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Abstract Aim: Gastric cancer (GC) is a tumour entity with highly variant outcomes. Lymph 
node metastasis is a prognostically adverse biomarker. We hypothesised that GC primary 
tissue contains information that is predictive of lymph node status and patient prognosis and 
that this information can be extracted using deep learning (DL). 
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Artificial intelligence 
Methods: Using three patient cohorts comprising 1146 patients, we trained and validated a 
DL system to predict lymph node status directly from haematoxylin and eosin–stained GC 
tissue sections. We investigated the concordance between the DL-based prediction from the 
primary tumour slides (aiN score) and the histopathological lymph node status (pN). 
Furthermore, we assessed the prognostic value of the aiN score alone and when combined 
with the pN status. 
Results: The aiN score predicted the pN status reaching area under the receiver operating 
characteristic curves of 0.71 in the training cohort and 0.69 and 0.65 in the two test cohorts. In 
a multivariate Cox analysis, the aiN score was an independent predictor of patient survival 
with hazard ratios of 1.5 in the training cohort and of 1.3 and 2.2 in the two test cohorts. A 
combination of the aiN score and the pN status prognostically stratified patients by survival 
with p-values < 0.05 in logrank tests. 
Conclusion: GC primary tumour tissue contains additional prognostic information that is 
accessible using the aiN score. In combination with the pN status, this can be used for per-
sonalised management of GC patients after prospective validation. 
© 2023 Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).    

1. Introduction 

Gastric cancer (GC) has a high incidence and an even 
higher cancer-specific mortality with a 5-year survival of 
less than 50% despite optimal multimodal treatment [1]. 
Whilst early-stage GC is endoscopically resectable, once 
the tumour has invaded past the submucosal barrier, 
surgical resection remains the only curative therapy 
option [2]. Resection protocols include lymphade-
nectomy of at least 15 lymph nodes, which are subse-
quently examined by a pathologist to determine the 
lymph node status (pN status) [3]. The pN status is of 
prognostic value: patients with lymph node metastases 
(LNM) show worse survival than patients without 
LNM, especially in early-stage GC [4]. Conversely, pa-
tients with the same pN status can have very different 
outcomes, which might in part be due to imperfect as-
sessment [5]. The final pN status can depend on the 
number and sizes of resected lymph nodes; the extent of 
positively classified lymph nodes can depend on the 
methods of assessment or fixation or on micro-
metastases [6–9]. Some histomorphological features in 
the primary tumour tissue might be indicative of LNM, 
among which lymphovascular invasion, Laurén subtype 
or tumour budding; however, this is not taken into 
consideration for pN status assessment in current di-
agnostic routines [10,11]. 

In the past years, deep learning (DL), a method from 
the field of artificial intelligence (AI), has been used to 
extract clinically relevant information directly from 
routine histopathology slides of solid tumours [12,13]. 
One advantage of AI-based methods is their ability to 
extract information from haematoxylin and eosin (H& 
E)-stained tissue slides, a routinely used staining mod-
ality [14]. AI-based analysis of H&E slides has been used 
to diagnose cancer [15], find prognostic information  
[16,17], predict molecular subtypes [18] or genetic al-
terations [19] and predict treatment response [20]. Few 
proof-of-concept studies have investigated the use of AI 

to predict lymph node status directly from primary tu-
mour histology in colorectal cancer (CRC) [21,22] or 
from immunohistochemically stained tissue in GC [23]. 
Other research groups developed AI-based prognostic 
tools for CRC, of which some received regulatory ap-
proval in the European Union and the United States  
[16,24]. However, very few of these efforts were aimed at 
GC, despite the high clinical need for better patient 
stratification in this tumour entity [14]. 

We hypothesised that DL can detect morphological 
patterns predictive of the pN status in primary tumour 
tissue and that these patterns are related to GC patient 
prognosis (Fig. 1A). Hence, we trained and validated a 
DL-based classifier to predict the pN status directly 
from H&E whole slide images (WSIs) of primary GC 
resection tissue sections. We subsequently investigated 
the prognostic value of our classifier and analysed the 
histomorphological features associated with a high 
prediction score. Finally, we compared the prognostic 
power of lymph node positivity prediction with the 
prognostic power of direct survival prediction and 
proposed an implementation of our biomarker into 
clinical routine workflows. 

2. Materials and methods 

2.1. Ethics statement 

All experiments were conducted according to the 
Declaration of Helsinki. This study complies with the 
’Transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis’ statement 
(Suppl. Table 1) [25]. This study was approved by the 
ethics boards at RWTH Aachen University Hospital 
(EK 345/19) and the Medical Faculty of Technical 
University Dresden (BO-EK-444102022). The collection 
of patient samples in each cohort was approved at each 
institution as described below. 
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2.2. Patient cohorts and data acquisition 

We retrospectively collected anonymised, digitised H&E- 
stained WSI of GC surgical resections from three in-
dependent sources. The first cohort originates from the 
Institute of Pathology at the University Hospital Schleswig 
Holstein in Kiel, Germany, subsequently referred to as the 
KIEL cohort (n = 366) [26]. The second cohort originates 
from the Institute of Pathology, University Hospital 
Augsburg in Augsburg, Germany, subsequently referred to 
as the AUGSBURG cohort (n = 474) [27]. The third cohort 
is derived from the Cancer Genome Atlas Project, publicly 
available at https://portal.gdc.cancer.gov and www.cbio-
portal.org (accessed 10th March 2022) and subsequently 

referred to as the TCGA cohort (n = 306). Only patients for 
whom both a WSI and pN status (positive/negative) were 
available were included in our experiments. Throughout all 
experiments, we used one WSI per patient; in the non- 
public cohorts, the WSI were pre-selected by board-speci-
fied pathologists from the source institutions (C.R., 
H.M.B., and B.M.). Clinicopathological characteristics for 
the cohorts are summarised in Table 1. 

2.3. Experimental design 

We hypothesised that GC primary tumour tissue con-
tains information indicative of the pN status. To detect 
this, we trained and validated an AI-based classifier 

Fig. 1. Hypothesis and key results of this study. (A) Upper panel: current workup of gastric cancer patients. A patient with resectable 
stomach cancer undergoes surgery, which includes lymphadenectomy. A pathologist analyzes lymph node tissue to determine the lymph 
node status. On the basis of this, treatment and follow-up decisions are made according to standardised guidelines. Lower panel: AI- 
augmented workup of gastric cancer patients. A patient with resectable stomach cancer undergoes surgery, which includes lymphade-
nectomy. A pathologist analyses the lymph node tissue to determine the pN status. Parallely, the primary tissue is analysed by using AI, 
determining a risk score. Based on the disease stage combined with the risk score, patient management could be personalised. (B) Receiver 
operating curves (ROC) for the KIEL, AUGSBURG and TCGA cohort. (C) Distribution of model predictions visualised in confusion 
matrices. AI, artificial intelligence. TCGA, The Cancer Genome Atlas. Pictograms were obtained from https://www.flaticon.com. 
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(aiN score) to predict the pN status from WSI of GC H 
&E-stained resection specimens. First, we performed an 
internal validation in a patient-level within-cohort cross- 
validated design in fivefolds on the KIEL cohort. To 

ensure the generalisability of our model, we trained a 
model on KIEL and externally validated it on two in-
dependent test sets, the AUGSBURG and TCGA co-
horts. During all training and testing, no patient was 

Table 1 
Cohort characteristics.            

Characteristic KIEL (n = 366) AUGSBURG (n = 474) TCGA (n = 306) 

n (%) HR p n (%) HR p n (%) HR p  

pT          
1 44 (12) 1.0 (ref) - 69 (15) 1.0 (ref) - 12 (4) NAa - 
2 33 (9) 1.9 0.04 82 (17) 1.6 0.15 59 (18) NAa - 
3 137 (37) 3.1  < 0.0001 228 (48) 3.0  < 0.0001 135 (44) NAa - 
4 106 (29) 4.9  < 0.0001 95 (20) 6.5  < 0.0001 90 (29) NAa - 
NA 46 (13) NA - 0 (0) NA - 10 (3) NA - 

pN 
0 98 (27) 1.0 (ref) - 173 (37) 1.0 (ref) - 89 (29) 1.0 (ref) - 
1 43 (11) 2.1 0.0007 83 (17) 1.5 0.05 82 (27) 1.7 0.07 
2 56 (15) 2.7  < 0.0001 96 (20) 2.3  < 0.0001 62 (20) 1.7 0.08 
3 123 (34) 4.2  < 0.0001 122 (26) 3.5  < 0.0001 63 (21) 3.2  < 0.0001 
NA 46 (13) NA - 1 (0) NA - 10 (3) NA - 

pM 
0 259 (71) 1.0 - 344 (73) 1.0 (ref) - 269 (88) 1.0 (ref) - 
1 61 (16) 3.0  < 0.0001 98 (20) 0.9 0.69 17 (9) 3.4  < 0.0001 
NA 46 (13) NA - 32 (7) NA - 10 (3) NA - 

Sex 
M 210 (57) 1.1 0.32 313 (66) 1.0 0.76 196 (64) 1.4 0.12 
F 110 (30) 1.0 (ref) - 161 (34) 1.0 (ref) - 100 (33) 1.0 (ref) - 
NA 46 (13) NA - 1 (0) NA - 10 (3) NA - 

Laurén grade 
Intestinal 187 (51) 0.8 0.05 276 (58) 0.8 0.23 129 (42) 0.5 0.3 
Diffuse 75 (21) 1.0 - 145 (31) 1.0 - 52 (17) 1.0 (ref) - 
Mixed 20 (6) 1.1 0.81 53 (11) 1.3 0.20 14 (5) 1.9 0.10 
Other/NA 84 (22) NA - 0 (0) NA - 111 (36) NA - 

UICC stage 
I 55 (15) 1.0 - 86 (18) 1.0 (ref) - 38 (12) 1.0 (ref) - 
II 72 (19) 2.0 0.005 116 (25) 1.9 0.005 92 (30) 1.8 0.20 
III 132 (36) 4.3  < 0.0001 176 (37) 3.8  < 0.0001 137 (45) 2.8 0.01 
IV 61 (17) 8.1  < 0.0001 96 (20) 5.5  < 0.0001 27 (9) 5.8  < 0.0001 
NA 46 (13) NA - 0 (0) NA - 12 (4) NA - 

Neoadjuvant treatment 
Yes 0 (0) NA - 135 (28) 0.8 0.06 0 (0) NA - 
No 366 (100) NA - 339 (72) 1.0 (ref) - 306 (100) NA - 

Tumour budding 
Bd0 90 (25) 1.0 (ref) - 0 (0) NA - 0 (0) NA - 
Bd1 61 (16) 2.0 0.001 0 (0) NA - 0 (0) NA - 
Bd2 24 (6) 2.5 0.0007 0 (0) NA - 0 (0) NA - 
Bd3 151 (42) 2.3  < 0.0001 0 (0) NA - 0 (0) NA - 
NA 40 (11) NA - 474 (100) NA - 306 (100) NA - 

SARIFA 
Positive 0 (0) NA - 96 (20) 2.0  < 0.0001 0 (0) NA - 
Negative 0 (0) NA - 378 (80) 1.0 (ref) - 0 (0) NA - 
NA 366 (100) NA - 0 (0) NA - 306 (100) NA - 

Survival 
OS in months,  

median (IQR) 
15.52 
(7.20, 36.33) 

19.00 
(6.00, 46.75) 

16.37 
(9.58, 27.40) 

Event rate in 5 years 0.67 0.49 0.37 
Censoring rate in 5 years 0.18 0.33 0.57 

Scanner type 
(resolution) 

Hamamatsu 
(0.22 µm/pixel) 

3DHistech 
(0.27 µm/pixel) 

Leica Aperio 
(0.25 µm/pixel) 

F, female; HR, hazard ratio; IQR, interquartile range; M, male; n, number of cases included in our experiments; NA, not available; OS, overall 
survival; ref, reference; SARIFA, Stroma AReactive Invasion Front Areas; TCGA, The Cancer Genome Atlas; UICC, Union Internationale Contre le 
Cancer. 
All statistical analyses were performed based on the available data as depicted in this table, excluding NA cases.  

a Not available: model did not converge due to the absence of deaths in the reference group (T1).    
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ever present in train and test sets simultaneously. 
Furthermore, we hypothesised that a higher aiN score 
would be associated with a shorter overall survival (OS). 
We performed a survival analysis comparing patients 
who were predicted to have lymph node metastasis (aiN 
+) and patients who were predicted not to have lymph 
node metastasis (aiN−) and in risk groups created from 
a combination of the aiN and the pN status. Third, we 
analysed the histomorphology of aiN+ cases to identify 
histopathological characteristics that were indicative of 
lymph node metastasis to our model. Finally, we com-
pared the prognostic value of our lymph node status 
classifier with a classifier that was trained to predict OS 
after 5 years from the date of surgery. 

2.4. DL procedures 

We used our open-source end-to-end DL pipeline to 
train a neural network to predict the pN status from 
primary GC WSI. As a preprocessing step, we tessel-
lated the WSI into tiles of 256 × 256 µm, which we 
processed at 224 px edge length, yielding a resolution of 
1.14 µm per pixel. We colour normalised the tiles using 
the Macenko method and discarded blurry tiles using 
the Canny edge detection as described before [28,29]. 
We extracted tile-wise feature vectors with RetCCL, a 
neural network pretrained on a histopathology data set  
[30]. RetCCL is based on clustering-guided contrastive 
learning with the objective of maximising the contrastive 
loss between tiles that originate from different images in 
a self-supervised manner. The resulting feature vectors 
function as the input for an attention-based multiple 
instance learning network (attMIL), which was our final 
classification network, as described before [31–34]. In 
attMIL, the feature vectors are grouped on a patient- 
level with a patient-level label, which the model is finally 
trained on. During training, the impact of a single fea-
ture vector on the final classification is calculated, which 
we refer to as the attention. The attention, through 
which the model learns the importance of certain fea-
tures for the classification task, is included in the ag-
gregation step. This has the effect that areas of high 
attention weigh more into the final prediction than areas 
of low attention. The classification problem was binary 
(positive or negative), and the ground truth was ob-
tained from the original pathology report. The attMIL 
model has two output neurons, in our case N+ and N−, 
the activations of which are then softmaxed to sum up 
to 1. The activation of the ’N+’ output neuron was used 
as the ’aiN score’ when deploying the trained model on 
unseen WSIs. For subsequent statistical tests, we bi-
narised the continuous model prediction at a pre-
specified cutoff of 0.5 to obtain an unbiased estimate of 
external validation performance. To visualise our model 
output, we created patient-wise high-resolution heat-
maps from the feature vectors extracted with RetCCL, 
displaying the region-wise attention and region-wise 

prediction scores. The heatmaps were then blended with 
the original WSI, with red areas indicating high atten-
tion/aiN+ and blue indicating low attention/aiN−. 

2.5. Statistical analysis 

The model performance was primarily assessed by the 
area under the receiver operating characteristic curves 
(AUROCs) with 95% confidence intervals (CIs). In the 
internal validation, the CI was obtained through all fi-
vefold-wise AUROCs, and in the external validation, 
CIs were obtained through 1000-fold bootstrapping. 
The statistical power of the AUROCs was assessed 
through two-sided unpaired t-tests comparing the pre-
diction scores, with the null hypothesis being that the 
aiN scores for the positive and negative groups (ac-
cording to the ground truth) are from the same dis-
tribution. The relationship between the pN status, the 
aiN score and a combination thereof with the OS was 
assessed using Kaplan-Meier analyses with logrank 
statistics, Harrel’s concordance indices (c-indices), and 
univariate and multivariate Cox proportional hazard 
models for OS. In the multivariate Cox proportional 
hazard models, age, sex and staging parameters, in-
cluding ’Union Internationale Contre le Cancer’ (UICC) 
and T-, N- and M-stages, were included as covariates 
alongside the ’aiN score’. The association between our 
aiN score and morphological characteristics was ana-
lysed using Kruskal-Wallis and Dunn’s tests. Cases that 
were included in our model training and testing but 
lacked other clinicopathological data were excluded 
from statistical analysis. For statistical calculations, we 
used the R ’survminer’ and ’intsurv’ libraries. p-values 
≤0.05 were considered significant, and no correction for 
multiple testing was applied. 

2.6. Code availability 

All source codes for image preprocessing are publicly 
available at https://github.com/KatherLab/preProcessing. 
All source codes for training and evaluating DL models are 
publicly available at https://github.com/KatherLab/mar-
ugoto. All source codes for the high-resolution heatmaps 
are available at https://github.com/KatherLab/highres-WSI- 
heatmaps. 

3. Results 

3.1. DL only moderately predicts the pN status from 
primary tumour resection slides in GC 

We trained and validated a classifier to predict the pN 
status from H&E-stained WSI of primary GC resection 
tissue specimens in our three patient cohorts with 
attMIL. In the internal validation, we achieved an 
AUROC of 0.71 (95% CI ± 0.06, p = 0.01) within KIEL 
(Fig. 1B) In the external validation cohorts, we achieved 
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AUROCs of 0.69 (95% CI ± 0.05, p  <  0.0001) in 
AUGSBURG and 0.65 (95% CI ± 0.07, p  <  0.0001) in 
TCGA (Fig. 1C) Confusion matrices for the distribution 
of results at a prespecified cutoff of 0.5 are shown in  
Fig. 1D. All results are summarised in Table 2. We 
concluded that our classifier only moderately predicts 
the pN status. 

3.2. The lymph node–status–derived aiN score is an 
independent predictor of OS in GC 

As the pN status is related to patient survival, we hy-
pothesised that the patterns identified as indicative of 
LNM from primary GC tissue by our model would be 
prognostically relevant for GC patients. Therefore, we 
investigated the prognostic values of the pN status and 
our aiN score by performing Kaplan-Meier analyses 
with logrank tests to compare the survival stratification. 
The pN status (positive versus negative) stratified pa-
tients in all cohorts (p  <  0.0001 in KIEL and AUGS-
BURG; p = 0.002 in TCGA; Fig. 2A). Similarly, the aiN 
score was able to stratify patients by survival in all three 
cohorts (all p-values < 0.0001; Fig. 2B, Table 2) We 
subsequently calculated the c-indices and found that the 

pN status and the aiN score yield similar c-indices of 
0.61, 0.59 and 0.58 according to the pN status and of 
0.61, 0.54 and 0.56 according to the aiN score in KIEL, 
AUGSBURG and TCGA (Table 2). Furthermore, we 
conducted Cox proportional hazard analyses with age, 
sex and UICC stage of a given patient as covariates. In 
KIEL, the aiN score yielded a univariate HR of 2.28 
(95% CI ± 0.13, p  <  0.0001; Table 2) and a multivariate 
HR of 1.5 (1.1, 1.9; p = 0.0080; Fig. 2C). In AUGSB-
URG, the aiN score yielded a univariate HR of 1.86 
(95% CI ± 0.6, p = 0.0050, Table 2) and a multivariate 
HR of 1.3 (1.0;1.9, p = 0.05, Fig. 2C). In TCGA, the aiN 
score yielded a univariate HR of 2.25 (95% CI ± 0.24, 
p = 0.0007, Table 2) and a multivariate HR of 2.2 
(1.4;3.6, p = 0.0012, Fig. 2C). We repeated the multi-
variate Cox proportional hazard analyses with the in-
dividual staging parameters pT-, pN- and M-stage and 
the pretreatment status as covariates in all eligible co-
horts, where our score was evenly shown to be an in-
dependent prognostic predictor (Table 2). To conclude, 
the aiN score proved to predict survival independent of 
known prognostic factors. Together, our results show 
that although our aiN score was not perfectly con-
cordant with the pN status, it is predictive of survival. 

Table 2 
AUROC and Cox proportional hazard analyses.            

Cohort KIEL AUGSBURG TCGA  

AUROC CI p AUROC CI p AUROC CI p  

AUROC analysis 0.7145  ± 0.06 0.01 0.6924  ± 0.05  < 0.0001 0.657  ± 0.07 0.0001 
C-index (pN) 0.61 0.59 0.58 
C-index (aiN) 0.61 0.54 0.56 

Covariatesa HR CI p HR CI p HR CI p 

Prediction 2.3 1.8;3.0  < 0.0001 1.9 1.4;2.5 0.0002 2.3 1.4;3.6 0.0007 
Age 1.0 1.0;1.0 0.15 1.0 1.0;1.1  < 0.0001 1.0 1.0;1.1 0.0004 
UICC 1.9 1.6;2.2  < 0.0001 1.9 1.7;2.2  < 0.0001 1.8 1.4;2.4  < 0.0001 
Sex 1.2 0.9;1.6 0.21 0.8 0.6;1.1 0.2 1.3 0.8;1.9 0.27 
Prediction 1.5 1.1;1.9 0.008 1.3 1.0;1.9 0.08 2.2 1.4;3.6 0.001 

Age 1.0 1.0;1.0 0.29 1.0 1.0;1.0  < 0.0001 1.0 1.0;1.1 0.003 
T stage 1.5 1.3;1.8  < 0.0001 1.9 1.6;2.3  < 0.0001 1.5 1.2;2.0 0.0008 
Sex 1.3 1.0;1.7 0.08 1.2 0.9;1.6 0.18 1.4 0.9;2.1 0.10 
Prediction 1.6 1.2;2.2 0.0005 1.4 1.0;1.9 0.04 2.3 1.4;3.7 0.0007 

Age 1.0 1.0;1.0 0.40 1.0 1.0;1.0  < 0.0001 1.0 1.0;1.1 0.004 
N Stage 1.5 1.3;1.7  < 0.0001 1.5 1.4;1.7  < 0.0001 1.4 1.2;1.6 0.0002 
Sex 1.1 0.9;1.5 0.36 1.1 0.9;1.5 0.41 1.3 0.9;2.0 0.20 
Prediction 1.7 1.3;2.3  < 0.0001 1.2 0.9;1.7 0.233 2.2 1.4;3.6 0.001 

Age 1.0 1.0;1.0 0.34 1.0 1.0;1.0  < 0.0001 1.0 1.0;1.1 0.002 
M stage 2.4 1.8;3.3  < 0.0001 0.9 0.7;1.3 0.69 4.3 2.3;8.2  < 0.0001 
Sex 1.2 0.9;1.6 0.15 1.0 0.8;1.4 0.77 1.5 1.0;2.3 0.002 
Prediction 2.0 1.5;2.6  < 0.0001 1.8 1.3;2.4 0.0003 2.3 1.4;3.7 0.0007 

Age NA NA NA 1.0 1.0;1.0  < 0.0001 NA NA NA 
Pre-treatment NA NA NA 0.9 0.7;1.2 0.4 NA NA NA 
Sex NA NA NA 1.0 0.8; 0.7 NA NA NA 
Prediction NA NA NA 1.8 1.3;2.4 0.0003 NA NA NA 

aiN, aiN score; AUROC, area under the receiver operating characteristic curve; CI, confidence interval; HR, hazard ratio; NA, not available; pN, lymph 
node status (positive versus negative) as assessed by pathologist; TCGA, The Cancer Genome Atlas; UICC, Union Internationale Contre le Cancer.  

a The sample size of the sets in the case of the multivariate Cox analyses is equal to the number of cases for which the respective covariate was 
available.    
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3.3. The aiN score can augment prognostic stratification 
of GC patients 

Based on the previous results, we investigated whether 
the aiN score can further stratify patients into high and 
low risk subgroups that would be of prognostic value. 
We analysed patient survival by combining our score 

(aiN+ or aiN−) with the pathologist assessment (pN+ 
or pN−). We observed differences in the OS when pa-
tients were stratified by this combined classification: 
aiN−, pN− significantly patients showed the best and 
aiN+, pN+ the worst survival in all our cohorts 
(Fig. 2D, Suppl. Table 2). In KIEL and TCGA, the 
aiN+, pN− patients had poorer survival than aiN−, 

Fig. 2. Artificial intelligence–generated lymph node metastasis score augments patient stratification. (A) Kaplan-Meier plots showing 
survival stratification by positive and negative pN status in pairwise logrank tests. (B) Kaplan-Meier plots showing survival stratification 
by positive and negative aiN score in pairwise logrank tests. (C) Forest plots obtained from multivariate Cox proportional hazard 
analyses with age, sex and UICC disease stage as covariates. (D) Kaplan-Meier plots showing survival stratification by the combination of 
the aiN score and pN status in combined logrank tests. aiN−, pN−, negative by our model, negative by pathologist assessment; aiN−, pN 
+, negative by our model, positive by pathologist assessment; aiN+, pN−, positive by our model, negative by pathologist assessment; aiN 
+, pN+, positive by our model, positive by pathologist assessment; HR, hazard ratio; OS, overall survival; TCGA, The Cancer Genome 
Atlas; UICC, Union Internationale Contre le Cancer. 
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pN− patients (Fig. 2D). In AUGSBURG, the survival 
of the aiN+, pN− patients was even equal to the survival 
of the aiN+, pN+ group (Fig. 2D). To conclude, there 
might be a subset of patients at risk of poor outcome, 
which cannot be identified using current disease staging 
methods. Combining existing classification systems, 
such as the Tumor - Node - Metastasis (TNM) and 
UICC staging system, with the aiN score could enhance 
the stratification of GC patients. 

3.4. The morphological features related to lymph node 
metastasis and poor outcome in GC primary tumour 
resection specimen according to the aiN score 

We subsequently assessed the morphology highlighted 
as indicative of LNM by our model. We utilised high- 
resolution heatmaps to visually display the spatial dis-
tribution of attention and classification scores of the 
model across a WSI in our validation cohorts. High- 
attention areas included mostly tumour tissue, whereas 
other tissue types were less relevant for the aiN score 
(Fig. 3A and B). Areas of desmoplastic stromal reac-
tion, tumour budding and fat cells adjacent to tumour 
cells without desmoplastic reaction, described as Stroma 
AReactive Invasion Front Areas (SARIFA) in previous 
literature [27], were highlighted as characteristic of aiN+ 
tumours (Fig. 3A and B). 

We consecutively explored the correlation between 
the Laurén grade, the presence of tumour budding, 
SARIFA and our aiN score. In KIEL and AUGSB-
URG, we examined whether the aiN score differed be-
tween diffuse and non-diffuse GC cases. With p-values 
of p = 0.06 for the KIEL cohort and p = 0.41 for the 
AUGSBURG cohort, there was no significant differ-
ence in the aiN score between the two groups (Fig. 3C 
and D). Tumour budding information was available in 
the KIEL cohort, classified as no buds (Bd0) to > 10 
buds (Bd3) [11]. Tumour budding was significantly as-
sociated with a higher aiN score (p  <  0.0001), and 
Bd1–3 patients had a significantly higher aiN score than 
Bd0 patients (p = 0.014, p = 0.0005 and p  <  0.0001,  
Fig. 3E). SARIFA status (positive versus negative) was 
available in the AUGSBURG cohort. A positive 
SARIFA status was significantly associated with a 
higher aiN score (p = 0.0008, Fig. 3F). To conclude, 
these data suggest that our classifier potentially identi-
fies morphological characteristics in the primary tumour 
that are indicative of LNMs. 

3.5. The aiN score in comparison with prognostic strata 

Next, we examined whether the survival stratification 
through the aiN score was dependent on the pT stage. In 
KIEL and AUGSBURG, the survival differences were 
significant in pT1 and pT2 patients (p = 0.002 and 
p  <  0.0001, Fig. 4A and B). In TCGA, the survival 
differences were significant in pT3 and pT4 patients 

(p = 0.0003, Fig. 4C). A combination of the aiN score 
and pN status was predictive of survival in the pT1&2 
subset of the KIEL and AUGSBURG cohorts 
(p = 0.0011 and p = 0.0001, Fig. 4D and E) and in the T3 
&4 subset of the TCGA cohort (p = 0.0003, Fig. 4F). We 
conclude that our model output is not dependent on the 
pT stage. In addition, the number of aiN-pN+ patients 
was higher in AUGSBURG compared to other cohorts 
(Fig. 1D). Since a subset of the AUGSBURG cohort 
had received neoadjuvant chemotherapy, we compared 
our prediction with the pretreatment status and found 
that the percentage of aiN-pN+ cases is higher in the 
pretreated group. Finally, we compared the prognostic 
value of our aiN score with that of direct survival pre-
diction. We binarised the OS after 5 years into dead or 
alive for each patient and trained a survival classifier. 
Using the binarised survival prediction score, we per-
formed multivariate Cox proportional hazard analyses 
for the OS outcome categories and found that only in 
TCGA, the survival classifier was an independent sur-
vival predictor with a multivariate HR of 1.8 (1.2; 2.5, 
p = 0.002; Suppl. Fig. 1). Comparing this to our aiN 
classification results, the aiN score yields a robust 
prognostic indication from GC primary resection spe-
cimen. A DL-based prognostication system, such as the 
aiN score, could in the future be integrated into GC 
patient management in the form of a risk score. Com-
bining the aiN score and the pN status, GC patients can 
be stratified into high, intermediate and low risk groups, 
and personalised workup or management strategies can 
be applied (Fig. 4H). 

4. Discussion 

In the past decades, numerous clinical trials attempted 
to innovate on therapeutic strategies for GC. Apart 
from PD-L1 and HER2-positive patients, surgery and 
chemotherapy remain the only treatment options for the 
majority of GC patients [36]. Despite the broad variety 
of clinical outcomes in GC patients, tumour staging 
remains the indicator for therapy allocation [2]. Hence, 
new biomarkers are needed to enable a more targeted 
delivery of different treatment modalities. 

Here, we developed and validated the aiN score, a DL- 
based biomarker derived from the pN status trained on H& 
E-stained WSI of the primary tumour for prognostication 
in GC. Based on the prediction of AUROCs, the aiN score 
cannot be used to replace pN status assessment as per-
formed by pathologists but predicted survival in-
dependently from clinicopathological staging parameters. 

Adding to the pN status, we were able to stratify GC 
patients into subgroups with high risk (aiN+) and low 
risk (aiN−) of poor survival solely based on primary 
tumour tissue. This suggests that primary tumour tissue 
contains prognostic information that is neglected in the 
current clinicopathological workup but can be exploited 
by DL to augment the diagnostic process. 
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We analysed the histomorphology of aiN+ cases and 
found SARIFA and tumour budding, which have been 
linked to poor outcome in gastrointestinal cancers be-
fore, to be significantly associated with a higher aiN 
score [11,27,37–39]. Tumour budding and clusters of 
poorly differentiated cells were previously found to be 
indicative of LNMs [11,40], and the SARIFA status was 
not associated with a positive pN status in GC [27]. 
Another feature highlighted by our model was desmo-
plastic stroma reaction, which has been identified as 
prognostically adverse in a recent clinical trial in CRC  

[41]. Whether our model indicates a future potential to 
metastasize to the lymph nodes or whether the aiN score 
is actually associated with micrometastatic disease is to 
be determined; however, our results show that DL- 
based scoring can indeed contain prognostic informa-
tion that adds to current clinical risk stratification ap-
proaches. 

Lately, DL-based prognostication approaches 
emerged, which were mostly aimed at CRC [16,22]. In 
GC, few studies have aimed at AI-assisted prog-
nostication so far. Wang et al. developed an approach to 

Fig. 3. The association between morphological characteristics and the aiN score. (A) Left to right: H&E-stained slide, classification 
heatmap and attention heatmap for an aiN+pN+ T3 patient from TCGA. The classification heatmap depicts stromal reaction highlighted 
as predictive of lymph node metastasis. (B) Left to right: H&E-stained slide, classification heatmap and attention heatmap for an aiN 
+pN− T2 patient of the AUGSBURG cohort. The classification heatmap depicts stromal reaction and SARIFA highlighted as predictive 
of lymph node metastasis by our model. (C) Boxplots showing aiN scores according to the Laurén grade in the KIEL cohort. (D) 
Boxplots showing aiN scores according to the Laurén grade in the AUGSBURG cohort. (E) Boxplots showing aiN scores according to 
tumour budding in the KIEL cohort. (F) Boxplots showing aiN scores according to SARIFA status in the AUGSBURG cohort (right). H 
&E, haematoxylin and eosin; SARIFA, Stroma AReactive Invasion Front Areas; TCGA, The Cancer Genome Atlas. 
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assess the tumour-to-metastasis ratio from resected 
lymph nodes using DL, which was shown to be an in-
dependent predictor of survival [42]. Compared to our 
experimental setup, they use histomorphology to extract 
prognostic information without direct clinical implica-
tions, whereas our approach connects human and AI- 

based assessment to prognostically stratify GC patients 
and connects the histomorphology of the primary to the 
presence of LNMs. Another group used DL to directly 
predict survival from GC WSI; however, their model did 
not prove to be a clear and independent predictor 
of survival in an external test set [43]. In the end, an 

Fig. 4. The prognostic value of the aiN score according to T category and envisioned clinical implementation. Kaplan-Meier plots 
visualising survival stratification through the aiN score in early and late T stages in (A) the KIEL cohort (internal validation), (B) the 
AUGSBURG cohort (external validation), (C) TCGA cohort (external validation), (D) Kaplan-Meier plots visualising survival strati-
fication by a combination of the aiN score and the pN status in T1 and T2 patients in the KIEL cohort (internal validation), (E) Kaplan- 
Meier plots visualising survival stratification by a combination of the aiN score and the pN status in T1 and T2 patients in the AUG-
SBURG cohort (external validation), (F) Kaplan-Meier plots visualising survival stratification by a combination of the aiN score and the 
pN status in T3 and T4 patients in the TCGA cohort (external validation), (G) confusion matrix showing the number of patients per 
prediction category according to the pretreatment status in the AUGSBURG cohort, (H) envisioned workflow implementing conven-
tional staging by pathologists and a DL-based risk scoring system into clinical routine. aiN−, pN−, negative by our model, negative by 
pathologist assessment; aiN−, pN+, negative by our model, positive by pathologist assessment; aiN+, pN−, positive by our model, 
negative by pathologist assessment; aiN+, pN+, positive by our model, positive by pathologist assessment. The pictograms were obtained 
from https://smart.servier.com. 
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AI-based risk score could conceivably be integrated into 
GC patient management in the form of a decision aid. 
Prospective overlap studies using larger cohorts are 
needed to confirm the prognostic impact and identify 
vulnerable patient subsets for improving patient survival 
with AI-based support in GC. 

Finally, our aiN score was not an accurate predictor 
of the pN status according to our prediction AUROCs, 
yet proved to be an independent predictor of survival in 
our Cox models. The AUROC is a standard perfor-
mance metric of AI-based studies in computational 
pathology but might not accurately reflect the model’s 
ability to generalise if used as the only end-point [35]. In 
line with our results, model performance assessment 
should not only be limited to an AUROC analysis, and 
the use of additional performance metrics in comparable 
studies should be encouraged. 

4.1. Limitations 

Our study has several limitations. First, patient-specific 
factors, such as the performance status, may impact 
prognosis in addition to lymph node status, which our 
approach does not reflect. Second, despite our model 
clearly containing prognostic information, the clinical 
relevance and therapeutic implications thereof would 
still have to be evaluated at a larger scale, at best in 
prospective validation studies. In addition, a well-sal-
vageable subset of GC patients are pT1 patients, who 
are eligible for endoscopic tumour mucosal resection. 
Unfortunately, due to a low number of cases, we were 
not able to assess the prognostic power of our model in 
this specific subset of patients. Finally, we have com-
pared our aiN score to direct survival prediction from 
primary tumour tissue using the same method. 
However, due to censored cases, the number of patients 
included in the latter is lower, which impairs the inter-
pretability of these results. 

4.2. Conclusion 

Overall, our study shows that the primary tumour tissue 
of GC resection specimens contains prognostic in-
formation that is neglected in the current diagnostic 
process but accessible through DL-based analysis as 
suggested by us. In the future, this information could be 
implemented in the clinical workup of GC cases and 
provide a risk stratification of GC patients. 
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