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Abstract

Efforts to limit global warming to below 2°C in relation to the pre‐industrial level
are under way, in accordance with the 2015 Paris Agreement. However, most

impact research on agriculture to date has focused on impacts of warming >2°C on

mean crop yields, and many previous studies did not focus sufficiently on extreme

events and yield interannual variability. Here, with the latest climate scenarios from

the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) pro-

ject, we evaluated the impacts of the 2015 Paris Agreement range of global warm-

ing (1.5 and 2.0°C warming above the pre‐industrial period) on global wheat

production and local yield variability. A multi‐crop and multi‐climate model ensemble

over a global network of sites developed by the Agricultural Model Intercomparison

and Improvement Project (AgMIP) for Wheat was used to represent major rainfed

and irrigated wheat cropping systems. Results show that projected global wheat

production will change by −2.3% to 7.0% under the 1.5°C scenario and −2.4% to

10.5% under the 2.0°C scenario, compared to a baseline of 1980–2010, when con-

sidering changes in local temperature, rainfall, and global atmospheric CO2

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



concentration, but no changes in management or wheat cultivars. The projected

impact on wheat production varies spatially; a larger increase is projected for tem-

perate high rainfall regions than for moderate hot low rainfall and irrigated regions.

Grain yields in warmer regions are more likely to be reduced than in cooler regions.

Despite mostly positive impacts on global average grain yields, the frequency of

extremely low yields (bottom 5 percentile of baseline distribution) and yield inter‐
annual variability will increase under both warming scenarios for some of the hot

growing locations, including locations from the second largest global wheat

producer—India, which supplies more than 14% of global wheat. The projected

global impact of warming <2°C on wheat production is therefore not evenly dis-

tributed and will affect regional food security across the globe as well as food prices

and trade.

K E YWORD S

1.5°C warming, climate change, extreme low yields, food security, model ensemble, wheat

production

1 | INTRODUCTION

The global community agreed with the Paris agreement to limiting

global warming to 2.0°C, with the stated ambition to attempt to cap

warming at 1.5°C (UNFCCC, 2015). While limiting the extent of cli-

mate change is critical, the more ambitious 1.5°C mitigation strategy

will likely require considerable mitigation effort in the agricultural

land use sector (Fujimori et al., 2018), with some studies suggesting

this would actually have more negative consequence for food secu-

rity than climate change impacts of 2.0°C (Frank et al., 2017; Ruane,

Antle, et al., 2018; van Meijl et al., 2018). However, these economic

land use studies generally only consider the average effects of cli-

mate change and not the changes in yield variability and risk of yield

failure, key factors constraining intensification efforts in many devel-

oping regions (Kalkuhl, Braun, & Torero, 2016). Further such studies

have generally not considered real cultivars nor typical production

conditions.

Agricultural production and food security is one of many sectors

already affected by climate change (Davidson, 2016; Porter, Xie, &

Challinor, 2014). Wheat is one of the most important food crops,

providing a substantial portion of calories for about four billion peo-

ple (Shiferaw et al., 2013). Wheat production systems’ response to

warming can be substantial (Asseng et al., 2015; Liu et al., 2016;

Rosenzweig et al., 2014), but restricted warming levels of <2.0°C

global warming above pre‐industrial are under‐represented in previ-

ous assessments (Porter et al., 2014). Thus, assessing the impact of

1.5 and 2.0°C global warming above pre‐industrial conditions on

crop productivity levels, including the potential benefits of associ-

ated carbon dioxide (CO2) fertilization, and the likelihood of extre-

mely low‐yielding wheat harvests, is critical for understanding the

challenges of global warming for global food security.

Several simulation studies have assessed the changes in global

wheat production due to the changes in climate and CO2

concentration (Assenget al., 2015, 2018; Rosenzweig et al., 2014).

However, previous studies have almost all considered more extreme

warming and most of current studies investigated the impact of glo-

bal warming >2.0°C, which means that previous impact assessments

lacked details for <2°C of warming. Also, many previous studies did

not focus sufficiently on extreme events and yield interannual vari-

ability (Challinor, Martre, Asseng, Thornton, & Ewert, 2014; Challi-

nor, Watson, et al., 2014; Porter et al., 2014). Therefore, in terms of

food security, it is important to analyze the effect of the new 1.5

and 2.0°C warming scenarios on the interannual variability of crop

production. In particular, studies on impact of 1.5 and 2.0°C global

warming on wheat production at a global and regional scale are

missing.

Process‐based crop simulation models, as tools to quantify the

complexity of crop growth as driven by climate, soil, and manage-

ment practice, have been widely used in climate change impact

assessments at different spatial scales (Challinor, Martre, et al., 2014;

Challinor, Watson, et al., 2014; Chenu et al., 2017; Ewert, Rötter,

et al., 2015; Porter et al., 2014), including multi‐model ensemble

approaches (Assenget al., 2015, 2013; Wang, Martre, et al., 2017;

Wang, Lin, et al., 2017). The multi‐model ensemble approach has

been proven to be a reliable method in reproducing the main effects

anticipated for climate chance when simulations are compared with

field experimental observations (including changes in temperature,

heat events, rainfall, atmospheric CO2 concentration [CO2], and their

interactions) (Assenget al., 2015, 2013, 2018; Wallach et al., 2018;

Wang, Martre, et al., 2017; Wang, Lin, et al., 2017).

Here, we applied a global network of 60 representative wheat

production sites and an ensemble of 31 crop models (Asseng et al.,

2015, 2018) developed by the Agricultural Model Intercomparison

and Improvement Project (AgMIP) Wheat Team (Rosenzweig et al.,

2013) with climate scenarios from five Global Climate Models

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



(GCMs) from the Half a degree Additional warming, Prognosis and

Projected Impacts (HAPPI) project (Mitchell et al., 2017; Ruane, Phil-

lips, & Rosenzweig, 2018) to evaluate the impacts of the 2015 Paris

Agreement range of global warming (1.5 and 2.0°C warming above

the pre‐industrial period, referred hereafter as “1.5 scenario” and

“2.0 scenario”) on global wheat production and yield interannual vari-

ability. We hypothesize that the mean impacts of warming may not

differ greatly between the two scenarios as losses due to acceler-

ated development are compensated by gains from elevated CO2.

However, we expect that the higher frequency of extreme events

under 2.0°C (Ruane, Phillips, et al., 2018) would result in greater

damages of heat and drought stress, greater inter‐annual variability,
and higher risk of yield failures. Such information could supply

important nuance in understanding the implications of the two levels

of warming and associated mitigation efforts of the two warming

scenarios.

2 | MATERIALS AND METHODS

2.1 | Model inputs for global simulations

An ensemble of 31 wheat crop models was used to assess climate

change impacts for 60 representative wheat‐growing locations devel-

oped by the AgMIP‐Wheat team (Assenget al., 2015, 2018; Wallach

et al., 2018). All models in the ensemble were calibrated for the phe-

nology of local cultivars and used site‐specific soils and crop man-

agement. The multi‐model ensemble used here has been tested

against observed field data and showed reliable response to chang-

ing climate in several previous studies, including responses of model

ensemble to elevated CO2, post‐anthesis chronic warming and differ-

ent heat shock treatments during grain filling (Asseng et al., 2018;

Wallach et al., 2018). Hoffman et al. (2015) and Ruane et al. (2016)

showed that a multi‐model ensemble can also reproduce some of

observed seasonal yield variability. The 60 locations are from key

wheat‐growing regions in the world (Supporting Information

Table S1 in Appendix S1). Locations 1–30 are high rainfall or irri-

gated wheat‐growing locations representing 68% of current global

wheat production. These locations were simulated without water or

nitrogen limitation. Details about these locations can be found in

Asseng et al. (2015). Locations 31–60 are low rainfall locations with

average wheat yield <4 t/ha and represent 32% of current global

wheat production (Asseng et al., 2018).

Thirty‐one wheat crop models (Supporting Information Table S2

in Appendix S1) within AgMIP were used for assessing impacts of

1.5 and 2.0°C global warming above pre‐industrial time on global

wheat production (Asseng et al., 2018). The 31 wheat crop models

considered here have been described in publications. All model simu-

lations were executed by the individual modeling groups with exper-

tise in using the model they executed. All modeling groups were

provided with daily weather data, basic physical characteristics of

soil, initial soil water, and N content by layer and crop management

information. One representative cultivar, either winter or spring type,

was selected for each location after consulting with local experts or

literature. Different wheat types may be used at different locations

in one country (e.g., China, Russia, and United States), to cover some

of the possible heterogeneity in cultivar use (Supporting Information

Table S1 in Appendix S1). Observed local mean sowing, anthesis,

and maturity dates were supplied to modelers with qualitative infor-

mation on vernalization requirements and photoperiod sensitivity for

each cultivar. Observed sowing dates were used and cultivar param-

eters calibrated with the observed anthesis and maturity dates by

considering the qualitative information on vernalization requirements

and photoperiod sensitivity. More details about model inputs are

provided in the supplementary methods and in Asseng et al. (2018).

2.2 | Future climate projections

Baseline (1980–2010) climate data for each wheat modeling site

come from the AgMERRA climate dataset, which combines observa-

tions, reanalysis data, and satellite data products to provide daily cli-

mate forcing data for agricultural modeling (Ruane, Goldberg, &

Chryssanthacopoulos, 2015). Climate scenarios here are consistent

with the AgMIP Coordinated Global and Regional Assessments

(CGRA) 1.5 and 2.0°C World study (Rosenzweig et al., 2018; Ruane,

Antle, et al., 2018; Ruane, Phillips, et al., 2018), utilizing the methods

summarized below and in the Supporting Information Appendix S1

and fully described by Ruane, Phillips, et al. (2018). Climate changes

from large (83–500 member for each model) climate model ensemble

projections of the +1.5 and +2.0°C scenarios from the Half a Degree

Additional Warming, Prognosis and Projected Impacts project

(HAPPI; Mitchell et al., 2017) are combined with the local AgMERRA

baseline to generate driving climate scenarios from five GCMs

(MIROC5, NorESM1‐M, CanAM4 [HAPPI], CAM4‐2degree [HAPPI],

and HadAM3P) for each location (Ruane, Phillips, et al., 2018). Only

five GCMs here were used due to data availability at the time the

study was conducted. Specifically, HAPPI ensemble changes in

monthly mean climate, the number of precipitation days, and the

standard deviation of daily maximum and minimum temperatures are

imposed upon the historical AgMERRA daily series using quantile

mapping that forces the observed conditions to mimic the future dis-

tribution of daily events (Ruane, Phillips, et al., 2018; Ruane, Winter,

McDermid, & Hudson, 2015). This results in climate scenarios that

maintain the characteristics of local climate while also capturing

major climate changes. As in previous AgMIP assessments, solar radi-

ation changes from GCMs introduce uncertainties that can at times

overwhelm the impact of temperature and rainfall changes and thus

were not considered here other than small radiation effects associ-

ated with changes in the number of precipitation days (Ruane, Win-

ter, et al., 2015).

HAPPI anticipates atmospheric [CO2] for 1.5 scenario (1.5°C

above the 1861–1880 pre‐industrial period = ~0.6°C above current

global mean temperature; Morice, Kennedy, Rayner, & Jones, 2012)

and 2.0 scenario (2.0°C above pre‐industrial = ~1.1°C above current

global mean temperature) at 423 ppm and 487 ppm ([CO2] in the

center of the 1980–2010 current period is 360 ppm). Uncertainty

around these CO2 levels from climate models’ transient and

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



equilibrium climate sensitivity is not explored here, although [CO2]

for 2.0°C warming may be slightly overestimated (Ruane, Phillips,

et al., 2018).

This large climate × crop model setup enabled a robust multi‐
model ensemble estimate (Martre et al., 2015; Wallach et al., 2018)

as well as analysis of spatial heterogeneity (Liu et al., 2016) and

inter‐model uncertainty. There were 11 treatments (baseline, five

GCMs for 1.5 and five GCMs for 2.0 scenarios) simulated for 60

locations and 30 years (see additional detail on climate scenarios in

Supporting Information Appendix S1 and in Ruane, Phillips, et al.,

2018).

2.3 | Aggregation of local climate change impacts
to global wheat production impacts

Simulation results were up‐scaled using a stratified sampling method,

a guided sampling method to improve the scaling quality (van Bussel

et al., 2016), with several points per wheat mega region when neces-

sary (Gbegbelegbe et al., 2017). During the up‐scaling process, the

simulation result of a location was weighted by the production the

location represents as described below (Asseng et al., 2015). Liu

et al. (2016) recently showed that stratified sampling with 30 loca-

tions across wheat mega regions resulted in similar temperature

impact and uncertainty as aggregation of simulated grid cells at

country and global scale. And Zhao et al. (2016) indicated that the

uncertainty due to sampling decreases with increasing number of

sampling points. We therefore doubled the 30 locations from Asseng

et al. (2015) to 60 locations (Supporting Information Table S1 in

Appendix S1) to cover contrasting conditions across all wheat mega

regions.

Before aggregating local impacts at 60 locations to global

impacts, we determined the actual production represented by each

location following the procedure described by Asseng et al. (2015).

The total wheat production for each country came from FAO coun-

try wheat production statistics for 2014 (www.fao.org). For each

country, wheat production was classified into three categories (i.e.,

high rainfall, irrigated, and low rainfall). The ratio for each category

was quantified based on the Spatial Production Allocation Model

(SPAM) dataset (https://harvestchoice.org/products/data). For some

countries where no data were available through the SPAM dataset,

we estimated the ratio for each category based on the country‐level
yield from FAO country wheat production statistics. The high rainfall

production and irrigated production in each country were repre-

sented by the nearest high rainfall and irrigated locations (locations

1–30). Low rainfall production in each country was represented by

the nearest low rainfall locations (locations 31–60).
For each climate change scenario, we calculated the absolute

regional production loss by multiplying the relative yield loss from

the multi‐model ensemble median (median across 31 models and five

GCMs) with the production represented at each location. Global

wheat production loss was determined by adding all regional produc-

tion losses, and the relative impacts on global wheat production

were calculated by dividing simulated global production loss by

historical global production. Similar steps with global impacts were

used for calculating the impacts on country scale impacts, except

that only the local impacts from corresponding locations in each

country were aggregated to the country impacts.

We also tested the significance of the differences in the esti-

mated impacts and the changes in simulated yield inter‐annual vari-
ability between the two warming scenarios. More detailed steps

about impact aggregation and significance tests can be found in the

supplementary methods.

2.4 | Environmental clustering of the 60 global
locations

The 60 global wheat‐growing locations were clustered in order to

analyze the results by groups of environments with similar climates

(Supporting Information Figure S5 in Appendix S1). A hierarchical

clustering on principal components of the 60 locations was per-

formed based on four climate variables for 1981–2010: the growing

season (sowing to maturity) mean temperature, the growing season

cumulative evapotranspiration, the growing season cumulative solar

radiation, and the number of heat stress days (maximum daily tem-

perature >32°C) during the grain filling period. All data were scaled

(centered and reduced to make the mean and standard deviation of

data to be zero and one, respectively) prior to the principal compo-

nent analysis.

After determining the wheat yield impacts for each of the 1.5

and 2.0°C scenarios, yield variability for both scenarios was assessed,

including the extreme low yield probability and yield interannual

variability. For each location, we determined the yield threshold of

the bottom 5% from the yield series for the baseline period and cal-

culated the cumulative probability series of simulated yields under

1.5 and 2.0°C scenarios. Next, the probability of occurrence for

extreme low yield for each scenario was assessed as the correspond-

ing cumulative probability of the yield threshold of the bottom 5%

from baseline period from the cumulative probability series. Interan-

nual yield variability was quantified as the coefficient of variation of

simulated yields over the 30‐year simulation period. In all cases, the

multi‐model median from the 31 models was employed.

3 | RESULTS

3.1 | Impacts of 2015 Paris Agreement compliant
warming

Compared with the present baseline period (1980–2010; 0.67°C

above pre‐industrial), the HAPPI scenarios gave projected tempera-

ture increases of 1.1–1.4°C (25%–75% range of 60 locations) for the

60 wheat‐growing locations spread over the globe under the 1.5

scenario and 1.6–2.0°C under the 2.0 scenario (Supporting Informa-

tion Figure S1 in Appendix S1). Temperature increase during the

wheat‐growing season (sowing to maturity) typically warms about

0.5°C less than the annual mean under both warming scenarios: 0.7–
1.0°C (25%–75% range of 60 locations) under the 1.5 scenario and
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1.0°C to 1.5°C under 2.0 scenario (Supporting Information Figure S2

in Appendix S1). In the HAPPI scenarios, annual rainfall is projected

to increase in most of the 60 locations under both warming scenar-

ios (Supporting Information Figure S3 in Appendix S1; Ruane, Phil-

lips, et al., 2018).

Based on baseline climate conditions (1980–2010), we catego-

rized the 60 wheat production sites into three environment types

(temperate high rainfall, moderately hot low rainfall, and hot irri-

gated; Supporting Information Figure S5 in Appendix S1). Across

these environments, increasing temperatures reduce wheat crop

duration due to accelerated phenology (Supporting Information Fig-

ure S22a in Appendix S1). As a consequence, the crop duration

declines with future climate change scenarios compared with the

baseline. For most of the locations from temperate high rainfall and

moderately hot low rainfall regions, simulated cumulative growing

season evapotranspiration (ET) and growing season rainfall decreased

slightly under the 1.5 and 2.0 scenarios (Supporting Information Fig-

ure S20b and S21b in Appendix S1). In hot irrigated regions, simu-

lated cumulative evapotranspiration decreased (in average by −16

and −25 mm) under both warming scenarios during the crop dura-

tion (Supporting Information Figure S20b in Appendix S1), while sim-

ulated cumulative rainfall increased slightly (usually <10 mm) in more

than half of the locations (Supporting Information Figure S21b in

Appendix S1) due to projected increase in annual rainfall (Supporting

Information Figure S3 in Appendix S1). The decrease in cumulative

ET was mostly due to shorter crop duration (in average by −4.9 and

−7.2 days) due to warming, as shown with significant negative rela-

tionship between growing season cumulative ET and crop duration

in all hot irrigated locations (Supporting Information Figure S23 in

Appendix S1). For example, cumulative ET decreased by about

2.2 mm with a shortening of the growing season by 1 day in Aswan,

Egypt. Heat stress days (daily maximum air temperature >32°C; Por-

ter & Gawith, 1999) during grain filling already occur in almost all

regions, but their frequency increases under both warming scenarios,

particularly in moderately hot low rainfall (in average by 1.0 and

1.6 days) and hot irrigated locations (in average by 1.8 and 2.5 days;

Supporting Information Figure S22b in Appendix S1).

Simulated impacts on wheat yields for the 1.5 and 2.0 scenarios

(Figure 1) are negatively correlated with baseline crop season mean

temperature (Figure 2a), suggesting that cooler regions will benefit

more from moderate warming. For example, most locations with

crop growing season mean temperature (sowing to maturity) <15°C

will have mostly positive yield changes, while for growing season

mean temperature >15°C, any increase in temperature will reduce

grain yields (Figure 2a) despite the growth stimulation from elevated

[CO2]. Generally, regions which produce the largest proportion of

wheat globally are projected to have small positive yield changes

under both scenarios, but there are exceptions such as India, which

is currently the world's second largest wheat producer (Figure 2).

The projected changes in growing season climate variables have

a significant impact on simulated grain yield under the two warming

scenarios at most global locations. As shown in Supporting Informa-

tion Table S4 in Appendix S1, a significant negative relationship

between simulated grain yield and growing season mean tempera-

ture and the number of heat stress days during grain filling were

found at most locations, especially for hot irrigated locations, while a

significant positive relationship between simulated grain yields and

growing season cumulative ET, solar radiation, and rainfall (only for

rainfed locations) were found in almost all locations. For example,

wheat grain yield at Griffith, Australia, was projected to decrease by

0.44 t/ha per °C increase in growing season mean temperature, and

decrease by 0.067 t/ha per day increase in heat stress days, but

increase by 0.008 t/ha per mm increase in growing season cumula-

tive ET. In addition, shortening the growing season duration was also

found to negatively impact simulated wheat yield significantly. For

example, wheat yield was projected to decrease by 0.1 t/ha per day

reduction in growing season duration, in Indore, India. Growing sea-

son rainfall also showed significant positive effects on projected

grain yield in most rainfed locations (Supporting Information

Table S4 in Appendix S1), however, projected growing season rainfall

declined in most locations, except for small rainfall increases in a

few hot irrigated locations (Supporting Information Figure S21b in

Appendix S1).

When scaling up from the 60 locations, we found that wheat

yields in about 80% of wheat production areas will increase under

1.5 scenario, but usually by <5% (Figure 3). Largest positive impacts

under 1.5 scenario are projected for United States (6.4%), the third

largest wheat producer in the world. Loss in wheat yields under the

1.5 scenario is projected mostly for Central Asia, Africa, and South

America (Figure 3), regions with generally high growing season tem-

peratures, shorter crop duration, and more heat stress days during

grain filling (Supporting Information Figure S14 in Appendix S1). Fur-

ther yield declines in these countries are expected with the 2.0 sce-

nario, including in large wheat‐producing countries such as India

(−2.9%; Figure 3).

Analysis for the three environment types projects a larger yield

increase for temperate high rainfall regions (3.2% and 5.5% under 1.5

and 2.0 scenarios, respectively) than for moderately hot low rainfall

(2.1% and 2.4%) but a decline in hot irrigated regions (−0.7% and

0.02%; Supporting Information Figures S9 and S10 in Appendix S1).

These positive values contrast with the negative trend found across a

meta‐analysis, with a large uncertainty range, with local temperature

change of 1.5–2.0°C, despite positive effects from elevated [CO2]

(Challinor, Martre, et al., 2014; Challinor, Watson, et al., 2014).

Up‐scaled to the globe, wheat production on current wheat‐pro-
ducing areas is projected to increase by 1.9% (−2.3% to 7.0%, 25th

percentile to 75th percentile) under the 1.5 and by 3.3% (−2.4% to

10.5%) under the 2.0 scenario (Figure 4a and Supporting Information

Figure S8a in Appendix S1). The differences in estimated ensemble

median impacts between the two warming levels may be small, but

significant, as indicated by a statistical test for the model ensemble

median of the global impacts (p < 0.001). Under the Representative

Concentration Pathway 8.5 (RCP8.5) for the 2050s, with a global

mean temperature increase of 2.6°C above pre‐industrial, global

wheat production are suggested to increase by 2.7% (Asseng et al.,

2018), highlighting the non‐linear nature of climate change impact.

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



When up‐scaling the impact for different wheat types (Support-

ing Information Figure S26 in Appendix S1), the impact on global

wheat production of the multi‐model medians was 0.76% and 1.26%

for spring wheat types (planted at 39 global locations) under 1.5 and

2.0 scenarios but 3.2% and 5.7% for winter wheat types (planted at

21 global locations), respectively.

3.2 | More variable yields in hot and dry areas

While the 30‐year average yield is projected to increase under the

1.5 and 2.0 scenarios across many regions, the risk of extremely low

yields may increase, especially in some of the hot–dry locations. The

probability of extreme low yields (yields lower than the bottom 5

percentile of the 1981–2010 distribution) will increase significantly

in more than half of the moderately hot low rainfall locations under

both scenarios (Figure 5 and Supporting Information Figure S19a in

Appendix S1). For the hot irrigated locations, the probability of

extreme low yields will increase significantly in about half of the

locations (Supporting Information Figures S13 and S19a in

Appendix S1). In some hot irrigated locations, the likelihood of

extreme low yields will increase by up to five times, that is from 5%

under baseline to 11% and 22% under 1.5 warming and 2.0 warming

scenarios, respectively, for example, in Wad Medani from Sudan. But

in other hot irrigated locations (e.g., Maricopa in United States,

Aswan in Egypt, and Balcarce in Argentina) and most of temperate

high rainfall locations, the extreme low yield probability will decrease

or remain unchanged for the two warming scenarios (Supporting

Information Figures S11 and S19a in Appendix S1). The likelihood of

(a)

(b)

F IGURE 1 Impact of (a) 1.5 and (b) 2.0 scenarios on wheat grain yield for 60 representative global wheat‐growing locations. Relative
changes in grain yield were the median across 31 crop models and five GCMs, calculated with simulated 30‐year mean grain yields for
baseline, 1.5 and 2.0 scenarios (HAPPI), including changes in temperature, rainfall, and atmospheric [CO2], using region‐specific soils, cultivars,
and crop management

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



extreme low yields will increase significantly from 1.5 warming to

2.0 warming scenarios only at three locations (from 11% to 22% at

Wad Medani in Sudan, from 14% to 15% at Swift Current in Canada,

and from 7% to 11% at Bloemfontein in South Africa) and remain to

be same at all other locations.

To determine the reasons for the changes in extreme low yield

probability, relationships between changes in growing season vari-

ables and changes in extreme low yield probability were quantified

with linear regressions. As shown in Supporting Information Fig-

ure S24 in Appendix S1, only growing season mean temperature,

maximum temperature, minimum temperature, heat stress days, and

cumulative rainfall (only in rainfed locations) were found to be signif-

icantly related to changes in extreme low yield probability (all

p < 0.05), but with relatively poor correlation (r between 0.26 and

0.61). Among these variables, growing season maximum temperature

explained most of the changes in extreme low yield probability, with

r = 0.54 and 0.61 for the 1.5 and 2.0 scenarios, respectively (Sup-

porting Information Figure S24 in Appendix S1). The probability of

extreme low yields was projected to increase by 10% and 9% per °C

increase in growing season maximum temperature under 1.5 and 2.0

scenarios, respectively.

Under 1.5 warming scenario, the inter‐annual variability of simu-

lated grain yields was projected to increase significantly in only few

locations (mostly in hot irrigated locations, Supporting Information

Figure S19b in Appendix S1), while moderate warmings of 2.0°C

above pre‐industrial are projected to increase the inter‐annual vari-
ability of simulated grain yields in about 50% of hot irrigated loca-

tions and parts of moderately hot low rainfall locations significantly,

including Sudan, Bangladesh, Egypt, and India (Figure 6). For exam-

ple, inter‐annual variability of simulated grain yields is projected to

increase by 23%–35% in Wad Medani from Sudan under 1.5 and 2.0

scenarios, respectively. The inter‐annual variability of simulated grain

yields will increase significantly from 1.5 warming to 2.0 warming

scenarios at five moderately hot low rainfall locations and four hot

irrigated locations and remain to be same at all other locations. For

example, the inter‐annual variability of simulated grain yields will

increase by 20% and 27% at Bloemfontein in South Africa under 1.5

and 2.0 scenarios, respectively. No significant changes in the inter‐
annual variability of simulated grain yields were found in most of the

temperate high rainfall locations under two warming scenarios (Fig-

ure 6 and Supporting Information Figure S19b in Appendix S1).

The relationship between changes in growing season variables

(including growing season duration, cumulative ET, cumulative solar

radiation, cumulative rainfall, mean temperature, maximum tempera-

ture, minimum temperature, and heat stress days) and changes in

yield interannual variability (CV) was also quantified with linear

regressions. As shown in Supporting Information Figure S25 in

Appendix S1, only growing season duration, cumulative ET, and heat

stress days were statistically significantly related to changes in yield

interannual variability (p < 0.05), but with relatively poor correlation

coefficients (0.24 < r <0.38). Among these variables, growing season

heat stress days explains most of the changes in yield interannual

variability, with r = 0.38 and 0.34 for the 1.5 and 2.0 scenarios,

respectively (Supporting Information Figure S25 in Appendix S1).

Yield interannual variability was projected to increase by 2.6% and

2.0% per day increase in growing season heat stress days under the

1.5 and 2.0 scenarios, respectively.

4 | DISCUSSION

With the latest climate scenarios from the HAPPI project, we used a

multi‐crop and multi‐climate model ensemble over a global network

of sites to represent major rainfed and irrigated systems to assess

global wheat production and local yield interannual variability under

1.5 and 2.0°C warming above pre‐industrial, which considered

changes in local temperature, rainfall, and global [CO2]. Under the

(a) (b) (c)

5 × 107t

107t  – 5 × 107t 
106t  – 107t 
105t  – 106t 

F IGURE 2 Projected Impact of the 1.5 and 2.0 scenarios on wheat grain yield and crop duration. Simulated change in grain yield vs. (a)
growing season mean temperature and (b) mean growing season duration (sowing to maturity) for the 1.5 (orange) and 2.0 (dark cyan)
scenarios (HAPPI). (c) Differences in relative change in grain yield between the 1.5 and 2.0 scenarios vs. growing season mean temperature for
60 representative wheat‐producing global locations. Relative changes in grain yield were the median across 31 crop models and five GCMs,
calculated with simulated 30‐year (1981–2010) mean grain yields for baseline, the 1.5 and 2.0 scenarios (including changes in temperature,
rainfall, and [CO2]) using region‐specific soils, cultivars, and crop management. The size of symbols indicates the production represented by
each location (using 2014 FAO country wheat production statistics). The vertical and horizontal range crosses indicate the median 25%–75%
uncertainty range of relative change in grain yields, growing season mean temperature, and crop duration across the 31 crop models and five
GCMs, respectively. In (a), r2 of linear regressions were 0.32 and 0.33 under 1.5 and 2.0 scenarios, respectively (p < 0.001)

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



two warming scenarios, climate impact on wheat yield can be largely

attributed to elevated [CO2], shorter wheat growth duration due to

increasing growing season temperature and a decrease in cumulative

evapotranspiration in most of the 60 locations (Supporting Informa-

tion Table S4 and Figure S20–22 in Appendix S1). In addition, even

with restricted warming levels, increasing weather variability also

negatively impacts projected wheat production (Supporting Informa-

tion Table S4 and Figure S22 in Appendix S1). However, considering

the uncertainty related to [CO2] in the 1.5 and 2.0°C scenarios (see

below), the small differences in yield impact for the two scenarios

do not allow concluding on the putative benefits of a limitation of

global warming to 1.5°C compared with 2.0°C for global wheat yield

production.

4.1 | Changes in atmospheric CO2 concentration
drive the impacts of 1.5 and 2.0°C scenarios on
wheat yield

Using four independent methods (Liu et al., 2016; Zhao et al., 2017),

global wheat yields had been previously projected to decline by an

average of −5.0% for each increase in 1.0°C global warming, but in

the absence of concomitant atmospheric [CO2] increase. Similar find-

ings have been reported for various typical wheat cultivation regions

in Europe when applying a systematic climate sensitivity analysis

(Pirttioja et al., 2015). In a sensitivity analysis with the same crop

model ensemble for the same 60 representative locations, global

wheat production could increase by about 15.8% when CO2

(a)

(b)

F IGURE 3 Simulated multi‐model ensemble projection of global wheat grain production for wheat‐growing area per country under the 1.5
and 2.0 scenarios (HAPPI). Relative climate change impacts on grain production under (a) the 1.5 and (b) 2.0 scenarios (including changes in
temperature, rainfall, and [CO2]) compared with the 1981–2010 baseline. Impacts were calculated using the average over 30 years of yields
and the medians across 31 models and five GCMs, using region‐specific soils, current cultivars, and crop management. Impacts from 60 global
locations were aggregated to impacts on country production by weighting the irrigated, high rainfall, and low rainfall production, based on FAO
wheat production statistics

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



increased from 360 to 550 ppm. The two HAPPI scenarios include

423 and 487 ppm [CO2], and the impacts from CO2 fertilization

under the two scenarios are a proportion of the impacts with those

for 550 ppm [CO2]. When assuming a linear response of wheat yield

to elevated CO2 (Amthor, 2001), the impacts of elevated CO2 under

1.5 and 2.0 scenarios would be 5.2% and 10.5%, respectively, if

nitrogen was not limiting. As the overall impacts of climate change

under 1.5 and 2.0 scenarios were 1.9% and 3.3%, thus, we can con-

clude that most of the projected increases in global wheat produc-

tion under the 1.5 and 2.0 scenarios can be attributed to a CO2

fertilization effect (Figure 4b and Supporting Information Figure S8b

in Appendix S1). This conclusion is consistent with field observations

in a range of growing environments (Kimball, 2016; O'Leary et al.,

2015) and with a rate of 0.06% yield increase per ppm [CO2] derived

from a meta‐analysis of simulation results (Challinor, Martre, et al.,

2014; Challinor, Watson, et al., 2014). The CO2 fertilization effect is

often found to dominate model‐based projections of future global

wheat productivity (Rosenzweig et al., 2014; Ruiz‐Ramos et al.,

2018; Wheeler & von Braun, 2013), but with substantial uncertain-

ties and regional differences (Deryng et al., 2016; Kersebaum & Nen-

del, 2014; Müller et al., 2015).

The relatively low warming levels of the HAPPI scenarios (0.6

and 1.1°C above 1980–2010 global mean temperature) but high

increases in [CO2] suggest that CO2 fertilization effects also domi-

nate here (Kimball, 2016; O'Leary et al., 2015), but could be less, if

nitrogen is limiting growth. However, the impacts here could be

slightly overoptimistic with estimates of heat stress, as most of crop

models do not account for well‐established canopy warming under

elevated CO2 (Kimball et al., 1999; Webber et al., 2018). Also, Sch-

leussner et al. (2018) have shown that CO2 uncertainties at 1.5 and

2.0°C, which is not considered here, are comparable to the effect of

0.5°C warming increments. This indicated possible differences in

F IGURE 4 Simulated global impacts of climate change scenarios on wheat production. Relative impact on global wheat grain production for
(a) 1.5 and 2.0 warming scenarios (HAPPI) with changes in temperature, rainfall, and atmospheric [CO2]. Atmospheric [CO2] for the 1.5 and 2.0
scenarios was 423 and 487 ppm, respectively. (b) Local temperature increase by +2°C (360 ppm CO2 +2°C) and +4°C (360 ppm CO2 +4°C) for
the baseline period with historical [CO2] (360 ppm) and elevated [CO2] (550 ppm) for no temperature change (baseline), +2°C (550 ppm [CO2]
+2°C) and +4°C (550 ppm [CO2] +4°C). Impacts were weighted by production area (based on FAO statistics). Relative change in grain yields
was calculated from the mean of 30 years projected yields and the ensemble medians of 31 crop models (plus five GCMs for HAPPI scenarios)
using region‐specific soils, cultivars, and crop management. Error bars are the 25th and 75th percentiles across 31 crop models (plus five
GCMs for HAPPI scenarios)

F IGURE 5 Projected impacts of the 1.5 and 2.0 scenarios on the probability of extreme low wheat yields. (a) Grain yield distribution at
three locations representative of the three main types of environments (see below) for the 1981–2010 baseline and for the 1.5 and 2.0
scenarios (HAPPI; including changes in temperature, rainfall, and [CO2]). The yield distribution at the 60 global sites is given in Supporting
Information Figures S11–S13 in Appendix S1. The vertical dashed lines indicate the value of extreme low yields (defined as the lower 5% of
the distribution) for the baseline. (b) Probability of extreme low yield (≤5% of the baseline distribution) for the 2.0 scenario at 60
representative global wheat‐growing locations for clusters of temperate high rainfall or irrigated locations (green; 26 locations), moderately hot
low rainfall locations (yellow; 20 locations), and hot irrigated locations (red; 14 locations). In (b), and indicate the changes in extreme low
yield between warming scenarios and baseline was significant at p < 0.05 and p < 0.01, respectively. (c) and (d) Probability of extreme low
yields for each type of environment for the 1.5 and 2.0 scenarios, respectively. Horizontal dashed lines are the probability of extreme low yield
for the baseline (defined as the bottom 5% of the baseline distribution). Horizontal thick solid lines are the median probability of extreme low
yield. The circles are the 60 global locations shown in (c and d), their size indicates the production represented at each location (using FAO
country wheat production statistics) and their color indicated the growing season mean temperature at each location for the 1.5 and 2.0
scenarios. Within each environment type, the circles have been jiggled along the horizontal axis to make it easier to see locations with similar
probability values, which means that the horizontal positions of circles in each environment type were used to avoid the overlapping of circles
and have no meaning. The shaded areas show the distribution of the data. Numbers above each box are the mean yields for the baseline
period and in parenthesis the average yield impacts of the 1.5 and 2.0 scenarios compared with the 1981–2010 baseline yield. See Supporting
Information Material and Methods in Appendix S1 for more details on clustering of wheat‐growing environments
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impacts on wheat production in the simulated 1.5 or 2.0°C worlds

(Seneviratne et al., 2018), as a transient 1.5 or 2.0°C world may see

higher CO2 concentrations because of the lagged response of the

climate system (peak warming around 10 years after zero CO2 emis-

sions are reached) and differences in aerosol loadings (Wang, Lin,

et al., 2017). Ruane, Phillips, et al. (2018) also noted uncertainties

(a)

(b)

(c)

F IGURE 6 Projected impacts of 1.5 and 2.0 scenarios on wheat yield interannual variability. (a) Relative climate change impacts for the
2.0°C warming scenarios (HAPPI) compared with the 1981–2010 baseline on interannual yield variability (coefficient of variation) at 60
representative global wheat‐growing locations for clusters of temperate high rainfall or irrigated locations (green; 26 locations), moderately hot
low rainfall locations (yellow; 20 locations), and hot irrigated locations (red; 14 locations). In (a), and indicate the changes in interannual
yield variability between warming scenarios and baseline was significant at p < 0.05 and p < 0.01, respectively. The circles and triangles
showed increased and decreased interannual variability, respectively. (b) and (c) Relative climate change impacts for the 1.5 and 2.0 scenarios
compared with the 1981–2010 baseline on interannual yield variability (coefficient of variation) in temperate high rainfall or irrigated (26
locations), moderately hot low rainfall (20 locations), and hot irrigated (14 locations) locations. Horizontal thick solid lines are the median
change in interannual yield variability for each environment type. The circles are the 60 global locations shown in (a), their size indicates the
production represented at each location (using FAO country wheat production statistics) and their color indicated the growing season mean
temperature at each location under the 1.5 and 2.0 scenarios. Within each environment type, the circles have been jiggled along the horizontal
axis to make it easier to see locations with similar probability values, which means that the horizontal positions of circles in each environment
type were used to avoid the overlapping of circles, and have no meaning. The shaded areas show the distribution of the data

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



related to CO2 impacts in the 1.5 and 2.0°C worlds, as well as pecu-

liarities in the definition of CO2 concentrations in HAPPI. CO2 is also

identified as the primary cause of increases between 1.5 and 2.0°C

worlds in Rosenzweig et al. (2018). Our study focused on stabilized

1.5 and 2.0°C worlds rather than the transient pathways that get us

there, which will include gradually increasing CO2 concentrations

even as some scenarios include an overshoot in global mean temper-

atures. Elevated CO2 concentrations are expected to have a particu-

larly strong initial effect, although the benefits will saturate as CO2

concentrations increase in RCP8.5 or other higher emission path-

ways.

4.2 | The interannual yield variability and the risk
of extreme low yields will increase in a 1.5 and 2.0°C
world

Unlike the simulated grain yield impacts, aggregating the simulated

yield variability from representative locations to regions or globally

with a multi‐model ensemble approach has not been tested with

observed data. Different aggregation method may result in different

characteristics of climate‐forced crop yield variance at different spa-

tial scales. Therefore, the simulated yield variability at local scale was

not aggregated to region or global scale.

The fraction of yield interannual variability accounted for by

weather‐forced yield variability may vary substantially depending on

the region (Ray, Gerber, & Macdonald, 2015; Ruane et al., 2016);

therefore, comparing simulated and observed yield interannual yield

variability is critical to analyze changes in yield variability. However,

there are no time series data which would allow a scientific model‐
observation comparison for all the 60 global locations and even for

regions where historical yield records are available, they usually do

not allow an evaluation of model performance due to missing infor-

mation on sowing date, cultivar use, crop management of fertilizer N

and irrigation, soil characteristics, initial soil conditions, and bias in

the reported yields (Guarin, Bliznyuk, Martre, & Asseng, 2018). While

for these reasons, it is not possible for us to project meaningfully

how interannual yield variability will change at regional or global

scale, our study supplies important information on how the addi-

tional half degree of warming will impact on yield variability, consid-

ering the parallel changes in mean yield levels associated with the

combined warming and elevated CO2 levels. This information is

urgently required by national governments and international policy

makers in assessing the relative risks and costs of mitigating to

1.5°C warming vs. 2.0°C warming.

Here, we compared our simulated interannual yield variability for

the 60 global locations with the estimated global interannual yield

variability from statistic yield data in Ray et al. (2015) (Supporting

Information Figure S27 in Appendix S1) and we found that the spa-

tial patterns of interannual yield variability were similar for the two

studies. For example, both studies showed interannual yield variabil-

ity and estimated climate‐induced yield variability were high at loca-

tions in southern Russia, Spain, and Kazakhstan, and were small at

locations in western Europe, India, and some locations in China.

Climate‐driven yield variability is generally higher in more intensive

cropping systems, and many regions around the world now actively

pursue intensification of currently low‐yielding smallholder cropping

systems. Therefore, our current projections of estimates of climate‐
driven yield variability under the two warming scenarios may be con-

servative, if some regions will experience intensification and climate

change simultaneously.

Extreme low‐yielding seasons can impact the livelihood of many

farmers (Morton, 2007), but also disturb global markets (e.g., Russian

heat wave in 2010; Welton, 2011), or even destabilize entire regions

of the world (e.g., Arab Spring in 2011; Gardner et al., 2015). Climate

scenarios used for this study included monthly mean changes and

shifts in the distribution of daily events within a season but did not

include changes in interannual variability; these changes are there-

fore largely the result of warmer average conditions pushing wheat

closer to damaging biophysical thresholds. A recent study based on

the HAPPI 1.5 and 2.0 scenarios also identified an increased fre-

quency of interannual drought conditions in regions with declining

or constant total precipitations (Ruane, Phillips, et al., 2018),

although skewness toward drought in the interannual distribution

was small and highly geographically variable.

Despite mostly positive impacts on average yields, projections

suggest that the frequency of extreme low yields will increase under

both scenarios for some of the hot growing locations (for both low

rainfall and irrigated sites), including India, that currently supply more

than 14% of global wheat (FAO, 2014). Similarly, an increase in the

frequency of crop failures has been shown with 1.5°C global warm-

ing above the pre‐industrial period for maize, millet, and sorghum in

West Africa (Parkes, Defrance, Sultan, Ciais, & Wang, 2018). On the

other hand, Faye et al. (2018) did not detect a change in yield vari-

ability for the same three crops in West African between the 1.5

and 2.0°C warming scenarios using HAPPI climate data. In our study,

the change in climate extremes occurs due to projected shifts in

mean temperatures (which bring wheat cropping systems closer to

heat stress thresholds) as well as shifts in the distribution of daily

temperatures, which can increase or decrease the frequency of

future heat waves. Coupled changes in projected precipitation may

also exacerbate drought and heat stress yield damage.

4.3 | Impact of 1.5 and 2.0°C scenarios on wheat
production and food security

Wheat yields have been stagnating in many agricultural regions (Bris-

son et al., 2010; Lin & Huybers, 2012; Ray, Ramankutty, Mueller,

West, & Foley, 2012). Shifting agriculture polewards has been con-

sidered elsewhere, but might not be always possible or feasible for

adapting to increasing temperature due to land use and land suitabil-

ity constraints. Measures such as change in sowing date and irriga-

tion management, improved heat‐ and drought‐resistant cultivars,

reduced trade barriers, and increased storage capacity (Schewe,

Otto, & Frieler, 2017) will be necessary to adapt to changes in tem-

perature and precipitation for improving food security. However,

since the largest estimated yield losses and increased probability of

             

                    
  

            
                        

        
                           

                  
          

      
                                           

                                         
        

     
                      

      
                                 

 
                                                     

 
           



extreme low yields occur in tropical areas (that is, in hot environ-

ment with low‐temperature seasonality) and under irrigated systems,

the above‐mentioned measures would probably not be sufficient.

Therefore, it will be challenging to find effective incremental solu-

tions and might need to consider transformation of the agricultural

systems in some regions (Asseng et al., 2013; Challinor, Martre,

et al., 2014; Challinor, Watson, et al., 2014). In this study, the

extreme low yield probability and inter‐annual yield variability of

simulated yield were projected to increase significantly in parts of

hot irrigated locations and moderately hot low rainfall locations, and

further increase could be expected from 1.5 scenario to 2.0 scenario,

especially for inter‐annual yield variability. This indicated that more

efforts will be needed for adaptation for food security in these loca-

tions.

4.4 | Uncertainties

Here, we up‐scaled the climate warming impacts from 60 represen-

tative global locations to country and global scales, following the

approach by Asseng et al. (2015). The 60 locations were selected

with local experts to be representative of each region, and high‐qual-
ity model inputs for each location were obtained (Supporting Infor-

mation Table S1 in Appendix S1). Liu et al. (2016) and Zhao et al.

(2017) recently showed that up‐scaled simulations for representative

locations, as suggested by van Bussel et al. (2015), have similar tem-

perature impacts to 0.5o x 0.5o global grid simulations or statistical

approaches. The projected impact for spring wheat reported here is

similar to that reported by Iizumi et al. (2017), who reported global

spring wheat production to increase by 1.43%–1.60% and 1.43%–
1.61% under 1.5 and 2.0 scenarios using a global gridded simulation

approach under different Shared Socioeconomic Pathways.

To analyze risks of the extreme low yields, we used a well‐tested
multi‐model ensemble (Asseng et al., 2015, 2013, 2018; Ruane et al.,

2016; Wallach et al., 2018) instead of individual wheat models, as

the model ensemble has shown to reproduce observed yields and

observed yield interannual variability. In Asseng et al. (2015), the

multi‐model ensemble median reproduced observed wheat yield

under different warming treatments, with wheat‐growing season

temperature ranging from 15 to 32°C, including extreme heat condi-

tions. Asseng et al. (2018) recently demonstrated that a multi‐model

ensemble could also simulate the impact of heat shocks and extreme

drought on wheat yield.

Global warming will also affect weeds, pests, and diseases, which

are not considered in our analysis, but could significantly impact crop

production (Jones et al., 2017; Juroszek & von Tiedemann, 2013;

Stratonovitch, Storkey, & Semenov, 2012). Possible agricultural land

use changes were not considered here, which could increase produc-

tion (Nelson et al., 2014), but also accelerate further greenhouse gas

emissions (Porter, Howden, & Smith, 2017), adding to the uncer-

tainty of future impact projections.

Projections in this study were designed to be consistent with the

AgMIP Coordinated Global and Regional Assessments (CGRA) of 1.5

and 2.0°C warming and therefore add additional detail and context

to linked analysis of climate, crop, and economic implications for

agriculture across scales (Ruane, Antle, et al., 2018). Here, the mean

impact of 1.5 and 2.0°C warming above preindustrial on global

wheat production is projected to be small but positive. In addition,

the significant differences between estimated ensemble median

impacts from the two warming scenarios indicate a potential yield

benefit from higher global warming level. However, in our study, the

uneven distribution of impacts across regions, including projected

average yield reductions in locations with rapid population growth

(e.g., India), the increased probability of extreme low yields and a

higher inter‐annual yield variability, will be more challenging for food

security and markets in a 2.0°C world than in 1.5°C world, particu-

larly in hot growing locations.
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