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. Introduction

Wheat is the most widely grown crop in the world and pro-
ides more than 20% of the daily protein and food calories for the
orld population (Shiferaw et al., 2013). With a predicted world
opulation of 9 billion in 2050, the demand for food including
heat is expected to increase by then (Alexandratos and Bruinsma,

012). Climate trends are significantly affecting agricultural pro-
uction systems, including wheat, in several regions of the world,
hereby posing risks to global food supply and security (Sundström
t al., 2014). Therefore, quantifying the potential impact of climate
ariability on crops has become a priority in order to develop effec-
ive adaptation and mitigation strategies (Burton and Lim, 2005;
enton et al., 2014).

Process-based crop simulation models are useful tools to assess
he impact of climate as they consider the interaction between
limate variables and crop management and their effects on crop
roductivity. Their use in climate impact studies and for analyzing
nd developing adaptation and mitigation strategies has increased
uring the recent years (Byjesh et al., 2010; Donatelli et al., 2012;
oradi et al., 2013; Rosenzweig et al., 2014). Nevertheless, most

f the current crop models lack explicit definitions of relevant
hysiological thresholds and crop responses to extreme weather
vents, particularly for temperatures exceeding these thresholds
Rötter et al., 2011). These omissions might be one of the reason for
he considerable differences in estimates of grain yield observed
mong models especially for high temperatures, and between mod-
ls and field observations (Palosuo et al., 2011). In addition, since a
lear methodology is lacking, most climate change impact assess-
ents for agriculture have not addressed crop model uncertainties

Müller, 2011), which have become a major concern recently in cli-
ate impact assessments (Lobell et al., 2006; Ruane et al., 2013;

hang et al., 2015).
White et al. (2011) reported that over 40 wheat crop models

re in use worldwide. They differ in the processes they include,
r in the modelling approaches used to simulate physiological
rocesses. A recent work carried out by the Wheat Team of the
gricultural Model Inter-comparison and Improvement Project

AgMIP) (Rosenzweig et al., 2013) compared 27 wheat crop mod-
ls and showed that a greater portion of the uncertainty in climate
hange impact projections was due to variations among crop mod-
ls than to variations among climate models, and that uncertainties
n simulated yield increased dramatically under high tempera-
ure conditions (Asseng et al., 2013). Following the example of
he climate modelling community, to increase reliability of impact

stimates and to give better estimates of uncertainty, use of crop
ulti-model ensembles (MME)  has been suggested (Asseng et al.,

015; Bassu et al., 2014; Li et al., 2015; Pirttioja et al., 2015). Model
mprovements have been suggested for improving the accuracy of
                                        

simulations and reducing the uncertainty of climate impact assess-
ments (Asseng et al., 2013; Challinor et al., 2014; Rötter et al.,
2011). Martre et al. (2015) argued that one of the consequences of
model improvements will be the reduction of the number of models
required for an acceptable level of simulation uncertainty. Further-
more, the improvement of the models in an ensemble using good
quality field-based experimental data could substantially widen
the range of research questions to be addressed and increase the
confidence in simulation results of applications under changed cli-
matic or management conditions (Martre et al., 2015).

Herein, we investigated the effects of model improvements in
15 wheat crop models with regards to heat stress and its impact on
model performances, uncertainty, and the number of crop models
required in multi-model ensembles used for impact studies.

2. Materials and methods

2.1. Experimental data

Detailed quality-assessed data from the USDA ‘Hot Serial Cereal’
(HSC) experiment (Grant et al., 2011; Kimball et al., 2015; Ottman
et al., 2012; Wall et al., 2011) and from the ‘International Heat Stress
Genotype Experiment’ (IHSGE) coordinated by CIMMYT (Reynolds
et al., 1994b) were used. Both experiments were well watered and
fertilized to avoid drought and nutritional stress to assure that tem-
perature would be the main environmental variable. Daily global
solar radiation, maximum and minimum air temperature, aver-
age wind speed, dew point temperature and precipitation were
recorded at weather stations near the experimental plots. The
mean daily average air temperature for the growing season (sow-
ing to physiological maturity) was calculated from minimum and
maximum daily air temperatures as described in Asseng et al.
(2015) and reported in Supplementary Information S2. In both
experiments phenological development measurements included:
emergence date (Zadock scale 10), anthesis date (Zadock scale 65),
and maturity date (Zadock scale 89). From these measurements
the number of days from sowing to anthesis (days), from anthesis
to maturity (days), and from sowing to maturity (days) were calcu-
lated. In both experiments, the plots were kept weed-free, and plant
protection methods were used as necessary to minimize damage
from pest and diseases. The two data sets are further described in
Asseng et al. (2015). Following is a brief description with focus on
the measurement data that were available for this study.

The HSC experiment was  conducted at Maricopa, AZ, USA
(33.07◦N, 111.97◦ W,  361 m a.s.l.): The spring wheat cultivar ‘Yecora

RojO’ was sown about every six weeks for two years, and infrared
heaters were deployed on six of the sowing dates in a T-FACE (tem-
perature free-air controlled enhancement) system which warmed
the canopies of the heated plots on average by 1.3 ◦C and 2.7 ◦C
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uring the day and the night, respectively (targets were 1.5 ◦C
nd 3.0 ◦C; modes were 1.4 ◦C and 3.0 ◦C; Kimball et al., 2015).
ecora Rojo is of short stature, requires little to no vernalization,

s not or little photoperiod sensitive, and matures early (Qualset
t al., 1985). In-season measurements included leaf area index (LAI,
2 m−2), total above ground dry biomass, dry matter weight of

rain per square meter and nitrogen content measured at milk
tage and maturity. End-of-season (i.e. ripeness-maturity) mea-
urements were total above ground dry biomass (t DM ha−1), grain
ield (t DM ha−1), single grain dry mass (mg  DM grain−1), and
rain number (grain m−2). Biomass harvest index was calculated
s HI = 100 × (grain yield)/(above ground biomass) (%).

Data from the IHSGE experiments used in this study includes
wo spring wheat cultivars (Bacanora 88 and Nesser) grown dur-
ng the 1990–1991 and 1991–1992 winter cropping cycles at
ot, irrigated, and low latitude sites in Mexico (Ciudad Obregon,
7.34◦N, 109.92◦W,  38 m a.s.l.; and Tlatizapan, 19.69◦N, 99.13◦W,
40 m a.s.l.), Egypt (Aswan, 24.1◦N, 32.9◦E, 200 m a.s.l.), India
Dharwar, 15.49◦N, 74.98◦E, 940 m a.s.l.), Sudan (Wad Medani,
4.40◦N, 33.49◦E, 411 m a.s.l.), Bangladesh (Dinajpur, 25.65◦N,
8.68◦E, 29 m a.s.l.), and Brazil (Londrina, 23.34◦S, 51.16◦W,  540 m
.s.l.) (Reynolds, 1993; Reynolds et al., 1994a,b). Experiments in
exico included normal (December) and late (March) sowing

ates. Bacanora 88 has moderate vernalization requirement and
ow photoperiod sensitivity and Nesser has low to no vernalization
equirement and photoperiod sensitivity. The seven sites (out of the
riginal 12 locations) were chosen to represent a range of temper-
ture as detailed in Asseng et al. (2015). Bacanora 88 and Nesser
ere chosen (out of the original 16 cultivars) for their low pho-

operiod sensitivity and low vernalization requirements. Variables
easured in the experiment included plant number per square
eter, anthesis and final above ground biomass, final grain yield

nd yield components (number of ear per square meter, number of
rain per ear, and single grain dry mass). These experimental data
ere not publicly available and could therefore be used in a blind
odel evaluation.

.2. Model inter-comparison and improvement protocols

Of the 30 models that participated in the original study using the
SC data (Asseng et al., 2015), 15 models accepted to participate in

his new study. There was no explicit criterion of inclusion, so this
ould be an “ensemble of opportunity” as defined in the climate
odel community (Tebaldi and Knutti, 2007). All of the models

ave been described in publications and are currently in use. For
he evaluation data set measurements, above ground biomass and
rain yield were simulated by all the models. 7 out of 15 models
id not simulated single grain dry mass and grain number but used
harvest index approach.

For both experiments, all modeling groups were provided with
aily weather data, crop management, soil, and cultivar informa-
ion. Qualitative information on vernalization requirements and
ay length response for each cultivar were also provided.

The HSC experiment (calibration data set) was used to improve
he models. All available measurements from the HSC experiment
ere provided to modelers to improve and refine the parameteri-

ation and processes of their model. The objective was  to improve
heat models for the simulation of the impact of high tempera-

ure and heat stresses on crop development and growth. Modelling
roups were allowed to decide how to improve and implement heat
tress impact in their models.

The IHSGE experiment (evaluation data set) was  used as inde-

endent evaluation data set to test single models and model
nsemble performances before and after improvement. All mea-
urements of the evaluation data set were withheld from modelers
blind test) with the exception of phenology for all treatments and
                         

grain yield for one of the treatments (one year at Ciudad Obregon,
Mexico) which was used to calibrate genotypic coefficients.

The experimental data used in this study were not previously
used to develop or calibrate any of the 15 models used in this study.
Except for the two Expert-N models which were executed by the
same group, all models were simulated by different groups without
communication between the groups regarding the parameteriza-
tion of the initial conditions or cultivar specific parameters. In most
cases the model developers executed their own models.

2.3. Evaluation of model improvement effects on single models
and on multi-model ensemble accuracy

We evaluated the effect of model improvement on two different
performance characteristics, accuracy and uncertainty, and on three
model entities: (i) single models (accuracy only); (ii) multi-model
ensemble (MME,  the ensemble of 15 models in this experiment
exercise); and (iii) MME  median (e-median).

Accuracy was measured using the mean squared error (MSE),
the root mean squared error (RMSE), and the root mean squared
relative error (RMSRE).

For measuring single model error in reproducing the calibra-
tion and the evaluation data set we  concentrated on the root mean
squared relative error (RMSRE). This error indicator has the advan-
tage of giving more equal weight to each measurement, and it’s
meaningful when comparing very different environments likely to
give a broad range of responses (Martre et al., 2015). RMSRE was
calculated as:

RMSREm = 100 ×

√√√√ 1
N

N∑
i=1

(
Yi − Ŷm,i

Yi

)2

(1)

where RMSREm is the RMSRE of model m, i is the site/year/sowing
dates combinations (treatment), N is the total number of treat-
ments, Yi is the observed variable for treatment i, Ŷm,i is the variable
simulated by model m for treatment i. Since this indicator is very
sensitive to errors when measured values are small, RMSE was used
as additional supporting information for a better understanding of
RMSRE when needed. RMSE was  calculated as:

RMSEm =

√√√√ 1
N

N∑
i=1

(
Yi − Ŷm,i

)2
(2)

where, RMSEm is the RMSE of model m.
The accuracy of the population of 15 models before and after

improvement was  analyzed using the mean squared error (MSE)
and its two components squared bias and variance, averaged across
treatments:

MSEMME = 1
N

1
M

N∑
i=1

M∑
m=1

(
Yi − Ŷm,i

)2

= 1
N

N∑
i=1

varM(Ŷm,i) + 1
N

N∑
i=1

(
biasM(Ŷm,i, Yi)

)2

(3)

where, MSEpm is the MSE  of the population of models in the ensem-
ble, N is the number of treatments, M is the total number of models

in the ensemble (i.e. 15), varm and biasM are the variance and the
bias for the model population, respectively. From Eq. (3) it is evi-
dent that while bias is based on both observations and simulations,
variance only takes into account simulated values.
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.4. Evaluation of model improvement effects on MME  prediction
ncertainty

To assess the MME  prediction uncertainty we considered
oth the variability in MME  and the comparison with hindcast
i.e. retrospective forecasts using known inputs and known field

easurements) (Wallach et al., 2015) using the two available
easurement data sets. In order to evaluate the prediction uncer-

ainty of the MME  before and after improvement we used the
SC calibration-data set to simulate model hindcast in respect to
bserved data, and the IHSGE experiment as the “unknown” data
et used to simulate model prediction to unknown data and to
valuate the predictive skills of the models in the ensemble. As
measure of uncertainty we used the mean squared error of pre-
iction (MSEP) and its decomposition in prediction squared bias
bias2

prediction) and prediction variance (varprediction). According to
allach et al. (2016) the average squared error across treatments

f MME-mean calculated using the known data set (hindcast)
MSEhindcast

e-mean ) can be used as a reference estimate of the model pop-
lation squared bias when calculating prediction estimates. This
orresponds to the average squared bias of hindcasts as calculated
n Eq. (4):

bias2
prediction = MSEhindcast

e-mean

= 1
Nhindcast

Nhindcast∑
i=1

(
Yi

hindcast − 1
M

M∑
m=1

Ŷhindcast
m,i

)2

= bias2
hindcast

(4)

here, Nhindcast is the number of treatments in the known data set,
i
hindcast is the observed variable for treatment i of the known data

et, Ŷhindcast
m,i

is the hindcast of the simulated variable for treatment
by the model m.  The prediction variance varprediction is the vari-
nce of the values simulated by the population of models for the
nknown data set averaged across treatments:

arprediction = 1
Nprediction

Nprediction∑
i=1

varM(Ŷprediction
i

) (5)

here, Nprediction is the number of treatments in the unknown data

et, Yi
prediction is the simulated variable for the treatment i of the

nknown data set. Therefore an estimate of MSEP can be composed
s:

SEP = bias2
prediction + varprediction (6)

.5. Evaluation of model improvement effects on MME-median

Following Asseng et al. (2015) and Martre et al. (2015), we  used
he median of the model simulations (e-median) as the estimator
f the ensemble model simulations. In order to evaluate the over-
ll e-median accuracy we  calculated the same criteria as for the
ndividual models, namely RMSRE (Eq (1)).

To explore how the e-median and its error (RMSRE) varied with
he number of models and with the random selection of models in
he ensemble, we performed a bootstrap calculation (i.e. random
ampling with replacement) for each value of M’  (number of mod-
ls in the ensemble) from 1 to 15. For each ensemble of size M’
e drew 20 × 103 bootstrap samples (substantially higher than the
200 samples found by Martre et al. (2015) as a sufficient num-
er of samples for 27 models) of M’  models with replacement, so
he same model might be represented more than once in a sam-
le. The variation of e-median across the bootstrap samples due
                       

to random model selection was  estimated with the coefficient of
variation (CV):

CV(ŷe-median,M′ ) = 1
N

N
�
i=1

(
100 × sdB(ŷM

′
e−median,i)

meanB(ŷM′
e−median,i)

)
(7)

where, CV(ŷe-median,M′ )is the estimate of the coefficient of varia-

tion of e-median for the model ensemble of size M’,  sdB(ŷM
′

e-median,i
)

and meanB are the standard deviation and the mean of B (num-
ber of bootstrap samples) e-medians of model ensembles of size M’
for the ith treatment. A benchmark CV of 13.5%, previously estab-
lished through a meta-analysis of field trials (Taylor et al., 1999) was
used to evaluate the minimum number of models required within
a MME.

The final estimate of RMSRE for e-median was calculated as:

RMSREM′ = 1
B

B∑
b=1

100 ×

√√√√ 1
N

N∑
i=1

(
yi − ŷb

e−median,i

yi

)2

(8)

where, RMSREM′ is the RMSRE of e-median of the model ensemble
of M’  size, ŷb

e−median,i
is the e-median estimate in bootstrap sample

b of the ith treatment.
All calculations and graphs were made using the R statistical

software R 3.1.3 (R Core Team, 2013) and the development envi-
ronment RStudio (RStudio Team, 2015). Bootstrap sampling used
the R function sample.

3. Results

3.1. Individual model improvements

The major draw backs in simulating the HSC experiment
were related to the impact of the higher temperature range
(Tmean > 22 ◦C) on yield, biomass and phenology (Asseng et al.,
2015). Furthermore it was  shown that the few models that already
included heat stress routines affecting canopy senescence were
the only ones able to reproduce the impact of very high mean
seasonal temperatures (Tmean ≥ 29 ◦C) on grain yield and above
ground biomass. Therefore, the process that received most atten-
tion was leaf senescence, followed by heat stress effects on
processes related to biomass growth and/or phenological develop-
ment, grain number and/or size, leaf development (Table 1, Fig. 1).
Based on experimental evidences (e.g. Parent and Tardieu, 2012;
Porter and Gawith, 1999), in several models linear temperature
responses were replaced by non-linear (APSIM-E and SiriusQual-
ity) or trapezoidal (APSIM-Wheat, GLAM-Wheat, Expert-N-SPASS,
Expert-N-SUCROSS) response functions. The cardinal temperatures
for these processes were fixed using values reported in the lit-
erature or calibrated using the HSC experimental data set. One
model (APSIM-Nwheat) added a canopy temperature sub-routine.
In addition to the inclusion/modification of heat stress impacts
on physiological processes, five models improved processes not
directly related to heat stress using the HSC data set or other pub-
lished data sets (Table 1). One model (GLAM-wheat) removed the
sub-routine for heat stress effect on grain set and potential harvest
index as they observed no substantial improvement and decided
not to increase the complexity of their model (Table 1 and Supple-
mentary Methods).

In the case of heat stress impacts on leaf senescence, a similar
approach, based on Asseng et al. (2011), was adopted in all models
(Table 1 and Supplementary Methods). A factor for accelerating leaf

senescence is calculated as a linear function of air or canopy tem-
perature (daily maximum, average or tri-hourly according to the
different model implementations) above a threshold temperature
value. Some models included a plateau to the senescence factor.



                                                           

Table  1
Outline of individual model improvement. More details are given in the Supplementary Data.

Model code Model name Reference Description of model improvements

Introduction and/or modification of
process representation

Calibration

AE APSIM-E (Chen et al., 2010; Keating
et al., 2003; Wang et al.,
2002; Zhao et al., 2015)

Introduction of a nonlinear
temperature response function for
phenological development and
biomass growth.

Calibration of 14 parameters related to
the modified temperature response
functions and to radiation use
efficiency and maximum specific leaf
area.

AW  APSIM-Wheat (Keating et al., 2003) Modification of the temperature
response function for thermal time
accumulation from a triangular to a
trapezoidal function.

Calibration of nine parameters related
to the modified temperature response
function for thermal time
accumulation, canopy senescence,
grain number, and grain filling rate.

Modification of heat stress effect on
leaf senescence to remove
discontinuity around the threshold
temperature.

AN  APSIM-Nwheat (Asseng et al., 2004, 1998;
Keating et al., 2003)

Introduction of an empirical model of
canopy temperature as a function of
evapotranspiration and daily mean air
VPD (described in Webber et al., 2017).

Calibration of seven parameters
related to the new canopy temperature
model and the modified leaf
senescence heat stress response.

Modification of heat stress effect on
leaf senescence to remove
discontinuity around the threshold
temperature.

FA  FASSET (Berntsen et al., 2003;
Olesen et al., 2002)

Introduction of a heat stress effect on
leaf senescence.

Calibration of seven parameters related
to  the new leaf senescence response
and to LAI, DM allocation to roots, N
concentration in storage organs.

GL  GLAM-Wheat (Challinor et al., 2004; Li
et al., 2010)

Introduction of a trapezoidal
temperature response function for leaf
growth.

Calibration of 26 parameters related
the modified or new temperature
response functions and to LAI, HI,
maximum potential leaf growth and
transpiration, transpiration efficiency,
and VPD calculation.

Modification of the temperature
response function for photosynthesis
and transpiration efficiency from a
bi-linear function with no reduction
towards the base temperature to a
trapezoidal function.
Modification of the temperature
response of phenological development
from a trapezoidal to a triangular
function.
Modification of the magnitude of the
response of canopy senescence to high
temperature.
Removed heat stress effect around
anthesis on grain set and potential
harvest index.
Modification of the definition of
anthesis (from beginning of flowering
to mid-flowering).

HE  HERMESS (Kersebaum, 2007;
Kersebaum et al., 2011)

Correction of an error in the calculation
of thermal time accumulation.

Calibration of thermal time for
phenological development and of five
parameters related to the correction of
thermal time accumulation.

Constant grain-to-chaff dry mass ratio
at  maturity replaced by a function
based on the duration of the
flowering-to-maturity period.
N dilution curves for maximum and
critical N concentration were fixed to a
constant thermal time from emergence
to  maturity, now it is scaled to the
varietal thermal time from emergence
to maturity.
Simulation of soil moisture and
mineral N starts at the beginning of the
year for equilibration based on given
weather conditions.

LP  LPJmL (Beringer et al., 2011;
Bondeau et al., 2007; Fader
et al., 2010; Gerten et al.,
2004; Müller et al., 2007;
Rost et al., 2008)

Introduction of a heat stress effect on
leaf senescence.

Calibration of five parameters related
to  phenological development, the
sensitivity to photoperiod and LAI.



                                                            

Table  1 (Continued)

Model code Model name Reference Description of model improvements

Introduction and/or modification of
process representation

Calibration

NP Expert-N-SPASS (Biernath et al., 2011;
Priesack et al., 2006; Wang
and Engel, 2000)

Introduction of a function to calculate
hourly temperature.

Calibration of three parameters related
to radiation use efficiency, specific leaf
dry mass and grain number.

Modification of the temperature
response functions for photosynthesis
from a triangular to a trapezoidal
function.

NS  Expert-N-SUCROSS (Biernath et al., 2011;
Priesack et al., 2006)

Introduction of a function to calculate
hourly temperature.

Calibration of three parameters related
to radiation use efficiency, specific leaf
dry mass and grain number.

Modification of the temperature
response functions for photosynthesis
from a triangular to a trapezoidal
function.

OL  OLEARY (O’Leary and Connor,
1996a; O’Leary and Connor,
1996b; O’Leary et al., 1985)

Modification of the temperature
response functions for phenological
development and stem development
from a linear to a triangular or bi-linear
with a maximum function.

Modification of the routine simulating
transfer of N to grains from generic to
cultivar specific.

Introduction of a dry-sowing
emergence subroutine.
Introduction of an effect of elevation
on the psychometric constant and
radiation use efficiency.

SA  SALUS (Basso et al., 2010;
Senthilkumar et al., 2009)

Calibration of 35 parameters related to
phyllochron, vernalization
requirement, sensitivity to
photoperiod, LAI, cardinal
temperatures of the temperature
response function for radiation use
efficiency, leaf expansion, root growth,
grain filling, grain number, grain N
concentration and DM partitioning.

SP  SIMPLACE
<LINTUL2-CC-
HEAT>

(Angulo et al., 2013) Introduction of a heat stress effect on
leaf senescence.

Calibration of four parameters related
to radiation use efficiency, LAI, and
critical heat stress response.

Reduction of yield due to heat stress
calculated using Tmean instead of Tmax .
Introduction of a sub-routine for
post-anthesis biomass re-translocation
to grains.

S2  Sirius2010 (Jamieson and Semenov,
2000; Jamieson et al.,
1998; Lawless et al., 2005;
Stratonovitch and
Semenov, 2015)

Introduction of a heat stress effect on
leaf maturation and senescence.

Calibration of six parameters related to
the new heat stress and frost
responses.

Introduction of a heat stress and frost
effects on grain number
Introduction of a heat stress effect on
potential grain dry mass.

SQ  SiriusQuality (Ferrise et al., 2010; He
et al., 2012; Martre et al.,
2006)

Introduction of a heat stress effect on
leaf maturation and senescence.

Calibration of 13 parameters related to
heat stress effect on leaf maturation
and senescence, the non-linear
temperature response function for
development and leaf expansnion,
daylength sensitivity, and
vernalization requirement.

Modification of the temperature
response functions for phenological
development and leaf expansion from
a linear to a non-linear function.

WG  WheatGrow (Cao and Moss, 1997; Cao
et  al., 2002; Hu et al., 2004;
Li et al., 2002; Pan et al.,

Introduction of a heat stress effect on
phenological development.

Calibration of four parameters related
to the heat stress effect on
phenological development and grain

Introd
hourl

p
w
w

2007, 2006)

In the case of improvements related to heat stress impact on

henological and/or growth processes, the impact of heat stress
as modeled by introducing a temperature response function
hich included a decreasing phase (triangular, trapezoidal, or non-
filling duration.
uction of function to calculate

y temperature.

linear) at high temperatures and which substituted for a linear

response function with or without a plateau. Only in one model
(OLEARY) a linear response for phenological development was  sub-
stituted for a linear with a plateau for some phenological stages. In
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Fig. 1. Number of models that included or modified (if already included)

he APSIM-wheat model the temperature effect on the phenological
evelopment was previously modeled using a function with a single
ptimum temperature (triangular function) that was  now changed
o a function with a range of optimum temperatures (trapezoidal
unction). The crop models that did not introduce such a type
f response for phenological development and biomass growth
lready included this type of response for both processes (APSIM-
Wheat, SIMPLACE), or already had a function with a decreasing
hase above an optimum temperature for biomass growth and kept
linear temperature response function for phenological develop-
ent (HERMESS, LPJmL, Sirius2010), or kept a linear approach for

oth processes (FASSET).

.2. Effects of model improvement on single models accuracy

Fig. 2 illustrates the effects of model improvement on the sim-
lations of three treatments of the HSC calibration data set whose
ean growing seasonal temperatures were different. In most cases,
easured in-season and end-of-season LAI, above ground biomass,

nd grain yield were in the range of model simulations for both
he un-improved and the improved models. Nevertheless, the
mproved models showed a lower level of variation (measured
hrough the 10th to 90th percentile range of the 15 model sim-
lations). For grain yield and above ground biomass, the improved
ME was more precise at high temperatures than the unimproved
ME  (mean growing season temperature of 22 ◦C and 27 ◦C in

ig. 2). Most unimproved and improved models underestimated
he impact of high temperature on LAI, but this was true to a lower
xtent for the improved compared to the un-improved models.
onsidering the e-median of the model ensemble, the simulations
f the improved MME  appeared similar to the un-improved pop-
lation at 15 ◦C but more accurate at 22 ◦C and 27 ◦C for LAI and
bove ground biomass, and for grain yield at 27 ◦C.

In order to explore if the population of 15 models used in this
tudy had skills similar to that of the 30 models that had previously
een used to simulated the calibration data set (Asseng et al., 2015),

e compared the RMSRE distribution of these two populations of
odels for the calibration data set (Fig. 3). The RMSRE distribution

or almost all the variables was similar for the 30 models and the
5 unimproved models included in this study. Therefore, we could
rocesses related to heat stress during the model improvement exercise.

reasonably exclude any “model sampling” effects on the results of
this work. Comparison of RMSRE distribution of the 15 unimproved
and improved models for the calibration data set showed a reduc-
tion in the median values for RMSRE of most of the variables: 53%
for days from sowing to maturity, 36% for above ground biomass,
31% for grain yield, 18% for HI, 32% for grain number, 12.4% for sin-
gle grain dry mass. However, RMSRE range for HI, grain number,
and single grain dry mass remained almost unchanged.

Fig. 4 shows the effect of model improvement on the accu-
racy (as measured by RMSRE) of each model for grain yield and
for the key variables leading to final yield for the calibration data
set. In general, models were improved for almost all measured
variables. As expected, models that had large errors for a specific
variable were the ones that improved the most for that variable.
All models had lower RMSRE for simulating above ground biomass
and grain yield after model improvement. The only variables for
which more than one model worsened after model improvements
were LAI and HI. Five models (APSIM-Nwheat, Expert-N—SPASS,
Expert-N—SUCROSS, SALUS, and SIMPLACE<LINTUL2-CC-HEAT>)
increased the error for LAI after improvements (Fig. 4).

Two  of these models were among the ones that included or
modified a sub-routine for heat stress impact on leaf senescence
(APSIM-Nwheat and SIMPLACE<LINTUL2-CC-HEAT>). Four models
had higher RMSRE of HI after improvement (APSIM-Wheat, GLAM-
Wheat, Expert-N − SUCROSS, and SiriusQuality), although they
had lower RMSRE for both above ground biomass and grain yield
after model improvement. For both the calibration and evaluation
data sets, model improvement decreased the variation (measured
through the 10th to 90th model ensemble percentile range) of most
simulated variables at high mean seasonal temperatures (Fig. 5).
For the calibration dataset the reduction of the variability between
models and their convergence is an expected result as all the teams
used the same dataset to improve and recalibrate their model.
For grain yield, an increase in precision was observed for tem-
perature > 24 ◦C for both the calibration and the evaluation data
set: grain yield variation decreased by 4% and 21% considering the

whole temperature range of the calibration and the evaluation data
sets, respectively, and by 39% and 26% considering only mean sea-
sonal temperatures >24 ◦C. For the evaluation data set, consistent
reduction of the range of variation among models was  also observed
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Fig. 2. Simulated and measured wheat growth dynamics for the calibration data set. (A–C) leaf area index (LAI), (D–F) total above ground biomass, and (G–I) grain yield versus
days  after sowing for mean growing season temperatures 15 ◦C (A, D, and G), 22 ◦C (B, E, and H) and 27 ◦C (C, F, and I). Black dotted lines and dark grey areas are e-median
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MME  median) and the 10th to 90th percentile range of the 15 original (unimprove
0th  percentile range of the 15 improved models, respectively. Areas are grey when
= 3 independent replicates (for interpretation of the references to colour in this fig

or HI (20%), grain number (71%), and single grain dry mass (44%)
Fig. 5).

.3. Effects of individual model improvement on MME  accuracy
nd prediction skills

For both the calibration and evaluation data sets, model
mprovements decreased MSE  of models for grain yield (Fig. 6,
anel A), phenology (Fig. 6, panels B and C), and above ground
iomass (Fig. 6, panel D). This reduction was mainly due to a reduc-
ion in MME  variance. Considering the calibration data set (Fig. 6,
anel A), MSE  of grain yield decreased on average by 29%, equally
ue to decrease in squared bias (−33%) and variance (−27%). Con-
idering the evaluation data set, MSE  of grain yield was reduced
y 37%, due to a 49% reduction in variance, while the squared
ias did not increased significantly (Fig. 6, panel A). MSE  of above
round biomass was reduced by 44% due to a 54% reduction in vari-
nce, while the squared bias did not change significantly (Fig. 6,
anel D). Analysis of the prediction skills of the model population

howed that the level of prediction error (MSEP) when simulating
he “unknown” data set was reduced after improvement by 47%
Fig. 6, panel A). As the MSEP is the sum of the squared bias for
he calibration data set and the variance for the evaluation data set
dels, respectively. Solid red lines and light grey areas are e-median and the 10th to
oved and unimproved ranges overlap. Blue symbols are measured mean ± 1 s.d. for
gend, the reader is referred to the web version of this article.)

(Eq. (6)), changes in bias and variance of MSEP followed the same
reduction patterns.

3.4. Effect of individual model improvement on MME  e-median
skill

The RMSRE of e-median was reduced by 38% for grain yield and
by 46% for above ground biomass, in the calibration data set, and
by 2% for grain yield and 11% for above ground biomass in the eval-
uation data set (Fig. 3). The relationship between the number of
models in an ensemble and the CV and RMSRE of e-median estima-
tion of grain yield and above ground biomass was analyzed through
a bootstrap approach to create a large number of random ensem-
bles of 1–15 models. Independently of the number of models in
the ensembles, for the evaluation data set the CV of e-median was
about 41% lower for improved models compared with unimproved
models (Fig. 7, panel A and B).

Therefore, model improvement decreased variation of e-median
in a range between 15% for M’  = 1 and 7% for M’  = 15 for above ground
biomass and between 14% at M’  = 1, and 9% for M’ = 15 for grain

yield. As a consequence, while with the unimproved models the
benchmark CV% of 13.5% (Taylor et al., 1999) was not achieved for
grain yield even with the maximum model ensemble size, with the
improved models this threshold was  reached with eight models in
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Fig. 3. Effect of model improvement on root mean squared relative error (RMSRE) distribution for days from sowing to anthesis (A), days from anthesis to maturity (B), leaf
area  index (LAI) (C), harvest index (HI) (D), grain number (E), single grain dry mass (F), final total above ground biomass (G), final grain yield (H), for the calibration data set.
RMSRE was  calculated for the 30 models included in a previous study (AgMIP-Wheat) (Asseng et al., 2015) and the 15 unimproved and improved models included in the
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odel  improvement study. The left and the right side of the box are the first and t
ndividual model errors. The ends of the whiskers indicate the RMSRE 10th and 90t
-median RMSRE (for interpretation of the references to colour in this figure legend

he ensemble. Model improvements reduced e-median RMSRE of
rain yield in a range between 12% at M’  = 1, and 2% at M’  = 15 for
rain yield for the evaluation data set (Fig. 8).

. Discussion

For the first time, using two unique experimental field data
ets with a large range of temperature, we improved the predic-
ive skills of a MME  of 15 wheat models. As a result we  increased

ME accuracy while reducing model ensemble uncertainty. As
consequence, the number of required models for MME  impact

ssessments on yield to achieve observed levels of field experimen-
al variation was halved. This is a significant step forward for crop

odelling and future climate impact studies as until now very few
odels have explicitly considered heat stress impacts on wheat

evelopment and growth (Asseng et al., 2011; Moriondo et al.,
010).
.1. Model improvements

Model improvements increased the accuracy of single models in
eproducing heat stress impact on wheat crops. As a consequence,
MSRE quartiles. The line inside the box is the RMSRE second quartile or median of
entile respectively. The empty points are the outliers. The red crosses indicate the
eader is referred to the web version of this article.)

the accuracy of the models and of the e-median in simulating the
impact of high temperatures and heat stress increased and the vari-
ance among models in the population was reduced.

As we focused on the effects of model improvements on a
MME  of 15 models and on the possible consequences for future
MME  impact assessments studies, we  did not analyze each model
improvement in detail. In this exercise, the concept of “model
improvement” was  implemented as an improvement of the appli-
cability of models across diverse environments and climates
including climate extremes. Each crop model aimed to improve
how high temperature effects were captured by incorporating
and/or improving a range of different processes using a high-
quality data set. The process descriptions in the models were
mostly updated using new information from the literature, e.g.
a new approach to heat stress, or they accounted of a harm-
ful effect of high temperatures for the first time. Each team was
left free to decide how to implement heat stress in their model.
This choice was made considering the diversity of implementa-

tion of key physiological processes, and/or the diversity in the
level of empiricism/mechanism in their approaches (see supple-
mentary information in Asseng et al., 2015, 2013). In most cases,
being primarily developed to simulate “standard” climate condi-
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Fig. 4. Log2 difference of RMSRE for improved and unimproved models versus RMSRE of unimproved models for days from sowing to anthesis (A), days from anthesis to
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aturity (B), leaf area index (LAI) (C), harvest index (HI) (D), grain number (E), sin
alibration data set. A positive difference of the log2 RMSRE’s indicate an improvem
or  each unit of log2 RMSRE difference between the un-improved and the improved

ions, models had to improve how high temperature effects were
aptured by including or modifying some key biological processes
nvolved in crop heat stress response. All the models improved their
kills in simulating most of the tested variables. However, in sev-
ral models HI simulation was not improved and in three models
APSIM-Wheat, GLAM-Wheat, Expert-N-SUCROSS) it was  slightly
orsened, showing that grain yield and above ground biomass did
ot improve proportionally to each other. As observed by Challinor
t al. (2014) this might indicate some level of compensation error
uring the calibration phase despite the improvement of both yield
nd biomass. Furthermore, model improvement was  focused on
eat stress, and most of the improvement was observed for mean
rowing season temperature >24 ◦C which is also the range where
ost of the disagreement was observed before improvement.
Seven models included a sub-routine for simulating the accel-

ration of leaf senescence above a temperature threshold. Heat
tress was reported to enhance leaf senescence with a consequent
eduction in the total amount of intercepted light, reduction of
he accumulation of assimilates, and shortening of the grain fill-

ng period (Chauhan et al., 2010; Wardlaw and Moncur, 1995;

ardlaw, 2002; Xu et al., 1995).
Most biological processes respond exponentially to tempera-

ure until an optimum and then they decline (Dell et al., 2011;
ain dry mass (F), final total above ground biomass (G), final grain yield (H), for the
 model performance. The extent of model improvement in terms of RMSRE doubles
lation of models.

Parent and Tardieu, 2012). The declining phase of a temperature
function has become particularly important when considering cli-
mate change impacts (Schlenker and Roberts, 2009). Five models
modified their temperature sub-routines by including this declin-
ing phase with increasing temperatures, and 3 models that already
included a declining phase used the HSC calibration data set to cali-
brate the implemented function or to change their shape (e.g. from
trapezoidal to non-linear). Regarding cardinal temperatures used
for describing the temperature response of phenological devel-
opment and biomass growth (i.e. the minimum, optimum, and
maximum temperatures), there was  no clear accordance among
models, with the exception of the optimum temperature for radi-
ation use efficiency (∼20 ◦C) and the minimum temperature for
both phenological development and biomass growth (∼0 ◦C) (Wang
et al., unpublished). Some models calibrated the optimum and the
maximum temperatures using the calibration data set and the best
matching values obtained through calibration might have been
influenced by the specificities of each model (Eitzinger et al., 2012).

Three models added a sub-routine for accounting for heat stress

impact on grain number and/or size. Elevated temperatures before
anthesis accelerate development of the spike and decrease grain
number (Saini and Aspinall, 1982) and potential final grain size
(Ferrise et al., 2010). Temperatures above 31 ◦C around anthesis
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Fig. 5. Simulated and measured days from sowing to anthesis (A and B), days from anthesis to maturity (C and D), leaf area index (LAI) (E and F), harvest index (HI) (G and
H),  grain number (I and J), single grain dry mass (K and L), final total above ground biomass (M and N), final grain yield (O and P), versus mean growing season temperature
for  the calibration (A, C, E, G, I, K M,  O) and evaluation (B, D, F, H, J, L, N, P) data sets. Black dotted lines and dark grey areas are e-median (ensemble median) and the 10th to
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0th  percentile range of the 15 original (unimproved) models, respectively. Solid re
mproved models, respectively. Symbols are measured mean ± 1 s.d. for n = 3 indep
et  (for interpretation of the references to colour in this figure legend, the reader is

ere reported to reduce ear fertility and grain set and conse-
uently grain number (Alghabari et al., 2014; Ferris et al., 1998),
nd temperatures above 35 ◦C at the beginning of grain filling were
eported to reduce potential final grain size (Hawker and Jenner,
993; Keeling et al., 1994; Saini et al., 1984, 1983).

Two models considered heat stress impact on leaf development
nd expansion growth, which was reported to slow down under
eat stress (Kemp and Blacklow, 1982). Some models improved
he performances by including or modifying canopy temperature
outines.

However, modelling of such temperature responses are cur-
ently limited by the availability of experimental data sets where
hese responses can be quantified. Further modeling and experi-

ental work are also needed to reach agreement among models
egarding the cardinal temperature of key physiological pro-
esses determining wheat development and growth. Furthermore,
mproved model versions should be further tested through sensi-

ivity analysis in order to better understand the impact of new and
evised processes and additional parameters in model structures
n simulated variables.
s and light grey areas are e-median and the 10th to 90th percentile range of the 15
t replicates. Note that for LAI, there were no observations for the evaluation data

ed to the web  version of this article.)

4.2. Model improvement effects on the accuracy and predictive
skills of MME

After improvement, the variation range of the MME  was reduced
at high temperatures in the evaluation data set. The reduction of
the variation between the models at high temperatures does not
eliminate the value of using MME  as model structures remain still
different and uncertainty will continue to be part of impact assess-
ment. Grain yield predictive skill (quantified in this study by MSE) of
the MME  was doubled, and after improvement it was  comparable
to that of hindcasts, suggesting that the improved model predic-
tions related to the impact of heat stress can be considered reliable
and consistent in relation to the observed error.

MME  accuracy for grain yield and above ground biomass
was also doubled after improvement. The unimproved and the
improved MME  had similar squared bias, indicating that the main
source of variation in the considered MME  was due to differences

between models. These results suggest that the current level of bias
might be an intrinsic property of current simulations or of the con-
sidered MME  or also possibly linked to other uncertainty factors
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Fig. 6. Mean squared error (MSE) decomposition of grain yield simulated by the 15 unimproved and improved models for the calibration and evaluation (comparison with
hindcast) data sets, and the prediction data set (“unknown” data set) (panel A). MSE  decomposition for days from sowing to anthesis (panel B), anthesis to maturity (panel
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)  and final total above ground biomass (panel D) simulated by the 15 unimproved 

ame  as the evaluation data set but is used as an “unknown” data set to be predicted
.e.  for 15 (calibration) and 14 (evaluation and prediction) site/year/sowing dates c

hat are still not considered explicitly. Due to the similarity of the
mproved and unimproved MME  squared biases, the results related
o the analysis of the predictive skills of the MME  were similar to
he evaluation results. The agreement between the evaluation and
he prediction results is an important result and is related to the
sefulness of crop models in exploring the consequences on climate
hange. A fundamental question in crop model impact assessments
s the quality assessment of estimates of uncertainty (Wallach et al.,
015). For the first time, the quality of a MME  was measured, and

t showed that at the current state of crop model development,
specially after improvement, prediction uncertainties and hind-
ast errors are at the same level. Therefore, given a certain level of
quared bias measured with hindcast and applied to predictions, we
an assume that predictions with these models are reliable. Since
n this work the level of prediction uncertainty was measured using
he squared bias for a data set that was also used for calibration, we
uggest that for future prediction uncertainty assessments done
ith this MME,  the squared bias of the improved models calcu-

ated for the evaluation data sets is used as the reference prediction
quared bias.

.3. Model improvement effects on e-median uncertainty

Two fundamental questions in MME  uncertainty are what is the
ncertainty of the MME  predictor and how does the quality of the
ncertainty estimates vary with the number of models (Wallach
t al., 2015).
As expected, the CV and the RMSRE of e-median decreased with
he number of models. On average the unimproved version of MME
as not able to reach the benchmark of CV ≤ 13.5% for grain yield

Taylor et al., 1999): even with a random model population of 15
proved models for the evaluation data set. In panel A, the prediction data set is the
 was  decomposed into squared bias (grey) and variance (white). Data are mean ± 1
ations.

models the average CV was  17%. On the contrary, the improved
MME  reached CV ≤ 13.5% with 8 models in the ensemble and at
this model ensemble size the RMSRE of e-median was  reduced
by 16%. MME  can be a powerful tool for climate impact assess-
ments as they take advantage of the presence of different models
in the ensemble (Martre et al., 2015), but they are costly to exe-
cute. Execution of MME  imply public availability of crop models
and/or the interest of modeling groups in participating in coor-
dinated simulation exercises, their availability of funding and/or
computational resources to do the requested simulations (Tebaldi
and Knutti, 2007). Crop models are developed using different soft-
ware languages and/or implementations which makes their use
by third parties difficult. A model framework that is able to host
multiple crop models most probably will overcome these limita-
tions in the future (Bergez et al., 2014; David et al., 2013; Donatelli
et al., 2014; Holzworth et al., 2015 Holzworth et al., 2015), but the
number of crop models included in these platforms is still limited
and, even when available, executing several crop models requires at
least some knowledge about the specifics of each model in order to
correctly interpret results. Therefore the reduction of the required
number of models in an ensemble is a fundamental result key con-
clusion of this study that makes multi-model impact assessments
more realistic practical and less costly to be executed.

Until now the constitution of crop MMEs  has been based on the
“ensemble of opportunity” approach without an a priori specifi-
cation that defines the characteristics of a model that should or
shoud not be part of an ensemble (Solazzo and Galmarini, 2015).
In most cases, the only requirement for participation has been that

there must be a published description of the model. However, one
could envisage a more pro-active choice of models. For example,
Solazzo and Galmarini (2015) proposed screening models to be
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Fig. 7. Coefficient of variation of multi-model ensemble e-median for final grain
yield (panel A), days from sowing to maturity (panel B) and final total above ground
biomass (Panel C), versus number of models in an ensemble. Values were calculated
based on 20,000 bootstrap samples of 1–15 original (unimproved) (blue circles)
and improved (red triangles) models for the independent evaluation data set. The
horizontal black dashed line in panel A indicates the mean coefficient of variation of
GY  calculated from a meta-analysis of agronomic field trials (Taylor et al., 1999). For
readability, results for unimproved and improved models are shown for odd and
even number of models, respectively. Symbols and error bars indicate mean and
±s.d.  of the 20,000 sample e-median values, respectively (for interpretation of the
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Fig. 8. Root mean squared relative error (RMSRE) of multi-model ensemble e-
median for final grain yield (GY) versus number of models in the ensemble for
original, unimproved models (blue circles) and improved models (red triangles) for
the  evaluation field data set. Values are mean ± 1 s.d. for 20,000 bootstrap samples.

manuscript. SA, FW,  DW,  EW,  CM,  RPM, ACR, and MAS  revised the
eferences to colour in this figure legend, the reader is referred to the web version
f this article.)

ncluded in a MME  in order to reduce redundancy. They propose
oing this in three steps: i) determination to what extent the vari-
bility present in the observations is reproduced by the MME,  ii)
etermination of the minimum number of models necessary to

epresent the observed variability iii) identification of the mod-
ls to be included in a reduced MME  to be used for subsequent
nalysis. An alternative approach to excluding some models would
For  readability, results for unimproved and improved models are shown for odd and
even number of models, respectively (for interpretation of the references to colour
in  this figure legend, the reader is referred to the web version of this article.)

be to differentially weight the different models in a MME  in order
to obtain a weighted average prediction. In the climate modeling
community weighting methods based on model performance have
been reported to improve performance of a MME  predictor (Tebaldi
and Knutti, 2007). However, weighting based on fit of hindcasts is
difficult, because it requires a choice of which output variables to
consider and how to combine them in an overall criterion. Another
open question is related to the quantification of the global uncer-
tainty in impact assessments. Here we focused our attention on
the uncertainty related to model simulations and MME  assuming a
fixed (non-varietal) parameter set for each model. Furthermore we
did not include uncertainty related to weather, soil, and manage-
ment inputs. In the case of climate change impact assessments the
uncertainty related to weather inputs may  have a higher impor-
tance.

5. Conclusions

Following the example of the climate science community, the
crop model community has recently proposed the use of MME  as
a valid approach to analyze impact assessment uncertainties for
current and future climate conditions. However, differently from
climate models, the performance of crop models can be evalu-
ated against controlled field experiments from environments that
already experience higher than normal growing season tempera-
tures creating conditions that might become common in the future.
Using a unique set of experiments for testing the impact of heat
stress on wheat crops, we  demonstrated that crop model improve-
ments can increase the accuracy of simulations, increase predictive
skills of MME’s, reduce MME  uncertainty, and reduce the number
of models needed for reliable impact assessments.
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