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Abstract
Climate variability threatens food system stability, particularly among smallholders in developing countries who depend on 
rainfed agriculture. Farm diversification could be a relevant adaptation strategy in this context as a greater number of species or 
a more even distribution of crops is postulated to have a stabilizing effect on farm output as compared to a homogeneous farm. 
In this study, we aimed to explore relationships between climate variability, agricultural diversity, and crop yield stability. We 
used agriculture-focused panel data from Ethiopian households surveyed over four waves from 2011 to 2018 and two climate 
datasets to derive measures of long- and short-term climate variability. In a twofold analytical approach, we used mixed effects 
models to separately model (i) farm richness and pastoralism prevalence with climate variability as predictors, and (ii) crop 
yield stability with diversity, farm input, and climate characteristics as predictors. We found that farm diversity is highest in 
areas with high temperature variability, or low rainfall variability. This held even when excluding pastoralist households, who 
have naturally lower diversity. We further showed that pastoralism is least common in areas with high temperature variability 
and low month-to-month rainfall variability. Both crop richness and crop evenness positively affected temporal yield stability, 
with each showing a greater effect than irrigation, fertilizer, and pesticide usage. Together, these findings suggest that shifts 
in typical ranges of climate variability could destabilize farm-level crop yield for smallholders by limiting diversification 
opportunities. Our findings highlight the need for researchers and policymakers to consider not only the direct effects of cli-
mate variability on crop yield, but also its indirect effects on yield stability caused by increasingly limited adaptation choices.

Keywords Agricultural diversity · Yield stability · Climate variability · Ethiopia · Smallholder farmers

Introduction

Ensuring food stability under increased climate variability 
is a priority for food security and livelihoods, especially 
in lower-income and low-latitude tropical countries, 

which are likely to be hit hardest by the effects of climate 
change (Rosenzweig and Parry 1994; Rosenzweig et al. 
2014; Callahan and Mankin 2022). In particular, there is 
medium to high confidence that climate change has already 
increased heat waves and droughts in sub-Saharan Africa, 
with detrimental impacts on agricultural productivity and 
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efficiency (Otto et al. 2018; Chiang et al. 2021; Trisos et al. 
2022). Increases in climate variability are responsible for 
both a large proportion of global yield variability in several 
prominent crops (Ray et al. 2015), and a reduction in national 
temporal yield stability as a result of destabilizing individual 
crop yields (Mahaut et al. 2021). Livestock is also at risk of 
increasing climate variability. For example, higher drought 
frequency can increase mortality and decrease productivity 
(Herrero et al. 2010; Godde et al. 2019). Smallholders are 
especially vulnerable to increased climate variability due to 
their high dependence on agriculture for their livelihoods, 
their strong orientation towards rainfed agricultural systems, 
and their often-limited capacity to cope and adapt to shocks 
(Ochieng et al. 2020; FAO 2021). Among the global pastoral 
communities, those that are currently the most socio-
economically vulnerable are expected to also experience the 
most damaging vegetation trends for livestock production 
(Sloat et  al. 2018; Godde et  al. 2020). Such findings 
highlight the need among smallholders to adopt adaptation 
strategies that minimize crop and livestock production risks, 
stabilize yields, and thus improve food security.

Diversification has been suggested as a risk manage-
ment strategy to adapt to climate variability and shocks. It 
involves increasing the variety, balance, or disparity of crops 
or livestock activities, which broadens the farm system’s 
range of ecological responses to adverse conditions (Stir-
ling 2007; Lin 2011). Both crop and livestock diversifica-
tion can generally increase food security (Waha et al. 2022) 
although the degree to which it improves food security may 
be limited to a threshold (Das and Ganesh-Kumar 2018; 
Waha et al. 2018; Parvathi 2018). This indicates that finding 
the best levels for each type of diversity may be preferred 
over maximizing all aspects of diversity (Renard & Tilman 
2019). Benefits of diversification for food security include 
pest and disease suppression (Lin 2011), reduced income 
variability and greater market opportunities (Bellon et al. 
2020; Mzyece and Ng’ombe JN 2021), reduced poverty 
(Michler and Josephson 2017), and lower downside risk 
exposure for crop income (Bozzola and Smale 2020). Such 
benefits may not always outweigh the resources required for 
smallholders to implement and maintain diversification strat-
egies, such as the financial costs, extra labor, and knowledge 
(Rosa-Schleich et al. 2019). However, the ability to optimize 
diversification based on the farmer’s specific needs makes it 
a promising candidate for adaptation to climate variability.

While initial evidence and theory suggests a general 
positive effect of diversification on food security, the spe-
cific effects of diversification on temporal yield stability are 
still poorly understood (Beillouin et al. 2019), especially at 
the household level and over multiple years to decadal time 
scales. Literature to date offers some informative theory and 
observations pertaining to the effect of diversity on stability 
over time. For example, crop diversification at the national 

level stabilizes food production among many countries 
(Renard and Tilman 2019), including several in sub-Saharan 
Africa. This may be explained by the results of Mahaut et al. 
(2021), who found that the average yield stability of individ-
ual crops and asynchronization of yield fluctuations are both 
important determinants for national food production stability, 
and that crop diversification may improve the latter. Cereal 
intercropping with legumes was also found to significantly 
reduce the high instability of cereal yields in tropical regions 
(Raseduzzaman and Jensen 2017). Exploring the diversity-
stability relationship at the household level with panel data 
can provide valuable additional insights. Indeed, as drivers 
of stability can depend on spatial scale (Shanafelt et al. 2015; 
Egli et al. 2021), household level analyses are imperative to 
forming valid conclusions about smallholder adaptation strat-
egies. Moreover, the conditions faced by a household may 
differ significantly based on the unique combination of issues 
from the local scale to the global scale (Urruty et al. 2016). 
This heterogeneity in household responses is not considered 
in national-level or regional-level studies.

Here, we aim to explore the relationships between climate 
variability, farm diversity, and temporal yield stability with 
a case study in Ethiopia, using household survey panel data 
from rural smallholders. We accomplish this through two 
interrelated aims. Firstly, we aim to better understand the 
nature of the relationship between observed climate vari-
ability and farm diversity. Secondly, we aim to investigate 
any association between farm diversity and temporal yield 
stability. In addressing these aims, we make the following 
hypotheses: diversity is non-linearly associated with climate 
variability, such that diversity is highest at a moderate range, 
and lowest at the extremes of climate variability; farm live-
stock orientation is positively associated with climate vari-
ability; and temporal yield stability is positively associated 
with diversity.

Data

Household survey data

The World Bank's Living Standard’s Measurement Study-
Integrated Surveys on Agriculture is a collection of agricul-
ture-focused household surveys which provide comprehensive 
panel data across several countries in sub-Saharan Africa. We 
used the Ethiopia panel dataset, which contains four waves 
pertaining to the primary harvest season, also called the 
Meher season, in 2011, 2013, 2015, and 2018 (Central Sta-
tistics Agency of Ethiopia 2011, 2013, 2015, 2018).

The analysis was disaggregated into two distinct parts 
corresponding to the aims of this study, and each part uses 
different survey waves. Firstly, we analyzed the relation-
ship between farm diversity and climate variability using 

                                                           



   

cross-sectional household survey data from wave 4 in 2018. 
Secondly, we used household survey data from previous 
waves 1 to 3 to perform a longitudinal analysis investigating 
the effect of diversity on temporal yield stability. The latest 
survey wave from 2018 is a refreshed sample, and so it was 
not possible to link at the household level with the previous 
waves (CSA and World Bank 2021). Moreover, using wave 4 
for the first objective rather than wave 1 to 3 ensured that the 
analysis was representative for all regions sampled. Indeed, 
the survey design for wave 1 to 3 was not intended to provide 
regional representativity across all regions.

We considered only rural households, and only those 
households that harvested crops in the most recent Meher 
season, or owned livestock in the past 12 months. Crop 
yields vary a lot from year to year and between different 
regions (Fig. 1a). Due to the survey design, the distribution 
of households within and across each region—Ethiopia’s 
largest administrative division—is largely dependent on pop-
ulation density (Fig. 1b). For example, for wave 4, 1562 out 
of the 2521 rural households used in our analysis are from 
Tigray, Amhara, Oromia, or the Southern Nations, National-
ities, and Peoples’ Region. The remaining households come 
from the other six, typically smaller, regions. Notable excep-
tions to this are Somali and Afar, both rather large pastoral/
agro-pastoral regions, with 49 and 268 households respec-
tively. The first three waves have a different distribution, 
due to the refreshed sampling for wave 4 (CSA and World 
Bank 2021). The World Bank’s GPS anonymization process 
sees each household take the coordinates of its kebele—
Ethiopia’s smallest administrative division—which is then 
randomly offset by 0–5 km, with 1% of kebeles being offset 
by an additional 0–10 km. Each kebele’s GPS coordinate is 

guaranteed to be within its correct zone—Ethiopia’s second-
largest administrative division (CSA and World Bank 2021).

For the longitudinal analysis, we filtered livestock-only 
households from the sample (due to data constraints) so 
that it only contains crop-growing and mixed crop-livestock 
households present for all three waves. Hence, three of the 
regions had very few households. The number of house-
holds per kebele was no longer ten as per the sample design, 
but instead averaged six households per kebele. The sample 
sizes for each part of the analysis, following filtering, are 
illustrated in Fig. 2.

Climate data

For precipitation, we used CHIRPS with daily precipitation 
data from 1981 to present at a 0.05 degrees resolution grid 
(Funk et al. 2015). We also used the Climate Research Unit’s 
climate dataset, CRU TS v4.05, which has monthly observa-
tions from 1901 to 2020 of both precipitation and tempera-
ture at a 0.5 degrees resolution (Harris et al. 2020). This 
climate data was extracted at geographic locations closest to 
the anonymized GPS coordinates provided in the household 
survey data.

We calculate climate variability using the coefficient of 
variation (CV) of precipitation and temperature—measures 
commonly used to capture climate variability in agriculture. 
We considered two different time periods for these measures. 
Firstly, short-term month-to-month variability was calcu-
lated from monthly temperature and rainfall in the year prior 
to the survey year, to capture climate characteristics in the 
most recent season. Secondly, long-term annual variability 

Fig. 1  Temporal yield stability in Ethiopia across three survey waves (2011 to 2015) for four selected crops (a) and location of surveyed house-
holds in the four most populated regions and present in all three waves 1–3 and after filtering (b)

                                                            



   

was calculated using mean annual temperature and total 
annual rainfall, in the 30-year time period prior to the sur-
vey year. We initially considered additional climate vari-
ability measures but have not included in the results due to 
their high collinearity with 30-year climate variability. These 
measures were 10-year climate variability, annual variability 
of the long rainy season only (June–Sept), and annual vari-
ability of the short rainy season only (Feb–May).

We also calculated the Standardized Precipitation-Evap-
otranspiration Index (SPEI) for September in the year of 
each survey using the CRU dataset (Beguería et al. 2014). 
As the index uses both temperature and precipitation in its 
derivation, we used the CRU data for both the precipitation 
and temperature. This was calculated on a 3-month time-
scale—July to September. September is the last month of the 
long rainy season, which corresponds to the Meher season 
(Temam et al. 2019). From this, we derived a drought index 
by the number of times in the past 10 years that SPEI was 
less than − 1.28, following Bozzola and Smale (2020). Posi-
tive SPEI values indicate water excess and negative SPEI 
values indicate water deficiency. The value − 1.28 indicates 
severe drought events by approximately corresponding 
to the lower 10% tail of the SPEI probability distribution 

function. Based on this index, 7% of wave 4 households 
had no droughts, 82% had one drought, and 11% had two 
droughts in the long rainy season during the past 10 years. 
These are potentially from the major 2011/12 and 2015/16 
droughts in Ethiopia (Funk et al. 2019).

Farm diversity

Diversity was captured in several ways. Species richness 
was defined for crops by the number of different species 
planted by the household in the latest cropping season, and 
for livestock by the number of different types owned by 
the household in the past 12 months. The livestock types 
included cattle, goat, sheep, camel, equine, chicken, and bee. 
Farm richness was derived as the sum of crop and livestock 
richness. From these richness measures, we also derived a 
farm specialization variable. Households with zero livestock 
richness were classified as crop-only, households with zero 
crop richness were classified as livestock-only, and the rest 
were classified as mixed.

Although richness measures are the simplest measures 
for diversity, they do not account for differences in field 
area usage, and thus implicitly assume equal importance of 
each species in a household’s farming activities. We incor-
porated land usage using the effective diversity indices. For 
a household with n unique crops, let pi be the proportion of 
cultivated land for crop i ∈ {1, ..., n} . The Shannon diversity 
index provides a measure of crop evenness—the degree to 
which all cultivated species are equally abundant (Shannon 
1948). It is given by,

The Simpson diversity index provides a measure of crop 
dominance—the degree to which a small subset of crop spe-
cies takes up most of the cultivated area (Simpson 1949). It 
is given by,

Finally, as a simple measure of land use diversity, we 
calculated the Berger-Parker diversity index, given by 
1∕max

(
pi
)
 , which is simply the inverse proportion of cul-

tivated land of the dominant crop. Although this measure 
is biased towards species richness, it has the advantage 
of being more easily interpreted. Following Jost (2006), 
these three measures were transformed to get the effec-
tive diversity, which has more desirable properties com-
pared to the raw measures. Most diversity measures for 
the households included in waves 1 to 3 tend to be highest 
in the south-west of Ethiopia (Fig. 3).

−

n∑

i=1

pi ln pi

n∑

i=1

p2
i

Wave 1
N=3466

Wave 2
N=3323

Wave 3
N=3272

Wave 4
N=3239

Waves 1-3
N=2929

Analysis of temporal 
yield stability

Waves 1-3
N=1230

Wave 4
N=2521

Only households followed through 
three waves

Analysis of climate 
variability and diversity

Required filters

Wave 1
N=3969

Wave 2
N=5262

Wave 3
N=4954

Wave 4
N=7527

Only rural households

Fig. 2  Sample filtering and resulting sample size for each part of the 
study. It was necessary to filter households primarily to remove those 
that did not participate in agricultural activities, or that did not har-
vest any of the major 23 crops in all waves

                                                           



   

Temporal yield stability

Caloric yield was used as a measure of average household-
level crop yield. Twenty-three crops were used to derive 
caloric yield; these were maize, sorghum, teff, wheat, bar-
ley, millet, oats, rice, lineseed, ground nuts, nueg, rape-
seed, sesame, sunflower, fenugreek, horse beans, haricot 
beans, field peas, chick peas, lentils, vetch, white lupin 
(locally called “gibto”), and soya beans. These crops were 
selected because they were the most comparable across 
waves; data collection differences made other crops unre-
liable for comparison across waves. To calculate a total 
yield across all crops, yields were converted to caloric 
yield using caloric content (FAO 2001) and aggregated 
from field to household level via an area-weighted mean. 
Specifically, for a given household h in wave t  with crops 
i , the area-weighted mean caloric yield Yh,t , is given by,

There is a multitude of yield stability measures defined 
in the literature, of which we chose six to use in our analy-
sis. A detailed theoretical background on stability analysis 

Yh,t =

∑
i kcali × harvesti∑

i areai

is given the separately (Supplementary Information S11), 
which highlights why it is important to consider several 
alternative measures in yield stability analyses. The yield 
stability measure most commonly used in the literature, 
and thus considered in this study, is the inverse CV Sh . It 
is given by,

Where μh is the temporal mean and σh is the temporal 
standard deviation of caloric yield of household h . Dividing 
by the mean gives the variability per unit of yield. Taking 
the inverse is merely to change interpretation from instability 
to stability. In addition to this measure, we implemented the 
alternative CV Sh , given by,

where σ⋆
h
 is the standard deviation of the log-transformed 

yields for each wave. This is more appropriate for variables 
following a log-normal distribution, as might be the case 
with caloric yield. To control for the effect of any yield trend 
over time, another two stability measures were created by 

(1)Sh =
μh

σh

Sh =

√
exp

(
𝜎⋆
h

)
− 1

1
5
6
8
14

Crop richnessa

1
2
3
4

Livestock richnessb

3
7
9
11
16

Farm richnessc

1.00
1.80
2.13
2.43
3.51

Berger−Parker indexd

1.00
2.88
3.61
4.37
6.74

Shannon indexe

1.00
2.42
2.97
3.48
5.57

Simpson indexf

Fig. 3  Spatial distribution of effective diversity measures for the filtered households surveyed in waves 1 to 3. They are represented here as 
median diversity at the district level—Ethiopia’s third largest administrative division after region and zone

                                                            



   

detrending the CV with respect to the household’s temporal 
trend, as well as the temporal trend of the kebele in which 
the household is situated. These were derived similarly to 
Eq. 1, but instead using a standard deviation of the residu-
als of a simple linear regression fit of the yield over time. 
We also calculated a stability measure based on power law 
residuals, as proposed by Döring et al. (2015), albeit in 
the context of the single-species yield. This measure sets a 
household’s stability equal to its residual in the power model 
of yield variance on yield mean for all households, which 
reduces to,

This is essentially a measure of deviation from the con-
ditional mean yield of all households. Finally, we imple-
mented a proportional variability index, given in our case 
by,

which is a non-parametric alternative to the CV for yield 
stability (Heath 2006). This has the advantage of not being 
heavily skewed, and ranging between 0 and 1.

Statistical modeling

For each analysis, we used a mixed effects model with a 
random effect for kebele. Survey data tends to exhibit at 
least one level of clustering, based on the response vari-
able (Rabe-Hesketh and Skrondal 2006). Ethiopian kebe-
les, being the smallest administrative division, are subject to 
similar exogenous factors. By using a mixed effects model 
with a kebele-level random effect, the within-kebele het-
erogeneity can be distinguished from the between-kebele 
heterogeneity, allowing us to determine whether kebeles 
respond in similar ways to exogenous factors such as cli-
mate variability. Although higher administrative divisions 
were also considered for random effects in a nested multi-
level structure, the intra-class correlations were extremely 
low for these levels, and they were thus omitted. All models 
were implemented in R v4.1.3 (R Core Team 2020) using 
the lme4 package (Bates et al. 2015).

Climate variability and diversification

For the cross-sectional analysis, we used a generalized linear 
mixed effects model with a random effect for kebele (Eq. 2). 
Farm richness was modeled as Poisson-distributed, with pre-
cipitation and temperature variability as predictors. Tempera-
ture and precipitation are not independent predictors, but are 

log
(
�2
h

)
= α log

(
μh
)
+ �

Sh = 1 −
1

3

(
min

(
Yh,1, Yh,2

)

max
(
Yh,1, Yh,2

) +
min

(
Yh,2, Yh,3

)

max
(
Yh,2, Yh,3

) +
min

(
Yh,1, Yh,3

)

max
(
Yh,1, Yh,3

)

)

inherently statistically associated (Table 5 in the Appendix). 
We do not remove one or the other from the model as they have 
different relevance for agriculture and differ in the magnitude 
and direction of effect on agriculture. In addition, an indicator 
variable was created to distinguish some high-leverage Somali 
households located in areas with extreme precipitation vari-
ability. A separate model was fitted to mixed, crop-only, and 
livestock-only households, as well as a model for all house-
holds pooled together. The variables used in this model are 
summarized in Table 3 in the Appendix.

To test the hypothesis that diversity is low in the extremes 
of climate variability, we used quadratic polynomials of cli-
mate variability as predictors. Where a variable’s quadratic 
term has a significant and negative parameter estimate, the log-
mean of farm richness is sufficiently modeled by an inverted 
parabola, which has a single peak. We analytically optimized 
those parameter estimates to determine the precise climate 
variability at which diversity is highest. If this peak occurs at a 
non-extreme climate variability, as determined by a percentile 
range, then diversity is lower at the extremes of climate vari-
ability in the observed data and the hypothesis is supported. A 
disadvantage of this methodology is that quadratics are sym-
metric about the peak, which may lead to under-fitting of a 
more complex relationship. Although other models such as 
splines may better capture a non-linear relationship, this would 
likely be limited by the availability of accurate climate data.

To determine whether the proportion of livestock-only 
households increases as climate variability increases, we 
implemented a mixed effects logistic regression model with 
the climate variability measures as fixed effects, and kebele 
as a random effect (Eq. 3). For the predictors that give signifi-
cant and positive parameter estimates, the model supports the 
hypothesis that the proportion of livestock-only households 
increases as climate variability increases. The indicator for 
the high-leverage households used in the previous model was 
similarly used in this model.

Temporal yield stability

Similar to the cross-sectional analysis, temporal yield stabil-
ity was modeled using a mixed effects model with a random 
effect for kebele (Eq. 4). However, this model considered all 
available predictors as fixed effects (Table 6 in the Appen-
dix), using variable selection procedures to reduce model 
size. An interaction between the diversity variable and 

(2)
Farm richnessh | �k ∼ Poi

(
e�

�xh+�k
)

�k ∼ N
(
0, σ2

K

)

(3)
logit ℙ

(
Livestock orientedh

)
| �k, �r = �Txh + �k + �r

�k ∼ N
(
0, �2

K

)

�r ∼ N
(
0, �2

R

)

                                                           



   

log-transformed field area was added to examine the rela-
tionship between these variables. Exploratory analysis did 
not reveal large differences in slope or intercept estimates 
among groups, so no additional random effects were added. 
All numeric predictors were scaled and centered. To nor-
malize residuals, the response variable was Box-Cox trans-
formed, where the power parameter was calculated using the 
full model with kebele instead treated as a fixed effect. For 
robustness, we fit the same model to all six of our stability 
measures. The following results and discussion pertain only 
to the model which uses stability measured by Eq. 1—the 
inverse CV of caloric yield. This measure resulted in the 
most ideal diagnostics including normally distributed and 
heteroscedastic residuals. It is also the more commonly used 
measure in the literature, which can aid with interpretability. 
The results for the models using the other stability measures 
are reported separately (Supplementary Information S1-6).

Variable selection first involved developing a list of 
potential drivers of yield stability. We then manually 
inspected and eliminated variables with extreme collinear-
ity or extreme imbalance. This was followed by backwards 
elimination using Akaike information criterion penalty. Dur-
ing backwards elimination, several variables were exempt 
from elimination for conditioning or for interest in the study. 
Namely, we retained agro-ecological zone, region, domi-
nant crop, diversity variables, irrigation, fertilizer usage, 
and pesticide usage. Fertilizer usage was measured as the 
proportion of applied area, whereas irrigation and pesticide 
were measured as binary indicators of their usage on any 
field since the proportion of applied area for irrigation and 
pesticide was extremely skewed. After variable selection, 20 
predictors remained in total.

The yield stability measures were derived at the house-
hold-level and encompassed all waves, whereas the predic-
tors were often defined at lower levels and were wave-spe-
cific. This is a case of the micro–macro problem, whereby 
the response variable is not on the lowest level of analysis. 
Although predictors at the household-level and above can be 
handled by the usual mixed effects model framework, pre-
dictors at lower levels require further consideration. There-
fore, we aggregated plot-level and field-level predictors to 
the household-level via area-weighted sums for continuous 
variables, indicators for binary variables, and most common 
values for categorical variables. Following this, we aggre-
gated time-varying predictors across the three waves via the 
arithmetic mean for continuous variables, and most com-
mon values for binary and categorical variables. Temporal 
aggregation in this manner limits the ability to distinguish 

(4)
Stabilityh | �k, �h = ��xh + �k + �h

αk ∼ N
(
0, σ2

K

)

�h ∼ N
(
0, σ2

)

household heterogeneity. However, this trade-off was neces-
sary to analyze stability, a temporal phenomenon, using only 
three waves. Furthermore, aggregating via simple means 
results in similar statistical performance to more complex 
methods (Foster-Johnson and Kromrey 2018).

Due to the collinearity of the diversity variables, they 
were used separately in three distinct models rather than 
combined into a single model. Collinearity of the other vari-
ables was not a problem, indicated by variance inflation fac-
tors lower than two for each variable. Farm richness, Shan-
non diversity, and Berger-Parker diversity were chosen for 
continued analysis, and the results and discussion pertain 
only to the three models using these variables. The vari-
ables used in the models are summarized in Table 4 in the 
Appendix. The results for the models using the other diver-
sification measures are reported separately (Supplementary 
Information S1-6).

Results

Climate variability and diversification

We observed the following characteristics of smallholder 
diversity in this part of the analysis using the wave 4 household 
survey for 2018/2019. Livestock-only households, making up 
16% of all surveyed households, are dominated primarily by 
goat-herders. Mixed households, which make up 74% of all 
households, tend to favor cattle herding, and most often have 
maize, teff, or sorghum as their dominant crop by area. Crop-
only households, which make up the remaining 10% of all 
households, most often have maize, coffee, or sorghum as their 
dominant crop by area. This minority of households also tends 
to have lower crop diversity than mixed households, indicating 
that the tendency to specialize by way of only crop-farming is 
perhaps associated with the tendency to specialize within the 
cropping activities. Conversely, diversification by the owner-
ship of livestock is perhaps coupled with diversification within 
cropping activities. Among the households that cultivate crops, 
11% reported having only one crop. This behavior is more 
likely for crop-only households, and results in a Shannon 
diversity and Simpson diversity of one for those households. 
Farm diversity differs geographically, where the Southern 
Nations, Nationalities, and Peoples’ Region, Amhara, and 
Benchsangul Gumuz were the three regions with the high-
est diversity. The former had an average Shannon diversity of 
3.69, which is equivalent to 3.69 equally abundant crops on 
the average farm in this region. As expected, the two regions 
that are primarily livestock-only, Afar and Somali, also had 
the lowest diversity.

Climate variability significantly affects farm richness for 
both mixed and specialized (crop- or livestock-only) farm 

                                                            



   

types. Specifically, results from the farm richness models 
(Eq. 2) indicated that climate variability predictors were sta-
tistically significant in the linear term1 for all but the livestock-
only model’s annual rain variability (Table 1). For the pooled, 
mixed, and crop-only household models, rain variability was 
negatively associated with farm richness and temperature 
variability was positively associated with farm richness. 
This holds for both month-to-month and annual variability. 
The livestock-only model showed the opposite trends, with 
households in areas with higher rain variability predicted to 
have higher diversity, and households in lower temperature 
variability predicted to have higher diversity. Climate vari-
ability explained 27% of the spatial variance in farm richness 
among households. This was derived by pseudo-R2 measures 
(Nakagawa and Schielzeth 2013). The variance explained 
was significantly lower for the mixed ( R2 = 0.13 ), crop-only 
( R2 = 0.19 ), and livestock-only models ( R2 = 0.16 ). When 
also considering the kebele random effect, 58% of variance 
in farm richness was explained for the pooled model, with a 
decrease for the mixed ( R2 = 0.42 ), crop-only ( R2 = 0.38 ), 
and livestock-only models ( R2 = 0.25).

In some cases, we observed non-linear relationships 
between climate variability and (log-)mean diversity that is 
indicative of a modeled peak value for farm richness. Nega-
tive quadratic parameter estimates were observed for annual 
temperature variability in the mixed and crop-only household 
models, albeit at the 0.1 significance level (Table 1). This 
suggests that there exists a certain annual temperature vari-
ability where diversity is highest. However, the maximum 
diversity predicted by the modeled polynomial was beyond 
the 90th percentile of the observed data, at a CV of ~ 0.027 
and ~ 0.024 for the mixed and crop-only household models 
respectively (Fig. 4h, l). Hence, for crop-only and mixed 
households, this result means that diversity is highest at high 
annual temperature variability, and lowest at low annual tem-
perature variability, with no peak in the middle of the range.

The logistic regression model for livestock-only farms 
(Eq. 3) showed that these farms are more common in regions 
with high annual rainfall variability. The model also had signifi-
cant parameter estimates for temperature variability (Table 2). 
The negative estimate for annual temperature variability implies 
that livestock-oriented farms become less common in climates 
with greater annual temperature variability. This conversely 
suggests that they become more common in climates with a 
lower mean annual temperature due to the negative correla-
tion between temperature’s variability and mean (Spearman’s 
ρ = −0.81, p < 0.001 ) (Table 6 in the Appendix). The model 
also had a high intra-class correlation ( ICC = 0.77 ) that is 
dominated by the variance attributable to between-kebele dif-
ferences. This means that the propensity for a household to be 
livestock-oriented appears to be more dependent on the kebele 
than to the fixed effects or the region. The high intra-class 

Table 1  Results of the Poisson mixed effects model for the relationship between climate variability and farm richness

***p < 0.01, **p < 0.05, *p < 0.1, blank = not significant

Predictors Pooled Mixed Crop-only Livestock-only

Log-mean (SE) p-value Log-mean (SE) p-value Log-mean (SE) p-value Log-mean (SE) p-value

Intercept 1.76 (0.02) *** 1.99 (0.02) *** 1.21 (0.05) *** 0.94 (0.05) ***
Month-to-month rain CV  − 4.69 (1.71) ***  − 3.99 (1.25) ***  − 3.83 (1.27) *** 3.48 (1.19) ***
Month-to-month rain  CV2 2.61 (1.37) * 1.47 (1.07) 2.06 (0.99) **  − 0.80 (1.07)
Annual rain CV  − 12.43 (2.00) ***  − 3.00 (1.45) **  − 2.45 (1.23) **  − 0.13 (1.30)
Annual rain  CV2  − 1.87 (1.87)  − 0.55 (1.56)  − 0.93 (0.88)  − 1.50 (1.29)
Month-to-month temp. CV 4.90 (1.72) *** 2.79 (1.36) ** 2.56 (1.26) **  − 2.93 (1.20) **
Month-to-month temp.  CV2 1.86 (1.44) 0.97 (1.05)  − 0.48 (0.96)  − 1.67 (1.22)
Annual temp. CV 8.90 (1.52) *** 5.70 (1.03) *** 1.83 (0.86) **  − 6.56 (1.46) ***
Annual temp.  CV2  − 1.20 (1.54)  − 1.82 (1.00) *  − 1.25 (0.75) * 0.52 (1.51)
Random effects
�2 0.16 0.13 0.26 0.35
�2

K
0.12 0.07 0.08 0.04

ICC 0.42 0.34 0.24 0.10
Marginal R2 0.272 0.132 0.192 0.162
Conditional R2 0.581 0.424 0.382 0.246

1 As polynomial terms are only approximately orthogonal in Pois-
son mixed effects models, this is not necessarily indicative of the lin-
ear model with non-significant quadratic terms removed. To ensure 
model outcomes were similar, we refit the models with the non-sig-
nificant quadratic terms removed. Statistical significance of p < 0.05 
was maintained and signs of the estimates were the same for all but 
annual rain CV in the crop-only model. These results are reported 
separately (Supplementary Information S7-10).

                                                           



   

correlation is reflected in the model’s conditional explained 
variance (conditional R2 = 0.87 ), which is significantly lower 
when kebele isn't taken into account (marginal R2 = 0.44).

Temporal yield stability

Temporal yield stability between 2011 and 2015 in Ethiopia 
had a median of 1.76. To give an example of this, a house-
hold with a stability of 1.76, or equivalently an inverse CV of 
1.76−1 = 0.57 , could have a mean caloric yield in 1 year that 
was similar to its average over the three waves, with the other 

2 years having a caloric mean yield 43% higher and 43% lower 
than the average. There are also marked regional differences in 
typical stability. Temporal yield stability was typically highest 
among households in Benshangul Gumuz and Amhara, with 
a median yield stability of 2.43 and 1.99 respectively. Ben-
shangul Gumuz is a sub-humid region in the Western Ethio-
pian lowlands with primarily maize/sorghum mixed systems. 
The least stable regions were Dire Dawa and the Southern 
Nations, Nationalities, and Peoples’ Region, with a median 
yield of 1.20 and 1.53 respectively. Dire Dawa is a small semi-
arid region in the lowlands of Eastern Ethiopia. All households 
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Fig. 4  Predicted farm richness (blue) for month-to-month rain vari-
ability (a, e, i, m), annual rain variability (b, f, j, n), month-to-month 
temperature variability (c, g, k, o), and annual temperature variabil-
ity (d, h, l, p). Turning points are indicated (red) where applicable. 
Results are shown for the pooled households model (a, b, c, d), the 

mixed households model (e, f, g, h), the crop-only households model 
(i, j, k, l), and the livestock-only households model (m, n, o, p). Data 
points are plotted (black), and vertical dotted lines indicate the 10th 
and 90th percentiles of the observed data. Please note the different 
scales used for the y-axis

                                                            



   

in this region had sorghum as their dominant crop. Oromiya 
had the largest range of stability values, from 0.61 to 56.1, 
possibly due to its greater geographical extent and sample size. 
Furthermore, households in sub-humid climates were more 
stable than households in humid and semi-arid climates, where 
the median yield stability was 1.90 for the former, and 1.69 and 
1.65 for the latter two respectively. All aforementioned descrip-
tive results hold when considering mean, instead of median, as 
the measure of central tendency.

Model results for the yield stability analysis (Eq. 4) show 
that farm richness and Shannon diversity were significant 
positive predictors of stability ( p < 0.01 , Fig. 5, Table 7 in 
the Appendix). The estimate for Berger-Parker diversity 
was also positive and significant ( p < 0.01 ), indicating that 
households which dedicate a higher proportion of crop area 
to the dominant crop species tend to have lower overall yield 
stability. This result generally held true when introducing an 
interaction effect between this variable and the dominant crop 
type. This indicates that the effect of Berger-Parker diversity 
is not just a function of characteristics of specific crops. Only 
for perennials as the dominant crop type did the effect of the 
Berger-Parker diversity on yield stability become negative. 
Crop richness and Simpson diversity gave similarly positive 
and significant parameter estimates to the models presented 
here, although livestock richness was a poor predictor for 
caloric yield stability both in isolation and when coupled with 
crop richness (Supplementary Information S1-6). Finally, the 
interaction between diversity and field area was not significant 
at the 0.05 significance level, although it was significant at 
the 0.1 level for the farm richness model. This model had a 
significant negative parameter estimate for field area, although 
it was smaller in magnitude than the effect of farm richness.

Parameter estimates for non-diversity predictors were 
mostly similar across the three models (Fig. 5, Table 7 in the 
Appendix). The strongest non-diversity predictor of house-
hold yield stability was the proportion of harvested area to 
planted area, which was statistically significant and similar 

Fig. 5  Results of mixed effects 
model for three temporal yield 
stability models with differ-
ent diversity measures. Dots 
represent parameter point esti-
mates and lines represent 95% 
confidence intervals. Significant 
parameter estimates are those 
with confidence intervals that 
are non-overlapping with the 
vertical zero line

Berger−Parker diversity
Shannon diversity

Farm richness
Avg. temp. in wettest qtr.

Annual rain variability
Organic fertilizer

Avg. rain in wettest qtr.
Annual temp. variability

Field area
Goats sold

Irrigation
Intercropped area

Distance to market
Drought index

Inorganic fertilizer
Planted area

Pesticide
Cattle owned
Pasture fields

Harvested:planted area

−0.1 0.0 0.1
Standardized parameter estimate

Diversification type Farm richness Shannon diversity Berger−Parker diversity

Table 2  Results of the logistic regression mixed effects model for 
livestock-only farm presence

***p < 0.01, **p < 0.05, *p < 0.1

Predictors Pooled

Estimate (SE) p-value

Intercept  − 4.92 (0.73) ***
Month-to-month rain CV 1.06 (0.59) *
Annual rain CV 2.58 (0.66) ***
Month-to-month temp. CV  − 1.23 (0.44) ***
Annual temp. CV  − 1.72 (0.50) ***
Random effects
�2 3.29
�2

K
9.76

�2

R
1.41

ICC 0.770
Marginal R2 0.436
Conditional R2 0.872

                                                            



   

in magnitude to the effect of farm richness. The number of 
pasture fields was also statistically significant and positively 
associated with stability, as was cattle headcount albeit to a 
lesser extent. The proportion of area with organic fertilizer 
was negatively associated with stability, although not at the 
0.05 significance level for one of the models. At the 0.1 level, 
the average temperature in the wettest quarter was the strong-
est negative predictor of stability. The region and dominant 
crop conditioning variables were significant at the 0.05 level. 
Intra-class correlation was low, at about 18% for all models, 
so stability can be quite different for households within the 
same kebele (Table 7 in the Appendix). The explained vari-
ance was similar for all models, with a marginal and condi-
tional pseudo-R2 of 0.157 and 0.315 respectively for the farm 
richness model. Models using the other stability measures 
performed similarly (Supplementary Information S1-6).

Discussion

Climate variability and diversification

We expected diversity to be low when climate variability is 
either very high or very low. This is because (i) highly variable 
climates may limit growth and development of a number of 
crops (Waha et al. 2018) making high crop richness less eco-
nomically viable, and (ii) low variability could be more sup-
portive of intensive monocropped farming systems (Howden 
et al. 2010). We find here that only climate variables taken 
together conform to the hypothesis. Diversity is generally low-
est when precipitation variability is high and when tempera-
ture variability is low. Due to the strong negative correlation 
between annual temperature variability and annual mean tem-
perature (Table 5 in the Appendix), the results also suggest that 
diversity is lower in warmer areas. This opposes the findings of 
Ochieng et al. (2020) in rural Kenyan households, which found 
that diversification is more widespread in warmer climates.

There are two possible explanations for this result. Firstly, 
the results of the logistic regression model showed that pas-
toralism is more prevalent in warmer areas with low annual 
temperature variability (Table 2). Hence, the lower diversity 
that is observed at the lower end of temperature variability 
may in fact be due to the higher frequency of livestock-ori-
ented households, which have a low diversity overall. Sec-
ondly, the result could be explained by the characteristics of 
precipitation in areas with low annual temperature variability, 
where temperature variability is positively correlated with 
precipitation (Table 5 in the Appendix). Past studies show 
that bioclimatic variables related to precipitation were most 
important in Ethiopian land suitability simulations (Evange-
lista et al. 2013). Moreover, precipitation was often a more 
important factor than temperature for crop land suitability 
in Ghana (Chemura et al. 2020). Hence, the low diversity 

in areas with low temperature variability could be due to 
the more pervasive effects of low precipitation. Due to the 
limitations of observational data, any conclusions as to the 
causality or relative importance of either factor would need 
to come from external sources, such as field experiments.

An important caveat regarding interpretation of the month-
to-month climate variability results is that our measure is not 
the average variability within all years—it is only the monthly 
variability that was observed in the year prior to the year of the 
surveys. In this context, we can consider two possible household 
response types to climate variability: an adaptation response 
to persistently high variability, and a reactionary response to 
recently high variability. The former is more likely captured 
with our measure of annual variability derived from the past 
30 years. However, the latter cannot be captured with our meas-
ure of month-to-month variability in the past year. The month-
to-month measure only allows us to compare recent variability 
between households, rather than comparing a household’s recent 
variability to its norm. By keeping this in mind, we can put our 
results for this part of the study into the proper context.

Temporal yield stability

Our results show a general positive association between diver-
sity and temporal yield stability. This aligns with theoretical 
and observational arguments from the literature suggesting 
that crop diversification can lead to more stable yields (Tilman 
et al. 1998; Urruty et al. 2016; Liu et al. 2019; Renard and 
Tilman 2019; Hufnagel et al. 2020). The effect of crop area 
distribution on stability is less often studied, so the observed 
significant positive effect of Shannon diversity is an informa-
tive outcome. Moreover, the positive effect of Berger-Parker 
diversity, albeit lower in magnitude than Shannon diversity, 
suggests that the area of the dominant crop is an important 
factor for yield stability, supporting the findings of Mahaut 
et al. (2021). As for the random effect for kebele, the models’ 
low intraclass correlation means that households within the 
same kebele do not have similar stability relative to house-
holds from other kebeles. This is surprising since yield sta-
bility is very likely dependent on exogenous factors, such as 
weather shocks, which are essentially equal among all house-
holds within a kebele but highly varied between kebeles. It 
is possible that this is due to including region and agro-eco-
logical zone as conditioning variables in the models, which 
might to some extent negate the effect of exogenous variables. 
Nevertheless, the overall effect of diversity on temporal yield 
stability is clear in our results, which suggests that it may be 
an important factor in achieving food system stability.

Several unexpected effects were observed in the yield sta-
bility model. Firstly, irrigation and inorganic fertilizer usage 
were not significant determinants of stability, and organic fer-
tilizer was a negative determinant of stability. This is despite 
evidence that both irrigation and fertilizer use have a positive 

                                                             



   

effect on both yield and yield stability (Sánchez 2010; Knapp 
and van der Heijden 2018; Renard and Tilman 2019; Egli et al. 
2021). On the other hand, fertilizer application increases crop 
water requirement and in the absence of increased water supply 
may lead to increased crop yield variability over time (Aff-
holder 1995; Falconnier et al. 2020). To account for potential 
interaction between these variables and droughts, which may 
affect the efficacy of irrigation and fertilizer, we also tested the 
model with these interaction terms included, but the results 
were similar. Not observing any effect in our models may be 
a result of diluting the variables when temporally aggregating 
during data preprocessing, as we had to create one variable 
from each time-varying variable per household from the data 
over all three waves. Recall bias could have also influenced the 
reporting on agricultural inputs (Dillon et al. 2021). Secondly, 
the drought index had a positive effect on stability, although it 
was not a significant effect. This would imply that households 
with a more frequent past occurrence of droughts are also more 
stable. One possible explanation for this is that the likelihood 
of droughts itself acts as a driver for adaptation measures. 
This is supported by findings that past climate shocks is a 
positive predictor of diversification in Namibian households 
(Mulwa and Visser 2020). As a result, there is an increased 
adaptive capacity among farms in areas that have experienced 
droughts in the past decade, and the overall stability for these 
households may benefit from this even during times without 
drought. This explanation is not examined further in this study 
but stands as an avenue for future work.

The role of livestock in yield stability may require a more 
complex approach than that taken here. Literature suggests that 
livestock production can be more resilient to high climate vari-
ability than crop production (Godde et al. 2021), which may 
also be inferred from our logistic regression model results (the 
“Climate variability and diversification” section). However, our 
models also showed that the number of livestock types owned 
by the household was not associated with yield stability. This 
could be because we did not incorporate livestock yield (e.g., 
meat, milk, eggs) into a single measure of overall food yield 
for the household. Thus, the only mechanism by which live-
stock diversification could increase yield stability in this model 
is through the indirect effects of livestock ownership, such as 
manure usage for soil fertility, and draught power. Further-
more, the selling of livestock to cope with shocks is an adapta-
tion strategy which is more likely to be reflected in an income 
response variable than a yield response variable. Although our 
results did not support the implicit hypothesis that livestock 
diversification increases yield stability, it is quite possible that 
consideration of farm stability as a whole, including livestock 
production stability, would provide more informative outcomes.

Future research could investigate the diversity-stability 
relationship across the broad range of farm typologies to dis-
cover which farm types are best suited to diversification as 
a stability-enhancing solution. Similarly, a more crop-centric 

approach to stability analysis, for example looking at the yield 
stability of farms growing specific combinations of crops, 
may highlight synergistic crop species and thus help to syn-
thesize conclusions regarding several diversification strategies 
simultaneously. We further note that stability as measured 
here did not consider macro-nutrients or micro-nutrients of 
crops. Given that caloric yield stability may differ from pro-
tein, carbohydrate, and fat stability in terms of the response 
to diversification (Egli et al. 2021), as well as the importance 
of micro-nutrient availability in food security for subsistence 
households (Sibhatu et al. 2015), follow-up studies using this 
aspect of crop stability are desirable. Finally, to bolster conclu-
sions drawn in this study, we recommend continued data shar-
ing and collection for ongoing household survey panels with 
a strong focus on accuracy and consistency between waves.

Barriers to implementation

Several barriers can make farm diversification difficult or 
infeasible for smallholders. Some of these barriers include an 
increasingly variable climate, climate change–driven changes 
in land suitability for crops (Evangelista et al. 2013; Chemura 
et al. 2020), lack of finance and knowledge (Ochieng et al. 
2017), and a lack of investment in research, machinery, and 
infrastructure (Hufnagel et al. 2020). Furthermore, the ben-
efits of diversification may not always outweigh the resources 
required for smallholders to implement and maintain diver-
sification strategies, such as the financial costs, extra labor, 
and knowledge (Rosa-Schleich et al. 2019).

The extensive review by Lin (2011) describes several other 
barriers, including a lack of policy incentives, a dispropor-
tionate focus on biotech solutions, and the misconception that 
monocropped systems result in far greater yields. This is fol-
lowed by a proposal of key strategies for overcoming these bar-
riers, including implementation or improvement of crop and 
landscape simulation models, stakeholder-based participatory 
research, and farm income support systems (Lin 2011). In 
addition, access to climate information has been suggested as 
a strategy for opening up diversification opportunities by giving 
households the information needed to strategically attenuate the 
effects of climate change (Mulwa and Visser 2020). Our study 
provides more reason to invest in the aforementioned strategies 
to overcome barriers of implementation, thereby giving more 
smallholders the option to diversify and stabilize caloric yield.

When considering the role of diversification as an adaptation 
strategy for climate variability, it is important to weigh up any 
benefits with the possibility of failure under changing climatic 
conditions, and to do so in comparison to alternative adaptation 
strategies. For example, implementing or improving irrigation 
systems in areas with high precipitation variability is an alterna-
tive adaptation strategy which is very likely to help smallholders 
combat droughts and improve agricultural resilience (Temam 
et al. 2019). However, even if this is estimated to be a more 

                                                            



   

effective long-term solution, the adoption of irrigation systems 
among smallholders is a multifaceted problem that could be far 
more difficult to overcome than the challenges of diversification 
(Asrat and Anteneh 2019). Moreover, although irrigation can 
improve stability, irrigation alone may not be enough to coun-
teract climate variability (Mahaut et al. 2021). Therefore, the 
decision to diversify needs to balance the trade-off between risk 
reduction from climate challenges, the difficulties of choosing 
the right diversification strategies, and the economic constraints.

Conclusion

This study asked several questions on the relationship 
between farm-level diversity, climate variability, and tempo-
ral yield stability in Ethiopia and for different types of farm-
ing households. Our findings suggests that certain ranges of 
climate variability could destabilize household crop yield by 
limiting diversification opportunities.

Farm richness is lowest at high precipitation variability, 
which indicates higher risks for water shortage, and is maxi-
mized at high annual temperature variability in temperate 
climate zones. For pastoralists, the trend was opposite, and 
their prevalence increases with annual precipitation vari-
ability, and decreases with annual and month-to-month tem-
perature variability.

Temporal yield stability increases with farm richness 
and crop evenness. This relationship supersedes the effect 
of other variables including farm inputs and the distance to 
markets. However, several variables do have a strong posi-
tive effect on stability, including the proportion of harvested 
to planted area and the number of pasture fields. Temporal 
yield stability has little dependence on locality, meaning that 
households in close proximity are not necessarily going to 
have similar yield stability.

These findings indicate that diversification opportuni-
ties for crop-growing households are highest in areas where 
short- and long-term rainfall variability is not excessively 
high, and that diversity in many forms may have a stabiliz-
ing effect on crop yields. This suggest that, for rural farming 
households in Ethiopia, certain ranges of climate variability 
could destabilize household crop yield by limiting diversifica-
tion opportunities. We expect similar conclusions from other 
African countries with a comparable economic and climatic 
context to Ethiopia, but this requires further testing. There is, 
however, a major data challenge in assessing temporal yield 
stability empirically on the household level. Yield stability 
is vital for smallholders in developing countries, where the 
impact of poor crop seasons creates major threats to food 
security. Therefore, we suggest that researchers and policy-
makers consider not only the direct effects of climate change 
on crop yield, but also its indirect effects on yield stability 
caused by increasingly limited adaptation choices.

                                                          
                                                              
                     

Data Availability LSMS household data is available from https:// 
www. world bank. org/ en/ progr ams/ lsms/ initi atives/ lsms- ISA# 11. CRU 
climate data is available from https:// cruda ta. uea. ac. uk/ cru/ data/ hrg/. 
CHIRPS climate data is available from https:// data. chc. ucsb. edu/ produ 
cts/ CHIRPS- 2.0/. All other data is available from the authors upon 
reasonable request.
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