towards zero. For that, the robot intervenes when the score of the

team drops below a certain threshold τnPE . This is a dynamic threshold generated as the

weighted average of the average nPE score of the gainer teams at each time window and that of

the non-gainer teams from the training data.

8.1.2 nPE based real-time Control Architecture for Snape

The real-time control architecture for Snape, based on ROS, consists of three main phases that

briefly are:
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1 2

3  4 5

6

Figure 8.1: The analysis methodology that led to the construction of the nPE score

1. A preprocessing phase: Every 10 seconds, with the log and speech features as inputs,

the current hidden state is generated for the team.

2. An nPE update phase: The current hidden state is buffered until 60 seconds giving us a

pattern of 6 hidden states. The pattern is compared against the significant patterns and

if it is one of the significant patterns, the nPE score is updated as explained previously.

Following that, if the updated score is below τnPE , an intervention is triggered.

3. An intervention phase: The pool of interventions consists of suggestions intended to

increase learner behaviors found to be lacking in the unproductive state. These include

the behaviors of addition of edges, looking at their past solutions, and communicating

with each other. We employed an exploration-exploitation policy where an intervention

is chosen based on the outcome of a Bernoulli trial with a probability of exploration.

When the trial is successful, the intervention is chosen randomly among all possible

interventions; however, when the trial is a failure, the intervention with the highest

weight is chosen. The weight for an intervention is updated based on the effect it has on

the slope of the nPE score in the two minutes before and after the intervention. After the

execution of an intervention by Snape, the score is reset to 0.

8.1.3 Pilot Study

We conducted a pilot study at an international school in Switzerland with 22 children aged 9 to

12 years, divided into teams of 2 (shown in Figure 8.2). One team is omitted from the analysis

due to technical problems during the experiment. The resulting dataset consists of 10 teams,
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Figure 8.2: Children interacting with JUSThink-Pro along with the Snape robot at a Swiss
school

totaling 20 children (7 females: M=10.14, SD=0.69; 13 males: M=10.53, SD=0.77).

8.1.4 Preliminary Results

Currently, we are in the process of analyzing the data. Some of our preliminary observations

are:

1. Indeed, as seen when designing the nPE based system, the number of occurrences

of the significant patterns is negatively correlated with the relative and joint learning

gains with marginal significance (p-values = 0.08 and 0.07, respectively). This provides

validation for the nPE score.

2. The effectiveness of interventions in terms of inducing the desired behavior is 40%, 70%,

and 57% for the type exploration inducing, reflection inducing, and communication

inducing interventions, respectively. Thus all of the interventions at least had an effect

more than 40% of the time. Unlike with Hermione, the pool of reflection inducing

interventions only include T_hist inducing suggestions for Snape as the unproductive

state in this data driven methodology dictated that.

3. One very interesting observation is that all interventions together increase speech in

54% of the cases, speech overlap in 50% of the cases, and reduce the long pauses in

34% of the cases. These behaviors are exactly what defined the PE score in Chapter 6

where both speech and speech overlap had a positive effect on the PE score and the long

pauses had a negative effect on the PE score.

4. Another observation of note is related to a comparison between teams that interacted

with Ron in the Ron study (baseline study for the thesis) and the teams that interacted

with Snape in this study. For the teams from the Ron and Snape study matched based

on propensity score formed on their pre-test scores: the median of the post-test scores

and all the learning gains is higher for the teams from the Snape study. For post-test

scores, the difference is marginally significant at p-value = 0.09 with a Kruskal Wallis test.

However, none of the differences for learning gains are significant.
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Apart from an ongoing in-depth analysis, for the future we envision a larger user study possibly

with a comparison between Hermione and Snape.

This work is a collaborative effort with Mortadha Abderrahim who the author of this thesis

supervised both in their bachelor’s semester project as well as in their role at the lab as a

Research Fellow. This work is under preparation for a publication.

8.2 Personalization models for Productive Engagement

The line of research this thesis focused on was more on equipping robots with the ability to

infer whether the learners are engaged in the learning activity at hand. Another popular line

of research in educational Human Robot Interaction (HRI) and Intelligent Tutoring Systems

(ITS) is to use robots in order to personalize learning strategies to needs of an individual in

order to cater for the learning goal as not everyone learns in the same way (Cordova & Lepper,

1996; Leyzberg et al., 2014; Ramachandran et al., 2017). We believe engagement modelling

goes hand in hand with personalization as the better the robot is aware about the students

individual characteristics, the better it can detect the engagement state of the learners, which

itself can be manifested in several ways. Similarly, the better this engagement state is inferred,

the better personalized learning interactions the robot can offer.

In this collaborative work, we propose and compare personalized models for Productive

Engagement recognition. Briefly, we use the aggregated profiles and the PE score, from the

thesis, within an AutoML deep learning framework to personalize Productive Engagement

models.

We investigate two approaches for this purpose: (1) Single-task Deep Neural Architecture

Search (ST-NAS), and (2) Multitask NAS (MT-NAS). In the former approach, personalized

models for each learner profile are learned from multimodal features and compared to non-

personalized models. In the latter approach, we investigate whether jointly classifying the

learners’ profiles with the engagement score through multi-task learning would serve as an

implicit personalization of the productive engagement. Moreover, we compare the predictive

power of the two types of features in our dataset: incremental and non-incremental features.

8.2.1 Methodology

Generally, the methodology consists of three steps starting from learner’s profiling, followed

by feature extraction, and eventually then the use of an efficient neural architecture system

(ENAS) as shown in the Figure 8.3 (taken from (Vikashini et al., 2022)).

The learner’s profiling comes from the profiles we have generated in our work in this thesis

and the extracted features are those log, speech, facial expressions, and gaze features that are

available in the PE-HRI-Temporal dataset (Nasir, Bruno, & Dillenbourg, 2021a), also generated

in this thesis. For the last step, as mentioned at the begining of this section, we either have
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Learning Gain

Log Features

Affective States

Attention (Gaze)

Video Features

Exploration 
(Did Action on Map)

Reflection 
(Opened History)

Usability Confusion 
(Opened Manual)

Communication 
(Speech, Pauses)

Audio Features

Learner Profiling
1. Expressive Explorers 

(EE)    — type 1 gainers
2. Calm Tinkerers (CT)            

— type 2 gainers
3. Silent Wanderers (SW)        

— non-gainers

Efficient Neural 
Architecture Search

Productive 
Engagement 

Score

Figure 8.3: The general architecture for the personalization models for Productive Engagement
starting with learner’s profile, feature extraction, and then efficient neural architecture system

profile level personalization (ST-NAS) or multi-task learning personalization (MT-NAS).

In profile level personalization, for a sub-set of the original dataset corresponding to each

learner profile, an adaptive neural architecture is automatically designed and trained using

an efficient neural architecture system (ENAS). In this work, we make use of the Auto-Keras

library (Jin et al., 2019).

In multi-task learning personalization, a multitask ENAS learns an adaptive model to predict

both the engagement score as well as the profiles of the learners. This means it implicitly uses

the information of the profiles while learning to predict the PE score due to the property of

weight sharing.

8.2.2 Initial Results

Briefly, our experimental results show that:

1. Personalized models improve the recognition performance with respect to non-personalized

models when training models for the gainer vs. non-gainer groups,

2. Multitask NAS (implicit personalization) also outperforms non-personalized models

3. The speech modality has high contribution towards prediction

4. Non-incremental features outperform the incremental ones overall

For future work, the idea is to explore the direction of comparing with other personalized

strategies, such as those based on SVMs like Selective Transfer Machines.

This work is a collaborative effort with Hanan Salam, Vetha Vikashini, and Oya Celiktutan with

whom the following paper is accepted at ICMI, 2022:
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H. Salam, V. Vikashini, J. Nasir, B. Bruno, and O. Celiktutan.“Personalized Productive Engage-

ment Recognition in Robot-Mediated Collaborative Learning". accepted in the 24th ACM

International Conference on Multimodal Interaction (ICMI), 2022 (Vikashini et al., 2022).

8.3 Incorporating Personality in an Educational Robot

Our personality, at some level, has the power to affect how people perceive us. This perception

can then directly change people’s level of attention, engagement and trust in what we have to

say and how people react to each other in social settings (Driskell et al., 2006; Peeters et al.,

2006). This becomes especially critical in positions of responsibility, such as human/robot

teachers/tutors, where their personality may translate into their pedagogical strategy and

hence, influence the learning process for a child.

On this note, previous research has suggested that indeed the personality of a robot can

influence the quality of human-robot interaction (Kiderle et al., 2021; Robert et al., 2020).

While the most commonly employed robot personality is considered to be an extroverted

personality (Robert et al., 2020; Speranza et al., 2020; Staffa et al., 2021), in the context of

educational HRI, we believe that some other examples of a strong robot personality, inspired

by psychology and learning theories, can include: an adversarial robot that induces conflict

among the team members as a way to raise the cognitive load of the students or a Socratic robot

that asks questions for the same purpose of increasing the cognitive load of the students or a

Supportive robot with excessive positive reinforcements to motivate the students towards the

learning process. Currently, most robots in educational HRI seem to embody the Supportive

personality.

In our ongoing work, we are interested to endow robots with adversarial and socratic person-

alities in the context of JUSThink as the two personalities represent two different approaches

in learning. The adversarial robot disagrees with the students and has a clear idea of what the

students should do instead. Thus its suggestions challenge the opinion of the students, so

that they can think back on their solution and choose to keep it, or to move towards the other

opinion. The adversarial personality in our work is inspired by cognitive psychology, and in

particular, in the Cognitive Load Theory (Sweller, 2011). This term refers to the amount of

working memory resources used when learning. We can differentiate three types of cognitive

load.

• The Intrinsic cognitive load: It is induced by the difficulty of the task, and therefore, it

cannot be influenced by the teaching methods.

• The Extraneous cognitive load: It is precisely generated by the teaching method itself, so

it varies depending on how the information is presented to the learner.

• The Germane cognitive load: It is the result of the effort that is put into creating a mental

schema, when students are aware of what they just learned, and are able to link it with
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Figure 8.4: Comparison matrix between the 3 personalities’ suggestions

Figure 8.5: Description of the personalities in terms of the OCEAN traits

the information of their long time memory.

The fact that the adversarial suggestions are very clear and induce a critical reflection of the

students about their own choices may decrease the extraneous cognitive load while increasing

the germane cognitive load. It has been shown that raising the germane load also improves

learning. Another way of increasing this cognitive load is by using the socratic questioning

(Carey & Mullan, 2004), named after Socrates. This is an educational method that focuses on

discovering answers by asking questions to students, and our socratic robot is directly inspired

by this method. In an educational setting, it would entail questioning the students, so that

they become aware of their non-understanding of a problem, and to be able to start finding

solutions to the problem at hand.

So our broader research question in this direction is: How do the two personalities differ in

terms of their effect on the learning gain of the students, in-task performance of the student, the

student’s perception of the robot’s suggestions and other characteristics as well as the students

trust in the robot and engagement in the activity?
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Figure 8.6: Examples of the suggestions for each robot personalities

8.3.1 Methodology

For designing the two personalities, we make use of the two matrices as shown in Figures 8.4

and 8.5. Without going into the details, the first matrix is inspired directly by the brief literature

we discussed above on the very different pedagogical ways in which a robot can declare a

problem, and orient the participants in the right direction to correct the situation. The second

matrix is adapted from the Big Five personality traits (OCEAN traits) which is widely used to

describe human personality traits. Briefly, this means that the designed adversarial robot

is straightforward, strongly opinionated, extroverted, and expresses its opinion in the form

of a disagreement. On the other hand, the socratic robot is cooperative, not opinionated,

extroverted, vague as it does not explicitly advice the participants on what to do but rather

asks questions, and expresses itself in a positive/agreeable manner.

The two robots are incorporated in the JUSThink-Pro platform where they have the same

action selection technique as that for Harry. Some examples of the suggestions given by the

two robots are shown in Table 8.6.

Validation Study

Before conducting a preliminary user study, we conducted an independent online validation

study. This was to ensure that people can clearly differentiate the two robots, i.e., making

the upcoming comparative user study meaningful. For the validation study, we created an

online form where the two robots, namely Kauri and Zuri, corresponding to the socratic and

adversarial personalities, were presented and described. Then in the context of the JUSThink-

Pro setup which was also explained in the form, 10 short videos of the robots, 5 each, with the
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Figure 8.8: Adults interacting with JUSThink-Pro at EPFL

robot giving a suggestion, were shown to the participants in a random order. For each video,

the participants had to select which robot they thought they saw in the video: Kauri or Zuri.

As a result of publishing the study online for relevant communities, we received 57 responses

with participants ages ranging between 15 to 55 years old. The percentage of correct answers

in the form varied between 54.4 % and 86 % depending on the suggestions presented. Thus,

for all the suggestions most of the participants recognized the personality well. A confusion

matrix is also shown in Figure 8.7 that highlights an interesting observation: the adversarial

robot Zuri is guessed correctly much more than the socratic robot Kauri. This may suggest

that designing a socratic personality may be relatively less straightforward.

Predicted

Kauri Zuri

Actual Kauri 196 (68 %) 94 (32 %)

Zuri 53 (18 %) 237 (82 %)

Figure 8.7: Confusion matrix for the recognition of Kauri and Zuri (N = 290)

8.3.2 User study with Adults

Due to the limitations caused by the pandemic and the time constraints of the student project

within which this work was conducted, we targeted students from EPFL computer science

department. We had a total of 40 participants, i.e. 20 teams. Of these, 45% participants were

women and the overall average age was 23.3 years. Due to data incompleteness, we had to

discard 4 teams leaving us with 16 teams. The study was setup in an open space in the Rolex

Learning Center on EPFL campus as shown in Figure 8.8.

8.3.3 Results

Briefly, when performing a statistical analysis using Kruskal Wallis to compare differences

between the two robot groups, we did not find any statistically significant differences (see
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Figure 8.9). It is however interesting to notice that some p-values are quite low especially for

the parameters concerning the perception of the participants in terms of distraction and social

trust. Contrary to our expectations, socratic robot was perceived to be more distracting while

on the other hand the adversarial robot was perceived to be more trustworthy in terms of

social trust.

Figure 8.9: Matrix showing p-values obtained with Kruskal Wallis test for each parameter

Wrapping up, as opposed to our hypothesis, there were no significant differences between the

two robot conditions. It is therefore possible that the two personalities do not influence the

metrics under question differently. However, there are a few factors that should be considered:

1) The study was suppose to be with children aged between 9 to 14 years old as the JUSThink-

Pro platform is designed with that age range in mind, 2) The number of participants is limited

for a stronger statistical analysis. As a future work, we plan to conduct a study with a larger

group of younger participants which could allow for a better and a more intended comparative

analysis.

This work, which is currently unpublished, is done with William Ouensanga who was super-

vised by the author of this thesis for their bachelor’s semester project.
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9.1 Overview

This thesis investigated the relationship between learning and engagement, in robot-mediated

learning activities. More precisely, we (i) delved deep in learning analytics, machine learn-

ing and statistical methods, to identify and quantify the relationship between learning and

engagement, which we termed as Productive Engagement (PE), (ii) designed and developed

a framework for the robot’s real-time autonomous monitoring of Productive Engagement,

selection and execution of appropriate interventions, (iii) validated the effects of such a frame-

work in multiple user studies for which we (iv) designed and developed a robot-mediated,

open-ended collaborative learning activity aiming to help children hone their computational

thinking skills.

To this end, in Chapter 1, we began with understanding the challenges in the current state of

the art in terms of modelling learners’ engagement and its manipulation by an autonomous

robot/agent. Among them, we focused on four challenges in this thesis, listing them here

again for convenience:

• C1: While it is often assumed that engagement and learning have a linear relationship,

this is not proven

• C2: Many automatic models of engagement rely on human annotators and often suffer

from low inter- and intra-rater agreement because of the subjective nature of this

construct

• C3: Open-ended learning environments typically envision failure as a means towards

learning and do not allow for using the straightforward in-task performance metrics as

measures for learning, at least, not in a linear or monotonic way.

• C4: Learning happens in real-time and cannot wait just because the sensors or the

robot need more time. As a consequence, reliable and fast real-time assessment of the

students’ learning is crucial
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With these challenges in mind, we formulated four broad research questions that paved the

path of this work:

1. Research Question 1: Given the learners behavioral patterns, can we reveal a quantita-

tive relationship that links them to learning?

2. Research Question 2: Which human behaviors are predictive of learning and how?

3. Research Question 3: Can we build representations of engagement using the behaviors

identified in RQ2 that can then be used for its detection in real-time?

4. Research Question 4: How can a robot make use of these representations to induce the

relevant behaviors, found as a result of RQ2, in the learners?

In the remainder of this section, we briefly revisit the research work in each of the previous

chapters and highlight how they contribute to each of the aforementioned challenges and

research questions. In order to develop, design and evaluate our Productive Engagement

framework, we started off with building a rich robot mediated collaborative learning activity,

JUSThink, in Chapter 2. The choice to have two users in our setting, introducing social

engagement with a human, was because we wanted to grasp all facets of engagement, since

we did not know a priori which ones would better relate to learning. The activity itself was

designed with the goal to hone the computational thinking skills as well as collaborative

skills of the learners. For the former, the activity presents a Minimum Spanning Tree (MST)

problem implicitly as an optimization problem where the learners need to connect gold mines

with rail-tracks by spending as little money as possible in a fictional scenario situated in

Switzerland. For the latter, the activity incorporates a collaborative script in the design of

the activity that enforces collaboration through the choice of partial information and role

switching among other features. The collaborative script was motivated by our own previous

iteration of a collaborative design activity Cellulo City and a user study with it that highlighted

the implications the design of an activity has on enforcing collaboration: one cannot merely

put two students together and expect them to collaborate.

Within the JUSThink platform, we then introduced the robot Ron who was intended to only in-

tervene to automate the activity and to give some basic motivational support, without causing

unnecessary distractions. We took our system to two schools in Switzerland where 98 students

interacted with the system. With this Ron study, we showed that in-task performance and

learning are not correlated, and despite Ron’s rudimentary behaviour, participants perceived

it as highly competent, intelligent, friendly, likeable, not distracting, and reported not feeling

a need for more feedback from the robot. Linking to C3, the lack of correlation between

learning and performance metrics highlighted the importance of moving away from robot

interventions that affect (and refer to) only superficial measures of students’ learning, e.g.

in-task performance. Instead, it emphasized on focusing on learner’s behavioural patterns

that could more solidly indicate whether participants would end up learning or not.
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The JUSThink platform then served as the basis for all our future studies as well as the multi-

modal data collected in the Ron study served as the basis for several kinds of analyses. The

collected data was also made available openly and publicly in the form of two datasets.

Specifically, with regards to C1 and RQ1, we moved on to formally define and validate the

concept of Productive Engagement in Chapter 3. For the purpose of defining it, we drew inspi-

ration from engagement literature from both perspectives of HRI and Multi-modal Learning

Analytics (MLA). From the multi-modal data collected in the Ron study, we extracted several

behavioral features (log, speech, facial and gaze) using open-source tools like OpenFace and

Google WebRTC VAD. With these behavioral features, we validated the proposed concept

via a forward-backward clustering technique, that was discussed in the same chapter. This

technique allowed to observe whether the teams cluster similarly in terms of their learning

and performance and in terms of their behaviors. In terms of learning and performance, we

saw four types of clusters emerge: Productive Success, Productive Failure, non-Productive

Success, non-Productive Failure. With regards to behaviors, we observed three clusters. Upon

performing a similarity analysis between the two cluster types in terms of the teams they

shared, we showed that it is possible to compute an approximation of user engagement in a

data driven manner and that the operationalization of engagement obtained preserves the

link with user learning, i.e., Productive Engagement was validated.

For a robot to make effective interventions, i.e., to know what behaviors should be encouraged

in the learners and when, we needed to dive deeper into what multi-modal behavioral sets

were found to be associated with higher learning in Chapter 3. Hence, in Chapter 4, we

extended our forward-backward clustering technique to forward-backward clustering and

classification technique to identify multi-modal behavioral profiles of collaborative learning

in constructivist activities. This work that consisted of the aforementioned quantitative

technique as well as interaction analysis, a qualitative technique, specifically targeted RQ2 and

C2. The quantitative approach allowed: 1) to build the multi-modal behavioral profiles for each

group of learners, 2) to take into account that teams with similar learning and performance

might actually exhibit two or more different sets of behaviors, and 3) the use of cluster labels as

ground truth for classifiers, thus, allowing for methods that are devoid of human intervention.

On the other hand, the qualitative approach allowed us to better interpret the multi-modal

profiles and understand the learning mechanisms at play within each group of learners.

Our classification results showed that the use of multi-modal behavioural labels, i.e., PE labels,

proven solidly linked with learning, seem to allow for a better discrimination between high and

low gainers than the direct use of learning labels. With our methodology, we found two types

of gainer profiles and one type of non-gainer profile that we termed as Expressive Explorers,

Calm Tinkerers, and Silent Wanderers, respectively. While the two gainers types differed from

the non-gainers in terms of their speech behaviors, the two types of gainers differed from each

other based on their problem solving strategies (local vs global) as well as their emotional

expressivity. Among other results, one of the most important findings of this work was that

verbal interaction, not just in terms of amount of speech but also overlap of speech between

175



Chapter 9. Synthesis

team members, in a constructivist collaborative activity emerges to be a discriminatory factor

between gainers and non-gainers. Furthermore, we discovered that there exists a relationship

between the type of problem-solving strategy and emotional expressivity, that can discriminate

multiple ways of achieving the learning goal.

As this analysis led us to gather some insights for RQ2 while tackling C2, we realized that

the temporal aspect of the learning process cannot be ignored. Therefore, we advanced our

understanding of the process of learning in our particular context by focusing on temporal data

from the Ron study in Chapter 5. We employed a multi-modal Hidden Markov Model (HMM)

based methodology, with 4676 datapoints, to investigate the temporal learning processes

of the gainers and non-gainers profiles identified earlier. The temporal analysis allowed for

additional insights w.r.t. the previous findings: 1) that the gainer groups actually shifted back

and forth between the two problem solving strategies, each characterized by both exploratory

and reflective actions, 2) a particular affect is not strictly associated with a type of problem

solving strategy but it also depends on the phase of the activity, i.e., irrespective of the strategy,

the negative emotions increase towards the later stages of the activity.

Our work also offered a complementary view of how collaborative open-ended problem-

solving proceeds, in terms of problem-solving strategies (local vs global) rather than problem-

solving phases (exploring, formulating, planning and monitoring). The global problem solving

strategy can be considered as one in which planning, exploring, formulating and monitoring

happens on the scale of the entire problem. The local problem solving strategy is one in

which the planning, exploring, formulating and monitoring happens on the scale of the next

step towards the solution. Our work thus adds to CSCL literature by suggesting that learners

seamlessly intertwine these two strategies in their productive collaborative problem-solving,

and that neither is at the outset “better” than the other.

While Chapters 3-5 focused on defining, validating and identifying Productive Engagement in

a collaborative robot-mediated context, in order for a robot to assess Productive Engagement

in real-time, it was necessary to build representations of such engagement of the learners

with least computational resources, for example, sensors or modalities. Hence, our focus

shifted to RQ3, C4 and again C2. In Chapter 6, we first investigated how real-time metrics

allowing a robot to assess whether learners are engaged in meaningful learning behaviors

can be constructed, using the Productive Engagement framework as a reference. Then, based

on that, we implemented several data-driven methodologies for the computation of such

Productive Engagement metrics, among which was the Productive Engagement score. Upon

validation of this score, defined as a weighted linear combination of previously established

discriminatory speech behaviors, we found that this score can indeed serve as an efficient,

fast and lightweight way of tracking the teams’ “Productive Engagement” state. In particular

it can do so by being the first indicator of when and whether an intervention is needed as it

has the ability to discriminate between moments that might be productively engaging versus

those that are not.
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In our view, the most important outcome from the construction of PE in terms of the PE score

was that the quantity and quality of speech was found to be sufficient for assessing Productive

Engagement, implying that we could use simpler uni-modal features instead of multi-modal

features with great computational benefits for real-time systems.

Finally, we designed the fully autonomous robots Harry and Hermione utilizing varying degrees

of insights gathered through our proposed framework in Chapter 7; thus considering RQ4.

The design of Hermione was motivated by the idea that the timing of an intervention by the

robot is equally crucial as knowing what kind of suggestions to make to the learners. Harry on

the other hand only focused on the content of the suggestions while the timing was randomly

decided; hence, it served then as a hard baseline to evaluate Hermione. Unlike most robots in

educational HRI settings whose role is defined based on having varying degrees of domain

knowledge, both of our robots were manipulated on a proposed 2d space, specifically on the

axis of knowledge about learner’s behaviors that are conducive to learning as shown in Figure

7.2.

Then with the two robots, we conducted an extensive user study with 136 students from 6

international schools in Switzerland. What we found was that both the robots led to similar

learning gains. Furthermore, Harry, the robot that randomly made suggestions only focusing

on the content, might randomly generate a ratio of the three types of interventions that, albeit

having no significant relation individually with the PE Score and being perceived less useful,

as a whole led to higher Productive Engagement. On the other hand Hermione, the robot

with a more carefully designed action strategy that specifically and consciously focuses on

the timing as well as content, has a significant relationship between the intervention types

and Productive Engagement and is perceived more useful; thus, validating its action selection

technique. However, the level of Productive Engagement induced may just not be enough for

higher learning gains.

In short, for the core of this thesis we conducted 4 iterative HRI studies globally involving ∼300

students excluding the pre-experiments, 9 international schools in Switzerland, and ∼130

hours of data collection.

9.2 Contributions

Now that we have gone through an overview of the thesis in the previous section, here we

explicitly briefly highlight some of our contributions. For details, each of the contributions

has been discussed thoroughly in the light of the related literature in the respective discussion

sections in the chapter where it is first highlighted.

This thesis lies at the intersection of two communities, namely the community of Human-

Robot Interaction (HRI), and the community of Learning Analytics (LA), particularly to multi-

modal and collaborative learning analytics communities and by extension to the community of

Computer-supported collaborative learning (CSCL). Some aspects of our work provide insights
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for all communities while other aspects are more relevant for one of them. Additionally, this

thesis tackles both the aspects of perception and behavior design for autonomous educational

robots.

Previous work on educational HRI and LA rely on the hypothesis that there is a link between

learner engagement and learning. Then, the two fields differ: while the educational HRI side

has mostly focused on investigating the relationship between the robot’s behavior and learner’s

engagement, a subset of LA literature has investigated the relation between learners behaviors

(indicative of constructs like engagement, effortful behavior, etc.) and learning. This thesis

contributes to both communities by taking a step in the direction of reuniting the two sides of

the equation: robot behavior to user engagement to user learning via proposing the concept

of Productive Engagement that emerged by investigating such domains in parallel. We believe

this conceptualization could be of interest to both communities towards understanding

engagement in various learning scenarios as well as building better skilled autonomous agents

to help induce that engagement in learners.

We contribute to the LA literature by proposing a forward and backward clustering and classifi-

cation technique to build multi-modal collaborative learning profiles of dyads as they work on

an open-ended task around interactive tabletops with a robot mediator. The proposed tech-

nique is envisioned to be applicable in other educational contexts as well as with individual or

multiple participants.

Through this technique, we identified three learner profiles that gave insights for both the

CSCL and HRI designers regarding how the various multi-modal behaviors of learners differ

among those who learn and those who don’t. In particular, we showed the most significant dis-

criminator to be the overlapping and interjecting speech between learners. Then, we showed

that those who learn exhibited two particular kinds of problem solving strategies, both of

which consisted of an exploratory and a reflective element. We also identified which interplay

between problem solving strategies and emotional expressivity may be more conducive to

learning in such a CSCL setup in addition to the more obvious behavior of speech activity.

In this direction, we also contributed by generating temporal profiles, employing a proposed

HMM-based technique, to further show how the temporal processes of the three groups

of learners evolve. This provided insights that explained further the previous outcomes as

well as gave additional outcomes that contribute to understanding the multiple pathways of

learning in an open-ended CSCL and robot-mediated environment, and provide actionable

insights for designing effective interventions. We showed that learners alternate between

both problem solving strategies over the course of their interaction instead of sticking to one

strategy; however, non-gainers lack reflective behaviors in both the problem solving strategies.

Additionally, affect is not only influenced by the learner’s problem solving strategy but also the

phase of the activity.

Another contribution of the forward and backward clustering and classification technique is

that it gives a possibility to surface data driven labels for engagement; thus, circumventing
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the tedious and often subjective process of human annotations. Hence, it contributes to both

the fields of HRI and LA in the direction of building data driven machine learning models

that can make it easier to be more objective in decision making. In the same direction, the

construction process of the simplistic PE Score also contributes in the same way. While on the

one hand, it can be used as an assessment metric directly, on the other hand, it can also be

used as data driven labels for building more sophisticated regression models.

Then, with the design of our three robots Ron, Harry, Hermione, we provided a complementary

perspective to the two communities (HRI and LA) regarding the role of educational social

robots. In this regard, this thesis demonstrated a proof of concept by designing a fully au-

tonomous skilled ignorant peer in the form of Hermione, i.e., a robot that is ignorant about

domain knowledge but is aware of: 1) the skills needed to navigate successfully through the

exploratory collaborative learning space as well as 2) the state of the learner. A study con-

ducted with such a robot aware of what to suggest and when to suggest versus a baseline robot

demonstrated the potential of a more intentional robot action selection strategy in terms of

manipulating the variable of interest, i.e., Productive Engagement in this case.

Furthermore, we contribute by the design from scratch of our experimental platform JUS-

Think, incorporating a collaboration script, for enhancing the computational thinking as

well as collaboration skills of learners. Additionally, it serves as a platform for the design and

development of autonomous educational robots. While this thesis utilizes the platform to

build robots with a particular skill set, it can be used to develop and evaluate other robot

skills as well. For instance, my colleague Utku Norman, who was involved in the design of

this original platform, has used derivations of the same platform for developing and testing

mutual modelling skills of a robot (Norman et al., 2022; Norman, Dinkar, Bruno, et al., 2021).

With the same platform, we are also currently working in the direction of designing robot

personalities and investigating their pedagogical effects (see 8).

Moreover, as established by the underlying motivation of this thesis, perceiving certain sub-

jective constructs such as what being engaged in the learning process looks like is not straight

forward even for domain experts and is often prone to subjectivity. This is where data driven

machine learning methods can provide more objective representations, the understanding of

which can then be used by domain experts to select appropriate robot interventions to drive

the robot policy. Most of the times, the domain expert is responsible both for perceiving the en-

vironment as well as intervening in the learning scenario as one would envision a future robot

to be, for example, as in the end to end Participatory Design (PD) methodology in HRI (Winkle

et al., 2021). Our iterative methodology demonstrates how the use of machine learning can be

used to complement the skills of domain experts so that the automation part (transparent AI)

takes care of the perception and the human expert takes care of the intervention side. Ironically

the same human characteristics that can make them subjective on the perception side would

allow them to be more empathic and well-rounded on the intervention side.

Lastly, the thesis contributed to open science practices by publishing the data utilized for the
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bulk of our thesis in the form of two open-source datasets (Nasir, Bruno, & Dillenbourg, 2021b;

Nasir et al., 2020a). These datasets can be relevant, but are not limited in use, for researchers

from all the aforementioned communities that are looking to explore/validate theoretical

models of engagement in learning scenarios. There are already two ongoing collaborations that

stemmed out from these datasets with Hanan Salam at the Smart Lab at New York University

Abu Dhabi together with Oya Celiktutan at the Center for Robotics Research at King’s College

London, and the other collaboration with Justine Cassell at Articulabo at INRIA, Paris, France.

9.3 Take-aways

With the contributions of this thesis in mind, our achievements as well as failures, we list down

some of the take-aways for the intended communities:

• When building autonomous robots for educational purposes, there is a need for more

systematic data driven investigation to:

– understand the relationship between a learner’s engagement and learning. Possi-

bly, this can start with data collection in the intended context with a baseline robot

that carries as little assumptions in its behaviors as possible.

– move away from human annotated labels in order to create less subjective and less

biased models of automatic assessment.

• In exploratory/constructivist learning scenarios, the assessment of learner’s states such

as engagement, motivation, effort, etc. should not be limited to relatively superficial

measures of in-task performance.

• The possibility of multiple sets of very varied learner behaviors associated with the same

learning profile (high or low learning) should be considered when designing pedagogical

interventions.

• Seemingly negative behaviours, such as interjecting speech and negative emotions,

should not be dismissed as having a negative influence on the learning process without

experimental proof.

• While multi-modal behaviors can provide a better understanding of the underlying

learning mechanisms, not all modalities useful for understanding learning might be

necessary for assessing learning in real-time. In short, trade-offs should be considered

between accuracy and fast/lighter systems.

• An educational social robot can help advance learning with little to no domain knowl-

edge by focusing on the behavioral skills needed by a learner to advance in the learning

activity.

• For an educational social robot, it is as important to know when it should not intervene

as to know when it needs to intervene.

180



9.4 Limitations

• When designing action selection strategies for autonomous robots, intentional, well-

informed and conscious choices driven by data could allow for a more transparent

evaluation and interpretation of the robot’s effectiveness.

• When assessing the effectiveness of robots, perception questionnaires should be com-

plemented by data driven metrics that could objectively highlight the effect the robot’s

interventions had on the learner’s run-time behavior.

• When conducting user studies with schools, getting back to the interested schools

with a personalized feedback report on how their students performed in the study

(see appendix C for an anonymized example of such a report in the context of our

Harry and Hermione study) is, in our experience, an effective practice to increase the

transparency in educational HRI that also enhances mutual trust between researchers

and the non-roboticist stakeholders such as teachers, school directors, etc.

9.4 Limitations

This thesis in only a first step in the direction of defining, conceptualizing and constructing the

concept of Productive Engagement. This is both a strength of the thesis and also its limitation

since by no means are the current outcomes complete. As seen by our Harry and Hermione

study, we already can see some directions (see end of Chapter 7) which we may need to further

explore in order to refine the definition of Productive Engagement. More iterative studies in

other learning contexts with varied student demographics will help in this refinement process.

Additionally, our qualitative informal interviews at the end of that study (not included in

Chapter 7) revealed that when most of the students thought the robot was useful, the reason

why they thought so was ‘because it makes us think harder and gives us reminders’. This user

feedback highlights that the students do not attribute reflection explicitly to a limited set of

robot interventions but broadly to any intervention. More exploration is required in this

direction. Then, when most of the students thought the robot was not useful, the reason they

stated was ‘because it told us what we were already doing..that took time from us’. This points

to the need of the robot knowing when not to intervene even though we did incorporate this

in our current strategy; however, it needs more careful consideration. Furthermore, when

checking the effectiveness of the interventions, we only measured the learner behavior the

intervention was explicitly designed for. It is possible that the interventions may have desired

or undesired indirect effects on other learners behaviors too. This also needs to be investigated.

In this regard, we also invite the interested community to join in investigating and extending

the understanding and characterization of Productive Engagement with the eventual goal of

making the concept more robust and concrete.

Although it is an achievement in itself to do user studies with multiple schools in a time of

pandemic, some limitations need to be highlighted. To not to be allowed in-person studies for

more than an year caused a longer than planned time difference between the user studies.

Further, we must note that since the studies are done at international schools in Switzerland,
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the students are from a very specific pool coming from a certain economic and social back-

ground; hence, this requires us to be careful about the group we generalize our results on

learning profiles and on the interaction with the robot in this thesis. Beside the disruption

that the pandemic brought, we got the chance to move our setup online for one of our studies,

which albeit being challenging, seemingly a limitation, and an effort not foreseen in the plan

for the thesis; it ended up giving us a very unique experience. We conducted an online HRI

study with a physical robot in a creative zoom setup. This opened the doors for imagining

newer and more portable ways of conducting user studies in a post-COVID world as well as

with target populations that would otherwise not be an option.

Furthermore, a point that we realized early on in our Chapter 3 was that the data driven clusters

were imbalanced meaning that with our pipeline, the non-learning cluster that emerged had

lesser number of teams. Data imbalance is inherent in the real world and will inevitably

lead to skewed distributions; however machine learning algorithms are known to work best

with balanced data. Taking this into account, in order to deal with the imbalanced data, we

employed a variety of machine learning algorithms including decision trees that frequently

perform well with imbalanced data.

Another important aspect of developing educational robots is to test their effectiveness on

students learning in the long term. This is currently not a very common practice in educational

HRI and similarly is one of the limitations of this thesis too. Ideally, we would have liked to have

longitudinal studies where we would have: 1) had participants interact with our JUSThink-Pro

setup in at least two sessions separated by a week and, 2) tested their learning, Productive

Engagement, robot perception periodically over this time period and additionally a few days

after the second session to measure their retention of knowledge. However, this was not

possible due to the large amount of resources required in terms of time and effort from the

schools as well as the teachers reluctance for their students to miss multiple classes. These

concerns were already raised when arranging single session studies used in this thesis.

Furthermore, our Productive Engagement framework was only tested in the context of the

JUSThink activity. The design methodology to reach an autonomous robot equipped with

the concept of Productive Engagement required us to go through a rigorous and iterative

process over the course of this thesis to build and evaluate the autonomous robots in the same

context. However, we don’t know how Productive Engagement and the computation we put

forth for it in this thesis would generalize to other tasks and learning activities. For instance,

our task relies on a shared visual workspace which has an influence on both the problem

solving strategies and the interactions. Other tasks might not have the same characteristics.

Therefore, in the future, we would like this framework to be adopted and evaluated in other

learning activities as well as other learning contexts.
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For clustering, we utilize k-means in both approaches where the value of k is selected based

on entropy analysis. Approach A gives four clusters corresponding to high/low combinations

of learning gains and performance metric named accordingly as Productive Success (high

learning and performance), Productive Failure (high learning but low performance), non-

Productive Success (high performance but low learning), non-Productive Failure (low learning

and performance) abbreviated as PS, PF, non-PS, non-PF, respectively. On the other hand,

approach B gives 3 behavioral clusters with the first two exhibiting high learning and the third

lower learning; hence, named as type 1 gainers, type 2 gainers, and non-gainers, respectively.

When comparing the three behavioral clusters from approach B, cluster 1 and 2 both have

learning gains that are significantly higher than the learning gains exhibited by the third

behavioral cluster, while the average performance of all 3 behavioral clusters is very similar.

When comparing the similarity between the forward and the backward clusters in terms

of the teams they consist of (Figure A.1), we observe that the first two behavioral clusters

have more than 70% teams from both the Productive Failure and Productive Success groups,

while the third behavioral cluster mostly has teams from the non-Productive Failure and non-

Productive Success groups. Concretely, this implies that learners who end up with a learning

gain regardless of their performance in the task exhibit two kinds of behaviors. With the two

requirements mentioned in section 4.3.2 being met, we can proceed with the labels surfaced

from the two approaches to be used by classifiers trained on multi-modal behaviors. We

made use of two commonly used classifiers, SVM and Random Forests with our dataset (Nasir,

Norman, Bruno, Chetouani, et al., 2021). Please notice that the classifiers were trained and

tested on this newer dataset version with the two slightly modified features, hence providing

slightly different results from those reported in our paper Nasir, Bruno, and Dillenbourg, 2020.

As can be seen in Table A.1, we achieve much higher accuracy and recall on the validation and

test set with labels from approach B; thus, lending further support to our argument that this

approach is better than approach A in identifying the behavioral profiles of gainers and Silent

Wanderers.
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Figure A.1: Comparison between the clusters of the two approaches in terms of the teams they
consist of.

Table A.1: Classification Results

Classifier k-fold cross-validation test-set

Accuracy F1-score Accuracy F1-score

Approach A

SVM 0.28 0.23 0.44 0.34
RF 0.36 0.26 0.33 0.39

Approach B

SVM 0.80 0.76 0.88 0.89
RF 0.72 0.68 0.88 0.82
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Table B.1: Features’ Mean values in each of the Expressive Explorers’ states

Feature InitialState MoreProbableState LessProbableState

T_add 1.102384×10−9 3.573773×10−1 4.0838×10−2

T_ratio_add_rem 4.183066×10−9 9.999993×10−1 1.8960×10−2

T_action 3.870495×10−2 9.699460×10−2 4.4758×10−2

normalized_time 2.029434×10−1 5.387081×10−1 6.26040×10−1

Speech_Overlap 2.723118×10−1 4.758125×10−1 5.67795×10−1

Overlap_to_Speech_Ratio 5.461976×10−1 6.965724×10−1 8.04408×10−1

Speech_Activity 4.099696×10−1 5.986744×10−1 6.65616×10−1

Silence 6.541648×10−1 4.866740×10−1 4.10024×10−1

T_remove 9.325293×10−10 3.182062×10−7 1.26406×10−1

Gaze_at_Robot 4.343753×10−2 9.518764×10−3 4.5563×10−2

redundant_exist 3.763263×10−3 6.830674×10−3 2.477×10−3

T1_T1_rem 1.027991×10−17 3.735072×10−20 1.16683×10−1

Gaze_at_Partner 7.156486×10−2 6.737566×10−2 1.17361×10−1

T_help 7.807358×10−2 6.557370×10−3 1.4712×10−2

T1_T2_rem 1.478677×10−15 4.773094×10−7 4.3755×10−2

T_hist 5.047627×10−3 5.044131×10−3 1.290×10−3

Gaze_at_Screen_Right 5.915012×10−1 5.912295×10−1 5.85986×10−1

Gaze_at_Screen_Left 3.447677×10−1 3.441521×10−1 3.06201×10−1

Long_Pauses 4.414569×10−3 1.723356×10−2 2.917×10−3

Arousal 2.705875×10−1 3.101827×10−1 3.75027×10−1

Short_Pauses 1.685203×10−1 1.542912×10−1 1.16228×10−1

Negative_Valence 2.056995×10−1 2.568086×10−1 3.08619×10−1

Positive_Valence 3.375673×10−1 3.469566×10−1 4.12408×10−1

Gaze_Other 8.812433×10−2 5.841153×10−2 6.2550×10−2

T1_T2_add 0.000000 0.000000 0.000000
Difference_in_Valence 5.507043×10−1 5.013340×10−1 5.13887×10−1

T1_T1_add 0.000000 0.000000 0.000000
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Table B.2: Features’ Mean values in each of the Calm Tinkerers’ states

Feature InitialState MoreProbableState LessProbableState

T_ratio_add_rem 2.673037×10−10 1.000000 4.172444×10−3

T_add 6.682594×10−10 3.166667×10−1 1.043111×10−2

Speech_Overlap 3.282486×10−1 5.413534×10−1 5.921923×10−1

Speech_Activity 4.855440×10−1 6.827465×10−1 7.096177×10−1

Silence 5.495654×10−1 3.864979×10−1 3.520730×10−1

T_action 1.260936×10−2 5.866667×10−2 2.662700×10−2

Overlap_to_Speech_Ratio 6.216050×10−1 7.520540×10−1 7.951161×10−1

normalized_time 3.205108×10−1 5.447131×10−1 5.415407×10−1

T_remove 1.266331×10−2 3.999698×10−15 1.701398×10−2

T1_T1_rem 1.168974×10−12 8.479291×10−18 6.258666×10−2

T1_T2_rem 1.347584×10−7 2.299210×10−21 2.086218×10−2

redundant_exist 1.747415×10−3 1.458333×10−2 5.336480×10−3

Positive_Valence 3.665011×10−1 4.497916×10−1 4.121070×10−1

Arousal 3.269324×10−1 3.862492×10−1 3.702702×10−1

Gaze_at_Robot 1.162740×10−2 5.383023×10−3 1.723160×10−2

Negative_Valence 2.549870×10−1 2.911126×10−1 2.905847×10−1

T_help 1.132622×10−2 7.855360×10−22 1.394327×10−2

Gaze_at_Screen_Right 5.173883×10−1 5.228333×10−1 4.819030×10−1

Short_Pauses 6.129101×10−2 6.038230×10−2 5.266563×10−2

Difference_in_Valence 5.511903×10−1 6.026717×10−1 5.586536×10−1

Gaze_at_Partner 1.790690×10−1 1.355978×10−1 1.555657×10−1

Gaze_at_Screen_Left 4.294050×10−1 4.452297×10−1 4.510707×10−1

Long_Pauses 1.474565×10−2 9.933266×10−3 1.916058×10−3

T1_T2_add 3.027555×10−32 1.666667×10−2 9.423054×10−19

Gaze_Other 5.388054×10−2 7.411003×10−2 6.656883×10−2

T_hist 9.891350×10−3 8.333333×10−3 2.176802×10−2

T1_T1_add 0.000000 0.000000 0.000000
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Table B.3: Features’ Mean values in each of the Silent Wanderers’ states

Feature InitialState MoreProbableState LessProbableState

T_ratio_add_rem 1.312014×10−2 9.999978×10−1 6.729559×10−3

T_add 3.644306×10−2 3.281263×10−1 1.682390×10−2

Speech_Overlap 6.135501×10−2 1.679682×10−1 4.213296×10−1

Speech_Activity 2.082582×10−1 3.460734×10−1 5.755465×10−1

Overlap_to_Speech_Ratio 1.891342×10−1 3.170220×10−1 6.084412×10−1

Silence 7.586753×10−1 6.372338×10−1 4.604999×10−1

T_action 5.638728×10−2 1.191416×10−1 5.272196×10−2

normalized_time 3.157809×10−1 4.738481×10−1 7.326249×10−1

T_remove 1.092886×10−1 1.552110×10−6 1.347397×10−1

redundant_exist 3.997135×10−2 5.468935×10−2 2.257087×10−2

Gaze_at_Screen_Right 5.556238×10−1 6.204418×10−1 6.182313×10−1

Gaze_at_Screen_Left 2.746859×10−1 2.511985×10−1 2.227564×10−1

Positive_Valence 2.501105×10−1 2.826254×10−1 2.784481×10−1

T_help 3.497000×10−2 6.249981×10−3 1.707482×10−10

Gaze_at_Partner 1.141224×10−1 1.443724×10−1 1.290232×10−1

Difference_in_Valence 3.721043×10−1 3.680229×10−1 3.831570×10−1

Arousal 2.464960×10−1 3.058044×10−1 2.857545×10−1

T1_T1_rem 2.914167×10−2 1.625856×10−13 1.646490×10−12

T1_T2_rem 6.827181×10−5 4.079701×10−11 3.360833×10−2

Gaze_Other 4.831607×10−2 1.046721×10−1 5.910927×10−2

Gaze_at_Robot 8.571055×10−2 4.328244×10−2 4.276117×10−2

T1_T1_add 0.000000 0.000000 0.000000
Negative_Valence 2.408355×10−1 3.125240×10−1 2.792128×10−1

Short_Pauses 2.230099×10−1 1.495351×10−1 1.287077×10−1

T1_T2_add 5.158890×10−15 6.249980×10−2 6.094868×10−10

Long_Pauses 2.606827×10−2 6.442913×10−3 9.601131×10−3

T_hist 7.199166×10−3 2.083376×10−2 3.378669×10−2
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Table B.4: p-values from Kruskal-Wallis test on the Expressive Explorers’ states

LessProbableState- LessProbableState- MoreProbableState- LessProbableState-
Feature MoreProbableState InitialState InitialState MoreProbableState-

InitialState

T_add 6.459889×10−272 7.786821×10−7 7.321670×10−241 0.000000
T_ratio_add_rem 0.000000 8.011061×10−7 6.043280×10−301 0.000000
T_action 3.229241×10−62 1.116775×10−12 1.255941×10−128 2.724522×10−134

normalized_time 6.573843×10−13 1.588430×10−118 2.121637×10−76 2.268858×10−127

Speech_Overlap 1.823268×10−20 4.726497×10−96 4.636181×10−33 1.145578×10−91

Overlap_to_Speech_Ratio 2.359913×10−16 4.714581×10−82 2.061077×10−29 8.026889×10−78

Speech_Activity 1.878127×10−18 1.021272×10−76 9.454754×10−27 1.719850×10−74

Silence 4.052784×10−11 1.423945×10−69 4.624967×10−33 8.671185×10−69

T_remove 1.923088×10−30 8.584127×10−11 3.403098×10−8 1.086990×10−34

Gaze_at_Robot 2.408710×10−20 2.522376×10−1 1.119077×10−13 4.107882×10−21

redundant_exist 6.323133×10−13 5.619846×10−1 5.410339×10−12 5.495916×10−18

T1_T1_rem 1.071271×10−9 1.175112×10−6 NaN 7.707447×10−14

Gaze_at_Partner 8.078957×10−11 4.279389×10−8 8.546495×10−1 1.426036×10−11

T_help 5.077449×10−2 1.210030×10−5 5.427370×10−10 1.167470×10−10

T1_T2_rem 3.871818×10−7 6.822129×10−4 7.513610×10−2 2.112531×10−8

T_hist 9.259736×10−6 2.101519×10−6 3.011715×10−1 1.159495×10−7

Gaze_at_Screen_Right 3.147718×10−7 6.138099×10−2 1.809002×10−3 8.358584×10−7

Gaze_at_Screen_Left 5.380571×10−6 3.960269×10−4 6.152767×10−1 8.665531×10−6

Long_Pauses 3.314372×10−4 1.312236×10−3 9.461985×10−1 4.948046×10−4

Arousal 4.132118×10−3 4.371238×10−4 3.136678×10−1 7.750580×10−4

Short_Pauses 1.013922×10−2 2.814769×10−4 1.729218×10−1 8.445037×10−4

Negative_Valence 3.444524×10−3 5.710819×10−3 8.727249×10−1 3.942160×10−3

Positive_Valence 1.202900×10−1 8.595192×10−3 1.684401×10−1 2.711117×10−2

Gaze_Other 6.718909×10−1 6.410131×10−2 1.878263×10−2 5.268550×10−2

T1_T2_add 1.782952×10−1 NaN 2.607401×10−1 2.148112×10−1

Difference_in_Valence 1.769718×10−1 7.301056×10−1 3.636468×10−1 3.731152×10−1

T1_T1_add 7.361626×10−1 2.372005×10−1 1.682336×10−1 4.040213×10−1
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Table B.5: p-values from Kruskal-Wallis test on the Calm Tinkerers’ states

InitialState- InitialState- MoreProbableState- InitialState-
Feature MoreProbableState LessProbableState LessProbableState MoreProbableState-

LessProbableState

T_ratio_add_rem 1.046633×10−214 3.203160×10−15 1.448010×10−209 2.208200×10−300

T_add 8.825740×10−194 2.671724×10−15 1.084962×10−136 2.779006×10−241

Speech_Overlap 2.486453×10−26 1.140660×10−105 4.815798×10−22 3.079549×10−103

Speech_Activity 2.699760×10−26 4.539962×10−96 4.068440×10−19 1.789244×10−94

Silence 6.369222×10−31 1.859685×10−91 9.868460×10−16 7.739133×10−92

T_action 2.530858×10−96 9.718553×10−15 3.560970×10−28 2.236893×10−84

Overlap_to_speech_ratio 1.266769×10−19 1.470592×10−84 9.053385×10−20 1.396038×10−82

Normalized_time 9.962378×10−23 1.277583×10−57 2.040765×10−10 3.391638×10−59

T_remove 4.195097×10−14 3.443724×10−19 4.953212×10−44 3.040368×10−51

T1_T1_rem 3.566311×10−1 6.479934×10−18 4.254322×10−16 2.402922×10−30

T1_T2_rem 1.921375×10−1 1.517800×10−9 2.073554×10−9 6.086552×10−16

Redundant_exist 7.350425×10−13 2.140998×10−2 2.082055×10−7 1.988810×10−13

Positive_Valence 1.140000×10−4 8.498930×10−11 2.452327×10−2 5.318031×10−10

Arousal 5.355177×10−2 1.451686×10−9 1.509734×10−4 5.760692×10−9

Gaze_at_robot 9.302748×10−8 4.740781×10−3 4.274607×10−3 5.047403×10−7

Negative_Valence 7.412760×10−1 3.148931×10−6 3.576009×10−5 1.455941×10−6

T_help 6.274225×10−5 2.649523×10−4 3.834952×10−1 5.631461×10−6

Gaze_at_screen_right 3.407637×10−4 9.740129×10−2 3.593597×10−6 5.796425×10−6

Short_pauses 4.721115×10−3 9.175213×10−7 9.540181×10−2 6.114326×10−6

Difference_in_Valence 4.211367×10−6 6.285657×10−3 5.459578×10−2 2.763204×10−5

Gaze_at_partner 1.282025×10−1 6.511073×10−5 2.696452×10−2 3.242851×10−4

Gaze_at_screen_left 1.130881×10−3 4.568822×10−1 1.584547×10−2 4.372545×10−3

Long_pauses 6.461623×10−1 1.588477×10−2 3.468741×10−3 8.647671×10−3

T1_T2_add 4.872548×10−3 2.015286×10−2 5.295830×10−1 2.237594×10−2

Gaze_other 8.545218×10−1 8.659117×10−2 1.429300×10−1 1.664223×10−1

T_hist 7.147372×10−1 3.024626×10−1 1.804699×10−1 3.499533×10−1

T1_T1_add 8.703039×10−1 5.027353×10−1 4.142353×10−1 7.077864×10−1
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Table B.6: p-values from Kruskal-Wallis test on the Silent Wanderers’ states

InitialState- InitialState- LessProbableState- InitialState-
Feature LessProbableState MoreProbableState MoreProbableState LessProbableState-

MoreProbableState

T_ratio_add_rem 4.589301×10−1 5.220515×10−122 6.663973×10−130 5.535321×10−183

T_add 4.577846×10−1 6.010859×10−100 2.610590×10−114 2.388349×10−160

Speech_overlap 5.892624×10−97 7.100573×10−18 9.712381×10−31 2.760344×10−98

Speech_Activity 8.477783×10−90 2.493802×10−20 7.562644×10−23 1.735427×10−89

Overlap_to_speech_ratio 7.595498×10−72 3.505213×10−11 6.190938×10−30 1.645284×10−75

Silence 3.187753×10−70 1.142510×10−13 2.080269×10−19 4.649497×10−69

T_action 1.056353×10−1 3.188625×10−32 1.079551×10−44 3.200090×10−49

Normalized_time 1.518080×10−46 3.510905×10−9 5.506350×10−15 2.159810×10−46

T_remove 6.971572×10−1 1.116435×10−11 6.037973×10−11 1.127712×10−10

Redundant_exist 3.512804×10−1 1.635185×10−6 3.081867×10−9 1.046462×10−9

Gaze_at_screen_right 4.238118×10−1 2.854616×10−7 1.300446×10−5 4.386002×10−7

Gaze_at_screen_left 1.959077×10−4 2.097955×10−6 1.816661×10−1 3.475313×10−6

Positive_Valence 4.477664×10−5 8.188481×10−1 3.719569×10−5 8.771086×10−6

T_help 2.145970×10−4 4.619297×10−3 5.533612×10−1 1.305032×10−4

Gaze_at_partner 6.836966×10−5 3.239169×10−1 8.317920×10−3 2.405678×10−4

Difference_in_Valence 5.798869×10−4 7.765849×10−1 4.280245×10−3 9.162789×10−4

Arousal 3.133786×10−2 2.050905×10−1 4.771730×10−4 2.053134×10−3

T1_T1_rem 2.168625×10−1 4.151916×10−3 3.627620×10−2 1.568344×10−2

T1_T2_rem 6.483012×10−1 1.048949×10−2 4.416490×10−3 2.137952×10−2

Gaze_other 1.069325×10−2 4.460858×10−2 8.001324×10−1 2.297604×10−2

Gaze_at_robot 1.107108×10−1 8.746928×10−3 2.324421×10−1 2.894125×10−2

T1_T1_add NaN 1.155100×10−1 9.639491×10−2 7.286920×10−2

Negative_Valence 9.084048×10−1 6.888763×10−2 3.284085×10−2 8.004833×10−2

Short_pauses 3.175136×10−1 9.025873×10−2 2.226728×10−1 1.799852×10−1

T1_T2_add 5.001169×10−1 2.773726×10−1 8.430488×10−2 1.889137×10−1

Long_pauses 6.990590×10−1 1.992827×10−1 2.787486×10−1 3.964593×10−1

T_hist 3.746288×10−1 9.370430×10−1 3.645077×10−1 5.606479×10−1
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Lausanne, May 18th, 2022

EPFL JUSThink Study 1 at School - Beau Soleil Report

Dear responsible for the school College Alpin Beau Soleil,

With this report, it is our pleasure to share with you a few details about the study that
took place in March 2022 at Beau Soleil, where students in pairs interacted with our
social humanoid robot named QTrobot.

The study was part of the JUSThink project1, developed in CHILI lab at EPFL. It involves
a collaborative problem solving activity for school children, mediated by the robot (see
details [1]). The aim is to improve their computational thinking skills, by exercising ab-
stract reasoning on graphs as well as collaboration skills. The activity also serves as a
platform to build intelligent autonomous social robots that can promote childrens learning
by assisting teachers through complementary activities.

In this version of the activity called JUSThink Pro the students interacted in pairs with
each other as well as with a robot for about an hour. The learning concept underlying the
robot mediated collaborative activity is Minimum Spanning Trees that the students try to
learn through an optimization problem. They were shown a fictional map of Switzerland
with gold mines and they were asked to connect all the gold mines with rail-tracks by
spending as little money as possible. Each student alternates between two different
views (as shown below) with two different functionalities - the partial information as well
as different roles enforce collaboration by design. The robot provides suggestions to the
students on what kind of behaviors they can adopt that may help them to learn better.
The students have a choice to follow the suggestion or not. Before and after the game
play session, which is of 30 minutes, the students individually answer 10 questions on the
learning concept (pre and post test). At the very end, they also answer a questionnaire
on their self and robot perception. During the game play, they can submit a solution as
many times as they want.

1https://www.epfl.ch/labs/chili/index-html/research/animatas/justhink/
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More precisely, in this study with 6 schools and around 140 students, we evaluated the
effectiveness of two robot variants, Harry and Hermione, that try to infer, through stu-
dents’ speech behaviors as well as their actions on the activity, if the team is productively
engaged in the learning process or not and then suggests behaviors accordingly. The
robots were designed building on our research of the last three years on the concept of
Productive Engagement (see details in [2,3]). Productive Engagement (PE) is referred
to as the engagement that is conducive to learning where we validated the existence of
PE through a data driven machine learning pipeline. We observed that indeed some
behavioral profiles are linked to higher learning gains versus others using previously
collected data from several schools in Switzerland [2,3]. Specifically, we found that the
quantity and quality of speech activity between a pair is most discriminatory in separat-
ing those who learn from those who do not end up learning. Further, among those who
learn, they display two types of problem solving strategies linked with different emotional
profiles. The two robots, Harry and Hermione, acting as better-skilled peers, use differ-
ent levels of information from the outcomes of our Productive Engagement framework
to suggest behaviors to the students to help them learn better based on the speech
behavior of the team as well as their actions on the activity. Both robots use different
techniques for selecting a suggestion where out of the two, Hermione is developed with
more sophisticated decision making abilities. We divide the students randomly among
the two conditions (either they interact with Harry or with Hermione). We report on the
following metrics:

• Error in game refers to how far is the cost of the last solution found by the students
with respect to the optimal cost. A zero error indicates they successfully found the
solution.

• LG relative and LG joint refers to the learning gain of the team based on their pre-
test and post test scores. LG relative grasps how much the participant learned of
the knowledge that they did not possess before the activity (we calculate for each
student and then take the average). LG joint grasps the amount of knowledge
acquired together by the team members during the activity.

• Reflection refers to how much the team looked at their past solutions.
• Task and Social Engagement, Self Competence, Tensed refers to how the team

perceived their engagement with the task, their partner, their competence in the
activity, and their own stress levels, respectively.

• Robot Likeability, Competence Trust refers to how the team rated the robot in terms
of its likeability, and its competence, respectively.

• Suggestions Usefulness refers to how the team rated the usefulness of a sugges-
tion, after every suggestion, during the game.
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• Productive Engagement Score refers to the average students’ productive engage-
ment. Please note, the higher the score, our system considers them to be more
productively engaged.

Personalized Feedback for Beau Soleil

The school performed as follows on all the above listed metrics with respect to all the
students across all the schools. We show the results separately for the two groups,
i.e., the group with students that interacted with Harry and the group with students that
interacted with Hermione.
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1. The students at Beau Soleil, especially with the strategy adopted by Harry, seem
to have higher learning gains than the rest of the schools. This shows the po-
tentially positive effect of exploratory activities, incorporated with a carefully
designed robot, on the learning gain of the students at Beau Soleil.

2. For both cases, we observe that the social engagement displayed by the teams is
lower than the average of other schools. This motivates the need of collabora-
tive activities that could enforce and improve social engagement.

3. While with Harry, the students acheived very low errors in the game, experienced
less stress as well as rated the robot high on competence compared to other
schools; with Hermione, they achieved higher levels of productive engagement
score as well as found the suggestions more useful. This shows the importance
of having portfolio of learning activities with personalized feedback strate-
gies that target different aspects of the interaction.

The analysis of the team’s interaction with the robot is currently ongoing. Please contact
Jauwairia Nasir (jauwairia.nasir@epfl.ch) if you wish to be informed of the results of the
analysis or if you have any question. We would be happy to share scientific publications
on this work with the schools as soon as they are published.

We immensely thank you for participating in our research.

Sincerely,

Jauwairia Nasir, on behalf of the EPFL research team
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Järvelä, S., Gašević, D., Seppänen, T., Pechenizkiy, M., & Kirschner, P. A. (2020). Bridging learn-

ing sciences, machine learning and affective computing for understanding cognition

and affect in collaborative learning. British Journal of Educational Technology, 51(6),

2391–2406.

Järvelä, S., & Hadwin, A. F. (2013). New frontiers: regulating learning in cscl. Educational

psychologist, 48(1), 25–39.

Järvelä, S., Kirschner, P. A., Hadwin, A., Järvenoja, H., Malmberg, J., Miller, M., & Laru, J.

(2016). Socially shared regulation of learning in CSCL : understanding and prompt-

ing individual- and group-level shared regulatory activities. International Journal of

Computer-Supported Collaborative Learning, 11, 263–280. https://doi.org/10.1007/

s11412-016-9238-2

Jermann, P., Mullins, D., Nüssli, M.-A., & Dillenbourg, P. (2011). Collaborative gaze footprints:

correlates of interaction quality. Connecting Computer-Supported Collaborative Learn-

ing to Policy and Practice: CSCL2011 Conference Proceedings., (CONF), 184–191.

Jermann, P., & Nüssli, M.-A. (2012). Effects of sharing text selections on gaze cross-recurrence

and interaction quality in a pair programming task. Proceedings of the ACM 2012

conference on computer supported cooperative work, 1125–1134.

Jin, H., Song, Q., & Hu, X. (2019). Auto-keras: an efficient neural architecture search system.

Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, 1946–1956.

Johal, W. (2020). Research Trends in Social Robots for Learning. Current Robotics Reports, 1,

1–9. https://doi.org/10.1007/s43154-020-00008-3

Jordan, B., Henderson, A., Jordan, B., & Henderson, A. (1995). Interaction Analysis : Founda-

tions and Practice. The Journal of the Learning Sciences, 4(1), 39–103.

Jordan, M. E., & McDaniel Jr, R. R. (2014). Managing uncertainty during collaborative problem

solving in elementary school teams: the role of peer influence in robotics engineering

206

https://doi.org/10.1007/s10639-018-9729-z
https://doi.org/10.1145/2002333.2002339
https://doi.org/10.1016/j.ijer.2016.10.006
https://doi.org/10.1080/00461520.2016.1166963
https://doi.org/10.1080/00461520.2016.1166963
https://doi.org/10.1007/s11412-016-9238-2
https://doi.org/10.1007/s11412-016-9238-2
https://doi.org/10.1007/s43154-020-00008-3


Bibliography

activity. Journal of the Learning Sciences, 23(4), 490–536. https://doi.org/10.1080/

10508406.2014.896254

Kapoor, A., & Picard, R. W. (2006). Multimodal affect recognition in learning environments,

677. https://doi.org/10.1145/1101149.1101300

Kapur, M. (2008). Productive Failure. Cognition and Instruction, 26(3), 379–424. https://doi.

org/10.1080/07370000802212669

Kapur, M. (2011). Temporality matters: advancing a method for analyzing problem-solving

processes in a computer-supported collaborative environment. International Journal

of Computer-Supported Collaborative Learning, 6(1), 39–56.

Kapur, M. (2016). Examining productive failure, productive success, unproductive failure, and

unproductive success in learning. Educational Psychologist, 51, 1–11. https://doi.org/

10.1080/00461520.2016.1155457

Kapur, M., & Bielaczyc, K. (2012). Designing for Productive Failure. Journal of the Learning

Sciences, 21(1), 45–83. https://doi.org/10.1080/10508406.2011.591717

Kapur, M., & Kinzer, C. K. (2009). Productive failure in CSCL groups. International Journal of

Computer-Supported Collaborative Learning, 4(1), 21–46. https://doi.org/10.1007/

s11412-008-9059-z

Käser, T., Klingler, S., Schwing, A. G., & Gross, M. (2017). Dynamic bayesian networks for

student modeling. IEEE Transactions on Learning Technologies, 10(4), 450–462. https:

//doi.org/10.1109/TLT.2017.2689017

Kashdan, T., & Biswas-Diener, R. (2014). The upside of your dark side: why being your whole

self–not just your "good" self–drives success and fulfillment. Penguin Publishing Group.

https://books.google.ch/books?id=C5QxAwAAQBAJ

Kauschke, C., Bahn, D., Vesker, M., & Schwarzer, G. (2019). The Role of Emotional Valence for

the Processing of Facial and Verbal Stimuli—Positivity or Negativity Bias? Frontiers in

Psychology, 10, 1654. https://doi.org/10.3389/fpsyg.2019.01654

Kiderle, T., Ritschel, H., Janowski, K., Mertes, S., Lingenfelser, F., & Andre, E. (2021). Socially-

aware personality adaptation. 2021 9th International Conference on Affective Comput-

ing and Intelligent Interaction Workshops and Demos (ACIIW), 1–8. https://doi.org/10.

1109/ACIIW52867.2021.9666197

Kim, J., Co, H., Truong, K., Evers, V., & Truong, K. P. (2016). Automatic detection of children’s

engagement using non-verbal features and ordinal learning Expressive Agents for

Symbiotic Education and Learning (EASEL) View project Squirrel (Clearing Clutter Bit

by Bit) View project Automatic detection of children’s engagement using non-verbal

features and ordinal learning. https://doi.org/10.21437/WOCCI.2016-5

Kim, J., Truong, K. P., Charisi, V., Zaga, C., Lohse, M., Heylen, D., & Evers, V. (2015). Vocal turn-

taking patterns in groups of children performing collaborative tasks : an exploratory

study. INTERSPEECH 2015, 1645–1649.

Kinnebrew, J. S., Loretz, K. M., & Biswas, G. (2013). A contextualized, differential sequence

mining method to derive students’ learning behavior patterns. Journal of Educational

Data Mining, 5(1), 190–219.

207

https://doi.org/10.1080/10508406.2014.896254
https://doi.org/10.1080/10508406.2014.896254
https://doi.org/10.1145/1101149.1101300
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/07370000802212669
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1080/00461520.2016.1155457
https://doi.org/10.1080/10508406.2011.591717
https://doi.org/10.1007/s11412-008-9059-z
https://doi.org/10.1007/s11412-008-9059-z
https://doi.org/10.1109/TLT.2017.2689017
https://doi.org/10.1109/TLT.2017.2689017
https://books.google.ch/books?id=C5QxAwAAQBAJ
https://doi.org/10.3389/fpsyg.2019.01654
https://doi.org/10.1109/ACIIW52867.2021.9666197
https://doi.org/10.1109/ACIIW52867.2021.9666197
https://doi.org/10.21437/WOCCI.2016-5


Bibliography

Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2014). Analyzing the temporal evolution of students’

behaviors in open-ended learning environments. Metacognition and Learning, 9(2),

187–215. https://doi.org/10.1007/s11409-014-9112-4

Kirschner, F., Paas, F., & Kirschner, P. A. (2011). Task complexity as a driver for collaborative

learning efficiency: The collective working-memory effect. Applied Cognitive Psychol-

ogy, 25(4), 615–624. https://doi.org/10.1002/acp.1730

Klein, J., Moon, Y., & Picard, R. (2002). This computer responds to user frustration: theory,

design, and results. Interacting with Computers, 14(2), 119–140. https://doi.org/10.

1016/S0953-5438(01)00053-4

Kollar, I., Fischer, F., & Hesse, F. (2006). Collaboration scripts – a conceptual analysis. Educa-

tional Psychology Review, 18. https://doi.org/10.1007/s10648-006-9007-2

Korb, S., With, S., Niedenthal, P., Kaiser Wehrle, S., & Grandjean, D. M. (2014). The percep-

tion and mimicry of facial movements predict judgments of smile authenticity [ID:

unige:84135]. PLOS ONE, 9(6), e99194.

Krishna, S., & Pelachaud, C. (2022). Impact of error-making peer agent behaviours in a multi-

agent shared learning interaction for self-regulated learning, 337–344. https://doi.org/

10.5220/0010881400003116

Kulíc, D., & Croft, E. (2007). Affective state estimation for human-robot interaction. IEEE

Transactions on Robotics, 23(5), 991–1000. https://doi.org/10.1109/TRO.2007.904899

Lämsä, J., Hämäläinen, R., Koskinen, P., Viiri, J., & Lampi, E. (2021). What do we do when

we analyse the temporal aspects of computer-supported collaborative learning? A

systematic literature review. Educational Research Review, 33, 100387. https://doi.org/

https://doi.org/10.1016/j.edurev.2021.100387

Lämsä, J., Hämäläinen, R., Koskinen, P., Viiri, J., & Mannonen, J. (2020). The potential of

temporal analysis: combining log data and lag sequential analysis to investigate

temporal differences between scaffolded and non-scaffolded group inquiry-based

learning processes. Computers & Education, 143, 103674. https : / / doi . org / https :

//doi.org/10.1016/j.compedu.2019.103674

Lavoué, É., Molinari, G., Prié, Y., & Khezami, S. (2015). Reflection-in-action markers for

reflection-on-action in computer-supported collaborative learning settings. Com-

puters & Education, 88, 129–142.

Leite, I., Castellano, G., Pereira, A., Martinho, C., & Paiva, A. (2014). Empathic robots for

long-term interaction. International Journal of Social Robotics, 6(3), 329–341.

Leyzberg, D., Spaulding, S., & Scassellati, B. (2014). Personalizing robot tutors to individuals’

learning differences. ACM/IEEE International Conference on Human-Robot Interaction,

423–430. https://doi.org/10.1145/2559636.2559671

Liu, R., Stamper, J. C., & Davenport, J. (2018). A Novel Method for the In-Depth Multimodal

Analysis of Student Learning Trajectories in Intelligent Tutoring Systems. Journal of

Learning Analytics, 5(1), 41–54. https://doi.org/10.18608/jla.2018.51.4

Lodge, J. M., Kennedy, G., Lockyer, L., Arguel, A., & Pachman, M. (2018). Understanding

Difficulties and Resulting Confusion in Learning: An Integrative Review. Frontiers in

Education, 3(June), 1–10. https://doi.org/10.3389/feduc.2018.00049

208

https://doi.org/10.1007/s11409-014-9112-4
https://doi.org/10.1002/acp.1730
https://doi.org/10.1016/S0953-5438(01)00053-4
https://doi.org/10.1016/S0953-5438(01)00053-4
https://doi.org/10.1007/s10648-006-9007-2
https://doi.org/10.5220/0010881400003116
https://doi.org/10.5220/0010881400003116
https://doi.org/10.1109/TRO.2007.904899
https://doi.org/https://doi.org/10.1016/j.edurev.2021.100387
https://doi.org/https://doi.org/10.1016/j.edurev.2021.100387
https://doi.org/https://doi.org/10.1016/j.compedu.2019.103674
https://doi.org/https://doi.org/10.1016/j.compedu.2019.103674
https://doi.org/10.1145/2559636.2559671
https://doi.org/10.18608/jla.2018.51.4
https://doi.org/10.3389/feduc.2018.00049


Bibliography

Loibl, K., Roll, I., & Rummel, N. (2017). Towards a Theory of When and How Problem Solving

Followed by Instruction Supports Learning. Educational Psychology Review, 29(4),

693–715. https://doi.org/10.1007/s10648-016-9379-x

Loibl, K., & Rummel, N. (2014). The impact of guidance during problem-solving prior to

instruction on students’ inventions and learning outcomes. Instructional Science,

42(3), 305–326.

Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning with

technology: a meta-analysis. Review of educational research, 71(3), 449–521.

Malmberg, J., Haataja, E., Seppänen, T., & Järvelä, S. (2019). Are we together or not? the tempo-

ral interplay of monitoring, physiological arousal and physiological synchrony during

a collaborative exam. International Journal of Computer-Supported Collaborative

Learning, 14(4), 467–490.

Malmberg, J., Järvelä, S., Holappa, J., Haataja, E., Huang, X., & Siipo, A. (2019). Going beyond

what is visible: What multichannel data can reveal about interaction in the context

of collaborative learning? Computers in Human Behavior, 96(May 2018), 235–245.

https://doi.org/10.1016/j.chb.2018.06.030

Malmberg, J., Järvelä, S., Järvenoja, H., & Panadero, E. (2015). Promoting socially shared

regulation of learning in CSCL: Progress of socially shared regulation among high- and

low-performing groups. Computers in Human Behavior, 52, 562–572. https://doi.org/

10.1016/j.chb.2015.03.082

Maqsood, R., Ceravolo, P., Romero, C., & Ventura, S. (2022). Modeling and predicting students’

engagement behaviors using mixture markov models. Knowledge and Information

Systems, 64. https://doi.org/10.1007/s10115-022-01674-9

Maroni, B., Gnisci, A., & Pontecorvo, C. (2008). Turn-taking in classroom interactions: Overlap-

ping, interruptions and pauses in primary school. European Journal of Psychology of

Education, 23(1), 59–76. https://doi.org/10.1007/BF03173140

Martinez, R., Wallace, J. R., Kay, J., & Yacef, K. (2011). Modelling and identifying collaborative

situations in a collocated multi-display groupware setting. International conference

on artificial intelligence in education, 196–204.

Martinez-Maldonado, R., Dimitriadis, Y., Martinez-Monés, A., Kay, J., & Yacef, K. (2013a). Cap-

turing and analyzing verbal and physical collaborative learning interactions at an

enriched interactive tabletop. International Journal of Computer-Supported Collabo-

rative Learning, 8(4), 455–485.

Martinez-Maldonado, R., Dimitriadis, Y., Martinez-Monés, A., Kay, J., & Yacef, K. (2013b). Cap-

turing and analyzing verbal and physical collaborative learning interactions at an

enriched interactive tabletop. International Journal of Computer-Supported Collabo-

rative Learning, 8(4), 455–485. https://doi.org/10.1007/s11412-013-9184-1

Maslow, A. (1943). A THEORY OF HUMAN MOTIVATION. (13), 370–396.

Meier, A., Spada, H., & Rummel, N. (2007). A rating scheme for assessing the quality of

computer-supported collaboration processes. International Journal of Computer-

Supported Collaborative Learning, 2(1), 63–86.

209

https://doi.org/10.1007/s10648-016-9379-x
https://doi.org/10.1016/j.chb.2018.06.030
https://doi.org/10.1016/j.chb.2015.03.082
https://doi.org/10.1016/j.chb.2015.03.082
https://doi.org/10.1007/s10115-022-01674-9
https://doi.org/10.1007/BF03173140
https://doi.org/10.1007/s11412-013-9184-1


Bibliography

Menon, D., Bp, S., Romero, M., & Viéville, T. (2019). Going beyond digital literacy to develop

computational thinking in K-12 education. In L. Daniela (Ed.), Smart Pedagogy of

Digital Learning. Taylor&Francis (Routledge).

Mentis, H. M. et al. (2007). Memory of frustrating experiences. Information and Emotion: The

Emergent Affective Paradigm in Information Behavior Research and Theory, Eds. Diane

Nahl and Dania Bilal, 197–210.

Nasir, J., Abderrahim, M., Kothiyal, A., & Dillenbourg, P. (2022). Temporal pathways to learn-

ing: how learning emerges in an open-ended collaborative activity. Computers &;

Education: Artificial Intelligence. http://infoscience.epfl.ch/record/296043

Nasir, J., Bruno, B., Chetouani, M., & Dillenbourg, P. (2021). What if social robots look for

productive engagement? International Journal of Social Robotics. https://doi.org/

https://doi.org/10.1007/s12369-021-00766-w

Nasir, J., Bruno, B., Chetouani, M., & Dillenbourg, P. (2022). A Speech-based Productive Engage-

ment Metric for Real-time Human-Robot Interaction in Collaborative Educational

Contexts. IEEE Transactions on Affective Computing. http://infoscience.epfl.ch/

record/294035

Nasir, J., Bruno, B., & Dillenbourg, P. (2020). Is there ’one way’ of learning? a data-driven

approach. Companion Publication of the 2020 International Conference on Multimodal

Interaction, 388–391. https://doi.org/10.1145/3395035.3425200

Nasir, J., Bruno, B., & Dillenbourg, P. (2021a). PE-HRI-temporal: A Multimodal Temporal Dataset

in a robot mediated Collaborative Educational Setting. Zenodo. https://doi.org/10.

5281/zenodo.5576058

Nasir, J., Bruno, B., & Dillenbourg, P. (2021b). PE-HRI-temporal: A Multimodal Temporal Dataset

in a robot mediated Collaborative Educational Setting. Zenodo. https://doi.org/10.

5281/zenodo.5576058

Nasir, J., Kothiyal, A., Bruno, B., & Dillenbourg, P. (2021). Many are the ways to learn identifying

multi-modal behavioral profiles of collaborative learning in constructivist activities.

International Journal of Computer-Supported Collaborative Learning. https://doi.org/

https://doi.org/10.1007/s11412-021-09358-2

Nasir, J., Norman, U., Bruno, B., Chetouani, M., & Dillenbourg, P. (2021). PE-HRI: A Multimodal

Dataset for the study of Productive Engagement in a robot mediated Collaborative

Educational Setting. Zenodo. https://doi.org/10.5281/zenodo.4633092

Nasir, J., Norman, U., Bruno, B., Chetouani, M., & Dillenbourg, P. (2020a). PE-HRI: A Multimodal

Dataset for the study of Productive Engagement in a robot mediated Collaborative

Educational Setting. Zenodo. https://doi.org/10.5281/zenodo.4288833

Nasir, J., Norman, U., Bruno, B., & Dillenbourg, P. (2020a). When positive perception of the

robot has no effect on learning. 29th IEEE International Conference on Robot and

Human Interactive Communication (RO-MAN).

Nasir, J., Norman, U., Bruno, B., & Dillenbourg, P. (2020b). You tell, I do, and we swap until we

connect all the gold mines! ERCIM News, 2020(120).

210

http://infoscience.epfl.ch/record/296043
https://doi.org/https://doi.org/10.1007/s12369-021-00766-w
https://doi.org/https://doi.org/10.1007/s12369-021-00766-w
http://infoscience.epfl.ch/record/294035
http://infoscience.epfl.ch/record/294035
https://doi.org/10.1145/3395035.3425200
https://doi.org/10.5281/zenodo.5576058
https://doi.org/10.5281/zenodo.5576058
https://doi.org/10.5281/zenodo.5576058
https://doi.org/10.5281/zenodo.5576058
https://doi.org/https://doi.org/10.1007/s11412-021-09358-2
https://doi.org/https://doi.org/10.1007/s11412-021-09358-2
https://doi.org/10.5281/zenodo.4633092
https://doi.org/10.5281/zenodo.4288833


Bibliography

Nasir, J., Norman, U., Johal, W., Olsen, J., Shahmoradi, S., & Dillenbourg, P. (2019). Robot

analytics: what do human-robot interaction traces tell us about learning? 28th IEEE

International Conference on Robot and Human Interactive Communication (RO-MAN).

Nezami, O. M., Hamey, L., Richards, D., & Dras, M. (2018). Engagement Recognition using

Deep Learning and Facial Expression. 2013.

Norman, U., Chin, A., Bruno, B., & Dillenbourg, P. (2022). Efficacy of a ‘misconceiving’ robot

to improve computational thinking in a collaborative problem solving activity: a

pilot study. 2022 31st IEEE International Conference on Robot & Human Interactive

Communication (RO-MAN), 8. http://infoscience.epfl.ch/record/294825

Norman, U., Dinkar, T., Bruno, B., & Clavel, C. (2021). Studying alignment in a collaborative

learning activity via automatic methods: the link between what we say and do. https:

//doi.org/10.48550/ARXIV.2104.04429

Norman, U., Dinkar, T., Nasir, J., Bruno, B., Clavel, C., & Dillenbourg, P. (2021). Justhink dialogue

and actions corpus (Version v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.4627104

Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelligence Review,

4(4), 251–277. https://doi.org/10.1007/BF00168958

O’Brien, H., Freund, L., & Kopak, R. (2016). Reading Environments. In Proceedings of the 2016

ACM on conference on human information interaction and retrieval, 71–80. https:

//doi.org/10.1145/2854946.2854973

O’Brien, H. L., & Toms, E. (2008). What is user engagement? a conceptual framework for

defining user engagement with technology. JASIST, 59, 938–955.

O’Brien, H. L., & Toms, E. (2010). The development and evaluation of a survey to measure user

engagement. JASIST, 61, 50–69.

Oertel, C., Castellano, G., Chetouani, M., Nasir, J., Obaid, M., Pelachaud, C., & Peters, C. (2020).

Engagement in human-agent interaction : an overview. Frontiers in Robotics and AI, 7,

Article 92. https://doi.org/10.3389/frobt.2020.00092

Oertel, C., Scherer, S., & Campbell, N. (2011). On the use of multimodal cues for the prediction

of degrees of involvement in spontaneous conversation. Twelfth Annual Conference of

the International Speech Communication Association.

Oggi, O. (, Rudovic, ) Park, H. W., Busche, J., Schuller, B., Breazeal, C., & Picard, R. W. (2019).

Personalized Estimation of Engagement from Videos Using Active Learning with Deep

Reinforcement Learning.

Olsen, J. K., Sharma, K., Rummel, N., & Aleven, V. (2020a). Temporal analysis of multimodal data

to predict collaborative learning outcomes. British Journal of Educational Technology,

51(5), 1527–1547. https://doi.org/https://doi.org/10.1111/bjet.12982

Olsen, J. K., Sharma, K., Rummel, N., & Aleven, V. (2020b). Temporal analysis of multimodal

data to predict collaborative learning outcomes. British Journal of Educational Tech-

nology, 51(5), 1527–1547. https://doi.org/https://doi.org/10.1111/bjet.12982

Olusegun, S. (2015). Constructivism Learning Theory: A Paradigm for Teaching and Learning.

IOSR Journal of Research & Method in Education Ver. I, 5(6), 2320–7388. https://doi.

org/10.9790/7388-05616670

211

http://infoscience.epfl.ch/record/294825
https://doi.org/10.48550/ARXIV.2104.04429
https://doi.org/10.48550/ARXIV.2104.04429
https://doi.org/10.5281/zenodo.4627104
https://doi.org/10.1007/BF00168958
https://doi.org/10.1145/2854946.2854973
https://doi.org/10.1145/2854946.2854973
https://doi.org/10.3389/frobt.2020.00092
https://doi.org/https://doi.org/10.1111/bjet.12982
https://doi.org/https://doi.org/10.1111/bjet.12982
https://doi.org/10.9790/7388-05616670
https://doi.org/10.9790/7388-05616670


Bibliography

Paans, C., Onan, E., Molenaar, I., Verhoeven, L., & Segers, E. (2019). How social challenges

affect children’s regulation and assignment quality in hypermedia: a process mining

study. Metacognition and Learning, 14(2), 189–213. https://doi.org/10.1007/s11409-

019-09204-9

Papakostas, G., Sidiropoulos, G., Lytridis, C., Bazinas, C., Kaburlasos, V., Kourampa, E., Kara-

georgiou, E., Kechayas, P., & Papadopoulou, M. (2021). Estimating children engage-

ment interacting with robots in special education using machine learning. Mathemat-

ical Problems in Engineering, 2021, 1–10. https://doi.org/10.1155/2021/9955212

Pardos, Z. A., & Heffernan, N. T. (2010). Modeling individualization in a Bayesian networks

implementation of knowledge tracing. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

6075 LNCS, 255–266. https://doi.org/10.1007/978-3-642-13470-8_24

Park, H. W., Grover, I., Spaulding, S., Gomez, L., & Breazeal, C. (2019). A model-free affective

reinforcement learning approach to personalization of an autonomous social robot

companion for early literacy education. AAAI.

Parsons, J., & LeahTaylor. (2011). Student Engagement: What do we know and what should we

do? (Tech. rep.). University of Alberta.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: machine learning in

Python. Journal of Machine Learning Research, 12, 2825–2830.

Peeters, M., Tuijl, H., Rutte, C., & Reymen, I. (2006). Personality and team performance: a meta-

analysis. European Journal of Personality, 20, 377–396. https://doi.org/10.1002/per.588

Perera, D., Kay, J., Koprinska, I., Yacef, K., & Zaïane, O. R. (2008). Clustering and sequential

pattern mining of online collaborative learning data. IEEE Transactions on Knowledge

and Data Engineering, 21(6), 759–772.

Perera, D., Kay, J., Koprinska, I., Yacef, K., & Zaïane, O. R. (2009). Clustering and sequential

pattern mining of online collaborative learning data. IEEE Transactions on Knowledge

and Data Engineering, 21(6), 759–772. https://doi.org/10.1109/TKDE.2008.138

Perugia, G., Boladeras, M., Català, A., Barakova, E., & Rauterberg, M. (2020). Engage-dem:

a model of engagement of people with dementia. IEEE Transactions on Affective

Computing, PP, 1–1. https://doi.org/10.1109/TAFFC.2020.2980275

Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L., & Sohl-Dickstein, J. (2015).

Deep knowledge tracing. Proceedings of the 28th International Conference on Neural

Information Processing Systems - Volume 1, 505–513.

Pijeira-díaz, H. J., Drachsler, H., Järvelä, S., & Kirschner, P. A. (2019). Sympathetic arousal

commonalities and arousal contagion during collaborative learning : How attuned

are triad members ? Computers in Human Behavior, 92(May 2018), 188–197. https:

//doi.org/10.1016/j.chb.2018.11.008

Poggi, I. (2007). Mind, hands, face and body: a goal and belief view of multimodal communica-

tion [OCLC: ocn143609341]. Weidler.

212

https://doi.org/10.1007/s11409-019-09204-9
https://doi.org/10.1007/s11409-019-09204-9
https://doi.org/10.1155/2021/9955212
https://doi.org/10.1007/978-3-642-13470-8_24
https://doi.org/10.1002/per.588
https://doi.org/10.1109/TKDE.2008.138
https://doi.org/10.1109/TAFFC.2020.2980275
https://doi.org/10.1016/j.chb.2018.11.008
https://doi.org/10.1016/j.chb.2018.11.008


Bibliography

Popov, V., van Leeuwen, A., & Buis, S. (2017). Are you with me or not? temporal synchronicity

and transactivity during cscl. Journal of Computer Assisted Learning, 33(5), 424–442.

Praharaj, S., Scheffel, M., Drachsler, H., & Specht, M. (2021). Literature Review on Co-Located

Collaboration Modeling Using Multimodal Learning Analytics — Can We Go the

Whole Nine Yards ? IEEE Transactions on Learning Technologies, PP(10), 1. https :

//doi.org/10.1109/TLT.2021.3097766

Ramachandran, A., Huang, C.-M., & Scassellati, B. (2017). Give me a break! personalized

timing strategies to promote learning in robot-child tutoring. Proceedings of the 2017

ACM/IEEE International Conference on Human-Robot Interaction, 146–155. https :

//doi.org/10.1145/2909824.3020209

Ramachandran, A., Huang, C.-M., & Scassellati, B. (2019). Toward Effective Robot–Child Tutor-

ing: Internal Motivation, Behavioral Intervention and Learning Outcomes. ACM Trans-

actions on Interactive Intelligent Systems, 9(1), 1–23. https://doi.org/10.1145/3213768

Ramachandran, A., Sebo, S. S., & Scassellati, B. (2019). Personalized Robot Tutoring using the

Assistive Tutor POMDP (AT-POMDP). Proceedings of The Thirty-Third AAAI Conference

on Artificial Intelligence (AAAI), 1–8.

Reilly, J. M., & Schneider, B. (2019). Predicting the quality of collaborative problem solving

through linguistic analysis of discourse. EDM 2019 - Proceedings of the 12th Interna-

tional Conference on Educational Data Mining, (Edm), 149–157.

Reimann, P. (2009). Time is precious: variable- and event-centred approaches to process

analysis in cscl research. I. J. Computer-Supported Collaborative Learning, 4, 239–257.

https://doi.org/10.1007/s11412-009-9070-z

Rich, C., Ponsler, B., Holroyd, A., & Sidner, C. L. (2010). Recognizing engagement in human-

robot interaction. 2010 5th ACM/IEEE International Conference on Human-Robot

Interaction (HRI), 375–382. https://doi.org/10.1109/HRI.2010.5453163

Robert, L., Alahmad, R., Esterwood, C., Kim, S., You, S., & Zhang, Q. (2020). A review of person-

ality in human–robot interactions. Available at SSRN 3528496.

Rodríguez, F. J., & Boyer, K. E. (2015). Discovering Individual and Collaborative Problem-

Solving Modes with Hidden Markov Models. Artificial Intelligence in Education: Pro-

ceedings of the World Conference on AI in Education 2015, 408–418. https://doi.org/10.

1007/978-3-319-19773-9

Rogat, T. K., & Linnenbrink-Garcia, L. (2011). Socially shared regulation in collaborative groups:

an analysis of the interplay between quality of social regulation and group processes.

Cognition and Instruction, 29(4), 375–415.

Roschelle, J. (1992). Learning by Collaborating: Convergent Conceptual Change. Journal of the

Learning Sciences, 2(3), 235–276. https://doi.org/10.1207/s15327809jls0203-1

Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative

problem solving. Computer supported collaborative learning, 69–97.

Rossi, A., Raiano, M., & Rossi, S. (2021). Affective, cognitive and behavioural engagement

detection for human-robot interaction in a bartending scenario. 2021 30th IEEE In-

ternational Conference on Robot & Human Interactive Communication (RO-MAN),

208–213. https://doi.org/10.1109/RO-MAN50785.2021.9515435

213

https://doi.org/10.1109/TLT.2021.3097766
https://doi.org/10.1109/TLT.2021.3097766
https://doi.org/10.1145/2909824.3020209
https://doi.org/10.1145/2909824.3020209
https://doi.org/10.1145/3213768
https://doi.org/10.1007/s11412-009-9070-z
https://doi.org/10.1109/HRI.2010.5453163
https://doi.org/10.1007/978-3-319-19773-9
https://doi.org/10.1007/978-3-319-19773-9
https://doi.org/10.1207/s15327809jls0203-1
https://doi.org/10.1109/RO-MAN50785.2021.9515435


Bibliography

Rudovic, O., Zhang, M., Schuller, B., & Picard, R. (2019). Multi-modal active learning from

human data: a deep reinforcement learning approach. 2019 International Conference

on Multimodal Interaction, 6–15.

Russell, J. (2003). Core Affect and the Psychological Construction of Emotion. Psychological

review, 110, 145–172. https://doi.org/10.1037//0033-295X.110.1.145

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic

motivation, social development, and well-being. American psychologist, 55(1), 68–78.

Sabourin, J., McQuiggan, S., & De Waal, A. (2016). SAS tools for educational data mining. CEUR

Workshop Proceedings, 1633(1), 85–106. https://doi.org/10.3102/1076998616666808

Salam, H., & Chetouani, M. (2015a). A multi-level context-based modeling of engagement in

human-robot interaction. 2015 11th IEEE International Conference and Workshops on

Automatic Face and Gesture Recognition (FG), 03, 1–6. https://doi.org/10.1109/FG.

2015.7284845

Salam, H., Celiktutan, O., Hupont, I., Gunes, H., & Chetouani, M. (2017). Fully automatic anal-

ysis of engagement and its relationship to personality in human-robot interactions.

IEEE Access, 5, 705–721.

Salam, H., Çeliktutan, O., Hupont, I., Gunes, H., & Chetouani, M. (2017). Fully automatic anal-

ysis of engagement and its relationship to personality in human-robot interactions.

IEEE Access, 5, 705–721. https://doi.org/10.1109/ACCESS.2016.2614525

Salam, H., & Chetouani, M. (2015b). Engagement detection based on mutli-party cues for

human robot interaction. 2015 International Conference on Affective Computing and

Intelligent Interaction, ACII 2015, 341–347. https://doi.org/10.1109/ACII.2015.7344593

Sanghvi, J., Castellano, G., Leite, I., Pereira, A., McOwan, P. W., & Paiva, A. (2011a). Automatic

analysis of affective postures and body motion to detect engagement with a game com-

panion. Proceedings of the 6th International Conference on Human-Robot Interaction,

305–312. https://doi.org/10.1145/1957656.1957781

Sanghvi, J., Castellano, G., Leite, I., Pereira, A., McOwan, P. W., & Paiva, A. (2011b). Automatic

analysis of affective postures and body motion to detect engagement with a game com-

panion. Proceedings of the 6th international conference on Human-robot interaction -

HRI ’11, 305. https://doi.org/10.1145/1957656.1957781

Schneider, B., Dich, Y., & Radu, I. (2020). Unpacking the relationship between existing and new

measures of physiological synchrony and collaborative learning: a mixed methods

study. International Journal of Computer-Supported Collaborative Learning, 15(1),

89–113.

Schneider, B., & Pea, R. (2013). Real-time mutual gaze perception enhances collaborative

learning and collaboration quality. International Journal of Computer-supported col-

laborative learning, 8(4), 375–397.

Schneider, B., & Pea, R. (2015). Does seeing one another’s gaze affect group dialogue? a com-

putational approach. Journal of Learning Analytics, 2(2), 107–133.

Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillenbourg, P., & Pea, R. (2018). Leverag-

ing mobile eye-trackers to capture joint visual attention in co-located collaborative

214

https://doi.org/10.1037//0033-295X.110.1.145
https://doi.org/10.3102/1076998616666808
https://doi.org/10.1109/FG.2015.7284845
https://doi.org/10.1109/FG.2015.7284845
https://doi.org/10.1109/ACCESS.2016.2614525
https://doi.org/10.1109/ACII.2015.7344593
https://doi.org/10.1145/1957656.1957781
https://doi.org/10.1145/1957656.1957781


Bibliography

learning groups. International Journal of Computer-Supported Collaborative Learning,

13(3), 241–261.

Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillenbourg, P., & Pea, R. (2016). Using

mobile eye-trackers to unpack the perceptual benefits of a tangible user interface for

collaborative learning. ACM Trans. Comput.-Hum. Interact., 23(6). https://doi.org/10.

1145/3012009

Schulte, P. L. (1996). A definition of constructivism. Science Scope, 20(3), 25–27.

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and instruction, 16(4),

475–5223.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: the hidden effi-

ciency of encouraging original student production in statistics instruction. Cognition

and instruction, 22(2), 129–184.

Schwarz, B. B., Neuman, Y., & Biezuner, S. (2000). Two wrongs may make a right ... if they

argue together! Cognition and Instruction, 18(4), 461–494. https://doi.org/10.1207/

S1532690XCI1804_2

Seabold, S., & Perktold, J. (2010). Statsmodels: econometric and statistical modeling with

python. 9th Python in Science Conference.

Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: bodies and minds moving

together. Trends in cognitive sciences, 10(2), 70–76.

Sharma, K., Caballero, D., Verma, H., Jermann, P., & Dillenbourg, P. (2015). Looking at ver-

sus looking through: a dual eye-tracking study in mooc context. Proceedings of 11th

International Conference of Computer Supported Collaborative Learning, 1(CONF),

260–267.

Sharma, K., & Giannakos, M. (2020). Multimodal data capabilities for learning: What can

multimodal data tell us about learning? British Journal of Educational Technology,

51(5), 1450–1484. https://doi.org/https://doi.org/10.1111/bjet.12993

Sharma, K., Olsen, J. K., Aleven, V., & Rummel, N. (2021). Measuring causality between collabo-

rative and individual gaze metrics for collaborative problem-solving with intelligent

tutoring systems. Journal of Computer Assisted Learning, 37(1), 51–68.

Sharma, K., Papamitsiou, Z., Olsen, J. K., & Giannakos, M. (2020). Predicting learners’ ef-

fortful behaviour in adaptive assessment using multimodal data. ACM International

Conference Proceeding Series, 480–489. https://doi.org/10.1145/3375462.3375498

Sidner, C. L., Lee, C., Kidd, C. D., Lesh, N., & Rich, C. (2005). Explorations in engagement for

humans and robots. Artificial Intelligence, 166(1-2), 140–164. https://doi.org/10.1016/

j.artint.2005.03.005

Siegler, R. S., & Crowley, K. (1991). The Microgenetic Method : A Direct Means for Studying

Cognitive Development. American Psychologist, 46(June), 606–620. https://doi.org/10.

1037/0003-066X.46.6.606

Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining, 252.

https://doi.org/10.1145/2330601.2330661

215

https://doi.org/10.1145/3012009
https://doi.org/10.1145/3012009
https://doi.org/10.1207/S1532690XCI1804_2
https://doi.org/10.1207/S1532690XCI1804_2
https://doi.org/https://doi.org/10.1111/bjet.12993
https://doi.org/10.1145/3375462.3375498
https://doi.org/10.1016/j.artint.2005.03.005
https://doi.org/10.1016/j.artint.2005.03.005
https://doi.org/10.1037/0003-066X.46.6.606
https://doi.org/10.1037/0003-066X.46.6.606
https://doi.org/10.1145/2330601.2330661


Bibliography

Sinha, S., Rogat, T. K., Adams-Wiggins, K. R., & Hmelo-Silver, C. E. (2015). Collaborative group

engagement in a computer-supported inquiry learning environment. International

Journal of Computer-Supported Collaborative Learning, 10(3), 273–307.

Sinha, T. (2021). Enriching problem-solving followed by instruction with explanatory accounts

of emotions. Journal of the Learning Sciences, 1–48.

Sinha, T., & Kapur, M. (2021). When Problem Solving Followed by Instruction Works: Evidence

for Productive Failure (Vol. 20). https://doi.org/10.3102/00346543211019105

Sobocinski, M., Malmberg, J., & Järvelä, S. (2017). Exploring temporal sequences of regulatory

phases and associated interactions in low- and high-challenge collaborative learning

sessions. Metacognition and Learning, 12(2), 275–294. https://doi.org/10.1007/s11409-

016-9167-5

Speranza, S., Recchiuto, C. T., Bruno, B., & Sgorbissa, A. (2020). A model for the representation

of the extraversion-introversion personality traits in the communication style of a

social robot. 2020 29th IEEE International Conference on Robot and Human Interactive

Communication (RO-MAN), 75–81. https://doi.org/10.1109/RO-MAN47096.2020.

9223537

Spikol, D., Ruffaldi, E., & Cukurova, M. (2017). Using multimodal learning analytics to identify

aspects of collaboration in project-based learning. Computer-Supported Collaborative

Learning Conference, CSCL, 1(June), 263–270. https://doi.org/10.22318/cscl2017.37

Spikol, D., Ruffaldi, E., Dabisias, G., & Cukurova, M. (2018). Supervised machine learning

in multimodal learning analytics for estimating success in project-based learning.

Journal of Computer Assisted Learning, 34(4), 366–377.

Staffa, M., Rossi, A., Bucci, B., Russo, D., & Rossi, S. (2021). Shall I Be Like You? Investigating

Robot’s Personalities and Occupational Roles for Personalised HRI. In H. Li, S. S. Ge, Y.

Wu, A. Wykowska, H. He, X. Liu, D. Li, & J. Perez-Osorio (Eds.), Social robotics (pp. 718–

728). Springer International Publishing.

Stahl, G., Law, N., & Hesse, F. (2013). Reigniting CSCL flash themes. International Journal of

Computer-Supported Collaborative Learning, 8(4), 369–374. https://doi.org/10.1007/

s11412-013-9185-0

Stower, R., & Kappas, A. (2021). Cozmonaots: designing an autonomous learning task with

social and educational robots. Interaction Design and Children, 542–546. https://doi.

org/10.1145/3459990.3465210

Sweller, J. (2011). Chapter two - cognitive load theory. Academic Press. https://doi.org/https:

//doi.org/10.1016/B978-0-12-387691-1.00002-8

Szafir, D., & Mutlu, B. (2012). Pay Attention! Designing Adaptive Agents that Monitor and

Improve User Engagement. Conference on Human Factors in Computing Systems

(CHI). https://doi.org/10.1145/2207676.2207679

Tatarian, K., Wallkötter, S., Buyukgoz, S., Stower, R., & Chetouani, M. (2020). Mobiaxis: an

embodied learning task for teaching multiplication with a social robot. ArXiv. https:

//doi.org/10.48550/arXiv.2004.07806

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R.,

Rußwurm, M., Kolar, K., & Woods, E. (2020). Tslearn, a machine learning toolkit for

216

https://doi.org/10.3102/00346543211019105
https://doi.org/10.1007/s11409-016-9167-5
https://doi.org/10.1007/s11409-016-9167-5
https://doi.org/10.1109/RO-MAN47096.2020.9223537
https://doi.org/10.1109/RO-MAN47096.2020.9223537
https://doi.org/10.22318/cscl2017.37
https://doi.org/10.1007/s11412-013-9185-0
https://doi.org/10.1007/s11412-013-9185-0
https://doi.org/10.1145/3459990.3465210
https://doi.org/10.1145/3459990.3465210
https://doi.org/https://doi.org/10.1016/B978-0-12-387691-1.00002-8
https://doi.org/https://doi.org/10.1016/B978-0-12-387691-1.00002-8
https://doi.org/10.1145/2207676.2207679
https://doi.org/10.48550/arXiv.2004.07806
https://doi.org/10.48550/arXiv.2004.07806


Bibliography

time series data. Journal of Machine Learning Research, 21(118), 1–6. http://jmlr.org/

papers/v21/20-091.html

Teasley, S. D. (1997). Talking about reasoning: how important is the peer in peer collaboration?

Discourse, tools and reasoning (pp. 361–384). Springer.

Tulli, S., Couto, M., Vasco, M., Yadollahi, E., Melo, F., & Paiva, A. (2020). Explainable Agency

by Revealing Suboptimality in Child-Robot Learning Scenarios. In A. R. Wagner, D.

Feil-Seifer, K. S. Haring, S. Rossi, T. Williams, H. He, & S. Sam Ge (Eds.), Social robotics

(pp. 23–35). Springer International Publishing.

van de Sande, B. (2013). Properties of the bayesian knowledge tracing model. EDM 2013.

VanLehn, K., Siler, S., Murray, C., Yamauchi, T., & Baggett, W. B. (2003). Why do only some

events cause learning during human tutoring? Cognition and Instruction, 21(3), 209–

249.

Veenman, M. V. J. (2013). Assessing metacognitive skills in computerized learning environ-

ments. In R. Azevedo & V. Aleven (Eds.), International handbook of metacognition and

learning technologies (pp. 157–168). Springer New York. https://doi.org/10.1007/978-

1-4419-5546-3-11

Vikashini, V., Salam, H., Nasir, J., Bruno, B., & Celiktutan, O. (2022). Personalized productive

engagement recognition in robot-mediated collaborative learning. 24th ACM Inter-

national Conference on Multimodal Interaction. http://infoscience.epfl.ch/record/

296044

Viswanathan, S. A., & VanLehn, K. (2017). Using the tablet gestures and speech of pairs of

students to classify their collaboration. IEEE Transactions on Learning Technologies,

11(2), 230–242.

Viswanathan, S. A., & Vanlehn, K. (2018). Using the Tablet Gestures and Speech of Pairs of

Students to Classify Their Collaboration. IEEE Transactions on Learning Technologies,

11(2), 230–242. https://doi.org/10.1109/TLT.2017.2704099

Vogel, F., Wecker, C., Kollar, I., & Fischer, F. (2017). Socio-cognitive scaffolding with computer-

supported collaboration scripts: a meta-analysis. Educational Psychology Review, 29.

https://doi.org/10.1007/s10648-016-9361-7

Voutsina, C., George, L., & Jones, K. (2019). Microgenetic analysis of young children’s shifts of

attention in arithmetic tasks: underlying dynamics of change in phases of seemingly

stable task performance. Educational Studies in Mathematics, 102(1), 47–74. https:

//doi.org/10.1007/s10649-019-09883-w

Vrzakova, H., Amon, M. J., Stewart, A., Duran, N. D., & D’Mello, S. K. (2020). Focused or

stuck together: Multimodal patterns reveal triads’ performance in collaborative prob-

lem solving. ACM International Conference Proceeding Series: Learning Analytics and

Knowledge, 2020, 295–304. https://doi.org/10.1145/3375462.3375467

Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., & André, E. (2013). The social signal

interpretation (ssi) framework: multimodal signal processing and recognition in real-

time. Proceedings of the 21st ACM International Conference on Multimedia, 831–834.

https://doi.org/10.1145/2502081.2502223

217

http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
https://doi.org/10.1007/978-1-4419-5546-3-11
https://doi.org/10.1007/978-1-4419-5546-3-11
http://infoscience.epfl.ch/record/296044
http://infoscience.epfl.ch/record/296044
https://doi.org/10.1109/TLT.2017.2704099
https://doi.org/10.1007/s10648-016-9361-7
https://doi.org/10.1007/s10649-019-09883-w
https://doi.org/10.1007/s10649-019-09883-w
https://doi.org/10.1145/3375462.3375467
https://doi.org/10.1145/2502081.2502223


Bibliography

Wang, C., Sahebi, S., Zhao, S., Brusilovsky, P., & Moraes, L. O. (2021). Knowledge tracing for

complex problem solving: granular rank-based tensor factorization. Proceedings of the

29th acm conference on user modeling, adaptation and personalization (pp. 179–188).

Association for Computing Machinery. https://doi.org/10.1145/3450613.3456831

Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construc-

tion in computer-supported collaborative learning. Computers & education, 46(1),

71–95.

Whitehill, J., Serpell, Z., Lin, Y. C., Foster, A., & Movellan, J. R. (2014). The faces of engagement:

Automatic recognition of student engagement from facial expressions. IEEE Trans-

actions on Affective Computing, 5(1), 86–98. https://doi.org/10.1109/TAFFC.2014.

2316163

Winkle, K., Senft, E., & Lemaignan, S. (2021). LEADOR: A Method for End-To-End Participatory

Design of Autonomous Social Robots. Frontiers in Robotics and AI, 8. https://doi.org/

10.3389/frobt.2021.704119

Wolters, C. A., Yu, S. L., & Pintrich, P. R. (1996). The relation between goal orientation and

students’ motivational beliefs and self-regulated learning. Learning and Individual

Differences, 8(3), 211–238. https://doi.org/10.1016/S1041-6080(96)90015-1

Worsley, M., & Blikstein, P. (2011). What’s an expert? using learning analytics to identify emer-

gent markers of expertise through automated speech, sentiment and sketch analysis.

EDM, 235–240.

Worsley, M., & Blikstein, P. (2018). A Multimodal Analysis of Making. International Journal of

Artificial Intelligence in Education, 28, 385–419.

Yadollahi, E., Johal, W., Paiva, A., & Dillenbourg, P. (2018). When deictic gestures in a robot can

harm child-robot collaboration. IDC ’18, 195–206. https://doi.org/10.1145/3202185.

3202743

Yang, C. W., Cukurova, M., & Porayska-Pomsta, K. (2021). Dyadic joint visual attention in-

teraction in face-to-face collaborative problem-solving at K-12 Maths Education: A

Multimodal Approach. CEUR Workshop Proceedings, 2902.

218

https://doi.org/10.1145/3450613.3456831
https://doi.org/10.1109/TAFFC.2014.2316163
https://doi.org/10.1109/TAFFC.2014.2316163
https://doi.org/10.3389/frobt.2021.704119
https://doi.org/10.3389/frobt.2021.704119
https://doi.org/10.1016/S1041-6080(96)90015-1
https://doi.org/10.1145/3202185.3202743
https://doi.org/10.1145/3202185.3202743


Jauwairia Nasir

Professional Goals
I aspire to create a social difference with my research on
leveraging AI and Human-Robot Interaction in domains such as
Education and Healthcare. I have 7+ years of research experience. 

Email: 
jauwairianasir@gmail.com

Languages Spoken: 
English, Urdu, Punjabi, Korean (B2),
French (A1/A2)

Education
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne,
Switzerland
PhD in Robotics Control and Intelligent Systems | EU Horizon Marie
Curie ITN Fellow at ANIMATAS | September 2018 - October 2022 

- Supervisor: Prof. Jong-Hwan Kim 

- Supervisor: Prof. Pierre Dillenbourg, co-supervisor: Dr. Barbara Bruno 
- Led or co-led user studies with ~360 participants

Professional Experience
Consultant
Four | April 2017 - November 2017

Research Scholar
KAIST | September 2016 - February 2017
Worked on cognitive architectures for service robots for task planning, and
motion planning for autonomous agents

NUST School of Electrical Engineering and Computer Sciences
(NUST-SEECS), Islamabad, Pakistan
BSc. in Electrical Engineering  | October 2008 - August 2012
- Final Year project supervisor: Prof. Yasar Ayaz

Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, South Korea
Masters in Electrical Engineering and Computer Science  |
September 2014 - August 2016

Nationality:
USA/Pakistani

Technical Skills:
Python, ROS, Pandas, Jupyter
notebook, Latex, Git, sklearn, keras

Transversal Skills:
Leadership, Public Speaking, 
 Determination, Adaptability,
Collaboration, Communication.

Sorbonne University, Paris, France
Visiting Researcher at ISIR | October - December, 2019
- Worked with: Prof. Mohamed Chetouani

A startup (fourgroup.co), at the intersection of AI and healthcare, that focuses
on developing sustainable healthcare systems. I assumed several roles including
technical and design feedback, qualitative interviews with the targeted medical
audience, representing the company at events, meetings with potential future
employees.

Jauwairia Nasir 

219



Publications

J. Nasir, B. Bruno, M. Chetouani, and P. Dillenbourg. A Speech-based Productive Engagement Metric for Real-time
Human-Robot Interaction in Collaborative Educational Contexts. under revision in IEEE Transactions on Affective
Computing.
J. Nasir, M. Abderrahim, A. Kothiyal, and P. Dillenbourg. Temporal Pathways to Learning: How Learning Emerges in
an Open-ended Collaborative Activity, in Computers & Education: Artificial Intelligence, 2022.
J. Nasir, A. Kothiyal, B. Bruno, and P. Dillenbourg, Many Are The Ways to Learn: identifying multi-modal behavioral
profiles of collaborative learning in constructivist activities. in International Journal of Computer-Supported
Collaborative Learning (IJCSCL) 2021. 
J. Nasir, B. Bruno, M. Chetouani, and P. Dillenbourg, What if Social Robots Look for Productive Engagement?. in Int
Journal of Social Robotics (2021). 
C. Oertel, G. Castellano, M. Chetouani, J. Nasir, M. Obaid, C. Pelachaud, and C. E. Peters, Engagement in Human-
Agent Interaction: An Overview, in Frontiers in Robotics and AI (2020).
P. Dillenbourg, K. Kim, J. Nasir, T. Yeo, J. Olsen, Applying IDC theory to education in the Alps region: a response to
Chan et al.’s contribution. Research and Practice in Technology Enhanced Learning, 2019.
J. Nasir, Yong-Ho. ; Kim D.-H.; Kim Jong-Hwan, User Preference-based Dual-Memory Neural Model with Memory
Consolidation Approach, in IEEE Transactions on Neural Networks and Learning Systems (2017).
J. Nasir,. ; Kim D.-H.; Kim Jong-Hwan, ART neural network-based integration of episodic memory and semantic
memory for task planning for robots. Autonomous Robots, 2019.
J. Nasir, ; Islam, F.; Malik, U. ; Ayaz, Y. ; Hasan, O. , RRT*-Smart: Rapid Convergence Implementation of RRT*, in Int.
J. Adv. Robot. Syst, Jun. 2013.
J. Nasir,. ; Islam, F.; Ayaz, Y. , Adaptive rapidly-exploring-random-tree-star (RRT*)-smart: algorithm characteristics
and behavior analysis in complex environments. Asia-Pacific Journal of Information Technology and Multimedia,
2013. 

Journal Publications

Conference Publications

Open Source Datasets 

Nasir, J., Norman, U., Bruno, B., Chetouani, M., & Dillenbourg, P. (2021). PE-HRI: A Multimodal Dataset for the study of
Productive Engagement in a robot mediated Collaborative Educational Setting [Data set]. Zenodo.
Nasir, J., Bruno, B., & Dillenbourg, P. (2021). PE-HRI-temporal: A Multimodal Temporal Dataset in a robot mediated
Collaborative Educational Setting [Data set]. Zenodo.
Norman, U., Dinkar, T., Nasir, J., Bruno, B., Clavel, C.,, & Dillenbourg, P.. (2021). JUSThink Dialogue and Actions Corpus
(v1.0.0) [Data set]. Zenodo. 

J. Nasir, P. Oppliger, B. Bruno, and P. Dillenbourg, Questioning Wizard of Oz: Effects of Revealing the Wizard behind
the Robot. in 31st IEEE International Conference on Robot & Human Interactive Communication (RO-MAN), 2022.
H. Salam, V. Vikashini, J. Nasir, O. Celiktutan, and B. Bruno. Personalized Productive Engagement Recognition in
Robot-Mediated Collaborative Learning. in the 24th ACM International Conference on Multimodal Interaction (ICMI),
2022
J. Nasir*, U. Norman*, B. Bruno, and P. Dillenbourg, When Positive Perception of the Robot Has No Effect on
Learning, in 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN),
Naples, Italy, 2020.
J. Nasir, B. Bruno, and P. Dillenbourg. Is There `ONE way' of Learning? A data-driven approach. Companion
publication of the 2020 International Conference on Multimodal Interaction (ICMI) 2020.
J. Nasir, U. Norman, B. Bruno, and P. Dillenbourg,You tell, I do, and we swap until we connect all the gold mines!.
Educational Technology, 2020. 
J. Nasir*, U. Norman*, W. Johal, J. K. Olsen, S. Shahmoradi and P. Dillenbourg, Robot Analytics: What Do Human-
Robot Interaction Traces Tell Us About Learning?, 2019 28th IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), New Delhi, India, 2019, pp. 1-7 
L. Hamamsy, W. Johal, T. Asselborn, J. Nasir, P. Dillenbourg. Learning by collaborative teaching: an engaging multi-
party cowriter activity. 2019 28th IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN), New Delhi, India, 2019,
S. Shahmoradi, J. Olsen, S. Haklev, W. Johal, U. Norman, J. Nasir, P. Dillenbourg. Orchestration of robotic activities in
classrooms: challenges and opportunities. European Conference on Technology Enhanced Learning, 2019. 
Islam, F.; Nasir, J. ; Malik, U. ; Ayaz, Y. ; Hasan, O. , RRT*-Smart: Rapid Convergence Implementation of RRT*
Towards Optimal Solution”, in proceedings of International Conference of Mechatronics and Automation, China 2012.

*equal contribution
Note: First author is the main contributor for the research 

220



Teaching Experience
Guest Lecturer
Machine Learning for Behavioral Data | EPFL | April 2022

- Introduction to Visual Computing (Spring 2019, Spring 2020) 
- Robotics Practicals (Spring 2021, Spring 2022) 

Teaching Assistant 
École Polytechnique Fédérale de Lausanne (EPFL) | 2019 - 2022

Advising

Supervised Bachelors/Masters Semester Projects and Research Fellows
École Polytechnique Fédérale de Lausanne (EPFL) | 2019 - 2022

Mortadha Abderrahim, Research Scholar for 1 year
Laura Mathex on 'Does a Conversational Robot’s Gaze Behavior Affect the Robots Perception and How Users Distance
Themselves from the Robot Psychologically?'
Anne Donnet on 'In a competitive setting, is an explicit robot better than an implicit robot?'
Mortadha Abderrahim on 'Trends in multi-modal behavioral state transitions for learners in a robot mediated human-
human collaborative activity'
EL Mekki Malek on 'Sequence mining to analyse learner’s action patterns in a robot mediated human-human
collaborative activity'
Leandro Graziano on 'Developing a Natural Interaction Robot Behavior Module for QTrobot'
Haoyu Sheng on 'To speak or not to speak when doing task actions collaboratively – does it matter?'
Pierre Oppliger on 'Master of Puppets - Social Robotics version'
William Ouensanga on 'Robots with Personality!'

Honors and Awards
Nominated and Finalist for 'Hidden Figures Award 2020' by TechFace, Switzerland
Selected for EU Horizon Marie Curie ITN Fellowship (2018-2022) 
Won Korean Government Scholarship (KGSP) 2013-2016
Won Erasmus Mundus Scholarship
Won the Pakistan National Engineering Robotic Competition 2011.
Nominated for Rectors Gold Medal Award for Best Final Year Project.
Received three NUST SEECS Student Appreciation Awards in 2012.
Finished Second in my Batch of around 200 Electronics students
Received GPA Based Scholarship in all Semesters of Bachelors

Invited Talks

What if Social Robots Look for Productive Engagement? 
Talking Robotics | June 2021 

In Pursuit of Goal-centric Social Robots in Educational HRI 
NLP Zurich | June 2021

Leveraging AI to Understand Cognitive and Motor Skills of Learners 
Global WAI Summit 2020

Can AI Help in Understanding Cognitive and Motor Skills of Learners?
WeTechTogether Conference 2020

Interview Contribution to a white paper on Advancing Women in AI
ImpactIA and Women in Digital Switzerland 2021

In Pursuit of Goal-centric Social Robots in Educational HRI 
AFAR Lab, University of Cambrdige | March 2022

221



Research Collaborations

Academic Service
PC member for ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2023, Sweden.
Co-organized a global Syposium in Schwarzsee Switzerland on 'Human-Machine Interaction: Perception, Social
Learning, Personalised Adaptation in Educational Settings', in an hybrid format gathering ~80 participants in total
from 12-14 October 2021.
Co-organized winter school on 'Developing Technologies in Educational Settings' at EPFL, 5-8 February, 2019.

Mohamed Chetouani | Sorbonne University, October 2019 - ongoing 

Justine Cassell | CMU/INRIA, March 2022 - July 2022 

Hanan Salam | NYU Abu Dhabi, Nov 2021 - May 2022

Oya Celiktutan  | King’s College London, Nov 2021 - May 2022

Catharine Oertal  | TU Delft, 2019 - Aug 2020

Ginevra Castellano | Uppsala University, Feb 2020 - Aug 2020

Christopher Peters | KTH Royal Institute of Technology, Feb 2020 - Aug 2020

Catherine Pelachaud | Sorbonne University, Feb 2020 - Aug 2020

Mohammad Obaid | Chalmers University of Technology, Feb 2020 - Aug 2020

Reviewer for several conferences and journals such as HRI 2019, 2020, 2021, ROMAN 2022, IEEE RA-L, ICRA 2021,
IEEE Transactions on Neural Network and Learning Systems 2017, International Journal of Child-Computer
Interaction 2020, 2021

Leadership & Equal Opportunities Work

Lead the organization of WAICamp 2020: A Day of Exchange and Discovery for Girls (cancelled due to covid)
Co-organized the flagship event WAITalk on The Dark side of AI 2020 targeting AI professionals, 
Co-organized a workshop/hackathon on AI for Equality at WeTechTogether Conference, 2021
Participated in writing an article on AI landscape in Switzerland
Interview Contribution to a white paper on Advancing Women in AI by ImpactIA and Women in Digital Switzerland
Invited for several talks  

Personal Roles and Interests
Happiness Manager at CHILI Lab, EPFL, 2019-2022
Travel photography and blogging
Nature
Painting and other artwork

Education & Research Ambassador Switzerland
Women in AI | May 2019 - Present
It is a community-driven global initiative where we organize events & articles for promoting unbiased AI
that benefits global society. 

Organized several events including industry trips to Hyundai Motor Company 
Workshops on Python, Java and web development
Invited as founders to represent International students in Korea at the International Student Symposium in Turkey,
2016 

Co-founder and President (Alumni)
International Student and Scholar Academic Council (ISSAC) | KAIST, Republic of Korea
A platform for connecting, networking and generating ideas for the international students at KAIST with its
alumni, academia and industry.

222


	Acknowledgements
	Abstract (English/Français/Deutsch/Italian)
	List of figures
	List of tables
	Engagement in HRI: Deceptively Simple, Endlessly Complicated
	Concept of Engagement in Human Robot Interaction
	Challenges
	Relationship between Engagement and Learning
	Human Subjectivity when Modelling Engagement
	In-Task Performance as a Measure of Learning
	Real-time Constraints

	Research Goals
	Organization of the Thesis

	Designing JUSThink platform for building our Engagement Framework
	Introduction
	Background
	Activity Design
	Learning Task Design
	The Robot's Role
	Setup Design

	User Study
	Evaluation Metrics
	Participants

	Analysis and Discussion
	RQ1: On Participants' Self-assessment
	RQ2: On the Relation Between Performance and Learning Gain
	RQ3: On the Impact of Performance and Learning Gain on Participants' Self- and Robot assessment

	Key Take-Aways

	Productive Engagement
	Introduction
	Background
	Manual
	Automatic

	Productive Engagement
	Research Questions
	Generating an Open-Source Dataset: PE-HRI
	Evaluating the Hidden Hypothesis
	Backward Analysis
	Forward Analysis

	Conclusion

	Identifying multi-modal behavioral profiles of collaborative learning in constructivist activities
	Introduction
	Related Work
	Indicators of collaborative learning
	Building multi-modal models of collaborative learning

	Methods
	Dataset and preprocessing
	Analysis Approach

	Results
	Pairwise Significantly Distinct Behaviors
	Interaction Analysis of Multi-Modal Cases

	Discussion
	Speech Behaviors
	Log Actions
	Affective Behaviors
	Gaze Behaviors
	Tying it All Together: How the Different Modalities Interplay?


	Temporal Pathways to Learning
	Introduction
	Literature Review
	Performance Based Systems
	Behavior Based Systems

	Methods
	Dataset
	Analysis Methodology

	Results
	Discussion
	Temporal Multi-modal behavioral Profiles
	Interplay between PS Strategies and other behaviors
	Connections to Computer-supported Collaborative Learning Literature
	Implications for Design of Adaptive Learning Interventions


	A Speech-based Productive Engagement Metric for Real-time Human-Robot Interaction in Collaborative Educational Contexts
	Introduction
	Revisiting Productive Engagement
	Problem Statement
	Treatment of Learning
	Treatment of Behavioral Patterns

	Methods
	Dataset
	Analysis

	Results
	Clustering
	Classification Models
	PE score

	Discussion
	Conclusion

	Designing and Evaluating Autonomous Social Robots using the Productive Engagement Framework
	Theoretical Description of the Robots
	Designing Harry and Hermione
	Designing Pool of Robot Behaviors
	Generation of the PE Score in Real-Time
	Profile Comparison in Real-Time
	Robot Control Architecture
	Validation of robot behaviors with Harry in a small online study

	Hypotheses
	User Study
	Participants
	Real-time setup
	Evaluation Metrics
	Validation of the thresholds

	Results
	Comparing Harry and Hermione on the Evaluation Metrics
	Comparing Harry and Hermione on Robot Interventions

	Discussion

	Broadening The Horizon
	An Alternate Design for the robot Hermione
	Construction of the nPE score
	nPE based real-time Control Architecture for Snape
	Pilot Study
	Preliminary Results

	Personalization models for Productive Engagement
	Methodology
	Initial Results

	Incorporating Personality in an Educational Robot
	Methodology
	User study with Adults
	Results


	Synthesis
	Overview
	Contributions
	Take-aways
	Limitations

	Appendix A
	Appendix B
	Appendix C
	Bibliography
	Curriculum Vitae



