
LIFEDATA - A Framework for Traceable
Active Learning Projects

Fabian Stieler1,3,*, Miriam Elia1, Benjamin Weigell1, Bernhard Bauer1,3,
Peter Kienle2, Anton Roth2, Gregor Müllegger2, Marius Nann2, Sarah Dopfer2

1Institute of Computer Science, University of Augsburg, Germany
2GS Elektromedizinische Geräte G. Stemple GmbH, Kaufering, Germany

3Center for Responsible AI Technologies
*Corresponding Author: fabian.stieler@uni-a.de

Abstract—Active Learning has become a popular method for
iteratively improving data-intensive Artificial Intelligence models.
However, it often presents a significant challenge when dealing
with large volumes of volatile data in projects, as with an Active
Learning loop. This paper introduces LIFEDATA, a Python-
based framework designed to assist developers in implementing
Active Learning projects focusing on traceability. It supports
seamless tracking of all artifacts, from data selection and labeling
to model interpretation, thus promoting transparency throughout
the entire model learning process and enhancing error debugging
efficiency while ensuring experiment reproducibility. To showcase
its applicability, we present two life science use cases. Moreover,
the paper proposes an algorithm that combines query strategies
to demonstrate LIFEDATA’s ability to reduce data labeling effort.

Index Terms—Active Learning, Data Labeling, Traceability,
Data-Centric AI, Python Framework, Open Source

I. INTRODUCTION

Nowadays, the surge of interest in Artificial Intelligence

(AI) systems is driving rapid advancements and the prolifera-

tion of Machine Learning (ML) methodologies. These learning

techniques are capable of handling increasingly complex data

structures. They are generating promising outcomes by learn-

ing to make decisions that were impossible, or at least hard

to solve using traditional coding methods. However, training

these algorithms usually requires large datasets where the

labeling process presents various challenges.

Active Learning (AL), a prominent method addressing the

issue of data labeling, holds the potential to render this cost-

intensive and time-consuming process efficiently. By intel-

ligently selecting instances for labeling, the aim is to en-

hance model performance and reduce the volume of necessary

training data [41]. Furthermore, feedback from human-model

interaction can guide the model in correctly learning relevant

concepts, thereby increasing acceptance [19].

Despite the advantages, the currently available AL-

frameworks frequently lack the provision of transparency and

traceability necessary for a comprehensive understanding and

replication of the learning process. The dynamic nature of arti-

facts that emerge along the AI life cycle, driven by continuous

learning and evolving datasets, calls for the implementation

of techniques for tracking data provenance, versioning code,

data, and models, as well as employing methods for model

interpretation and stakeholder-specific user interfaces. Trace-

ability in the sense of consistent versioning of all artifacts

is a significant MLOps principle that contributes significantly

to the compliance and audibility of an AI system [29]. The

significance of addressing this gap is further emphasized by the

European Commission’s requirement for transparency tech-

niques in high-risk domains like finance, aerospace, mobility,

and healthcare as part of their approach to building trustworthy

AI [23].

This paper introduces LIFEDATA, an innovative framework

for traceable AL projects. We provide open-source software

consisting of a core framework and a project template, aiming

to enhance transparency, explainability, and interactivity in AL

projects. LIFEDATA presents a novel approach that empow-

ers researchers and practitioners to comprehend the learning

process, from instance selection to interpretable model output,

thereby improving the overall understanding of the model’s

behavior. In Section III, we present the technical design

of our framework and introduce a structured approach for

AL projects. Subsequently, in Section IV, we showcase two

real-world use cases where we applied our framework and

demonstrate the feasibility of AL projects with LIFEDATA.

Before delving into the technical details, we provide a brief

overview of related work in Section II.

II. BACKGROUND

The research community has previously introduced various

open-source frameworks for AL. While some of these are

specialized in implementing simulations [1], [46], others focus

on providing a rich interface for annotating data [11]. The

frameworks proposed in [50] and [13] are characterized by

their modular architecture to realize a wide range of AL

scenarios. To better understand the methodology, let’s take a

closer look at AL paradigms.

A. Active Learning

The basic concept behind AL is that a learning algorithm,

through intelligent selection of instances for labeling, can lead

to a desired outcome, such as an enhancement in predictive

performance [41]. This methodology stems from the inherent

challenges of supervised learning that necessitate a substantial

volume of labeled training data. Within the context of ML,

465

the acquisition of such data is generally regarded as the most

labor-intensive and cost-prohibitive stage.

In AL, there are two main scenarios for data labeling. First,

pool-based sampling, where the model, termed ’Learner’, se-

lects data points from an unlabeled dataset for labeling by the

’Oracle’, or annotator [30]. The second scenario, stream-based

sampling, assesses each data point at runtime to determine if

its label should be requested from the oracle [12].

Central to this setup is the query strategy (QS), which can

involve individual batches or a data stream. Usually, three op-

posing forces influence the decision which unlabeled samples

best generate the desired effect on the model, regardless of

the concretely applied QS: informativeness, representativeness

[15], and diversity. Various QSs have been proposed, including

Uncertainty Sampling [4], which selects the instances where

the model is most uncertain. Other approaches use decision

theory, calculate samples’ information density [48], or employ

multiple models [42].

Recent developments have broadened the scope of AL from

instance labels to include additional knowledge queries [19].

However, there’s a tendency within the ML community to treat

annotators as error-free oracles, likely resulting from testing

AL algorithms mainly with simulated human input.

Automatic labeling or semi-supervised learning involves

using the model as an oracle [53]. After initial human an-

notations guide the model to achieve a certain accuracy, it can

assign labels automatically. But, human involvement remains

vital in some domains to create a large ground truth dataset

and identify edge cases for quality assurance, justifying the

combination of automatic and manual methods [14].

Literature shows that labeling errors are inevitable, even

when dealing with simple perceptual tasks [10], [33]. Usually,

the real-world applications targeted are those where high-

quality labels are expensive to obtain due to knowledge

barriers or the effort involved in labeling. Additionally, there

are applications where determining the ground truth is not

trivial, and different oracles can come to different results while

labeling the same sample [6], [7], [26]. Using AL to improve

label quality has also been investigated in several studies with

promising results [6], [52].

Given this context, it becomes paramount to incorporate

data provenance within an AL project design. Especially when

multiple annotators are involved in the labeling process, and

the model is continuously learning.

B. Traceability in AI Projects

In AI projects, various artifacts, such as the trained model,

emerge throughout the entire life cycle. Unlike in traditional

software projects where the source code suffices to create the

artifacts, the reproduction of artifacts in AI projects requires

the source code and the data as input [40]. Accounting for the

traceability of these artifacts enables various stakeholders in

an AI project to understand the decision-making process of AI

systems, thereby fostering trust and increasing acceptance.

On the one hand, this capability significantly facilitates the

debugging and improvement of trained models. For instance,

if a model produces unexpected output, developers can trace

the decision-making process back to the source of the cause,

which in turn simplifies model fine-tuning. On the other

hand, regarding accountability, traceability should ideally be

considered from the onset of training data generation and its

annotations [20]. In this context, it is important to maintain

an overview of which data instances were involved in which

training iterations.

When meticulously recording data provenance (i.e., the

origin of the training data and the resulting artifacts along

the AI life cycle), the versioning of code and data repre-

sents a key aspect in achieving traceability [38]. Besides

established source code control systems, techniques such as

data repositories and metadata tracking are utilized, which

capture information about the data collection process as well as

changes in the data, model configurations, and performances

[27]. This ensures the reproducibility of results, even if the

model is iteratively re-trained with new training data [36].

Moreover, traceability enhances transparency by contribut-

ing to the clarity of AI systems. A detailed understanding is

critical in high-risk domains where the consequences of AI

decisions can be severe. In this context, the interpretability

of model outputs is likewise relevant, which can be improved

through techniques of explainable AI (XAI). This subfield of

AI encompasses techniques that aim to render the decisions

of an AI understandable to humans. As more complex and

opaque models are prevalent in development, XAI methods

are gaining growing importance. [5]

Utilizing these methods increases the transparency in AL

projects, thereby providing essential insight into these intricate

models. Studies, such as those conducted by [39] and [19],

delve deeper into this topic. Their investigations suggest that

integrating XAI into an AL loop contributes to the calibration

of trust annotators in the ML model. By providing a com-

prehensive explanation of the model’s decisions, XAI aids

in building a nuanced understanding, thereby fostering an

environment of informed trust.

Such an approach enhances humans’ confidence in the

model. It ensures that trust is based on a clear understanding of

the model’s strengths and limitations, paving the way for more

reliable and effective collaboration between human annotators

and AI models. To this end, we cast the presented concepts

into an AL framework, which is presented in the next Section.

III. FRAMEWORK DESIGN

Due to the vast spectrum of emerging application fields

for data-centric AI, projects are shaping up for various ML

tasks and algorithmic solution approaches. In order to achieve

domain independence of LIFEDATA, the primary approach

comprises decoupling a specific ML project from the underly-

ing framework and linking the execution of the ML pipeline

in the form of a service. This universal accessibility offers two

significant advantages: First, LIFEDATA is independent of the

ML task, allowing users to implement algorithms and QSs.

Secondly, proven concepts of data versioning in ML projects

can be leveraged for traceability.

466

Machine Learning Monitoring

Inception

Exploitation

Labeled Data
& Provenance

Trained
Models

Model
Training

Model
Registry

Dashboard
UI

Labeling

Annotator

Annotation
UI

Active- &
Semi-Supervised Learning

Data Scientist Domain Expert

Unlabeled
Data

Seed
Data

Retraining & Recreation

Termination Assessment

Model- &
Data Report

Query
Strategy

ML
Model

Model
Training

Model
Registry

Query
Set

Metrics
& Meta Data

Evaluation
& Validation

Fig. 1. Process Outline in an Active Learning Project with LIFEDATA

To the best of our knowledge, LIFEDATA is the first open-

source framework for AL projects that integrates traceability

aspects. Our concept consists of two key elements: The core

framework, presented in III-B, comprising various interfaces,

a database, and a web-based annotation UI. Additionally, we

provide a project template, presented in III-C, that can be used

by LIFEDATA users as a kick-start to create an AL project.

To gain a comprehensive understanding of the workflow of

AL projects using LIFEDATA, we initially provide a process-

oriented perspective.

A. Overall Process

Before an AL project can commence, the underlying scope

must be defined. The literature proposes varying process mod-

els for ML projects. The initial phases vary in specification,

ranging from “Business & Data Understanding”, “Require-

ments”, to a basic “Data” phase [45]. Assuming these tasks

are already completed, we illustrate in Figure 1 the idea of

a LIFEDATA project, which depicts the overall process with

its four essential activities and hints at the Inception as the

starting point in the Machine Learning phase.

The data scientist or ML engineer begins by providing the

unlabeled instances and potentially seed data, an initial set

of already annotated data. Based on the ML model of the

QS, or a combination of both, a selection of instances to be

labeled, the query set, is generated. These are passed on to

the oracle in the Labeling phase, which can be labeled by a

human annotator in an Annotation UI or pseudo-labeled by the

model itself. Newly emerged feedback are used to retrain the

learning algorithm. This process can be reiterated as often as

desired, which is indicated by the bidirectional arrow between

these two phases.

From the labeling phase, two other outgoing arrows are

visible. The Exploitation of an AL project with LIFEDATA

is defined as the labeled data, its provenance as well as

the trained models. Furthermore, the effects on the model

are determined in each labeling iteration and made available

for Monitoring. Metrics, e.g., the F1-score, and meta-data

are stored, allowing the data scientist and the domain expert

to evaluate the prediction performance and validation, for

instance, using XAI methods such as Shapley Additive Ex-

planations (SHAP) [31]. This information continuously flows

into a Dashboard UI, from which the Termination Assessment
can finally be derived through data and model reports.

B. Core Framework

In the following, we transform the process view into an

reference architecture, which is displayed in Figure 2 and

depicts its two key elements, the core framework, and the

project instance. Essentially, the LIFEDATA core framework

is built in four layers and provides two interfaces, which

for ease of overview, are colored green. Starting with the

top layer, we provide a more detailed introduction to each

component to give a clear understanding of their functionalities

and interrelationships within the overall system.

1) User Management and Interfaces: AL projects typically

involve multiple stakeholders with varying technical abilities.

As mentioned in III-A, these actors can be data scientists, ML

engineers, annotators as human oracles, and domain experts

such as specialized physicians, highly qualified engineers,

linguists, or financial experts. Each of these stakeholders has a

different role within the project and requires access to different

functionalities and tools.

For example, data scientists are responsible for building

the ML models, while ML engineers are responsible for

managing the software infrastructure required to support these

models. Domain experts provide domain-specific knowledge

and expertise.

To accommodate varying requirements of these stakehold-

ers, LIFEDATA provides both a Command-Line-Interface

(CLI) and a Web Application Programming Interface (API).

The CLI serves as the data scientists’ entry point and allows

them the execution of various commands to initialize a project

instance and set up the annotation interface. Other commands

are useful for the Experiments Utils, which allow the imple-

mentations of simulations, for instance. The Web API provides

a set of functions that ML engineers can use to integrate the

Annotation UI and Dashboard UI and manage user identities

as well as access.

2) Annotation Domain Layer: We placed an Annotation

Domain Layer between the user-, and data-corpus. It serves as

a bridge between these two entities and allows the modeling

of associations between labels and samples.

The Annotation Domain Layer provides an abstraction that

enables the definition of structural and semantic relationships

between information about annotators, annotations, and sam-

ples. For instance, it provides the necessary logic to map infor-

mation about new label addition, sample-annotator assignment,

sample skipping, and additional label requests by a different

annotator, to realize multiple-view setups as proposed in [32].

Events that pass their information to the subsequent layer

are defined to ensure traceability. These events provide a

record of the actions taken by users on the data corpus

and are crucial for achieving the necessary data provenance

of the annotations. Annotation provenance is important for

467

S
o

u
rc

e
 C

o
d

e
 V

e
rs

io
n

C
o

n
tr

o
l S

ys
te

m
D

a
ta

 V
e

rs
io

n
C

o
n

tr
o

l S
ys

te
m

Machine Learning Service*

L
IF

E
D

A
T

A
 P

ro
je

ct In
sta

n
ce

Model
Training*

Model
Registry

Model
Training

Model
Registry

Query
Module*

Query
Sets

Data-
Preparation*

Feature
Store

Backend Service*Data Import

Project Persistence Layer

Data Persistence Layer

Annotation Domain Layer

User Management Domain Expert Interfaces

Evaluation
& Validation*

Metrics
& Meta data

Annotation
Widget*

Label
Sets

WEB
API

ETL-Pipeline
Repository

Raw
Data

Experiment
Utils

CI/CD/CT
Component

ML-Pipeline
Configuration*

Orchestration
Component*

Infrastructure
Utils

Dashboard
UI

CLI

Data Scientist Interface

Package
Management*

Annotation
UI

LIFEDATA
Configuration*

C
o

re
Fr

a
m

e
w

o
rk

D
e

p
lo

ym
e

n
t

Fig. 2. Reference architecture of Active Learning projects using LIFEDATA. The structure of the core framework (green) is displayed above the project
instance. All code modules and configuration files (yellow) are versioned by a source code version control system, while the linked artifacts (blue) are managed
by a data version control system. * = Component is part of the provided project template.

several reasons, including quality control, reproducibility, and

re-usability of training data in various ML projects.

3) Data Persistence Layer: AL projects involve dealing

with fluctuating data. To ensure label traceability, storing the

associated information is essential. In this sense, LIFEDATA

provides a relational database whose connection management

is implemented in the Database Persistence Layer. To ensure

the database is reliable and scalable, we followed a container-

based approach that isolates the database from the project-

specific dependencies.

The main task is to ensure that all generated data, such as

annotations, user information, sample information, and event

logs, are stored in the database for long-term availability and

reuse. This includes all I/O processes resulting from data flows

triggered by actions in the user interfaces, as well as the

provision of information in- and outside of the ML pipeline.

In addition, LIFEDATA provides functionality for versioned

database migrations. If new requirements arise that require

a change in the schema, these changes can be implemented

during project runtime.

4) Project Persistence Layer: In order to guarantee seam-

less integration into any ML project, we have introduced the

Project Persistence Layer. It provides a standardized interface

that serves as a connection between the core framework and

the ML project. Its primary components are functions for (re-)

triggering the ML pipeline connected to the ML service. For

instance, their invocation is necessary when new annotations

need to be queried.

Additionally, this layer defines functions for handling the

artifacts associated with the ML service’s execution. These

include exporting the current labels from the database, as well

as importing the query set with information about which sam-

ples should be labeled next. These functions are summarized

in the LIFEDATA API, and their specific implementation is

located in form of configurations within the ML project.

C. Project Instance

The second essential part, alongside the core framework, is

the project-specific structure which we summarize in Figure

2 as the LIFEDATA Project Instance. As illustrated, the

framework demands all code modules to be managed by a

Source Code Version Control System. The calculated artifacts,

such as the trained model or the created query set for a specific

database state, are managed by a Data Version Control System.

A project instance represents the specific implementation

of an AL project based on LIFEDATA. For initial creation,

LIFEDATA provides a project template that guides developers

to adapt the structure to their specific use case. Concretely, Git

is used as a distributed version-control system [9], and DVC

is provided to synchronize the source code and the resulting

data versions [28].

1) Components Overview: Our proposed AL project struc-

ture in Figure 2 includes several components that facilitate the

development, deployment, and management of a LIFEDATA

project. We propose to use a separate repository where the

data engineering pipeline with Extract, Transform and Load

(ETL) takes place. Once these steps are performed, there are

several Data Import functions for data insertion.

468

#ml_config.py
RANDOM_STATE = 123

#...
class QUERY:

QUERY_SET_FILE = "data/query/queryset.csv"
QUERY_BATCH_SIZE = 200
QS_STRATEGIES = ["uncertainty", "random"]
QS_RATIO = [2,1]
class UNCERTAINTY:

CONFIDENCE_THRESHOLD = 0.9
#...

Listing 1: Example configuration of the query stage

Infrastructure Utilities include tools and scripts for man-

aging a project’s infrastructure-related tasks. This comprises

infrastructure provisioning, monitoring, and scaling resources

such as GPU usage. They are at all times highly dependent on

the hardware or applied cloud platform, just like libraries for

model training, they have to be customized for each project.

For the project’s software dependency management, the

project instance provides a Package Management, which is

realized by virtual environments. This ensures that the system

is built with the correct versions regarding libraries and

packages and ensures its consistency as well as reproducibility

across different environments and platforms.

The LIFEDATA Configuration contains the project-specific

implementation of functions, as described in Section III-B4.

In the provided project template, these functions include the

logic for retraining the model on a certain data version, which

could happen when new labels are present in the training set

after an annotation iteration, for instance. The execution of

individual functions is managed by the Orchestration Compo-
nent, which coordinates the various modules. It schedules tasks

and monitors their progress, while the CI/CD/CT Component
is responsible for automating the resulting artifacts’ building,

retraining, testing, and deployment. This includes the software

as well as the AL-related artifacts, such as the query set and

the trained model.
2) Machine Learning Service: A machine learning pipeline

usually consists of different sub-steps executed in a specified

order. It has become best practice to split these steps of a

pipeline [35], hence this principle is followed by the LIFE-

DATA project template. The initial ML pipeline starts with

separate stages for data preparation, model training, query, as

well as evaluation and validation. The individual stages are

agnostic to the underlying ML problem and can be extended

with the respective logic.

Following the code principles of [43], the different steps of

a ML pipeline are usually realized by individual code modules

configurable via feature flags and parameters. We want to

describe the implementation in more detail using the Query
Module as an example.

Listing 1 demonstrates the relevant part of a ML Config-
uration. Here, a separate class is set for each stage of the

ML pipeline. It specifies the existing parameters and defines

paths for code and data artifacts. If certain parameters are

to be assigned to a sub-module, following this structure and

vars:
- ml_config.py

stages:
#...
query:

cmd: python myproject/query/query.py
deps:
- ${EXTERNAL_DATA.UNLABELED_FILE}
- ${EXTERNAL_DATA.LABELED_FILE}
- ${MODEL_TRAINING.MODEL_FILE}
- myproject/query/
outs:
- ${QUERY.QUERY_SET_FILE}
params:
- ml_config.py:

- QUERY
#...

Listing 2: Query stage in ML-pipeline definition

defining them in an inner class is advisable. Parameters that

apply across multiple stages are set outside each class, as

illustrated by the example for RANDOM_STATE. Given the

correct usage, this example ensures that the libraries imported

(such as Numpy, Tensorflow or Pytorch) are initialized with

the same random state, even if they are called by different

modules.

This implementation allows access to a single configuration

from each code module along the ML pipeline. As this is

tracked by the source code version control system, a systematic

comparison of different configurations and settings becomes

possible at project runtime, while this provides the basis for

consistent reproducibility of resulting artifacts later on.

To enable the automated execution of the ML pipeline in

form of a Machine Learning Service, defining all tasks at all

stages as well as their dependencies with their configurations

of the ML pipeline is necessary. This definition manages the

data versioning control system, specifies the input and output

at each step, as well as possible interdependencies and thus

ensures that the creation of all artifacts is transparent and

reproducible. Some use cases may require customization of

the initial ML pipeline design by adding or removing specific

stages. In order to achieve this flexibility, these stages and their

interdependencies can be identified by the Data Scientist and

adapted to the ML pipeline definition.

We continue with the example of the query module as an

essential part of the ML service. As such, it provides the

selection of samples for annotation and enables the automatic

generation of query sets. It uses one or more QSs to select

samples whose annotation should lead to the intended model

change. Typically, QSs leverage the models, which is why their

execution occurs after the training is completed. This condition

is illustrated in Listing 2, which displays the related snippet

of the ML-pipeline definition.

The described structure manifests as follows: Given a valid

ML Configuration, the individual stages are defined. The

command to be executed is specified, as well as related

dependencies in form of paths of code and data artifacts. In the

case of the query module, these consist of files containing in-

469

formation about the samples, whether they are already labeled

or unlabeled. Further, the trained model and the entire project

folder of the related query module are required, containing all

code files.

Computed artifacts consist of a list of samples for annotation

selected by the QS and are stored under the corresponding

output path. Furthermore, the class of the related stage from

the ML configuration is specified. If a modification occurs

in one of the specified artifacts produced by a particular

stage, or if the reconfiguration requires the re-creation of

individual artifacts, the related parts are calculated and saved

by triggering the ML service. In more concrete terms, new

annotations may arrive, leading to the model’s re-training and,

consequently, the query set’s recreation.

This effect is achieved through the data versioning system

and covers the entire ML pipeline in the LIFEDATA project

instance. As a final stage, the Evaluation and Validation
module is located, whereby the calculation of the model

metrics is performed at the end of the execution. For a deeper

analysis of the trained model, the implementation of XAI

methods is included at this stage. These methods are intended

to facilitate an interpretation of model predictions, and the

generated outputs, akin to all other artifacts, can be stored with

their respective versions. Consequently, these outputs can be

utilized for an UI or for reporting purposes.

3) Query Merging: LIFEDATA’s Query Module is highly

customizable, and can be extended to include any QS. Sec-

tion II-A introduced the three opposing forces that affecting

the way which samples should be selected for annotation.

To reconcile these forces, we introduce QueryMerging,

a hybrid QS. For this purpose, the relevant QSs are first

implemented in separate subcode modules. Then, as indicated

in Listing 1, the necessary configuration is set, which includes

the parameters mentioned in Algorithm 1. In the case of

QueryMerging, individual batches are first queried for each

of the selected QSs, and then merged according to the desired

ratio. The resulting query set is proportionally shuffled, while

considering the original rank of the individual samples in each

query batch.

Once the query set is created, it is possible to generate

annotations by the model through semi-supervised learning, as

well as one or more human oracles. The query set is available

to the Annotation Widget in the latter case.

4) Annotation Widget: In LIFEDATA, the annotation of

samples by a human oracle takes place in a web-based user in-

terface. This key feature allows for easy and efficient labeling

of samples by multiple annotators. To ensure that LIFEDATA

is label and data type agnostic, the annotation widget was

designed to enable Data Scientists the implementation a wide

range of pool-based AL scenarios.

The link between project instances and the core framework

is realized through a REST API. The provided Backend
Service offers an interface for receiving labels and transmitting

samples to be displayed in the Annotation UI. The rendering

for the respective data type can be implemented within the

annotation widget in the project instance itself or replaced by

Algorithm 1: QueryMerging. The query set B of

size n would be assembled using the set of query

functions Q in ratio R. U is the unlabeled data pool

and f is the model.

Input: Q← set of k query functions

R← set of query strategy ratios

n← size of the query set

U ← the unlabeled dataset

f ← the model

Output: B = {s1, s2, ..., sn}
ensure: 0 < n ≤ |U|
initialize: b1, b2, ..., bk ← ∅ and B ← {b1, b2, ..., bk}
foreach query function qi ∈ Q do

initialize: qif
// acquire samples to temporary batches

bi ← qi
f (U, n)

end
initialize: j ← 0, B ← ∅
// assemble the query set

do
// Choose samples from each batch based on the

given ratio

i← argmaxR
m← Ri

b ← ∅
foreach sample sl ∈ bi do

// add samples to query set only once

if sl /∈ B then
b ← b ∪ sl
j ← j + 1

end
// stop after sufficient sampling

if |b| = m then
break

end
end
B ← B ∪ b

Ri ← 0
while j < n;

a third-party app. Thus, seamless communication between the

project instance and the core framework is given. Moreover,

the flexibility to customize the rendering process ensures

that users can tailor their annotation process to their specific

requirements.

D. Usage

The LIFEDATA framework, implemented in Python, offers

cross-platform compatibility. It includes an integrated database

within a Docker environment for ease of setup and deployment

and an adaptable React-based Annotations UI. A project tem-

plate provides boilerplate code for Data Scientists, enabling

initialization of project instances with required framework

structures and customizations such as data and label types, ML

470

pipeline code, QS, and Annotation UI sample display logic.

This facilitates project customization to individual needs.

We propose using LIFEDATA in an AL project, follow-

ing the development methodology published in [43], which

describes a minimal infrastructure setup, deployment, and

automation to enhance project efficiency. Also proposed is

the use of runners for scheduled re-training of the model,

improving project execution.

IV. EVALUATION

To demonstrate the feasibility of projects based on LIFE-

DATA, we applied the framework to two life science use cases.

This domain provides AL projects with the following key

challenges of data labeling:

a) Imbalanced Data. There is an unequal distribution of

samples across different classes. Related challenges po-

tentially affect the model and the annotation process, as

the majority classes dominate the dataset. [2], [17]

b) Costly Annotations. A high level of qualification is

required to annotate the data, often involving a long

period of education for the annotator. This circumstance

additionally increases the labeling costs, since the time

of the human oracle represents a rare resource. [6], [18]

c) High Quality Labels. In addition to the specialized

knowledge of domain experts, the degree of accuracy re-

garding the assigned annotations significantly influences

the model’s performance in the real-world. In many cases,

the quality of the resulting model is directly tied to the

quality of the labels it is trained on. [34]

The reproduction of ML artifacts is important for ensur-

ing the integrity and transparency of the models. Therefore,

traceability in such AL projects is of high importance. In ad-

dition, traceability promotes accountability and responsibility

throughout the data labeling process, particularly regarding im-

plementations of a multi-user labeling process, where multiple

stakeholders contribute to the same datasets.

A. Skin Image Analysis

Skin cancer counts as one of the most prominent cancerous

diseases worldwide, with early detection crucial for survival.

Various ML challenges by the International Skin Imaging

Collaboration (ISIC) have shown promising results for AI-

based skin cancer diagnosis [8]. This technology could as-

sist physicians in clinical decision support systems (CDSS).

However, training these models requires significant image data

annotated by dermatologists [22].

a) Implementation.: Adapting this use case addresses the

problem of classifying skin lesions from image data through

deep learning techniques with a single-label classification limi-

tation. Our ML-pipeline was implemented with two DNN clas-

sifiers, DenseNet [25] and MobileNet [24], which are trained

on seed data from HAM10000 [47], a publicly available

collection of multi-source dermatoscopic images annotated by

physicians. In this scenario, we simulated the human oracle by

providing the true label through a lookup in the already labeled

dataset. Further, various XAI methods have been implemented

0

50

100

150

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Q
u

er
ie

d
 “

N
ev

u
s”

Q
u

er
ie

d
 “

M
el

a
n

o
m

a
”

Training Size

Uncertainty Density RandomQuery Strategy:

Fig. 3. Comparison of different QSs: The ordinate shows the number
of samples queried by the model with class “Nevus” (majority class) and
“Melanoma” (one of the rare classes) in relation to the number of labeled
training examples plotted across the abscissa.

to render the model more interpretable, such as a domain-

specific approach demonstrated in [44].

b) Results.: The primary objective consisted of a

simulation-based QS analysis while attempting to emulate a

real-world setting as closely as possible. LIFEDATA’s frame-

work design supported experiment execution since computa-

tionally intensive steps, such as the preprocessing of image

data, had to be performed only once, and the generated

artifacts were evaluated with different configurations. Subse-

quently, it is possible to switch between the different model

implementations and QSs, by adjusting the ML configuration.

The experiments conducted in this study demonstrate that

AL can significantly reduce annotation effort in skin image use

cases. By utilizing an appropriate QS, rarer classes, such as

“Melanoma”, are preferentially output to the human oracle for

annotation at the beginning of the annotation phase, as shown

in Figure 3. This approach ensures that the oracle provides the

most critical annotations first, resulting in the most effective

distribution of resources.

B. ECG Classification

As of now, cardiovascular diseases are the leading cause

of death, which yields early detection and treatment of heart

arrhythmia critical for improving patient outcomes. AI ap-

proaches have been prominently used in developing CDSS for

cardiac monitoring, aiming to improve diagnostic accuracy and

efficiency. Until now, the research community has developed

various ML models expecting different data types as input. A

popular example is PhysioNet, which in recent years focused

on studying algorithms for electrocardiogram (ECG) classifi-

cation and analysis [21].

a) Implementation.: We applied LIFEDATA to this use

case and implemented a ML pipeline with a DNN clas-

sifier based on the ResNet architecture to predict cardiac

abnormalities or anomalies in 12-lead ECG recordings, as

proposed in [49]. In this example, a large amount of time

series signal data is required for training the model. The

471

Fig. 4. Model interpretations using SHAP of sample “HR04123” in the
course of training the model under supervision of domain experts. For
more accessible representation, the sections depict the initial three channels
of the 10-second ECG signal, the probability value p for the true class
“Premature Ventricular Complex” (PVC), and the proportion of annotated
training samples. Points in red denote high Shapley values, with the PVC
class’s distinctive beat around the 5-second mark.

data provided by the PhysioNet Challenges 2020/21 [3], [37]

originate from multiple sources and contain ECG records with

one or more labels, which is commonly known as a multi-label

classification problem [16].

Similarly to the first use case, we were able to simulate the

annotation process by lookup of true labels in the publicly

available datasets. However, with gradually evolving expe-

rience, we collected additional feedback from real human

annotators by providing a Web-UI to a team of cardiologists,

so we shifted our investigation’s focus to human feedback.

b) Results.: The customizable modules of LIFEDATA’s

ML pipeline enable the application of XAI methods for ECG

classifiers as published in [51]. Further, the approach of end-

to-end traceability and its resulting data provenance allows us

to trace feedback (given label) to its origin (annotator) and

thus investigate the impact of changes along the ML pipeline

on human feedback and vice versa.

This approach uncovers valuable insights, fosters an en-

vironment of continuous improvement, and ensures that ML

models evolve with feedback while maintaining transparency

and accountability. Empirical results, as shown in Figure

4 demonstrate that domain expert feedback during iterative

training amplifies medically significant concept consideration

for class predictions. Systematic versioning facilitated by the

XAI method allows for enduring, retrospective validation and

analysis of model predictions across the entire AL lifecycle.
This case validates that an AL loop promotes a more robust

model and increased acceptance. Traceability proves essential,

linking created artifacts in both directions: while it aids domain

experts in comprehending algorithm outputs, it also enables

developers to trace back annotations to the source data that

influenced model interpretation.

C. Discussion
The LIFEDATA framework has proven promising in ad-

dressing specific challenges within life science applications.

However, it is not exempt from limitations that merit fur-

ther investigation. As a central element of AL projects with

LIFEDATA, traceability paves the way for tracing annotations

back to their source, contributing to a more transparent,

accountable process. This feature is significant in multi-user

scenarios. However, this extensive traceability can also lead

to increased complexity and higher administrative overhead,

particularly for larger projects, massive datasets, and numerous

contributors.
Viewing traceability within a traditional context, it is crucial

to remember that it’s not just an essential mechanism for

maintaining transparency and integrity in AI systems. It also

provides an audit trail, holding significant value for subsequent

model refinement, stakeholder communication, and potential

problem resolution. In this regard, LIFEDATA can be ex-

panded to include concepts that provide stakeholders with a

framework for a clear linkage of artifacts in more complex

projects.

V. SUMMARY

Especially in domains where often the knowledge of expen-

sive experts is required for labeling training data, the contin-

uous implementation of traceability is essential. To this end,

we have introduced LIFEDATA, a publicly available Python

framework that supports developers in realizing AL projects.

Our framework proposes end-to-end traceability that starts

with creating training data and ends with interpreting model

results. Secondly, we have introduced QueryMerging, a

hybrid QS integrated into LIFEDATA, making the annotation

process more efficient.
The realization of AL projects with the proposed framework

offers a transparent implementation for all stakeholders. Con-

sistent versioning of code and data artifacts enables traceability

and reproducibility of training results at any time. At the same

time, the provided database for collecting information about

the annotation process ensures continuous traceability.
With the introduction of LIFEDATA, we hope to con-

tribute to the broader discourse on enhancing transparency

and trust in AI and promote the adoption of traceable and

explainable methods in AL projects. Future research can utilize

LIFEDATA to reduce annotation effort on the one hand and

gain human feedback for improving model performance and

increasing acceptance on the other hand.

472

AVAILABILITY

The source code of LIFEDATA core framework is available

on GitHub in the repository https://github.com/ds-lab/lifedata.

The project template to initialize a LIFEDATA project

is available under https://github.com/ds-lab/lifedata-project-

template.

ACKNOWLEDGEMENTS

This work was funded by the German Federal Ministry

of Education and Research (BMBF) under reference num-

ber 031L9196B. We would like to thanks the participated

physicians from the German Heart Centre of the Technical

University of Munich during the ECG use case. Further, we

would like to express our sincere thanks to Fabian Rabe for

his contribution.

TECHNICAL SPECIFICATION OF EXPERIMENTS

The simulations conducted for evaluation purposes in the

context of the two use cases each displayed unique computa-

tional requirements and timeframes, which we detail for better

understanding.

In the Skin Image Analysis use case, mentioned in IV-A,

we utilized two Nvidia Quadro RTX 6000 GPUs capable of

processing different jobs in parallel. Considering the three

random seed configurations, the computational load associated

with this case totaled approximately 270 hours. This timeframe

encompasses all tasks performed, starting with data prepro-

cessing, model training, querying, and finally, the evaluation

phase. Here, the benefits of data versioning became evident, as

previously computed artifacts could be reused via LIFEDATA,

thereby skipping certain different steps. We set the query set

size to 400 samples, resulting in 20 iterations given a training

size of 80% (8,000 samples).

The ECG use case (cf. IV-B) presented higher computa-

tional demands due to the larger volume of data. To efficiently

handle this, we extended our computational resources to four

GPUs. Specifically, we employed two Nvidia Quadro RTX

6000 and two Nvidia Quadro P6000, all operating in parallel.

The total computational time for this use case amounted

to about 940 hours, again considering three random seed

configurations. As in the ECG use case, cached data from the

data versioning tool saved computational time. In this scenario,

we set the query set size to 2,500, leading to 30 iterations with

a training size of 80% (75,000 samples).

REFERENCES

[1] Alexandre Abraham and Léo Dreyfus-Schmidt. Cardinal, a metric-based
Active learning framework. Software Impacts, 12:100250, May 2022.

[2] Umang Aggarwal, Adrian Popescu, and Celine Hudelot. Active Learning
for Imbalanced Datasets. In 2020 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 1417–1426, Snowmass Village,
CO, USA, March 2020. IEEE.

[3] Erick A. Perez Alday, Annie Gu, Amit J. Shah, Chad Robichaux, An-
Kwok Ian Wong, Chengyu Liu, Feifei Liu, Ali Bahrami Rad, Andoni
Elola, Salman Seyedi, Qiao Li, Ashish Sharma, Gari D. Clifford,
and Matthew A. Reyna. Classification of 12-lead ECGs: the Phys-
ioNet/Computing in Cardiology Challenge 2020. Physiological Mea-
surement, 41(12):124003, December 2020. Publisher: IOP Publishing.

[4] Dana Angluin. Queries and concept learning. Machine Learning,
2(4):319–342, April 1988.

[5] Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser,
Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia,
Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and
Francisco Herrera. Explainable artificial intelligence (xai): Concepts,
taxonomies, opportunities and challenges toward responsible ai. Infor-
mation Fusion, 58:82–115, 2020.

[6] Mélanie Bernhardt, Daniel C. Castro, Ryutaro Tanno, Anton
Schwaighofer, Kerem C. Tezcan, Miguel Monteiro, Shruthi Bannur,
Matthew P. Lungren, Aditya Nori, Ben Glocker, Javier Alvarez-Valle,
and Ozan Oktay. Active label cleaning for improved dataset quality
under resource constraints. Nature Communications, 13(1):1161, March
2022.

[7] Samuel Budd, Emma C. Robinson, and Bernhard Kainz. A Survey on
Active Learning and Human-in-the-Loop Deep Learning for Medical
Image Analysis. Medical Image Analysis, 71:102062, July 2021.
arXiv:1910.02923 [cs, eess].

[8] M. Emre Celebi, Catarina Barata, Allan Halpern, Philipp Tschandl, Marc
Combalia, and Yuan Liu. Guest editorial skin image analysis in the age
of deep learning. IEEE Journal of Biomedical and Health Informatics,
27(1):143–144, 2023.

[9] Scott Chacon and Ben Straub. Pro git. Apress, 2014.
[10] Justin Cheng, Jaime Teevan, and Michael S. Bernstein. Measuring

crowdsourcing effort with error-time curves. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems,
CHI ’15, page 1365–1374, New York, NY, USA, 2015. Association for
Computing Machinery.

[11] Rob Chew, Michael Wenger, Caroline Kery, Jason Nance, Keith
Richards, Emily Hadley, and Peter Baumgartner. SMART: An Open
Source Data Labeling Platform for Supervised Learning. Journal of
Machine Learning Research, 20(82):1–5, 2019.

[12] David Cohn, Les Atlas, and Richard Ladner. Improving generalization
with active learning. Machine Learning, 15(2):201–221, May 1994.

[13] Tivadar Danka and Peter Horvath. modAL: A modular active learning
framework for Python. arXiv:1805.00979 [cs, stat], December 2018.
arXiv: 1805.00979.

[14] Michael Desmond, Evelyn Duesterwald, Kristina Brimijoin, Michelle
Brachman, and Qian Pan. Semi-Automated Data Labeling. Journal of
Machine Learning Research, 133:156–169, 2021.

[15] Bo Du, Zengmao Wang, Lefei Zhang, Liangpei Zhang, Wei Liu, Jialie
Shen, and Dacheng Tao. Exploring Representativeness and Informative-
ness for Active Learning. IEEE Transactions on Cybernetics, 47(1):14–
26, January 2017.

[16] Ibrahim M. El-Hasnony, Omar M. Elzeki, Ali Alshehri, and Hanaa
Salem. Multi-Label Active Learning-Based Machine Learning Model
for Heart Disease Prediction. Sensors, 22(3):1184, February 2022.

[17] Seyda Ertekin, Jian Huang, and C. Lee Giles. Active learning for class
imbalance problem. In Proceedings of the 30th annual international
ACM SIGIR conference on Research and development in information
retrieval, pages 823–824, Amsterdam The Netherlands, July 2007.
ACM.

[18] Beverly Freeman, Naama Hammel, Sonia Phene, Abigail Huang, Re-
becca Ackermann, Olga Kanzheleva, Miles Hutson, Caitlin Taggart,
Quang Duong, and Rory Sayres. Iterative Quality Control Strategies for
Expert Medical Image Labeling. Proceedings of the AAAI Conference
on Human Computation and Crowdsourcing, 9:60–71, October 2021.

[19] Bhavya Ghai, Q. Vera Liao, Yunfeng Zhang, Rachel Bellamy, and Klaus
Mueller. Explainable Active Learning (XAL): Toward AI Explanations
as Interfaces for Machine Teachers. Proceedings of the ACM on Human-
Computer Interaction, 4(CSCW3):1–28, January 2021.

[20] Boris Glavic, Vanessa Braganholo, and David Koop, editors. Provenance
and Annotation of Data and Processes: 8th and 9th International
Provenance and Annotation Workshop, IPAW 2020 + IPAW 2021, Virtual
Event, July 19–22, 2021, Proceedings, volume 12839 of Lecture Notes
in Computer Science. Springer International Publishing, Cham, 2021.

[21] Ary L. Goldberger, Luis A. N. Amaral, Leon Glass, Jeffrey M. Haus-
dorff, Plamen Ch. Ivanov, Roger G. Mark, Joseph E. Mietus, George B.
Moody, Chung-Kang Peng, and H. Eugene Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a New Research Resource
for Complex Physiologic Signals. Circulation, 101(23), June 2000.

[22] Marc Gorriz, Axel Carlier, Emmanuel Faure, and Xavier Giro-i Nieto.
Cost-Effective Active Learning for Melanoma Segmentation, November
2017. arXiv:1711.09168 [cs].

473

[23] High-Level Expert Group on AI. Ethics Guidelines For Trustworthy AI.
European Commission, 2019.

[24] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv:1704.04861 [cs], April 2017. arXiv: 1704.04861.

[25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q.
Weinberger. Densely Connected Convolutional Networks. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2261–2269, Honolulu, HI, July 2017. IEEE.

[26] Panagiotis G. Ipeirotis, Foster Provost, Victor S. Sheng, and Jing Wang.
Repeated labeling using multiple noisy labelers. Data Mining and
Knowledge Discovery, 28(2):402–441, March 2014.

[27] Richard Isdahl and Odd Erik Gundersen. Out-of-the-Box Reproducibil-
ity: A Survey of Machine Learning Platforms. In 2019 15th International
Conference on eScience (eScience), pages 86–95, San Diego, CA, USA,
September 2019. IEEE.

[28] Iterative. Dvc: Data version control - git for data & models, 2020.

[29] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. Machine
Learning Operations (MLOps): Overview, Definition, and Architecture.
IEEE Access, 11:31866–31879, 2023.

[30] David D Lewis, T Bell Laboratories, and Murray Hill. A Sequential
Algorithm for Training Text Classi ers. page 10, 1994.

[31] Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting
Model Predictions, November 2017. arXiv:1705.07874 [cs, stat].

[32] Ionq Muslea, Steven Minton, and Craig A. Knoblock. Active Learning
with Multiple Views. Journal of Artificial Intelligence Research, 27:203–
233, 2006.

[33] An Nguyen, Byron Wallace, and Matthew Lease. Combining Crowd and
Expert Labels Using Decision Theoretic Active Learning. Proceedings
of the AAAI Conference on Human Computation and Crowdsourcing,
3:120–129, September 2015.

[34] Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. Pervasive
Label Errors in Test Sets Destabilize Machine Learning Benchmarks,
November 2021. arXiv:2103.14749 [cs, stat].

[35] Katie O’Leary and Makoto Uchida. Common Problems with Creating
Machine Learning Pipelines from Existing Code. In Workshop on
MLOps Systems, 2020.

[36] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Lar-
ivière, Alina Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo
Larochelle. Improving reproducibility in machine learning research (a
report from the NeurIPS 2019 reproducibility program). Journal of
Machine Learning Research, 22:1–20, 2021.

[37] Matthew A Reyna, Nadi Sadr, Erick A Perez Alday, Annie Gu, Amit J
Shah, Chad Robichaux, Ali Bahrami Rad, Andoni Elola, Salman Seyedi,
Sardar Ansari, Hamid Ghanbari, Qiao Li, Ashish Sharma, and Gari D
Clifford. Will Two Do? Varying Dimensions in Electrocardiography:
The PhysioNet/Computing in Cardiology Challenge 2021. In 2021
Computing in Cardiology (CinC), pages 1–4, Brno, Czech Republic,
September 2021. IEEE.

[38] Sheeba Samuel, Frank Löffler, and Birgitta König-Ries. Machine learn-
ing pipelines: Provenance, reproducibility and fair data principles. In
Boris Glavic, Vanessa Braganholo, and David Koop, editors, Provenance
and Annotation of Data and Processes, pages 226–230, Cham, 2021.
Springer International Publishing.

[39] Patrick Schramowski, Wolfgang Stammer, Stefano Teso, Anna Brugger,
Franziska Herbert, Xiaoting Shao, Hans-Georg Luigs, Anne-Katrin
Mahlein, and Kristian Kersting. Making deep neural networks right
for the right scientific reasons by interacting with their explanations.
Nature Machine Intelligence, 2(8):476–486, August 2020.

[40] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Cre-
spo, and Dan Dennison. Hidden technical debt in machine learning
systems. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015.

[41] Burr Settles. Active Learning Literature Survey. page 47, 2009.

[42] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In
Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, COLT ’92, page 287–294, New York, NY, USA, 1992. Associ-
ation for Computing Machinery.

[43] Fabian Stieler and Bernhard Bauer. Git Workflow for Active Learning:
A Development Methodology Proposal for Data-Centric AI Projects.

Proceedings of the 18th International Conference on Evaluation of Novel
Approaches to Software Engineering, pages 202–213, 2023.

[44] Fabian Stieler, Fabian Rabe, and Bernhard Bauer. Towards domain-
specific explainable AI: model interpretation of a skin image classifier
using a human approach. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops 2021,
19-25 June 2021, Nashville, TN, USA, pages 1802 – 1809, 2021.

[45] Stefan Studer, Thanh Binh Bui, Christian Drescher, Alexander
Hanuschkin, Ludwig Winkler, Steven Peters, and Klaus-Robert Müller.
Towards crisp-ml(q): A machine learning process model with quality
assurance methodology. Machine Learning and Knowledge Extraction,
3(2):392–413, 2021.

[46] Ying-Peng Tang, Guo-Xiang Li, and Sheng-Jun Huang. ALiPy: Active
Learning in Python. Technical report, Nanjing University of Aeronautics
and Astronautics, January 2019. arXiv: 1901.03802.

[47] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The HAM10000
dataset, a large collection of multi-source dermatoscopic images of com-
mon pigmented skin lesions. Scientific Data, 5(1):180161, December
2018.

[48] Tingting Wang, Xufeng Zhao, Qiujian Lv, Bo Hu, and Degang Sun.
Density weighted diversity based query strategy for active learning.
In 2021 IEEE 24th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pages 156–161, 2021.

[49] Xue Xu, Sohyun Jeong, and Jianqiang Li. Interpretation of Electro-
cardiogram (ECG) Rhythm by Combined CNN and BiLSTM. IEEE
Access, 8:125380–125388, 2020.

[50] Yao-Yuan Yang, Shao-Chuan Lee, Yu-An Chung, Tung-En Wu, Si-
An Chen, and Hsuan-Tien Lin. libact: Pool-based Active Learning in
Python. arXiv:1710.00379 [cs], October 2017. arXiv: 1710.00379.

[51] Dongdong Zhang, Samuel Yang, Xiaohui Yuan, and Ping Zhang. Inter-
pretable deep learning for automatic diagnosis of 12-lead electrocardio-
gram. iScience, 24(4):102373, April 2021.

[52] Liyue Zhao, Gita Sukthankar, and Rahul Sukthankar. Incremental
Relabeling for Active Learning with Noisy Crowdsourced Annotations.
In 2011 IEEE Third Int’l Conference on Privacy, Security, Risk and Trust
and 2011 IEEE Third Int’l Conference on Social Computing, pages 728–
733, Boston, MA, USA, October 2011. IEEE.

[53] Xiaojin Zhu. Semi-Supervised Learning Literature Survey. 2008.

474

