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Abstract
Bioclimatic	variables	(BCVs)	are	the	most	widely	used	predictors	within	the	field	of	
species	distribution	modeling,	but	recent	studies	imply	that	BCVs	alone	are	not	suf-
ficient	to	describe	these	limits.	Unfortunately,	the	most	popular	database,	WorldClim,	
offers	only	a	limited	selection	of	bioclimatological	predictors;	thus,	other	climatologi-
cal	datasets	should	be	considered,	and,	 for	data	consistency,	 the	BCVs	should	also	
be	derived	from	the	respective	datasets.	Here,	we	investigate	how	well	the	BCVs	are	
represented	by	different	datasets	 for	 the	extended	Mediterranean	area	within	 the	
period	1970–	2020,	how	different	calculation	schemes	affect	 the	 representation	of	
BCVs,	and	how	deviations	among	the	datasets	differ	regionally.	We	consider	different	
calculation	schemes	for	quarters/months,	the	annual	mean	temperature	(BCV-	1),	and	
the	maximum	temperature	of	the	warmest	month	(BCV-	5).	Additionally,	we	analyzed	
the	effect	of	different	temporal	resolutions	for	BCV-	1	and	BCV-	5.	Differences	result-
ing	from	different	calculation	schemes	are	presented	for	ERA5-	Land.	Selected	BCVs	
are	analyzed	to	show	differences	between	WorldClim,	ERA5-	Land,	E-	OBS,	and	CRU.	
Our	results	show	that	(a)	differences	between	the	two	calculation	schemes	for	BCV-	1	
diminish	as	 the	 temporal	 resolution	decreases,	while	 the	differences	 for	BCV-	5	 in-
crease;	(b)	with	respect	to	the	definition	of	the	respective	month/quarter,	intra-	annual	
shifts	induced	by	the	calculation	schemes	can	have	substantially	different	effects	on	
the	BCVs;	(c)	all	datasets	represent	the	different	BCVs	similarly,	but	with	partly	large	
differences	 in	some	subregions;	and	(d)	the	 largest	differences	occur	when	specific	
month/quarters	are	defined	by	precipitation.	In	summary,	(a)	since	the	definition	of	
BCVs	matches	different	calculation	schemes,	transparent	communication	of	the	BCVs	
calculation	schemes	is	required;	(b)	the	calculation,	integration,	or	elimination	of	BCVs	
has	to	be	examined	carefully	for	each	dataset,	region,	period,	or	species;	and	(c)	the	
evaluated	datasets	provide,	except	in	some	areas,	a	consistent	representation	of	BCVs	
within	the	extended	Mediterranean	region.
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1  |  INTRODUC TION

Bioclimatic	variables	(BCVs)	are	the	most	commonly	used	predictors	
in	species	distribution	modeling	(SDM;	Fourcade	et	al.,	2018)	to	de-
scribe	niche	evolution	(Warren	et	al.,	2010),	the	delineation	of	pro-
tected	areas	 (Esselman	&	Allan,	2011),	 the	ecological	 limits	 (Cunze	
et al., 2016),	and	the	habitat	suitability	of	invasive	species	(Ibáñez-	
Justicia	et	al.,	2020; Koch et al., 2016).	The	BCVs	contain	information	
on	temperature	and	precipitation	at	different	temporal	scales	(e.g.,	
annual,	quarterly,	monthly	means,	or	sums),	which	are	in	these	fields	
of	research	more	relevant	than	monthly	time	series	of	climate	data	
(Deblauwe	et	al.,	2016)	because	 they	are	physiologically	meaning-
ful	for	species	distributions	(Title	&	Bemmels,	2018).	O'Donnell	and	
Ignizio	(2012)	note	that	BCVs	better	represent	the	types	of	seasonal	
trends	inherent	in	the	physiological	limitations	of	different	species.

The	initial	set	of	12	BCVs	came	with	the	start	of	the	BIOCLIM	
program	in	1984,	which	represents	the	beginning	of	modern	SDM	
(Booth,	2018).	The	original	set	of	BCVs	was	derived	from	monthly	
mean	 values	 of	 daily	 minimum	 and	 maximum	 temperatures	 and	
mean	monthly	precipitation	sums.	Although	the	first	documentation	
of	 these	variables	was	provided	by	Booth	 (1985)	 and	Prendergast	
and	Hattersley	 (1985),	 the	BCVs	can	be	traced	back	to	Nix	 (1986).	
In	1996,	BCVs	were	expanded	to	19	variables	by	adding	meaning-
ful	annual	variables,	such	as	the	minimum	temperature	of	the	cold-
est	 month	 or	 the	 mean	 precipitation	 sums	 of	 the	 driest	 quarter	
(Booth,	2018).	In	1999,	additional	variables	were	provided,	including	
complex	 interactions	 associated	 with	 water	 balance	 calculations,	
bringing	the	total	number	of	BCVs	to	35	(Booth	et	al.,	2014;	Xu	&	
Hutchinson,	2011).

The	success	story	of	BCVs	within	the	SDM	community	dramati-
cally	increased	with	the	release	of	freely	downloadable	global	high-	
resolution	datasets	(Fourcade	et	al.,	2018).	One	of	the	most	popular	
BCV	 datasets	 is	 provided	 by	 the	WorldClim	 database	 (Fick	 &	Hi-
jmans,	2017;	Hijmans	et	al.,	2005),	but	other	databases	also	provide	
BCVs	(Bede-	Fazekas	&	Somodi,	2020; Booth, 2018).	In	addition,	al-
gorithms	for	calculating	BCVs	are	available	for	several	computing	en-
vironments,	such	as	the	“biovars”	function	of	the	R	package	“dismo”	
(Biovars,	Hijmans,	 2006;	Hijmans	 et	 al.,	2022).	 The	 19	 BCVs	 pro-
vided	by	WorldClim	are	based	on	climate	interpolation	methods	de-
veloped	for	the	BIOCLIM	program	(Booth	et	al.,	2014)	and	cover	the	
entire	land	areas	of	the	world	except	for	Antarctica	(Booth,	2022).	
The	dataset	is	available	in	four	different	spatial	resolutions	(30	arc	
seconds–	10	arc	minutes,	roughly	1–	20 km)	and	provides	means	for	
the	recent	period	1970–	2000	as	well	as	historical	and	future	scenar-
ios	(Title	&	Bemmels,	2018).	Overall,	WorldClim's	19	BCVs	are	the	

most	used	 set	of	variables	 in	SDM	 (Bradie	&	Leung,	2017).	Booth	
et	al.	 (2014)	reviewed	recent	literature	on	maximum	entropy	mod-
els	 (MaxEnt)	and	found	that	more	than	76%	used	at	 least	one	and	
55%	used	all	BCVs.	This	is	also	confirmed	by	the	study	of	Fourcade	
et	al.	(2018),	who	reviewed	190	studies	that	modeled	terrestrial	or-
ganisms.	Over	87%	of	these	studies	used	at	least	one	BCV,	20%	used	
all	BCVs,	and	over	42%	used	BCVs	in	addition	to	other	variables.

The	close	relationship	between	climate	and	species	distributions,	
the	advances	in	modeling	techniques,	such	as	machine	learning	al-
gorithms	like	MaxEnt	and	boosted	regression	trees	(BRTs),	and	the	
frequent	use	of	BCVs	seem	to	be	a	blessing,	since	results	from	differ-
ent	studies	on	the	same	species	seem	to	be	comparable.	However,	
the	use	of	BCVs	comes	with	caveats	on	several	 levels.	First,	many	
studies	 indicate	 that	 some	of	 the	BCVs	are	highly	correlated	 (e.g.,	
precipitation	of	the	driest	month	[BCV-	14]	and	precipitation	of	the	
driest	quarter	[BCV-	17]),	and	most	SDM	techniques	cannot	deal	with	
collinearity	(e.g.,	Dormann	et	al.,	2013; Fourcade et al., 2018;	O'Don-
nell	&	Ignizio,	2012).	Therefore,	a	preselection	of	relevant	predictors	
should	be	made	based	on	 the	 species-	specific	key	 limiting	 factors	
identified	 by	 expert	 knowledge	 or	 statistical	 approaches	 (Porfirio	
et al., 2014;	Synes	&	Osborne,	2011;	Title	&	Bemmels,	2018).	This	
leads	to	the	second	problem,	since	the	key	limiting	factors	and	the	
real	distribution	of	the	species	are	often	unknown	(Jiménez-	Valverde	
et al., 2013;	Synes	&	Osborne,	2011),	and	statistical	methods	alone	
are	not	sufficient	to	accept	or	reject	predictors	from	the	ensemble	
due	to	conflict	rankings	(Porfirio	et	al.,	2014).	Third,	in	some	regions,	
the	 interactive	variables	that	combine	information	on	temperature	
and	precipitation	exhibit	large	shifts	in	space	and	time	and	are	there-
fore	often	excluded	from	analyses	(Escobar	et	al.,	2014).	However,	
these	variables	are	the	most	 important	predictors	 in	some	studies	
(Booth,	2022).	Fourth,	species	distributions	often	depend	more	on	
extremes	than	on	annual	means,	and	extremes	are	underrepresented	
in	 the	 BCV	 dataset	 (Bradie	 &	 Leung,	 2017;	 Stewart	 et	 al.,	 2021).	
Thus,	many	studies	combine	BCVs	with	other	(bio)climatic	variables	
that	represent	extremes.

All	these	points	are	controversial	and	are	discussed	in	detail	 in	
recent	literature.	Only	the	preselection	by	expert	knowledge	based	
on	 species	 limits	 represents	 a	 general	 agreement	 (e.g.,	 Porfirio	
et al., 2014;	Synes	&	Osborne,	2011;	Title	&	Bemmels,	2018).	How-
ever,	two	options	are	commonly	used	in	the	absence	of	general	infor-
mation	on	the	limits.	Some	studies	recommend	using	the	complete	
set	of	19	BCVs,	as	highly	parameterized	models	with	multiple	climate	
predictors	may	even	outweigh	possible	collinearity	problems	(Brau-
nisch et al., 2013).	 In	 addition,	 the	 number	 of	 predictors	 depends	
on	the	underlying	method	that	is	applied	to	the	data.	For	example,	
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the	BIOCLIM	model	requires	a	larger	number	of	predictors	in	order	
to	 achieve	 similar	 results	 as	MAXENT	with	only	 a	 limited	number	
of	 predictors	 (Booth,	 2018;	 Penman	 et	 al.,	 2010).	 Other	 studies	
consider	 preselection	 to	 be	 essential	 since	 an	 increasing	 number	
of	predictors	leads	to	a	decrease	in	the	predicted	area	of	suitability	
(Beaumont	et	 al.,	2005)	 or	 only	 improves	 assessments	of	 the	 cur-
rent	distribution	but	performs	poorly	for	projections	(Booth,	2018).	
Porfirio	et	al.	(2014)	suggest	that	preselection	is	more	important	for	
mobile	species	than	long-	lived	immobile	plants.

While	 the	 above	 issues	 are	mostly	 taken	 into	 account	 for	 the	
use	or	processing	of	BCVs	in	the	model-	building	phase,	the	fact	that	
there	are	multiple	ways	to	calculate	BCVs	is	mostly	not	considered.	
To	our	knowledge,	most	SDM	researchers	are	not	aware	of	this	issue	
and,	therefore,	 ignore	the	problems	caused	by	the	different	calcu-
lation	approaches.	However,	there	are	several	calculation	schemes	
that	correspond	to	the	definition	of	BCVs,	and	different	databases	
are	based	on	different	calculation	methods,	making	the	results	 in-
comparable.	The	same	problem	arises	with	 respect	 to	 the	compu-
tational	algorithms	designed	to	calculate	BCVs,	which	are	available	
in	various	computing	environments	(Bede-	Fazekas	&	Somodi,	2020).	
Overall,	we	 found	 two	 studies	 that	 address	different	ways	of	 cal-
culating	 BCVs.	 O'Donnell	 and	 Ignizio	 (2012)	 calculated	 20	 biocli-
matic	indices	for	the	United	States	mainly	based	on	the	original	set	
of	BCVs,	but	without	a	comparative	analysis	of	different	calculation	
schemes.	In	contrast	to	many	other	studies,	they	describe	their	cal-
culation	scheme	 in	detail	and	 list	 the	differences	compared	to	 the	
BCVs	of	the	most	popular	database,	WorldClim.	Bede-	Fazekas	and	
Somodi	 (2020)	demonstrate	different	calculation	options	 in	detail,	
focusing	on	the	temporal	context	of	BCVs.	They	show	that	different	
temporal	references,	in	combination	with	predictor	selection,	nota-
bly	affect	model	 structure	and	projections.	The	authors	projected	
changes	in	potential	natural	vegetation	at	high	spatial	resolution	for	
Hungary	 using	 different	 calculation	 schemes	 and	 regional	 climate	
models	 (RCMs).	 Depending	 on	 the	 calculation	 scheme,	 they	 pro-
jected	both	 large	 increases	 and	 large	decreases	 for	 some	habitats	
in	 the	 future.	 Therefore,	 the	 authors	 recommend	paying	more	 at-
tention	to	the	calculation	scheme	of	BCVs,	as	it	strongly	influences	
the	projections.	However,	both	studies	did	not	consider	uncertain-
ties	arising	from	different	observational	datasets.	But	there	are	also	
some	studies	that	deal	with	intercomparisons	of	different	datasets.	
For	 example,	 Cerasoli	 et	 al.	 (2022)	 compared	 the	 two	 versions	 of	
WorldClim	(v1.4,	v2.1)	for	Europe	with	respect	to	spatial	prediction	
mismatches,	 and	 Morales-	Barbero	 and	 Vega-	Álvarez	 (2019)	 ana-
lyzed	mean	annual	temperatures	and	precipitation	on	a	global	scale	
using	 five	different	datasets	 to	determine	bioclimatic	 congruence.	
However,	to	our	knowledge,	a	detailed	comparison	of	the	most	com-
mon	 gridded	 station-	based	 observations	 and	 reanalysis	 weather	
data	for	the	Mediterranean	area	and	Central	Europe	with	respect	to	
the	full	set	of	BCVs	has	never	been	performed	before.

In	addition	to	 the	consideration	of	 the	effect	of	different	BCV	
calculation	 schemes,	 as	 recommended	 by	 Bede-	Fazekas	 and	 So-
modi	(2020),	this	study	demonstrates	how	different	datasets	affect	
the	derivation	of	BCVs	for	 the	extended	Mediterranean	area.	Our	

results	 are	 compared	with	 the	most	 commonly	 used	BCV	dataset	
of	WorldClim	and	 the	R	computational	 algorithm	BIOVARS	of	 the	
dismo	R	package.	The	aim	of	the	present	study	is	to	investigate	the	
differences	in	some	BCVs	depending	on	the	computational	scheme	
or	dataset.	We	will	show	that	the	curse	of	BCVs	does	not	start	during	
model	setup,	but	already	during	variable	generation.

The data used in this study and the preprocessing steps are de-
scribed	 in	 Section	2.1.	 For	 the	 analysis,	we	 have	 defined	 a	 clima-
tological	and	biological	calculation	scheme	to	identify	the	wettest,	
driest,	hottest,	and	coldest	month/quarter,	which	is	roughly	equiva-
lent	to	the	static	and	dynamic	approach	described	in	Bede-	Fazekas	
and	Somodi	(2020).	Furthermore,	we	show	different	approaches	to	
define,	 for	 example,	 the	 annual	mean	 temperature	 (BCV-	1)	 or	 the	
maximum	 (minimum)	 temperature	 of	 the	 hottest	 (coldest)	 month	
(Section	2.2).	The	results	are	then	compared	with	the	BCVs	of	the	
WorldClim	dataset	and	with	the	results	of	BIOVARS.	The	differences	
between	the	calculation	schemes	and	the	datasets	among	different	
subregions	are	shown	 in	Section	3.	We	discuss	 the	 results	 in	Sec-
tion 4	and	draw	conclusions	in	Section	5.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Reference

As	 a	 reference,	we	 downloaded	 the	 set	 of	 19	 BCVs	 from	 version	
2.1	 of	WorldClim	 (Fick	&	Hijmans,	 2017)	with	 a	 spatial	 resolution	
of	5	arc	minutes,	 as	 this	 is	 approximately	 the	 spatial	 resolution	of	
our	reference	dataset	in	our	target	domain.	The	WorldClim	dataset	
contains	the	climatological	means	of	the	19	standard	BCVs	for	the	
period	 1970–	2000.	 The	WorldClim	 dataset	was	 then	 interpolated	
by	means	of	the	first-	order	conservative	remapping	algorithm	of	the	
Climate	Data	Operator	 (CDO;	 Schulzweida,	2022)	 to	 a	 0.1° ×  0.1°	
grid	(~90 km2	per	grid	box)	to	fit	the	reference	spatial	resolution	over	
the	extended	Mediterranean	region	(10W-	45E,	27N-	55N,	154,000	
grid	boxes,	see	Figure 2).	In	total,	we	obtain	one	data	value	for	each	
BCV	of	all	land	grid	boxes	(113,443	grid	boxes).

The	WorldClim	 dataset	 (https://www.world	clim.org/)	 can	 pro-
vide	 a	 high	 spatial	 resolution	 (30	 arc	 seconds)	 for	 the	 reference	
period	(the	future	period	provides	lower	spatial	resolution),	but	the	
temporal	 resolution	 (climatological	means)	as	well	as	 the	coverage	
(period	1970–	2000)	of	the	BCVs	are	 low.	The	dataset	 is	 limited	to	
land	areas	but	covers	the	entire	world	except	for	Antarctica.	In	addi-
tion,	WorldClim	provides	monthly	climatological	data	for	the	period	
1960–	2018	for	all	variables	needed	to	calculate	the	BCVs,	as	well	as	
some	other	variables	such	as	solar	radiation,	wind	speed,	or	water	
vapor	pressure	(downscaled	from	CRU-	TS-	4.03).	For	future	projec-
tions,	 they	 also	 provide	 the	 variables	 to	 calculate	 BCVs	 based	 on	
different	shared	socio-	economic	pathways	(SSPs)	of	23	General	Cir-
culation	Models	 (GCMs).	 In	the	following,	 the	original	 interpolated	
BCVs	of	WorldClim	are	marked	WorldClim.
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2.1.2  |  Reanalysis	and	station-	based	
gridded datasets

The	analyses	are	based	on	the	ERA5-	Land	reanalysis	dataset	with	
hourly	temporal	resolution	and	0.1° × 0.1°	spatial	resolution	(Muñoz	
Sabater,	2019, 2021).	Here,	the	spatial	resolution	of	the	ERA5-	Land	
dataset	 represents	 the	 reference	 grid	 for	 the	 target	 domain,	 and	
daily	or	monthly	values	were	derived	from	the	hourly	data.	ERA5-	
Land	provides	global	coverage	for	the	period	1950	to	the	present.	
The	dataset	provides	only	one	spatial	resolution,	but	the	temporal	
resolution	 ranges	 from	monthly	 to	 hourly.	 In	 addition	 to	 the	 vari-
ables	 needed	 for	 calculating	BCVs,	more	 than	 50	 variables	 classi-
fied	 into	eight	 groups	 (e.g.,	 temperature,	 soil	water,	 radiation,	 and	
heat)	are	available.	In	addition,	different	datasets	and	variables	are	
available	for	37	atmospheric	levels,	which	are	freely	accessible	from	
the	Copernicus	homepage.	 Thus,	 ERA5-	Land	 represents	 the	most	
recent	dataset	with	the	highest	temporal	resolution	and	the	largest	
number	of	variables	in	our	study	domain.

We	also	consider	the	gridded	Climate	Research	Unit	daily	time	se-
ries	(TS)	version	4.05	on	a	regular	0.5°	grid	(CRU;	Harris	et	al.,	2020).	
The	CRU	dataset	 is	based	on	a	broad	network	of	weather	 station	
observations,	and	the	data	are	derived	by	interpolation	of	monthly	
anomalies.	The	dataset	provides	the	coarsest	resolution	(0.5° × 0.5°)	
of	 all	 datasets	 considered	 and	 covers	 the	 period	 1901–	2020.	 The	
dataset	provides	monthly	values	of	all	variables	needed	to	calculate	
BCVs,	plus	six	additional	variables	(e.g.,	vapor	pressure,	cloud	cover;	
Harris	et	al.,	2020).

Temperature	 and	 precipitation	 time	 series	 of	 the	 ensembles	
of	 the	 daily	 gridded	 observational	 dataset	 for	 precipitation,	 tem-
perature,	 and	 sea	 level	 pressure	 in	 Europe	 (E-	OBS,	 version	24.0e)	
were	 downloaded	 with	 a	 spatial	 resolution	 of	 0.1° × 0.1°	 (Cornes	
et al., 2018).	The	E-	OBS	dataset	is	available	in	two	spatial	resolutions	
(highest	resolution:	0.1° × 0.1°)	and	covers	the	area	from	25°	W–	45°	
E	 and	25°	N–	71.5°	N.	Thus,	E-	OBS	 is	 the	only	non-	global	 dataset	
considered	in	this	study.	The	dataset	provides	daily	data	from	1950	
to	the	end	of	June	2021.	In	addition	to	the	variables	needed	to	calcu-
late	BCVs,	four	other	variables	are	available	(e.g.,	sea	level	pressure,	
relative	humidity;	Cornes	et	al.,	2018).	As	E-	OBS	 is	only	based	on	
observations,	the	dataset	contains	gaps,	and	thus	some	regions,	pe-
riods,	and/or	variables	are	not	continuously	represented.	Generally,	
a	grid	box	within	the	E-	OBS	dataset	 is	considered	complete	when	
80%	of	the	data	is	available.

All	datasets	have	been	fitted	to	the	grid	of	the	target	domain	
and	interpolated	where	necessary	by	means	of	the	same	interpo-
lation	scheme	applied	to	WorldClim.	Since	all	datasets	are	derived	
by	different	methods,	in	the	following,	we	summarize	ERA5-	Land,	
CRU,	 and	 E-	OBS	 under	 the	 term	 gridded	 station-	based	 obser-
vations	 and	 reanalysis	 weather	 data	 (GSORW-	Data).	 Although	
WorldClim	is	also	a	gridded	station-	based	observational	dataset,	
it	 only	 represents	 climatological	 means	 instead	 of	 daily	 meteo-
rological	data.	For	 the	comparative	analysis	between	WorldClim	
and	 GSORW-	Data,	 we	 consider	 the	 period	 1970–	2000,	 since	
the	 BCVs	 of	 WorldClim	 only	 cover	 this	 period.	 For	 intra-		 and	

inter-	comparisons	of	the	GSORW-	Data,	we	extend	the	period	to	
1970–	2020.	We	 downloaded	 hourly,	 daily,	 or	monthly	 values	 of	
minimum,	mean,	and	maximum	temperature	as	well	as	precipita-
tion	sums	for	all	datasets	and	aggregated	them	to	monthly	values	
using	CDO	where	appropriate.	All	analyses	and	figures	were	per-
formed	using	R	Statistical	Software	 (v4.2.2;	R	Core	Team,	2022)	
and	RStudio	(Posit	Team,	2022).

2.2  |  Calculation schemes

There	 is	 not	much	 information	 in	 the	 literature	on	 the	 calculation	
of	WorldClim	BCVs.	Several	approaches	are	possible	to	derive	the	
19	BCVs	from	temperature	 (T2M)	and	precipitation	(PRE)	time	se-
ries.	 In	particular,	the	definition	of	the	hottest/coldest	or	wettest/
driest	 quarter/month	provides	 some	options	 (Bede-	Fazekas	&	 So-
modi,	2020;	 O'Donnell	 &	 Ignizio,	2012).	 Following	 BIOVARS	 pro-
vided	by	the	creators	of	the	WorldClim	dataset,	we	assume	that	all	
BCVs	of	WorldClim	are	calculated	using	climatological	means	over	
a	period	of	31 years	(1970–	2000).	Thus,	each	grid	box	is	not	repre-
sented	by	a	time	series	but	by	monthly	climatological	mean	values	
for	each	climate	variable	(i.e.,	minimum	and	maximum	temperature,	
precipitation).

The	WorldClim	annual	mean	temperature	(TMEAN)	is	the	aver-
age	of	the	maximum	and	minimum	temperatures.	Since	most	of	the	
popular	reanalysis	and	observational	datasets	 (e.g.,	ERA5(-	Land),	
CRU,	E-	OBS,	 and	NCEP-	NCAR)	provide	mean	 temperatures,	 the	
calculation	 of	 the	 annual	 mean	 temperature	 is	 redundant,	 but	
since	we	have	also	applied	BIOVARS,	the	calculation	of	the	mean	
using	 the	maximum	 (TMAX)	 and	minimum	 (TMIN)	 temperatures	
is	considered	too.	Differences	within	the	calculation	scheme	also	
affect	BCV-	4.

Several	 options	 are	 available	 for	 BCVs	 defined	 for	 specific	
periods	of	interest	(POI,	month,	or	quarter).	When	climatological	
averages	 (e.g.,	 over	 a	30-	year	period)	 are	used	 as	 input,	 the	pe-
riod with the highest or lowest average values will always repre-
sent	 the	 POI.	 However,	 if	 time	 series	 are	 used,	 the	 POI	 can	 be	
defined	in	two	ways.	First,	we	define	the	POI	for	the	entire	time	
series,	 that	 is,	using	the	driest	month	on	average	 in	 the	time	se-
ries.	Then	we	extract	the	corresponding	month	from	all	years	and	
calculate	the	average,	even	though	the	month	is	not	the	driest	in	
every	year	of	the	time	series	(climatological	approach,	CLIM).	On	
the	other	hand,	the	POI	is	identified	separately	for	each	year,	and	
then the respective values are averaged. In this way, the driest 
month	 of	 each	 year	 is	 always	 taken	 into	 account,	 although	 it	 is	
not	usually	the	same	month	throughout	the	period	(biological	ap-
proach,	BIO).	Such	a	concept	is	also	pursued	by	Bede-	Fazekas	and	
Somodi	(2020),	but	for	the	dynamic	or	static	selection	of	quarters/
months	with	respect	to	future	periods.	However,	their	method	is	
also	valid	for	and	applicable	to	recent	periods	in	order	to	calculate	
the	BCVs,	and	Bede-	Fazekas	and	Somodi	(2020)	also	provide	sim-
ilar	 information	 in	 the	Appendix	S2.	The	climatological	approach	
is	consistent	over	time	since	the	BCV	always	represents	the	same	
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month	 or	 quarter	 of	 the	 year,	 but	 due	 to	 interannual	 shifts,	 the	
definition	of	the	BCV	is	no	longer	valid.	On	the	other	hand,	the	bi-
ological	approach	is	always	consistent	with	the	definition	of	BCV,	
since	it	always	represents	the	month	or	quarter	with	the	highest	
or	lowest	value	but	describes	different	physiological	and	ecolog-
ical	 phenomena,	 for	 example,	 when	 the	 driest	 month	 is	 shifted	
from	 the	 early	 growing	 season	 to	 the	 hibernation	 season.	 Thus,	
the	statistical	link	established	during	model	construction	is	ques-
tioned	(Bede-	Fazekas	&	Somodi,	2020).	This	problem	concerns	all	
BCVs	related	to	specific	months	(BCV-	5,	BCV-	6,	BCV-	13,	BCV-	14,	
and	indirectly	BCV-	3	and	BCV-	7)	or	quarters	(BCV-	8–	BCV-	11	and	
BCV-	16–	BCV-	19).

For	 BCV-	5	 and	 BCV-	6,	 there	 are	 two	ways	 to	 extract	 the	 ex-
treme	monthly	temperatures.	On	the	one	hand,	the	absolute	lowest/
highest	daily	value	of	the	month	can	represent	the	minimum/maxi-
mum	temperature	of	the	coldest/hottest	month.	On	the	other	hand,	
the	BCVs	can	be	calculated	using	the	averaged	minimum/maximum	
daily	temperatures	of	the	respective	month.	The	same	method	has	
also	been	applied	to	periods	or	annual	time	series	to	show	the	effect	
of	the	calculation	methods	on	different	time	scales	(e.g.,	the	lowest	
daily	temperature	of	the	year	vs.	the	average	of	the	daily	minimum	
temperatures	of	 the	year).	These	two	options	 indirectly	affect	the	
calculation	of	BCV-	2,	BCV-	3,	 and	BCV-	7	 as	well.	 In	 the	 following,	
we	show	the	difference	between	the	two	calculation	schemes	(see	
Section	3.1).

An	additional	aspect	must	be	considered	when	the	BCVs	are	
based	 on	 quarters	 (three	 consecutive	 months).	When	 BIOVARS	
is	 applied	 to	 annual	 data,	 the	 quarter	 (November–	December–	
January)	 is	 calculated	 using	 the	monthly	 data	 of	 the	 same	 year.	
Thus,	 January	 of	 the	 same	 year	 is	 added	 to	November	 and	De-
cember,	 even	 though	 they	 are	 not	 consecutive.	 This	 calculation	
scheme	may	be	valid	(but	also	inaccurate)	for	climatological	aver-
ages	but	not	for	time	series	(O'Donnell	&	Ignizio,	2012).	The	effect	
on	temperature-	based	quarters	of	time	series	may	be	marginal,	as	
the	 variability	 of	monthly	mean	 temperatures	 is	 relatively	 small	
compared	with	the	dominant	seasonal	cycle,	but	for	precipitation-	
based	quarters,	the	differences	can	be	substantial.	Another	issue	
is	 the	 definition	 of	 quarters,	 that	 is,	 whether	 the	 first	 quarter	
starts	with	January	or	whether	January	is	the	month	in	the	middle.	
If	January	is	the	middle	month,	 it	 is	recommended	to	extend	the	
time	 series	of	 interest	by	2 years	 (start	 year	−1):(end	year	+1)	 in	
order	to	calculate	all	quarters	by	consecutive	months;	otherwise,	
1 year	 should	 be	 added	 at	 the	 end	 of	 the	 time	 series.	 This	 fea-
ture	concerns	all	BCVs	based	on	quarterly	values	(BCV-	8-	BCV-	11,	
BCV-	16-	BCV-	19).	 However,	 we	 do	 not	 address	 the	 variations	 in	
the	calculation	of	BCVs	that	result	from	these	issues.	In	this	study,	
we	calculate	BCVs	based	on	consecutive	months,	using	the	median	
month	as	a	representative.

We	compared	different	datasets	(ERA5-	Land,	E-	OBS,	and	CRU)	
based	on	time	series	(Section	3.2).	The	BCVs	of	the	time	series	were	
extracted	using	BIOVARS	as	well	as	the	BIO	and	CLIM	calculation	
schemes.	In	the	following,	the	quarters	of	the	BIO	and	CLIM	calcu-
lation	scheme	are	based	on	consecutive	months,	and	the	reference	

is	always	 the	month	 in	 the	middle.	Thus,	 the	 first	quarter	of	1970	
includes	the	months	December	1969–	February	1970.

3  |  RESULTS

In	 the	 following,	we	 first	 present	 the	 differences	 between	 differ-
ent	calculation	schemes	using	the	ERA5-	Land	reanalysis	dataset	for	
selected	BCVs.	 Results	 are	 exemplified	 for	 the	 annual	mean	 tem-
perature	(BCV-	1)	to	show	differences	that	occur	when	using	mean	
temperature	time	series	or	mean	values	derived	from	minimum	and	
maximum	temperature.	Differences	between	absolute	and	mean	ex-
treme	temperatures	are	illustrated	by	means	of	the	maximum	tem-
perature	 of	 the	warmest	month	 (BCV-	5).	Differences	 arising	 from	
the	 CLIM	 and	 BIO	 calculation	 schemes	 are	 presented	 by	 means	
of	 the	mean	temperature	and	precipitation	of	 the	wettest	quarter	
(BCV-	8	 and	 BCV-	16).	 An	 intercomparison	 of	 different	 datasets	 is	
presented	in	Section	3.2.	Since	all	BCVs	are	based	on	temperature	
and	precipitation	and	mean	annual	values	of	climate	variables	are	a	
good	indicator	of	how	well	these	are	represented	by	different	data-
sets,	we	show	the	results	for	the	annual	mean	temperature	(BCV-	1)	
and	precipitation	 (BCV-	12).	 To	 show	whether	 the	 selection	of	 the	
quarters	is	represented	differently	within	the	GSORW-	Data,	results	
are	also	visualized	for	the	mean	temperature	of	the	wettest	quarter	
(BCV-	8).	Figures	for	other	monthly	or	seasonal	BCVs	affected	by	the	
aforementioned	differences	in	calculation	schemes	are	presented	in	
Appendix	S1	and	differences	with	respect	to	different	datasets	are	
presented	in	Appendix	S2.

3.1  |  Differences of BCVs due to 
calculation scheme

Figure 1	 shows	 Taylor	 plots	 (Taylor,	 2001)	 for	 all	 BCVs	 derived	
from	the	ERA5-	Land	dataset.	The	Taylor	plots	show	the	normalized	
standard	 deviation,	 the	 centered	 root	mean	 square	 error	 (RMSE),	
and	the	correlation	coefficient	of	the	different	calculation	schemes	
with	 respect	 to	 the	 reference	BCVs	of	WorldClim	 (purple	point	 in	
the	middle	of	the	x-	axis).	 In	general,	the	closer	the	data	point	 is	to	
the	reference,	the	higher	the	agreement	between	the	reference	and	
the	calculation	scheme.	The	BCVs	of	WorldClim	are	used	as	a	ref-
erence.	The	Taylor	plots	show	only	minor	differences	between	the	
calculation	schemes	when	only	temperature	variables	are	involved.	
The	differences	 increase	when	precipitation	values	are	considered	
and	 show	 considerable	 variations	when	 the	 POI	 is	 determined	 by	
precipitation,	 that	 is,	wettest	month	 (BCV-	13,	 BCV-	14)	 or	wettest	
quarter	(BCV-	8,	BCV-	9,	BCV-	16,	BCV-	17).	The	figure	also	shows	that	
the	BIO	approach	 is	 similar	 to	 the	derived	 results	of	BIOVARSBIO, 
and	 CLIM	 approximately	 corresponds	 to	 BIOVARSCLIM. Thus, no-
table	differences	are	only	due	to	whether	the	BCVs	are	calculated	
from	climatological	means	(CLIM)	or	time	series	(BIO),	whereas	the	
differences	resulting	from	the	calculation	scheme	and	BIOVARS	are	
only	marginal.
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6 of 18  |     MERKENSCHLAGER et al.

3.1.1  |  Annual	mean	temperature	(BCV-	1)

Differences	 with	 respect	 to	 the	 BCV-	1	 calculation	 scheme	 are	
shown	 for	 ERA5-	Land	 in	 Figure 2.	 The	 difference	 between	 the	
TMEAN	 of	 ERA5-	Land	 and	 the	 calculation	 using	 minimum	 and	
maximum	temperatures	depends	on	the	temporal	 resolution.	On	
a	 daily	 scale,	 differences	 between	 −7.4°C	 and	+9.6°C	 occur	 and	

become	smaller	when	the	temporal	resolution	is	reduced.	If	only	
the	range	between	the	lower	and	upper	quartile	is	considered,	the	
monthly,	 annual,	 and	 interannual	 time	 series	 are	 almost	 identi-
cal,	unless	the	range	of	the	daily	quartile	is	extended	by	0.2°C	in	
both	directions.	For	a	period	of	31 years,	the	deviations	between	
the	 two	 approaches	 do	 not	 exceed	±1°C	 (top	 left).	 Especially	 in	
mountainous	regions	(e.g.,	Alps,	Atlas,	and	Caucasus),	the	standard	

F I G U R E  1 Taylor-	Diagrams	depicting	the	differences	with	respect	to	the	calculation	scheme	for	all	BCVs	(Period:	1970–	2000;	Reference:	
WorldClim).	Due	to	different	scales,	the	standard	deviations	are	normalized	and	the	RMSEs	are	centered.	The	points	represent	the	biological	
(BIO,	green)	and	climatological	(CLIM,	blue)	calculation	schemes,	and	triangles	represent	the	BCVs	derived	from	BIOVARS	when	the	function	
is	applied	to	time	series	(BIOVARSBIO,	light	green)	or	periods	(BIOVARSCLIM,	light	blue).
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deviations	of	the	differences	show	higher	and	the	correlation	co-
efficients	 lower	values.	Although	 the	 standard	deviations	within	
these	 regions	 are	 quite	 low,	 lower	 correlation	 coefficients	 also	
occur	on	the	Sinai	Peninsula,	the	northwestern	coasts	of	the	Ibe-
rian	Peninsula,	and	the	southern	coast	of	Ireland	(bottom	left).	The	
highest	 agreement	 between	 the	 two	methods	 is	 found	over	 the	
Sea	of	Azov.	Overall,	 ERA5-	Land	TMEAN	exceeds	 the	 tempera-
ture	 time	 series	 derived	 from	minimum	 and	maximum	 tempera-
tures	for	most	parts	of	the	study	area,	with	the	highest	values	in	
the	northern	parts	of	Africa	and	 the	Middle	East	away	 from	the	
coast.	 Along	 the	 southern	 and	 eastern	 coasts	 of	 the	Mediterra-
nean	 Sea	 and	 over	 the	 Iberian	 Peninsula,	 the	 TMEAN	of	 ERA5-	
Land	is	notably	lower	than	that	computed	by	BIOVARS,	with	the	
largest	deviations	along	the	Atlantic	coast	of	Morocco.

3.1.2  | Maximum	temperatures	of	the	warmest	
month	(BCV-	5)

Absolute	 and	 mean	 maximum/minimum	 temperatures	 were	 cal-
culated	 for	 the	period	1970–	2020	on	a	monthly	and	annual	basis,	
as	well	 as	 for	 the	 entire	 period,	 by	means	 of	 the	CLIM	 approach.	
In	 contrast	 to	 BCV-	1,	 the	 temperature	 differences	 become	 larger	
with	reduced	temporal	resolution	(see	Figures 2 and 3,	upper	left),	
but	 the	 differences	 are	 already	 notable	 for	 monthly	 time	 series.	

Here	we	present	 the	 results	 for	 the	maximum	temperature	of	 the	
warmest	month	 (Figure 3).	 Especially	 in	Northern	 France	 and	 the	
Benelux	countries,	temperature	differences	of	more	than	15°C	can	
be	 observed	 between	 the	 two	 calculation	 schemes	 (Figure 3, top 
right).	Since	mean	and	absolute	maximum	temperatures	do	not	al-
ways	occur	within	 the	 same	month,	 both	 calculation	 schemes	 are	
also	subject	to	temporal	shifts.	On	average,	the	absolute	maximum	
temperature	at	the	Israeli-	Egyptian	coast	is	3 months	later	than	the	
mean	maximum	temperature,	while	the	absolute	values	reach	their	
maximum	2 months	earlier	than	the	mean	temperatures	in	the	north-
western	parts	of	Ukraine	(Figure 3,	bottom	left).	Finally,	we	used	the	
date	of	the	maximum	from	the	absolute	and	mean	maximum	(derived	
from	the	entire	period)	and	extracted	only	the	mean	maximum	tem-
peratures	for	both	time	series.	Considering	only	the	temporal	shift	
between	absolute	and	mean	maximum	temperatures,	the	shift	of	the	
maximum	alone	leads	to	differences	of	up	to	5.7°C	in	some	regions	
(Figure 3	bottom	right,	Border	area	of	Ukraine	and	Belarus,	Mediter-
ranean	coast	of	Israel	and	Lebanon).

3.1.3  | Mean	temperature/precipitation	of	the	
wettest	quarter	(BCV-	8,	BCV-	16)

A	rough	classification	of	 the	study	area	highlights	 four	subregions	
with	 respect	 to	 the	 climatologically	 wettest	 quarter	 (Figure 4).	

F I G U R E  2 BCV-	1	Annual	mean	temperatures:	Differences	between	WorldClim's	calculation	scheme	and	mean	temperature	time	series	
of	ERA5-	Land	for	different	temporal	scales	(top,	left),	standard	deviations	(top,	right),	and	correlation	coefficient	(bottom,	left)	of	daily	
temperatures.	Mean	differences	between	both	time	series	are	shown	for	the	period	1970–	2020	at	the	bottom,	right	(BIOVARS–	ERA5-	Land).
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Beginning	with	the	southern	subregion	in	winter,	the	date	of	the	wet-
test	quarter	shifts	counterclockwise	through	the	seasons.	The	Black	
Sea	region	has	the	wettest	quarter	in	spring,	the	northern	subregion	
in	 summer,	 and	 the	western	parts	of	 the	Mediterranean	 region	 in	
autumn	(Figure 4,	upper	left).	However,	a	closer	look	at	the	Iberian	
Peninsula	shows	that	although	the	climatological	wettest	quarter	is	
in	autumn,	the	winter	season	quantitatively	represents	the	wettest	
quarter	 (BIO	 calculation	 scheme,	Figure 4,	 upper	middle).	Overall,	
the	BIO	approach	shows	a	more	heterogeneous	picture,	with	shifts	
mainly	within	the	respective	season.	In	the	upper	right	part	of	Fig-
ure 4,	the	interannual	shifts	of	the	wettest	season	are	shown	(BIO	
calculation	scheme).	It	shows	that	the	wettest	season	is	shifted	by	
up	to	4 months	per	year	on	average	north	and	south	of	the	Pyrenees,	
northeast	 of	 the	Black	 Sea,	 and	 in	 parts	 of	Bulgaria.	 This	 reflects	
the	high	interannual	variability	of	rainfall	in	the	extended	Mediterra-
nean	area.	Smaller	interannual	shifts	occur	in	the	southeastern	parts	
of	our	study	area,	in	the	eastern	parts	of	Europe,	and	north	of	the	
Alps.	In	terms	of	temperature,	these	shifts	have	the	greatest	impact	
northeast	of	the	Black	Sea,	with	high	gradients	between	−10°C	and	
+10°C,	while	the	northwestern	parts	of	the	Iberian	Peninsula	show	
the	greatest	differences	in	precipitation	(−250 mm).

3.2  |  Differences of BCVs due to datasets

In Figure 5,	Taylor	plots	are	shown	for	all	BCVs	derived	from	differ-
ent	datasets	using	the	CLIM	calculation	scheme	as	a	reference.	Other-
wise,	the	framework	is	the	same	as	in	Figure 1. The Taylor plots show 
that	all	datasets	reproduce	the	BCVs	of	the	WorldClim	database	well,	
and	major	differences	between	the	models	can	only	be	observed	for	
BCV-	8	and	BCV-	10	of	 temperature	and,	 to	 some	extent,	BCV-	13	of	
precipitation.	On	the	one	hand,	possible	reasons	for	the	deviations	can	
be	traced	back	to	the	different	representation	of	precipitation	within	
the	GSORW-	Datasets,	which	affects	precipitation-	based	BCVs	 (e.g.,	
BCV-	13)	as	well	as	temperature-	based	BCVs	(e.g.,	BCV-	8).	When	re-
gions	have	 two	precipitation	peaks	with	 similar	 amounts	 in	 summer	
and	winter,	temperatures	can	vary	notably,	while	the	precipitation	of	
the	wettest	quarter	(BCV-	16)	shows	only	small	variations.	In	addition,	
precipitation	has	higher	 spatial	 and	 temporal	variability,	 so	different	
resolutions	and	 interpolation	schemes	may	also	affect	the	represen-
tation	of	precipitation	patterns.	For	BCV-	10,	larger	deviations	are	ob-
served	only	 in	E-	OBS.	Here,	 spatial	and	 temporal	data	gaps	may	be	
the	reason	for	the	deviations	since	the	temperature	is	generally	well	
represented	among	the	GSORW-	Datasets.

F I G U R E  3 BCV-	5	Maximum	temperatures	of	the	warmest	month:	Differences	between	absolute	and	mean	maximum	temperatures	
(period	1970–	2020)	of	ERA5-	Land	for	different	temporal	scales	(top,	left)	and	regions	(top	right).	The	temporal	shift	(in	months)	of	absolute	
and	mean	maximum	temperature	is	presented	at	the	bottom	left.	The	shift-	induced	temperature	difference	of	the	mean	maximum	
temperature	is	given	at	the	bottom	right.
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In	the	following,	WorldClim	is	used	as	a	reference	for	all	other	
datasets.	When	we	 use	 evaluative	 terms,	 we	 are	 referring	 to	 the	
WorldClim	dataset	without	claiming	that	this	dataset	is	the	best	rep-
resentation	of	reality.

3.2.1  |  Annual	mean	temperature	(BCV-	1)

Figure 6	shows	the	annual	mean	temperatures	of	WorldClim	(BCV1)	
for	the	period	1970–	2000	and	the	temperature	anomalies	of	the	dif-
ferent	GSORW-	Datasets.	Compared	 to	 the	other	datasets,	E-	OBS	
shows	the	smallest	deviations	(−3.4	to	2.6°C).	Especially	in	the	east-
ern	 parts	 of	 Turkey,	 the	 annual	mean	 temperatures	 are	 far	 below	
those	 of	 WorldClim.	 ERA5-	Land	 shows	 negative	 deviations	 over	
much	of	North	Africa	but	also	over	Turkey	and	 the	Levant,	Spain,	
and	the	Alpine	region,	and	the	deviations	are	higher	than	those	ob-
served	in	E-	OBS	(−5.6	to	3.8°C).	The	highest	deviations	are	observed	
within	the	CRU	dataset	(−10.0	to	9.2°C).	Especially	in	mountainous	
regions,	the	CRU	dataset	exhibits	both	 large	negative	and	positive	
deviations.	Overall,	all	datasets	show	higher	mean	annual	tempera-
ture	differences	to	WorldClim	in	the	northeastern	part	of	the	study	
area,	while	 lower	 temperature	differences	are	observed	along	 the	
southern	Mediterranean	coast.	The	latter	is	probably	due	to	the	lim-
ited	data	availability	in	this	region	and,	thus,	a	more	similar	database	
in all considered datasets.

3.2.2  | Mean	temperature	of	the	wettest	quarter	
(BCV-	8)

Figure 7 shows that the Mediterranean and European areas are 
very	 heterogeneous	 in	 each	 GSORW-	Dataset	 where	 the	 wet-
test	quarter	 can	occur	 in	 any	 season.	Thus,	 even	 small	 shifts	 in	
the precipitation pattern or deviations in the spatial resolution 
can	lead	to	notable	changes	in	BCV-	8.	The	greatest	agreement	is	
observed	 over	 central	 and	 eastern	 Europe,	 where	 precipitation	
maxima	occur	 in	 the	 summer.	The	 largest	 discrepancies	 are	ob-
served	 northeast	 of	 the	Black	 Sea	within	 the	CRU	dataset,	 but	
large	 discrepancies	 are	 also	 observed	 over	 France,	 where	 pre-
cipitation	maxima	 occur	 in	 all	 seasons.	Over	 the	 Iberian	 Penin-
sula,	the	adjacent	regions	with	precipitation	maxima	in	spring	and	
autumn	are	 represented	 in	 all	 datasets,	 although	 some	shifts	 in	
the	boundaries	can	be	observed.	Over	the	southeastern	parts	of	
the	study	area,	ERA5-	Land	shows	precipitation	maxima	in	winter,	
while	CRU	and,	where	data	are	available,	E-	OBS	show	the	wettest	
quarter	in	spring.

The	heterogeneity	in	France	is	responsible	for	the	large	tempera-
ture	differences	within	this	region.	Between	the	Gulf	of	Lion	and	the	
German	North	Sea	coast,	the	temperatures	of	the	wettest	quarter	
are	 for	 some	 regions	more	 than	10°C	higher	 in	 the	GSORW-	Data	
than	 in	WorldClim	 (Figure 8).	 Over	 the	 northeastern	 parts	 of	 the	
Black	Sea,	we	assume	that	WorldClim	also	has	 its	wettest	quarter	

F I G U R E  4 BCV-	8	and	BCV-	16	Temperature	and	precipitation	in	the	wettest	quarter:	The	upper	figures	represent	the	climatological	
quarters	of	the	wettest	quarter	(CLIM,	top	left)	and	the	quarter	that	most	frequently	represents	the	wettest	quarter	due	to	the	biological	
approach	(BIO,	top	mid)	of	the	ERA5-	Land	dataset	(period	1970–	2020).	The	figure	at	top	right	represents	the	mean	interannual	shift	of	
the	wettest	quarter	for	the	BIO	calculation	scheme	(Maximum	shift:	white	dot	and	number).	Figures	at	the	bottom	show	the	differences	
between	both	approaches	(BIOCLIM)	with	respect	to	temperature	(left)	and	precipitation	(right).
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10 of 18  |     MERKENSCHLAGER et al.

in	summer	since	CRU	almost	matches	the	reference	pattern.	In	con-
trast,	warmer	 temperatures	are	observed	over	 the	Sinai	Peninsula	
for	 CRU	 and,	where	 data	 are	 available,	 for	 E-	OBS,	 leading	 to	 the	
conclusion	that	both	WorldClim	and	ERA5-	Land	have	their	wettest	
quarter	in	winter.	In	general,	within	the	considered	domain,	the	data-
sets	show	warmer	temperatures	than	WorldClim,	but	also	notably	
lower	temperatures	can	be	observed.

3.2.3  |  Annual	precipitation	(BCV-	12)

The	 largest	 differences	 between	 the	 datasets	 and	WorldClim	 are	
observed	 in	 the	 triangle	 between	 France,	 Switzerland,	 and	 Italy	
on	 the	west	 side	of	 the	Alps	 (Figure 9).	Here,	 all	 datasets	overes-
timate	 the	 WorldClim	 annual	 precipitation	 totals	 by	 more	 than	
1000 mm,	with	the	largest	deviations	within	the	ERA5-	Land	dataset	

F I G U R E  5 Taylor-	Diagrams	depict	differences	with	respect	to	the	GSORW-	Datasets	for	all	BCVs	(Period:	1970–	2000;	Reference:	
WorldClim).	Due	to	different	scales,	the	standard	deviations	are	normalized	and	the	RMSEs	are	centered.

 20457758, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10553 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [02/10/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  11 of 18MERKENSCHLAGER et al.

(2200 mm).	Differences	between	 the	datasets	 can	be	observed	 at	
the	southeastern	coast	of	the	Black	Sea,	where	CRU	shows	the	high-
est	underestimation	 (−1157 mm).	 In	this	area,	ERA5-	Land	overesti-
mates	precipitation	by	482 mm	and	E-	OBS	by	109 mm.	Compared	
to	WorldClim,	ERA5-	Land	(+77 mm)	and	CRU	(+2 mm)	are	too	wet,	
while	 E-	OBS	 (−30 mm)	 is	 too	 dry	 on	 average.	 Especially	 over	 top-
ographically	 heterogeneous	 areas	 such	 as	 the	Alps	 or	 the	 eastern	
Pontic	 Mountains	 south	 of	 the	 Black	 Sea,	 precipitation	 amounts	
are	 predominantly	 overestimated,	 while	 the	 western	 part	 of	 Eu-
rope	(northwest	of	the	Iberian	Peninsula,	Great	Britain,	and	Ireland)	
shows	lower	precipitation	amounts	than	the	reference.

4  |  DISCUSSION

4.1  |  Differences between calculation schemes

Analyses	have	shown	that	there	is	a	high	degree	of	agreement	be-
tween	all	the	calculation	schemes	presented.	Only	BCVs	based	on	
periods	(month	or	quarter)	defined	by	precipitation	show	larger	dif-
ferences	(BCV-	8,	BCV-	9,	BCV-	13,	BCV-	14,	BCV-	16,	BCV-	17).	It	has	
been	 shown	 that	 it	 does	not	matter	whether	 the	BCVs	are	 calcu-
lated	with	one	of	 the	 calculation	 schemes	presented	here	or	with	
BIOVARS	provided	by	 the	dismo	R	package,	 since	 the	differences	
are	 only	marginal.	 For	 the	 calculation	 of	 BCVs,	 it	 is	 only	 relevant	

whether	the	variables	are	calculated	by	means	of	annual	values	or	
period	means.	Thus,	although	there	are	small	differences	between	
BIOVARS	and	the	calculation	schemes,	these	have	hardly	any	impact	
on	the	calculation	of	the	BCVs.	Consequently,	BIOVARS	proves	to	
be	a	suitable	method	to	obtain	BCVs	for	the	Mediterranean	region.	
It	 should	only	be	 thoroughly	checked	 if	 the	wettest	or	driest	 sea-
son	coincides	with	the	turn	of	the	year.	With	respect	to	BCV-	1,	the	
higher	the	temporal	resolution,	the	greater	the	differences	between	
the	mean	temperatures	provided	by	the	datasets	and	the	calculation	
scheme	of	BIOVARS.	Thus,	only	marginal	differences	will	occur	when	
the	function	is	applied	to	annual	or	climatological	means.	However,	
Hijmans	(2006)	and	Hijmans	et	al.	(2022)	explicitly	point	out	that	the	
function	can	also	be	applied	to	weekly	data.	In	our	opinion,	the	user	
should	rather	refer	to	the	original	mean	temperature	time	series	of	
the	used	dataset,	since,	especially	over	mountainous	regions	or	re-
gions	with	a	high	degree	of	continentality,	differences	can	be	large	at	
high	temporal	resolution,	and,	thus,	the	use	of	BIOVARS	for	calculat-
ing	BCV-	1	can	lead	to	notable	differences	in	comparison	to	the	mean	
temperature	time	series	of	the	GSORW-	Data.	Furthermore,	since	all	
datasets	provide	mean	 temperature	 time	series,	 the	calculation	of	
mean	temperatures	is	redundant.

For	 the	 time	 series	 of	 maximum/minimum	 temperatures	 of	
the	 warmest/coldest	 months	 (BCV-	5	 and	 BCV-	6),	 the	 two	 calcu-
lation	 schemes	 show	 large	 differences	when	 the	 temporal	 resolu-
tion	is	reduced.	Analyses	have	shown	that	the	BCVs	of	WorldClim	

F I G U R E  6 BCV-	1	Annual	mean	temperature:	The	figure	shows	the	temperatures	of	WorldClim	(bottom	left)	and	the	temperature	
differences	(dataset	minus	WorldClim)	of	ERA5-	Land	(top	left),	E-	OBS	(top	right),	and	CRU	(bottom	right)	for	the	period	1970–	2000	(gray	
areas:	no	data).
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12 of 18  |     MERKENSCHLAGER et al.

F I G U R E  7 Wettest	quarter	for	ERA5-	Land	(top	left),	E-	OBS	(top	right),	and	CRU	(bottom	left)	for	the	period	1970–	2020	(gray	areas:	no	
data).

F I G U R E  8 BCV-	8	Mean	temperature	of	the	wettest	quarter:	The	figure	shows	the	temperatures	of	WorldClim	(bottom	left)	and	the	
temperature	differences	of	ERA5-	Land	(top	left),	E-	OBS	(top	right),	and	CRU	(bottom	right)	for	the	period	1970–	2000	(gray	areas:	no	data).
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correspond	to	the	calculation	scheme	with	mean	maximum	or	mini-
mum	temperatures.	It	has	been	shown	that	differences	of	up	to	16°C	
occur	between	the	two	calculation	schemes,	especially	in	the	oce-
anic	regime.	Here,	the	moist	air	masses	of	the	Atlantic	Ocean	flatten	
the	 daily	 temperature	 amplitude,	 so	 that	 single	 extremes	 notably	
increase	the	difference	between	absolute	and	mean	maxima.	In	ad-
dition,	calculating	mean	maximum	temperatures	by	considering	only	
the	temporal	shift	between	absolute	and	mean	maxima	also	results	
in	temperature	differences	of	up	to	6°C.	The	largest	differences	are	
observed	along	the	Egyptian	Mediterranean	coast,	where	shifts	of	
up	 to	3 months	occur	between	absolute	and	mean	maximum	tem-
peratures,	but	also	along	the	French	Mediterranean	coast,	where	the	
temporal	 shift	 is	 only	1 month.	 It	 shows	 that	 large	 shifts	between	
mean	 and	 absolute	 temperature	 maxima	 occur	 mainly	 along	 the	
North	African	coast,	but	the	effect	is	similar	to	small	shifts	in	some	
European	regions.	However,	we	assume	that	the	approach	based	on	
mean	maxima/minima	 should	 be	 applied	when	mobile	 species	 are	
investigated	or	the	temperature	limits	of	the	species	cannot	be	spec-
ified	 exactly,	whereas	 absolute	maxima/minima	 should	 be	 consid-
ered	when	the	temperature	limits	of	species	are	known	and	essential	
for	survival.	Especially	for	immobile	species	such	as	plants,	the	use	
of	absolute	minima	and	maxima	may	have	added	value.	This	is	also	
consistent	with	the	analysis	of	Gloning	et	al.	(2013)	on	the	calcula-
tion	of	hardiness	zones	for	woody	plants.	The	authors	suggest	that	
absolute	minimum	 temperatures	 should	 also	be	 considered	 as	 the	
future	climate	 is	warmer,	but	 the	 risk	of	cold	snaps	 is	 still	present	

due	to	increased	standard	deviations	and	changes	in	the	skewness	of	
the	minimum	temperature	distribution.	Therefore,	the	choice	of	cal-
culation	scheme	depends	strongly	on	the	species	and	the	research	
question.

The	most	controversial	variables	in	the	BCV	pool	are	the	ones	
that	 combine	 temperature	 and	 precipitation.	 Especially	 large	
changes	 within	 short	 distances	 are	 an	 issue	 of	 major	 concern.	
These	 discontinuities	 are	 predominantly	 related	 to	 shifts	 in	 the	
quarterly	 periods	 used	 to	 calculate	 the	 BCVs	 (Booth,	2022).	 For	
example,	 the	 mean	 temperature	 of	 the	 wettest	 quarter	 (BCV-	8)	
can	exhibit	notable	differences	 in	regions	with	two	rainy	seasons	
in	 summer	and	winter,	 and	maxima	are	 shifted	spatially	 (one	grid	
box	 has	 a	 maximum	 in	 summer	 and	 the	 neighboring	 grid	 box	 in	
winter)	or	temporally	(summer	maximum	in	1 year	and	winter	maxi-
mum	in	the	following	year).	Temporal	shifts	also	affect	the	dynamic	
approach	 (similar	 to	 the	BIO	calculation	 scheme	when	applied	 to	
different	 climatological	 periods)	 described	 in	 Bede-	Fazekas	 and	
Somodi	(2020),	where	variables	are	determined	period-	by-	period.	
This	leads	to	a	discussion	about	how	to	handle	these	BCVs.	On	the	
one	 hand,	 Escobar	 et	 al.	 (2014)	 pointed	 out	 that	 these	 variables	
should	be	excluded	from	SDM	since	they	show	odd	spatial	anom-
alies	in	some	regions.	Authors	who	cite	Escobar	et	al.	(2014)	even	
claim	that	these	variables	are	unsuitable	for	usage	(Booth,	2022).	
On	the	other	hand,	Bradie	and	Leung	(2017)	have	analyzed	differ-
ent	environmental	variables	and	their	contribution	to	SDM.	They	
concluded	 that	 the	 interactive	 variables	 are	 the	 most	 important	

F I G U R E  9 BCV-	12	Annual	mean	precipitation:	The	figure	shows	the	precipitation	of	WorldClim	(bottom	left)	and	the	precipitation	
differences	of	ERA5-	Land	(top	left),	E-	OBS	(top	right),	and	CRU	(bottom	right)	for	the	period	1970–	2000	(gray	areas:	no	data).
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14 of 18  |     MERKENSCHLAGER et al.

predictors	in	some	regions	and	for	some	species.	For	global	studies,	
Booth	(2022)	recommends	seeking	alternative	measures	for	inter-
active	variables	based	on	water	balance	studies,	as	rainfall	season-
ality	can	be	important	for	species	distributions.

In	addition	to	the	question	of	the	usefulness	of	the	interactive	
variables,	Bede-	Fazekas	and	Somodi	(2020)	present	two	calculation	
schemes	for	the	variables	based	on	specific	periods	of	the	year	(all	
four	interactive	variables	included).	When	the	variables	are	calcu-
lated	by	 climatological	means,	 the	variable	 always	 represents	 the	
same	 quarter	 or	 month.	 Thus,	 the	 variable	 always	 describes	 the	
same	physiological	and	ecological	phenomenon,	but	the	definition	
of	the	variable	is	not	valid	anymore	since,	due	to	shifts	within	the	
annual	cycle,	the	variable	may	not	always	represent	the	true	timing	
of,	 for	example,	 the	wettest	quarter.	 In	 contrast,	 the	definition	 is	
valid	when	the	variables	are	calculated	year-	by-	year	since	the	true	
wettest	quarter	is	always	chosen.	However,	since	the	wettest	quar-
ter	may	 exhibit	 interannual	 variations,	 it	 may	 in	 1 year	 represent	
precipitation	in	autumn	and	in	the	subsequent	year	precipitation	in	
spring.	Thus,	the	statistical	link	in	SDM	is	not	valid	anymore	since	
the	BCV	describes	different	ecological	and	physiological	character-
istics.	In	general,	these	findings	are	in	accordance	with	the	results	
of	Bede-	Fazekas	 and	 Somodi	 (2020).	 It	 shows	 that	 their	 assump-
tions	 about	 the	 temporal	 context	 of	 future	 species	 distribution	
assessments	are	also	valid	 for	 the	calculation	of	BCVs	within	 the	
recent period.

In	 the	 following,	 we	 will	 address	 these	 caveats	 to	 show	 that	
there	are	still	 factors	to	be	considered	when	handling	the	 interac-
tive	variables.	In	terms	of	the	wettest	quarter,	the	largest	variability	
can	be	observed	over	 the	northeastern	parts	of	Spain,	 the	border	
area	of	Romania	and	Bulgaria,	and	the	Caucasus	region	of	Georgia,	
with	an	interannual	shift	of	up	to	4 months.	This	means	that	no	clear	
rainy	season	can	be	defined	for	this	region	since	it	is	shifted	not	only	
by	months	 but	 also	 by	 seasons.	 For	 example,	 over	 the	 northeast-
ern	parts	of	Spain,	 there	are	no	clear	differences	between	BCV-	8	
and	BCV-	16	due	 to	 the	calculation	scheme,	but	 regions	with	 their	
maximum	in	spring	and	regions	with	their	maximum	in	autumn	are	
located	next	to	each	other.	This	can	be	attributed	to	the	fact	that	
the	precipitation	regime	of	the	Spanish	Mediterranean	coast	and	its	
backcountry	is	mainly	decoupled	from	the	westerly	wind	drift,	and	
precipitation events depend on weather conditions with an easterly 
or	northerly	wind	component	(Rodrigo	&	Trigo,	2007).	The	lack	of	a	
barrier	along	the	Catalan	coast	allows	these	weather	conditions	to	
penetrate	further	inland	(Cortesi	et	al.,	2014).	The	relative	frequency	
of	these	weather	conditions	is	subject	to	an	annual	cycle	with	max-
ima	in	summer	and	minima	in	winter.	Since	the	Azores	High	over	the	
Iberian	Peninsula	has	a	stabilizing	effect	in	summer,	these	weather	
conditions	are	 rarely	associated	with	precipitation	 in	 summer,	and	
precipitation	maxima	are	shifted	to	the	transitional	seasons.	Espe-
cially	 in	 the	 backcountry,	 convective	 precipitation	 events	 provide	
precipitation	maxima	 in	spring	since	the	thermal	 land-	sea	contrast	
in	the	Mediterranean	region	is	decreasing	while	the	Azores	High	has	
not	yet	reached	the	stabilizing	characteristics	of	the	summer	season	
(Esteban-	Parra	et	al.,	1998).	In	contrast,	subcontinental	convective	

processes	are	negligible	along	the	coast.	Here,	precipitation	maxima	
occur	in	autumn	due	to	the	high	temperatures	of	the	Mediterranean	
Sea	and	the	resulting	enhanced	cyclogenesis	(Rodrigo	&	Trigo,	2007).	
Depending	on	the	intensity	of	these	weather	conditions,	the	bound-
ary	 between	 the	 two	 precipitation	 regions	 fluctuates,	 resulting	 in	
interannual	 shifts	 of	 the	wettest	 quarter	 by	more	 than	 4 months.	
Nevertheless,	the	precipitation	differences	between	spring	and	au-
tumn	peaks	within	 this	 region	 are	 rather	 small,	 although	different	
weather	 conditions	 are	 responsible	 for	 precipitation	 generation.	
Thus,	the	influence	on	the	BCV	is	rather	small,	although	the	statis-
tical	link	is	not	valid,	since	it	describes	two	completely	different	life	
cycles	or	phenological	phases	(e.g.,	 juvenile	stage	in	spring	and	se-
nior	stage	in	autumn).

In	 contrast,	 the	northern	part	of	Portugal	 shows	only	 a	 small	
difference	between	both	approaches	with	respect	to	the	wettest	
quarter	 (about	 2 months).	 According	 to	 the	 CLIM	 approach,	 the	
wettest	quarter	 is	 in	 late	autumn	 (October–	December),	while	 the	
BIO	scheme	selects	mainly	the	December–	February	period.	In	au-
tumn,	 the	 temperatures	 of	 the	 Atlantic	Ocean	 are	 still	 high,	 and	
due	 to	 evaporation,	 a	 large	 amount	 of	 precipitable	water	 enters	
the	atmosphere.	As	the	Azores	High	tends	to	weaken	 in	autumn,	
the	northern	part	of	Portugal	falls	under	the	influence	of	westerly	
wind	drift,	 and	 the	precipitation	pattern	 is	mainly	determined	by	
Atlantic	cyclones.	Atlantic	cyclones	and	a	huge	amount	of	precip-
itable	water	combined	with	orographic	effects	can	lead	to	intense	
precipitation	events	in	this	area	(Santos	et	al.,	2017).	Overall,	due	
to	sporadic	extreme	precipitation	events,	the	climatologically	wet-
test	 quarter	 occurs	 in	 late	 autumn,	 while	 mid-	winter	 represents	
the	 quarter	 that	 quantitatively	 exhibits	 the	 highest	 precipitation	
amounts.	Thus,	although	the	statistical	link	is	almost	identical,	huge	
differences	of	up	to	260 mm	can	be	observed	between	the	CLIM	
and	BIO	calculation	schemes.

The	same	can	be	observed	for	temperature	in	Russia,	northeast	
of	the	Sea	of	Azov.	Due	to	the	high	degree	of	continentality,	a	rela-
tively	small	shift	of	2 months	leads	to	a	difference	between	the	BIO	
and	CLIM	approaches	of	up	to	13°C.

Overall,	 55.4%	 of	 the	 study	 area	 exhibits	 the	 same	 wettest	
quarter	 in	 both	 calculation	 schemes.	 For	 the	 driest	 quarter,	 the	
agreement	is	68.2%,	but	with	higher	differences	for	absolute	tem-
peratures	 (BCV-	9;	 see	Appendix	 S1.4).	Here,	 the	 study	 area	 is	 di-
vided	into	a	northern	and	a	southern	part.	In	the	northern	part	of	the	
study	area,	BCV-	9	and	precipitation	of	the	driest	quarter	(BCV-	17)	of	
the	CLIM	approach	are	notably	smaller	than	under	consideration	of	
the	BIO	calculation	scheme.	In	contrast,	temperatures	in	the	south-
ern	part	are	notably	higher	for	CLIM,	whereas	differences	with	re-
spect	to	precipitation	hardly	exist.	An	even	greater	agreement	with	
respect	to	the	selected	quarter	can	be	seen	for	the	hottest	(98.2%)	
and	coldest	quarter	(99.7%).	Therefore,	differences	in	precipitation	
and	 temperature	 between	 both	 calculation	 schemes	 barely	 exist	
(Appendices	S1.5 and S1.6).

We	showed	that	there	could	be	 large	differences	between	the	
two	 calculation	 schemes	 within	 the	 study	 area,	 confirming	 the	
analysis	 of	 Bede-	Fazekas	 and	 Somodi	 (2020).	 However,	 we	 also	
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showed	that	the	discontinuities	resulting	from	the	different	calcu-
lation	schemes	affect	the	BCVs	to	a	greater	or	lesser	extent.	In	the	
northeastern	parts	 of	 Spain,	where	 large	 interannual	 shifts	 of	 the	
wettest	 season	occur,	 the	effect	on	 the	 respective	BCVs	 is	 rather	
small,	whereas	in	the	northern	parts	of	Portugal	(precipitation)	and	
southeastern	 parts	 of	 Russia	 (temperature),	 relatively	 small	 shifts	
lead	 to	 large	 differences	 between	 the	 CLIM	 and	 BIO	 calculation	
schemes.	This	means	that	although	the	statistical	link	within	the	BIO	
approach	is	not	valid	and	different	physiological	and	ecological	char-
acteristics	are	described,	the	effect	on	BCV	may	be	rather	small,	and	
conversely,	small	shifts	in	quarters	may	have	a	substantial	influence	
on	BCV,	although	the	physiological	and	ecological	phenomena	are	
almost	the	same.

4.2  |  Differences between datasets

The	ecological	hypotheses	tested	by	SDMs	are	affected	by	incon-
sistencies	 in	 climatic	 datasets,	 as	 they	 represent	 another	 source	
of	uncertainty	 (Morales-	Barbero	&	Vega-	Álvarez,	2019).	However,	
Watling	 et	 al.	 (2014)	 argue	 that	 neither	 model	 performance	 nor	
spatial	predictions	vary	significantly	due	to	different	climate	inputs	
and	that	the	results	of	SDMs	are	more	influenced	by	the	modeling	
algorithm.	As	 their	 study	 is	 limited	 to	 species	 in	 Florida,	which	 is	
topographically	plain,	mountainous	regions,	which	obviously	show	
strong	discrepancies	between	datasets	 (e.g.,	Cerasoli	 et	al.,	2022; 
Morales-	Barbero	 &	 Vega-	Álvarez,	 2019),	 are	 not	 present	 in	 the	
analysis.	 Jimenez-	Valverde	 et	 al.	 (2021)	 also	 found	 higher	 inter-	
model	discrepancies	 for	precipitation	 than	 for	 temperatures,	with	
annual	mean	 temperatures	 (BCV-	1)	 generally	 showing	 the	highest	
agreement,	which	 is	also	confirmed	 in	 the	present	 study.	Cerasoli	
et	 al.	 (2022)	 point	 out	 that	 BCVs	 representing	 variability	 (BCV-	2,	
BCV-	4,	and	BCV-	15)	show	larger	differences	between	datasets	than	
seasonal	or	annual	mean	values.	Again,	we	found	considerable	dif-
ferences	in	the	seasonal	means,	but	this	is	mainly	due	to	the	intra-	
annual	 shifts	of	 the	 season.	Overall,	 inter-	model	differences	arise	
when	the	dataset	is	based	on	the	interpolation	methods	of	a	mete-
orological	station	network	and	the	respective	region	only	exhibits	
a	 small	number	of	 stations.	 In	 this	 case,	 climate	dataset	based	on	
quasi-	mechanistic	downscaling	or	remote	sensing	are	more	accurate	
(Waltari	et	al.,	2014).	Since	WorldClim	provides	a	high-	quality	data-
set	 in	 station-	rich	 regions	 such	as	Europe	 (Fick	&	Hijmans,	2017),	
differences	 in	 our	 study	 area	 cannot	 be	 attributed	 to	 this	 issue.	
Furthermore,	 Jiménez-	Valverde	et	 al.	 (2021)	 point	out	 that	differ-
ences	between	datasets	diminish	when	 the	 resolution	 is	 reduced.	
However,	our	studies	are	based	on	the	same	resolution	as	the	“low	
resolution	model”	of	Jiménez-	Valverde	et	al.	(2021),	and	inter-	model	
differences	are	still	present.

In	the	present	study,	all	examined	datasets	represent	the	BCVs	
well.	Since	E-	OBS	does	not	provide	data	for	the	entire	study	area,	
comparisons	are	made	only	for	the	E-	OBS	grid	boxes.	For	means,	E-	
OBS	shows	the	greatest	agreement	with	WorldClim	for	BCV-	1,	but	
the	 tails	 are	 shifted	 to	higher	 values	with	 respect	 to	 extremes.	 In	

contrast,	ERA5-	Land	has	the	 largest	deviation	from	the	mean,	but	
the	 range	of	 temperatures	 is	 similarly	 represented,	while	CRU	has	
the	largest	absolute	deviations	from	the	WorldClim	dataset.	Overall,	
most	deviations	from	all	datasets	are	limited	to	±2°C,	and	mean	de-
viations	are	close	to	zero	(without	outliers).	For	BCV-	12,	CRU	has	the	
highest	agreement	with	respect	to	means	and	extremes,	and	ERA5-	
Land	shows	notably	higher	precipitation	amounts	than	WorldClim.	
Thus,	 the	mean	 deviation	 of	 ERA5-	Land	 is	 57 mm	 and	 covers	 the	
range	 from	 −218	 to	 357 mm,	while	 the	mean	 deviation	 of	 CRU	 is	
2 mm,	and	the	deviations	range	from	−122	to	129 mm	(without	out-
liers).	For	BCV-	8,	ERA5-	Land	shows	the	highest	general	agreement	
with	WorldClim	for	both	means	and	extremes,	and	E-	OBS	shows	the	
lowest	agreement,	although	the	deviations	have	the	smallest	range	
(without	outliers).	Therefore,	from	a	statistical	point	of	view,	no	clear	
recommendation	 can	 be	made,	 as	 all	 datasets	 have	 strengths	 and	
weaknesses.

Regarding	 spatial	 representation,	 the	 differences	 increase	
in	 complex	 terrain,	 especially	 for	 BCVs	 based	 on	 precipitation	
(amounts	or	periods).	Differences	between	the	GSORW-	Data	and	
the	reference	of	up	to	2000 mm	can	be	observed	for	BCV-	12	within	
the	alpine	region.	Compared	to	WorldClim,	all	datasets	also	show	
notably	 lower	annual	precipitation	amounts	 in	 the	northern	parts	
of	Portugal	and	adjacent	areas	of	Spain.	As	already	seen	within	the	
statistical	 evaluation,	 ERA5-	Land	 exhibit	 comprehensive	 higher	
values	of	BCV-	12.	With	respect	to	the	temperature	of	the	wettest	
quarter	(BCV-	8),	all	datasets	show	areas	of	high	deviations	west	of	
the	line	between	the	Gulf	of	Lion	and	the	German	North	Sea	coast.	
This	 is	due	to	the	very	heterogeneous	characteristics	of	the	rainy	
season	 within	 this	 area.	 Furthermore,	 large	 negative	 deviations	
can	also	be	observed	northeast	of	the	Black	Sea	in	ERA5-	Land	and	
E-	OBS,	while	CRU	generally	 agrees	with	WorldClim's	BCV-	8.	 For	
annual	 mean	 temperatures	 (BCV-	1),	 heterogeneity	 is	 present	 for	
all	 datasets.	 ERA5-	Land,	 E-	OBS,	 and,	 to	 some	extent,	CRU	 show	
higher	 temperatures	 than	WorldClim	over	much	of	Europe,	while	
underestimating	 temperatures	 over	 the	Maghreb	 and	 the	Middle	
East.	The	locations	of	the	highest	deviations	are	spread	mainly	over	
the	Alps	and	the	eastern	parts	of	the	study	area.	Temperatures	in	
the	Alps	are	generally	underestimated,	with	the	largest	deviations	
for	CRU	(−10°C)	in	the	Italian	Alps,	whereas	the	highest	deviations	
are	 in	 the	 southwestern	 part	 of	 Turkey	 (ERA5-	Land),	 east	 of	 the	
Black	Sea	(E-	OBS),	or	Armenia	(CRU).	All	locations	with	the	highest	
deviations	(negative	or	positive)	have	in	common	that	they	prevail	
in	mountainous	regions.

From	a	technical	point	of	view,	all	datasets	have	advantages	and	
disadvantages.	The	BioClim	dataset	of	WorldClim	provides	by	far	
the	highest	spatial	resolution,	but	BCVs	are	only	available	as	means	
for	the	climatological	period	1970–	2000	and	not	as	time	series.	For	
the	same	period,	however,	WorldClim	offers	six	monthly	averaged	
climatological	variables	and	TMIN,	TMAX,	and	PRE	for	the	period	
1960–	2021	with	 a	monthly	 temporal	 resolution.	 Thus,	 BCVs	 can	
be	calculated	for	missing	periods	or	on	an	annual	temporal	resolu-
tion.	If	SDM	is	performed	using	only	BCVs,	WorldClim	provides	a	
very	suitable	dataset.	However,	the	recent	trend	within	the	SDM	
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community	 is	 to	 train	models	using	more	 (bio)climatological	 vari-
ables	than	just	the	BCVs.	Variables	beyond	the	set	of	35	BCVs	(e.g.,	
growing	degree	days)	can	also	be	obtained	 from	the	CliMond	or-
ganization	 (Kriticos	et	 al.,	 2014).	 The	website	of	 the	CliMond	or-
ganization	 (www.climo	nd.org)	 collects	 fully	described	and	 readily	
available	predictors	for	SDM.	Below,	we	list	some	studies	that	use	
variables	beyond	BCVs.

For	example,	Title	and	Bemmels	(2018)	include	16	climatic	and	
two	 topographic	 variables	 (ENVIREM)	 to	 determine	 species	 dis-
tributions,	as	these	variables	are	very	likely	to	be	directly	related	
to	ecological	or	physiological	processes.	The	calculation	of	these	
variables	 requires	 data	 that	 is	 not	 available	 in	WorldClim	 for	 all	
time	periods.	Kriticos	et	al.	 (2014)	 introduce	 five	modified	BCVs	
based	on	principal	component	analysis	applied	to	the	existing	35	
BCVs.	These	five	variables	explain	90%	of	the	variation	in	the	35	
BCVs,	but	these	variables	should	not	be	used	in	combination	with	
the	original	BCVs.	In	addition,	SDMs	based	on	these	five	variables	
cannot	be	applied	 for	climate	change	studies	or	 for	comparative	
analysis	 of	 datasets.	 Stewart	 et	 al.	 (2021)	 consider	 climate	 ex-
tremes	 to	 improve	 predicted	 distributions,	 particularly	 at	 plant	
range	edges.	Bailey	and	van	de	Pol	 (2016)	expect	changes	 in	the	
frequency	and	magnitude	of	extremes	to	drive	more	drastic	shifts	
in	species	distributions	than	changes	in	mean	climate.	As	extreme	
weather	 events	 are	 short-	lived	 but	 are	 thought	 to	 have	 notable	
effects	 on	 plant	 distribution	 (Walter	 et	 al.,	2013),	monthly	 time	
series	data	are	not	sufficient.	Furthermore,	Booth	(2022)	suggests	
using	 seasonal	or	monthly	variables	based	on	 the	water	balance	
as	 used	 by	 the	 BIOCLIM	 team	 in	 1999	 and	 acknowledges	 that	
several	 recent	 studies	have	also	 included	evaporation	measures.	
However,	 due	 to	 the	 daily	 scale	 of	 E-	OBS	 and	 CRU,	 both	 data-
sets	are	suitable	when	considering	extremes	for	SDM,	but	when	
building	more	complex	models	that	include	the	water	balance	sys-
tem,	 ERA5(-	Land)	 or	 an	 equivalent	 reanalysis	 dataset	 should	 be	
the	 choice.	When	 conducting	 studies	 based	 on	 BCVs	 and	more	
complex	variables,	all	variables	should	be	taken	from	one	dataset,	
as	the	processes	mapped	are	then	consistent	from	a	climatological	
point	of	view.

5  |  CONCLUSIONS

The	study	presented	here	 shows	 that	 the	WorldClim	dataset	pro-
vides	an	adequate	data	basis	when	the	BCVs	are	the	only	climato-
logical	variables	to	be	used	in	SDM	analysis.	However,	if	additional	
climatological	variables	are	to	be	considered	in	SDM	studies,	other	
datasets	should	be	considered	for	the	sake	of	data	consistency.	All	
evaluated	 datasets	 provide	 high-	quality	 data,	 and	 thus	 the	 choice	
of	dataset	for	SDM	depends	on	other	characteristics,	such	as	data	
availability	for	the	region	of	interest,	temporal	and	spatial	resolution,	
or	availability	of	climatological	variables	critical	for	species	distribu-
tion.	Here,	ERA5-	Land	is	a	good	choice,	as	this	dataset	contains	by	
far	the	most	climatological	data	for	the	global	domain,	as	well	as	a	
high	temporal	and	spatial	resolution.

Since	the	datasets	examined	here	do	not	provide	BCVs,	these	
must	first	be	calculated	based	on	the	available	data.	As	the	defi-
nition	 of	 BCVs	 leaves	 some	 room	 for	maneuver,	 especially	with	
regard	to	temporal	reference	periods,	researchers	should	consider	
beforehand	exactly	what	 goal	 they	 are	 pursuing	when	modeling	
species	distributions	or	ecological	niches.	 In	terms	of	calculation	
schemes,	differences	occur,	especially	when	BCVs	represent	pre-
cipitation,	when	the	period	of	interest	is	determined	by	precipita-
tion,	or	in	complex	terrain.	However,	no	general	recommendation	
can	be	made	here,	as	we	have	found	areas	where	large	temporal	
shifts	in	the	period	of	interest,	such	as	the	wettest	quarter,	have	
little	 effect	 on	 the	 variable	 and	 vice	 versa.	 In	 addition,	 we	 also	
found	regions	where	the	spatial	pattern	of	the	periods	of	interest	
resembles	a	small-	scale	mosaic.	This	can	also	result	in	large	spatial	
differences,	especially	with	respect	to	the	mean	temperatures	of,	
for	example,	the	wettest	quarter	(BCV-	8),	when	areas	with	precip-
itation	maxima	in	summer	and	winter	are	adjacent	to	each	other.	
Thus,	we	comply	with	the	recommendation	of	Booth	(2022)	that	
BCVs	 should	be	 carefully	 evaluated	with	 respect	 to	 temporal	or	
spatial	discontinuities	within	the	respective	study	area	and,	if	nec-
essary,	to	remove	variables	with	substantial	differences.	Another	
option	would	be	to	define	fixed	specific	quarters	based	on	pheno-
logical	 characteristics	 rather	 than	 climatological	 ones.	However,	
this	requires	an	understanding	of	the	phenological	characteristics	
of	the	species	and	its	dependence	on	specific	climatological	con-
ditions	at	specific	times	of	the	year.	For	example,	if	an	annual	plant	
requires	 precipitation	 within	 the	 juvenile	 stage,	 precipitation	 in	
spring	(e.g.,	March–	April–	May)	should	be	the	variable	of	interest.	
Fixed	quarters	based	on	phenological	characteristics	ensure	that	
both	 the	 statistical	 and	 the	phenological	 link	 are	valid.	A	 similar	
assumption	 is	provided	by	Booth	 (2022),	who	recommends	fixed	
winter	 and	 summer	 periods	 as	 one	 option	 to	 overcome	 these	
discontinuities.

The	question	of	which	calculation	scheme	to	use	depends	pri-
marily	on	the	scientific	question,	the	species,	and	what	is	known	
about	the	natural	limits	of	that	species.	One	suggestion	is	that,	if	
the	natural	limits	of	the	species	are	known,	absolute	rather	than	
mean	maximum	 (BCV-	5)	 or	minimum	 (BCV-	6)	 temperatures	 and	
year-	by-	year	 (BIO)	calculation	of	BCVs	may	be	better	for	 immo-
bile	 species	 (i.e.,	 plants)	 as	 they	 better	 represent	 the	 biological	
limits	of	the	species.	In	contrast,	for	mobile	species	(i.e.,	animals),	
climatological	means	 (CLIM)	should	be	considered	since	the	dis-
tribution	 of	 the	 species	 is	 not	 limited	 by	 single	 events	 but	 by	
long-	term	disturbances.	In	addition,	we	recommend	to	rely	on	the	
climatological	 calculation	 scheme	 if	 the	 goal	 of	 the	 study	 is	 to	
assess	 the	 future	 distribution	 or	 ecological	 niches	 of	 a	 species.	
Although	this	blurs	the	definition	of	the	variables,	since	the	actual	
wettest	period	of	the	year	 is	not	always	selected,	the	statistical	
link	is	preserved.	In	our	opinion,	this	is	a	prerequisite	when	mod-
els	are	 transferred	 to	 future	periods	where	 intra-	annual	 reloca-
tions	 of,	 for	 example,	 the	wettest	 quarter	 are	more	 than	 likely.	
This	is	also	in	agreement	with	Bede-	Fazekas	and	Somodi	(2020),	
who	recommend	using	the	static	approach	for	BCV	calculation	to	
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achieve	 better	 congruence	 between	 recent	 and	 future	 periods.	
In	 general,	whatever	 approach	 is	 used	 to	 calculate	BCVs,	 a	 de-
tailed	description	of	the	calculation	scheme	(Bede-	Fazekas	&	So-
modi,	2020)	and	a	justification	of	why	this	scheme	is	used	should	
be	provided	in	each	study.

In	summary,	BCVs	are	considered	blessings	in	part	as	they	have	
provided	 effective	 results	 for	 many	 hundreds	 of	 SDM	 analyses	
(Bradie	&	Leung,	2017).	However,	this	blessing	can	turn	into	a	curse,	
as	the	vague	definition	of	the	variables	allows	some	leeway.	With-
out	deeper	 insight	 into	the	underlying	calculation	scheme,	the	use	
of	BCVs	implies	that	results	from	different	studies	are	easily	com-
parable,	which	is	obviously	not	the	case	when	different	calculation	
schemes	are	used.	Using	 the	same	set	of	BCVs	and	 the	same	sta-
tistical	model,	different	calculation	schemes	 for	SDM	of	 the	same	
species	may	produce	different	results,	so	comparability	of	results	is	
limited	at	best.
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