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More than 20 years ago, signal peptide peptidase (SPP) and its homo-

logues, the signal peptide peptidase-like (SPPL) proteases have been identi-

fied based on their sequence similarity to presenilins, a related family of

intramembrane aspartyl proteases. Other than those for the presenilins, no

high-resolution structures for the SPP/SPPL proteases are available.

Despite this limitation, over the years bioinformatical and biochemical data

have accumulated, which altogether have provided a picture of the overall

structure and topology of these proteases, their localization in the cell, the

process of substrate recognition, their cleavage mechanism, and their func-

tion. Recently, the artificial intelligence-based structure prediction tool

AlphaFold has added high-confidence models of the expected fold of SPP/

SPPL proteases. In this review, we summarize known structural aspects of

the SPP/SPPL family as well as their substrates. Of particular interest are

the emerging substrate recognition and catalytic mechanisms that might

lead to the prediction and identification of more potential substrates and

deeper insight into physiological and pathophysiological roles of

proteolysis.

Introduction

Intramembrane proteases hydrolyze their transmem-

brane protein substrate within the hydrophobic phase

of cellular membranes. They mediate part of the mem-

brane protein turnover and contribute to signaling

pathways [1,2], and by changing their target protein’s

localization, stability, and function, they modulate

protein–protein interactions in an evolutionarily con-

served fashion [3-6]. Based on homology—thus overall

fold—and their catalytic mechanism human

intramembrane-cleaving proteases are divided into four

families. Despite the importance of the cellular func-

tions each family, at least in humans, only comprises a
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few members. Rhomboid proteases represented by five

human members are serine intramembrane proteases

with a core structure comprising six transmembrane

(TM) domains. They are involved in cancer develop-

ment and progression as well as in neurodegenerative,

metabolic, and infectious diseases [7]. Site-2-protease

(S2P) is a zinc metallo-intramembrane protease cleav-

ing membrane-bound transcription factors of the basic

leucine zipper family, like ATF6 and SREBP-2 [8,9].

Due to its unique structure organized in multiple TM

domains and alternating hydrophilic regions, human

S2P represents its own protease family [10]. Rce1, a

seven TM domain intramembrane protease, is the only

known human glutamyl protease and processes preny-

lated proteins by cleaving their C-terminal amino acids

[11,12]. The intramembrane aspartyl proteases are

represented by two protease families, the presenilin

(PS) family and the signal-peptide-peptidase (SPP)/sig-

nal-peptide-peptidase-like (SPPL) family, and comprise

a core structure of nine TM domains [13,14]. All of

them contain a membrane-embedded aqueous active

site characterized by a conserved YD motif in TM

domain 6 and a GxGD motif in TM domain 7. There-

fore, they are often referred to as GxGD-type prote-

ases [15,16]. An equally conserved PAL motif in TM

domain 9 completes the common hallmarks of intra-

membrane aspartyl proteases. Presenilins contribute to

the release of the amyloidogenic Ab-peptide from the

amyloid precursor protein (APP) and are involved in

the development of Alzheimer’s disease [17]. The

related signal peptide peptidase (SPP) and its homo-

logues, the signal peptide peptidase-like (SPPL) prote-

ases were first identified based on sequence similarity

to presenilins [18]. In the human genome, two mem-

bers of the PS family, PS1 and PS2, and five members

of the SPP/SPPL family, SPP, SPPL2a, SPPL2b,

SPPL2c, and SPPL3, are encoded [2,18,19,20]. SPP/

SPPL proteases are highly conserved and can be found

in eukaryotes, including fungi, protozoa, plants, and

animals, highlighting their physiological importance

[21]. Among the five members in mammals, SPPL3 is

the most conserved, with human and murine proteins

even being identical [22]. SPP/SPPL proteases are

involved in glycosylation of secretory and membrane

proteins [22], vesicular transport [23], and various

pathophysiological mechanisms such as carcinogenesis,

atherosclerosis [2], immune cell development and func-

tion and also play a role in plasmodia causing malaria

[24-27]. The importance of SPP/SPPL proteases in the

physiological context is discussed in an accompanying

review in this issue [28].

Signal peptide peptidase and SPPL2c are localized

to the ER membrane [23,29]. SPPL3 is found in the

Golgi, SPPL2a in lysosomes/endosomes and SPPL2b

at the plasma membrane [30-33]. SPP and SPPL2c

exhibit a potential ER retention motif (KKXX) in

their cytoplasmic C terminus [18,34]. For SPPL3, a

localization to medial/early-trans-Golgi was shown by

immunofluorescence [31]. However, whether specific

sorting signals are responsible for this subcellular

localization remains enigmatic as GOLPH3/

GOLPH3L-mediated retrieval did not contribute to

the localization of endogenous SPPL3 [31]. SPPL2a is

found predominantly in the lysosomes/late endosomes

targeted there by a tyrosine motif in its cytoplasmic C-

terminal tail [35]. It was shown that the canonical

tyrosine-based sorting motif of the YXXø type [36] at

position 498 is sufficient for its localization to the lyso-

somal/late endosomal compartments [35]. This motif is

recognized by adapter protein complexes, which can

recruit clathrin [36,37].

Unlike presenilin in the c-secretase complex, SPP/

SPPL proteases do not seem to need additional com-

plex partners for activity. Signal peptide peptidase is

catalytically active upon purification [38,39], and by

overexpression of SPPL proteases, the processing of

the respective substrates increases [21]. That does,

however, not answer the question whether they need

to form higher molecular weight assemblies, for exam-

ple, by dimerization or tetramerization. In addition,

potential additional cellular co-factors needed for pro-

teolytic activity of SPP/SPPLs could simply be highly

abundant and, thus, not limiting for catalytic activity

in overexpression systems [21]. Moreover, interacting

partners important for regulatory functions might not

be essential for catalytic activity. In line with this, dis-

tinct high-molecular-weight complexes have been

reported for SPP. It forms stable homodimers and can

be isolated as homo-tetramers of 200 kDa weight. An

apparent functional diversification in 500 kDa com-

plexes with proteins including Derlin 1 and the Ring

finger protein RNF139 (TRC8) was reported

[38,40,41]. Blue native gel purifications also suggest

SPPL2c to be part of higher molecular weight assem-

blies. SPP and SPPL2c both reside in the ER but seem

to occur in the distinct heterocomplexes [23]. For the

remaining family members SPPL2a, SPPL2b, and

SPPL3 so far, no conclusive data on complex forma-

tion are available.

Substrates of SPP/SPPL proteases

It is intriguing that with five members in the SPP/

SPPL family the number of so far identified substrates

with approx. 30 is relatively small. This might on the

one hand argue for a very specific most likely
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regulatory cleavage rather than a general removal of

membrane proteins [42] as it has been suggested earlier

for the presenilin family [43], for which to date more

than 100 substrates have been identified [44,45]. On

the other hand, lack of appropriate techniques for sub-

strate identification might have hampered the

discovery of additional substrates. While members of

the presenilin family typically favor membrane protein

substrates with type I (Nout) orientation, known sub-

strates of the SPP/SPPL family (Table 1) either have a

type II membrane orientation with the N terminus local-

izing to the cytoplasm (Nin) and the C terminus to the

Table 1. Currently known SPP/SPPL substrates and their membrane orientation.

Substrate Protease Type Reference

ASPH SPPL3 Type II [33]

ATP1B1 SPPL3 Type II [33,118]

CANT1 SPPL3 Type II [33,118]

CD74 SPPL2a, SPPL2b NTF from type II [24,25,26,94,141], [32]

CHST11 SPPL3 Type II [118]

CHST14 SPPL3 Type II [33,118]

CHST3 SPPL3 Type II [118]

CKAP4 SPPL3 Type II [33,118]

CLN5, full-length SPPL3 Type II [142]

CLN5, NTF SPPL2b, SPPL3 NTF from type II [142]

CYB5A SPP Tail-anchored [46]

Dectin-1a/CLEC7a SPPL2a, SPPL2b NTF from type II [96]

Epithin/PRSS14 SPPL2b NTF from type II [143]

FAM20B SPPL3 Type II [118]

FAM234A SPPL3 Type II [118]

FasL SPPL2a NTF from type II [75]

FKBP8 SPP Type II [144]

FVenv SPPL2a, SPPL2b NTF from type III [53]

FVenv, full-length SPPL3 Type III [53]

GGT7 SPPL3 Type II [33,118]

Glycosyltransferases GnT-V (MGAT5), b3GnT1,

b4GalT1, EXTL3 and many others

SPPL3 Type II [22,33,118,145]

HCV polyprotein (viral) SPP Type II [146]

HO-1 (Heme oxygenase 1) SPPL2c, SPP Tail-anchored [23], [46,47]

HS3ST3A1 SPPL3 Type II [118]

HS6ST1 SPPL3 Type II [33]

HS6ST2 SPPL3 Type II [33]

IgSF1 SPP Multipass [147]

ITM2B (Bri2) SPPL2a, SPPL2b NTF from type II [89]

LOX-1 SPPL2a, SPPL2b NTF from type II [97]

Membrin SPPL2c Tail-anchored [48]

NDST1 SPPL3 Type II [33,118]

NRG1 type III SPPL2a, SPPL2b NTF from type III [54]

OGFOD3 SPPL3 Type II [33,118]

Phospholamban SPPL2c Tail-anchored [23]

POMK SPPL3 Type II [33,118]

RAMP4 SPP Tail-anchored [46]

RAMP4-2 SPP, SPPL2c Tail-anchored [23,46]

Signal peptides from various targets like prolactin

(bovine), HIV gp160 (viral), calreticulin (rat), MHC

class I (HLA-A*0301), pro-calcitonin, and many others

SPP Signal peptide [148-152]

SLC3A2 SPPL3 Type II [33,118]

SrbA (A. nidulans) SPP Type II [153]

Syntaxin-5 SPPL2c Tail-anchored [48]

Syntaxin-8 SPPL2c Tail-anchored [23,48]

Syntaxin-18 SPP, SPPL2c Tail-anchored [48,154]

Teneurin/ODZ1 SPPL2a NTF from type III [155]
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extracellular space/lumen or are type IV tail-anchored

proteins [23,46,47,48]. Tail-anchored (TA) proteins are a

diverse class of membrane proteins that are post-

translationally inserted with their C terminus into mem-

branes by a specialized machinery [49]. Initially, only

SPP and SPPL2c had been shown to cleave type IV pro-

teins [50], but very recently the type IV SNARE proteins

VAMP1-4 have been added to the list of SPPL2a and

SPPL2b substrates [51]. All four VAMPs are so-called

R-SNAREs with a smaller cytosolic domain than Q-

SNAREs. Except for the SPPL3 substrates, most SPP/

SPPL substrates undergo ectodomain shedding to

remove the bulky C-terminal domains (Table 1) [1]. In

line with this, type IV TA proteins exhibit only short C-

terminal amino acid stretches facing the lumen or extra-

cellular space and, thus, resemble type II proteins that

have undergone shedding. Their larger N-terminal

domain co-localizes with the cytosolic C-terminal

domains of the SPP/SPPL proteases. In vitro experiments

point to a size limitation of the cytosolic domain of

cleavable type IV proteins [51,52]. In addition, a few

polytopic type III membrane proteins have been found

to be substrates to cleavage by SPP/SPPL proteases

(Table 1). However, also in this case SPP/SPPL

proteases hydrolyze the TM helix, which spans from an

N-terminal cytoplasmic site to the C-terminal luminal

site. Hence, the substrate exhibits the same orientation as

the single-pass TM domains [53]. Mostly these sub-

strate’s TM domains have been released from the full-

length protein by an independent proteolytic cleavage in

a neighboring loop domain ([53,54].

SPPL3 releases the catalytic domain of a variety of

type II glycosyltransferases to the Golgi lumen from

where they are secreted, thus deactivating their func-

tion in the Golgi [22,31,55]. Whether this is a part of a

signaling process or a degradation/downregulation

mechanism has been extensively discussed and remains

to be unraveled [42].

Structure of SPP/SPPL proteases

Known structure of presenilins and AI

predictions as a model for the SPP/SPPL family.

The 3D structure of a PS1- and PS2-containing c-
secretase complex was determined experimentally by

cryo-EM [56,57]. Utilizing sequence alignments, sec-

ondary structure predictions, and inhibitor studies, it

was postulated that the 9 TMD catalytic core of the

SPP/SPPL family should exhibit a very similar overall

fold as the homologous presenilins [18,34,58,59,60,61].

Early after the homology-based discovery of SPP/

SPPLs, it was postulated that their orientation in the

membrane is inverted compared with presenilins. Thus,

the N-terminal domain of SPP/SPPLs was suggested

to be located on the luminal or extracellular site while

the C-terminal domain is cytoplasmic [18-20]. This was

confirmed through utilization of artificial glycosylation

sites throughout the different proteases. Murine SPP,

SPPL2a, SPPL2b, and SPPL2c are N-glycosylated on

their N-terminal domains, and SPPL2b contains an

additional consensus sequence for N-glycosylation in

the hydrophilic loop between TM6 and TM7, while

SPPL3 is nonglycosylated [23,34]. To our knowledge,

the exact sites of glycosylation have not been con-

firmed for human SPP/SPPL so far. It is hypothesized

that the membrane topology of the SPP/SPPL family

causes their selectivity for type II and type IV TM

protein substrates [62] [42]. PS1 and PS2 exhibit an

inverted membrane orientation and consequently

Table 1. (Continued).

Substrate Protease Type Reference

TMEM106b SPPL2a, SPPL2b NTF from type II [156]

TNFalpha, full-length SPPL2a Type II [101]

TNFalpha, NTF SPPL2a, SPPL2b NTF from type II [30,74]

TOR1AIP1 SPPL3 Type II [33]

Transferrin receptor 1 SPPL2b Type II [95]

TRH4 SPP Multipass [157]

VABP SPPL2c Tail-anchored [48]

VAMP-1 SPPL2a, SPPL2b Tail-anchored [51,52]

VAMP-2 SPPL2a, SPPl2b Tail-anchored [51,52]

VAMP-3 SPPL2a, SPPL2b Tail-anchored [51,52]

VAMP-4 SPPL2a, SPPL2b Tail-anchored [51,52]

VAMP-8 SPPL2c Tail-anchored [48]

VAPA SPPL2c Tail-anchored [48]

Xbp1u, full-length SPP Type II [40,158]

Zrt1 (S. cerevisiae) SPP Multipass [159]
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prefer type I (Nout) substrates like Notch, APP,

LDLR, CD44, and DNER [43,63,64].

To date, only a very low-resolution structural data-

set for SPP [41] and no experimental data at atomic

resolution for any member of the SPP/SPPL family

are available. Since 2020, structure prediction has been

revolutionized by the machine learning-based artificial

intelligence (AI) AlphaFold [65]. Its prediction for

large parts of the catalytic core of the five human

SPP/SPPL family members displays a very high confi-

dence level of > 90% (Fig. 1). Despite a common fold

in the catalytic core, SPP/SPPLs differ substantially

from presenilins as well as among each other in their

N-and C-terminal domains and in the TM domain-

connecting loop regions.

N-terminal domains

Members of the SPPL2 subfamily comprise long glyco-

sylated N-terminal domains that show a predicted

globular fold that SPPL3 lacks completely (Fig. 1).

SPPL2 proteases are therefore considered a subfamily

within the SPP/SPPL family [42]. By sequence homol-

ogy, the SPPL2 N-terminal domains were annotated in

the UniProt database as a protease-associated (PA)

domain [66,67]. Despite experimental structural data

being available for such evolutionary highly conserved

PA domains [67], a blast against deposited structures

in the pdb database with the N-terminal sequences of

SPPL2s does not pick up the deposited PA domain

structures. However, we analyzed the AlphaFold pre-

dicted structures of the N-terminal SPPL2 domains in

more detail (confidence level of the core up to > 90%)

and performed a manual 3D alignment with part of

the PA domains from Bacillus subtilis zinc aminopepti-

dase (pdb code: 6HC6) and human ferritin receptor.

The resulting overlay strongly supports the prediction

of the N-terminal SPPL2 domains exhibiting the

canonical PA domain fold (Fig. 2). The N-terminal

domain of SPP is special as it is much shorter and not

homologous to that of the SPPL2 subfamily, and no

defined fold is predicted for it.

It had been speculated whether the globular N-

terminal domains of the SPPL2 subfamily fulfill a sim-

ilar role as Nicastrin in the c-secretase complex [50].

Nicastrin forms a lid on top of the catalytic site [56]

and is discussed to act like a gatekeeper involved in

substrate recognition [68]. However, Nicastrin with a

total of 78 kDa and four domains, namely a short

cytoplasmic domain, a TM domain, the Nicastrin

small lobe and the Nicastrin domain [56,66], is much

larger than the N-terminal domains of the SPPL2

subfamily with an approximate molecular weight of

16 kDa. Nonetheless, PA domains are known to be

Fig. 1. AlphaFold predicted overall structures of all human SPP/SPPL family members. The active site aspartates and PAL motive are

marked in red. The N-terminal PA domains and C-terminal domains are labeled in orange, and dashed lines indicate domains with no distinc-

tive fold prediction. TM domains are depicted in olive and the predicted substrate entry site between TM domains 2 and 6 in dark salmon.

Predicted N-glycosylation sites are marked with orange dashed tree-like structures. Structure representations were drawn using PYMOL

[160].
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involved in substrate recognition and dimerization pro-

cesses [67], yet their function in SPPL2 proteases still

remains enigmatic.

C-terminal domains

The C-terminal domains differ even much more

between the individual SPP/SPPL family members and

are less well conserved across species. While SPPL3

and SPPL2a comprise only very short C-terminal

sequence stretches of approximately 25 and 35 resi-

dues, respectively, these domains are much longer with

predicted approximately 90 residues in SPPL2b and

165 residues in human SPPL2c. For neither of them, a

distinctive fold is predicted and no similarities to

known domains in other proteins are annotated in the

database. Such intrinsically disordered regions (IDRs)

point to a diverse folding upon binding of interaction

partners as well as potential post-translational modifi-

cations in vivo. Those regions in many cases serve as

‘molecular hubs’ as part of regulatory and signaling

processes as they are available for interaction with a

wide array of macromolecular targets [69]. We there-

fore speculate that these domains fold in vivo in the

presence of interaction partners in the cytoplasm yet

to be identified. For SPPL2b, potential phosphoryla-

tion sites are predicted in this region [70,71]. For

murine SPPL2c, two isoforms differing in their C ter-

minus were reported [23,42] and SPP displays a short

C-terminal domain with two potential phosphorylation

sites on a predicted a-helix [65,70,71]. For comparison,

the C termini of human presenilin 1 and 2 are short

helices at the membrane/extracellular interface buried

partly into APH-1 as shown by experimentally solved

structures [56,57].

Loop structures

A striking difference between the family members is

their loop structures connecting the transmembrane

domains. The largest difference is observed in the loop

connecting the two active site TM domains 6 and 7,

which faces the luminal/extracellular side in the SPP/

SPPL family and the cytosolic side in the PS family.

In each member, it contains many cross-species con-

served residues, but the length and predicted fold of

the loops differ between family members. In PS1, part

of the respective sequence was shown to form a small

hybrid b-sheet with the substrate apparently upon its

binding [72,73]. Interestingly, the residues forming this

b-sheet with the substrate in c-secretase are not con-

served between the PS family and the SPP/SPPL fam-

ily members, but are conserved within the SPP/SPPL

family (Fig. 3). No substrate complex structure of PS2

is available, but human PS1 and PS2 exhibit an identi-

cal sequence in this stretch. The short b-sheet is also

predicted for SPP/SPPLs in this very position by

AlphaFold (Fig. 3). The AI predicts this b-sheet to be

present in the apo-form of the enzyme. This might in

our opinion however be a prediction bias as the pro-

gram has learned from all published structures of the

c-secretase complex—supposedly including the two

substrate-bound complexes. The fact that the Alpha-

Fold model of apo-presenilin 1 also exhibits the b-
sheet hints to such bias and highlights the necessity for

atomic resolution experimental structural data.

Catalytic cleft architecture

The catalytic cleft architecture of the SPP/SPPL family is

expected to be very similar to that of PS1. The catalytic

function of the two conserved aspartyl residues has been

verified by various mutational studies. The aspartyl to ala-

nine mutation of either residue or both leads to an inacti-

vation of the enzymes [18,30,53,74,75,76]. The general

mechanism for peptide bond hydrolysis suggested for the

intramembrane aspartyl proteases is similar to that known

from soluble aspartyl proteases. In an acid–base system,

one of the aspartates acts as a base and the other as an

acid. Through the deprotonated aspartyl residue, the water

molecule is polarized and initiates enzymatic catalysis by a

nucleophilic attack on the carbonyl group of the scissile

bond [77,78], while the protonated aspartyl residue polar-

izes the peptide carbonyl. A gem-diol intermediate forms

before the aspartic residues return to their initial proton-

ation state and the proteolytic products are released [77].

Fig. 2. Predicted 3D structures of SPPL2 N-terminal domains

exhibit a PA domain fold. 3D alignment with core parts of experi-

mentally solved structures from PA domains (pdb codes 6HC6,

6OKD) with AlphaFold model for SPPL2a N-terminal domain. Struc-

ture representations were drawn using PYMOL [160].
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Consistent with this, the cryo-EM structure of presenilin

in complex with the transition-state analogon L-685,458

reveals positioning of the inhibitor in the middle between

the catalytic aspartates [79]. In the activated conformation,

the two catalytic aspartates were assumed to be aligned in

close proximity [79]. The glycine residues in the GxGD

motif have been suggested to allow for a fluctuation of the

distance between the two catalytic aspartates [6]. Very

recently, it was shown that substrate binding to presenilin

changes the protonation state of the catalytic residues and

the acidity of the aspartate in the GxGD motif is shifted.

It acts as the general acid during the cleavage mechanism,

while the aspartate in the YD motif acts as general base.

The PAL motif stabilizes the deprotonated state of the lat-

ter upon substrate binding [77]. In the SPP/SPPL family,

the PAL motif is found in a highly conserved QPALLY

sequence stretch in TM domain 9 [2,34]. The close conser-

vation of the active site architecture within the presenilin

and the SPP/SPPL family implies a similar mechanism of

peptide bond hydrolysis.

Inhibitors of SPP/SPPL proteases

Inhibitor studies have improved knowledge of the catalytic

cleft architecture, potential allosteric sites, and substrate

recognition mechanisms. For c-secretase, inhibitors (GSIs)

and modulators (GSMs) have been developed [80]. The

GSIs are either transition-state analoga (TSA)-like Sema-

gacestat (LY-450139) and Avagacestat (BMS-708163) or

noncompetitive non-TSAs like L-685,458, N-[N-(3,5-

difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester

(DAPT) and others [80,81]. In an attempt to alter the

cleavage product spectrum, GSMs like E2012 have been

developed [82]. E2012 binds at an allosteric site 25 �A from

the active site and consequently is able to synergize with

active site binding GSIs to improve inhibition of substrate

cleavage [79].

For the SPP/SPPL family, not many specific inhibi-

tors are available. However, as expected by homology,

they are inhibited to some extent by c-secretase inhibi-

tors, and thus, knowledge about the binding modes

derived from experimental structural data of such

inhibitors in complex with c-secretase might be trans-

ferred to some extent to the SPP/SPPL family. So far,

all solved ligand–enzyme complex structures with

GSIs show them occupying the pocket where the

hybrid b-sheet is established. This holds true for TSA

(L685,458) and non-TSA (Semagacestat, Avagacestat,

MRK-560 [83]), for which structures in complex with c-
ecretase have been solved [57,79]. It was speculated

that they inhibit the enzyme by impeding the hybrid b-
sheet formation [79]. Despite the occupation of the

same pocket, they are differentially recognized [79].

L-685,458 inhibits the activity of SPP, SPPL2a, and

SPPL2b to some extent [61,84,85,86]. It is thus tempt-

ing to speculate it would occupy the equivalent posi-

tion in SPP. However, inhibitors might even act in a

distinct way on SPP/SPPL and c-secretase, since the

selective SPP inhibitor 1,3-di-(Ncarboxybenzoyl-L-leu-

cyl-L-leucyl) amino acetone ((Z-LL)2-ketone) does not

show an inhibiting, but product spectrum modulating

activity on c-secretase [86-88]. SPPL2a and SPPL2b

are also inhibited by (Z-LL)2-ketone [21,89]. In con-

trast, it does not inhibit SPPL3, the closest homolog

of SPP [53]. SPL-707 is a selective inhibitor for

SPPL2a, which to a much lesser extent inhibits

SPPL2b, and even SPP, and c-secretase [90]. Similar to

SPPL3, SPPL2c was not inhibited by (Z-LL)2-ketone,

but by DAPT in an assay with the model substrate

RAMP4-2 [23]. Based on this inhibitor profile, it was

suggested that SPPL2c exhibits crucial differences in

its active site architecture compared with the other

family members [23], which are not inhibited by DAPT

[22,53]. It had previously been discussed whether

DAPT could act as an allosteric inhibitor [91]; how-

ever, the cryo-EM structure proposed by Yang et al.

[79] suggests its binding in the active site rather at the

same position as the other peptidomimetic inhibitors.

For DAPT however, the authors draw the conclusion

Fig. 3. Homology of substrate binding b-strand in aspartyl intra-

membrane proteases. The site of initial substrate cleavage is

marked with a red arrow, and the hybrid b-sheet (PS) and the pre-

dicted hybrid b-sheet (SPP/SPPL) are highlighted in dashed gray

boxes. (A) Cryo-EM structure of the PS1/Notch complex. Amino

acids potentially contributing to b-strand formation in the enzyme

are not conserved between PS and the SPP/SPPL family as indi-

cated by comparison of PS1/2 and SPPL2b. (B) AlphaFold predicted

apo-structure SPPL2a. Amino acids potentially contributing to b-

strand formation in the human SPP/SPPL family exhibit a high

degree of conservation. Structure representations were drawn

using PYMOL [160].
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that it must occupy the same pocket as the other GSIs

after re-evaluation of a previously solved structure of

c-secretase in complex with DAPT. Yet, conclusive

high-resolution electron density for the inhibitor is still

lacking, and thus, the evaluation of structural differ-

ences in the active sites of SPPL2c versus SPPL2a and

SPPL2b remains enigmatic. In addition, all studies on

inhibitory profiles and kinetics are greatly hampered

by the fact that for the SPP/SPPL family no in vitro

assay is available as of yet.

Cleavage mechanisms of aspartyl
intramembrane proteases

The specific cleavage or degradation of a protein upon

intra- and extracellular stimuli is referred to as regulated

proteolysis. Within the plane of the membrane, such pro-

cess is termed regulated intramembrane proteolysis (RIP)

[3,92]. Prior to the cleavage of the TM domain by an

intramembrane protease, the ectodomain of the mem-

brane protein substrate is removed by so-called canonical

sheddases. The remaining membrane-bound fragment typ-

ically comprises a rather short ectodomain and can be

subject to intramembrane proteolysis [93]. In the context

of type II membrane substrates, intramembrane proteases

of the SPP/SPPL family release a short C-terminal peptide

to the extracellular/luminal space. This cleavage is termed

initial cleavage, which is not precise and mostly happens

on different cleavage sites in a defined cleavage region.

The counterpart of the secreted peptide still comprises the

substrate’s TM helix and might—at least in some cases—
be further processed by the intramembrane protease by

consecutive cleavages in the substrate’s TM domain. An

N-terminal fragment termed intracellular domain (ICD) is

then released to the cytosol [54,74,94,95,96,97]. Note that

c-secretase releases the fragments exactly in the opposite

way, the C-terminal ICD to the cytosol and the

N-terminal peptide to the extracellular/luminal space [45].

The consecutive cleavage mechanism has been demon-

strated for some presenilin substrates, like CD44, APP

and Notch [98-100] as well as for the SPPL2a and SPPL2b

substrate TNFa [74,101] and is referred to as processivity

(Fig. 4). For all other known aspartyl intramembrane pro-

teases, cleavage sites are only known for either the secreted

peptide or the ICD and it remains to be demonstrated

whether SPP, SPPL2c, and SPPL3 also utilize a similar

cleavage mechanism and whether processivity is com-

monly applied to PS, SPPL2a, and SPPL2b substrates.

Substrate recognition

Substrates of intramembrane proteolysis encounter

their protease in the membrane most likely via lateral

diffusion. A gating mechanism for the transfer of the

TM domain into the active site has previously been

identified using structural and biochemical analysis of

S2P and rhomboids [102-104]. Based on biochemical

analysis and structural data from presenilin in complex

with Notch, it was concluded that substrate lateral gat-

ing to the active site happens at TM domains 2 and 6

of presenilin [56,72,105,106,107]. The postulated sub-

strate entry site of presenilin is projected onto the

structure predictions for SPP/SPPL proteases (Figs 1

and 4). In the experimentally determined c-secretase
structures, the substrates Notch (V1721 to R1761) and

APP (L688 to K726) interact with the enzyme via a

short helix or loop in their N-terminal juxtamembrane

domain, followed by their transmembrane domain and

a b-strand in their C-terminal juxtamembrane domain.

The N-terminal stretch interacts with a hydrophilic

cavity of Nicastrin and the C-terminal b-strand on the

opposite side of the membrane and forms the hybrid

b-sheet with the b-strand of c-secretase (see above)

next to its active site [72,73]. The b-sheet induced upon

substrate binding might be responsible for positioning

of the substrate’s backbone in the active site aligning

the two catalytic aspartic acid residues for activ-

ity [72,73]. Note that despite the inverted topology of

presenilin, the relative positioning of the substrate’s

TM helix and, thus, of the initial cleavage site region,

to the catalytic aspartates is most likely equivalent in

SPP/SPPL proteases as the substrates are also inverted

(Fig. 4). The PAL motif in TM domain 9 of PS1

seems to play a crucial role in substrate recognition by

triggering the alignment of the two aspartates, since

within the membrane plane the localization of the cata-

lytic aspartate residues and the PAL motif is close

[56,72,108,109]. Supporting this, mutations within

the PAL motif of presenilin significantly affected the

catalytic activity of the enzyme [108-111]. While the

PAL motif of presenilin faces the cytoplasmic side

[56], it localizes to the luminal part of TM domain 9

in the SPP/SPPL family. AlphaFold structural predic-

tions suggest that the PAL motif of SPP/SPPL prote-

ases is also close to the catalytic center (Fig. 1) and

it was shown by mutation to be required for SPP

activity [109].

For quite some time, it was believed that aspartyl

intramembrane proteases in general strictly require a

short luminal/extracellular domain not exceeding

a length of about 60 amino acids for efficient catalysis

[112,113]. This assumption still holds true for substrate

processing by c-secretases, SPPL2b and SPPL2c, while

with a more detailed analysis of SPPL3 it became evi-

dent that intramembrane aspartyl proteases are also

capable of directly accepting substrates with long and
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bulky ectodomains [22,33,53]. Initial cleavage of these

substrates by an intramembrane protease leads to the

secretion of a large, often glycosylated protein fragment

and release of a cytosolic ICD. Intramembrane prote-

ases catalyzing such cleavages are termed noncanonical

sheddases [93]. In addition to SPPL3, which acts as a

bona fide noncanonical sheddase, SPP and SPPL2a

have also been demonstrated to act as a noncanonical

sheddases on individual substrates or in certain con-

texts, although they predominantly accept substrates

with short ectodomains in the context of RIP [40,101].

The reason for the exclusion of substrates with large

and bulky ectodomains by presenilins is attributed to

Nicastrin [114]. The N-terminal extracellular residues

of APP and Notch C-terminal fragments interact with

the same cavity in Nicastrin in the 3D structures [72,73]

pointing to a recognition mechanism in this area.

Nicastrin is however located on the opposite site of

the enzyme when compared to the N-terminal domain

of the SPPL2 proteases (Fig. 4). However, due to the

inverted topology of enzymes and substrates, recogni-

tion of the substrates in the luminal/extracellular space

would be possible in both cases, but with the opposite

side relative to the active site (Fig. 4). In terms of posi-

tion relative to the active site of the enzymes, the sub-

strate interaction region of Nicastrin would hence

rather correspond to the C-terminal domains of SPP/

SPPL proteases.

Since SPPL3 is lacking the N-terminal domain

(Fig. 1), a lack of steric hindrance might be responsible

Fig. 4. Comparison of topology and substrate cleavage sites of c-secretase (cryo-EM structure) and SPPL2a (AlphaFold prediction). Sub-

strate representations result from predictions, and shedded ectodomains are faded. Active site aspartates and PAL motive are depicted in

red; N-terminal PA domains, C-terminal domains, and Nicastrin in orange; and TM domains of PS1 and SPPL2a in olive. APH-1 and PEN-2

are shown in gray. The substrate entry between TM domains 2 and 6 (predicted for SPPL2a) is highlighted in dark salmon. The dashed red

arrow indicates the direction of processivity, and the catalytic site of the enzyme is marked by a dashed red circle. Structure representations

were drawn using PYMOL [160].
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for acceptance of substrates with large ectodomains.

However, this raises the question how full-length

TNFa can enter the catalytic site of SPPL2a bypassing

the steric exclusion of its N-terminal domain. It may

be speculated that large movements of the TNFa ecto-

domain support the entry, but experimental proof for

this hypothesis is so far missing.

Co-localization of enzyme and substrate is crucial

for successful peptide bond hydrolysis. For quite some

time, it was believed that co-localization of a given

substrate with an intramembrane protease, when

depicting the correct membrane orientation and the

correct ectodomain length, is sufficient for cleavage.

However, processing by intramembrane proteases

seems to be highly specific as most membrane proteins

are not turned over [6]. This might be attributed to the

requirement of previous shedding by specific proteases

like ADAMs (A Disintegrin And Metalloproteinase),

constituting a specific upstream recognition step com-

bined with a less specific cleavage of the remaining

membrane-bound fragments by the intramembrane

proteases [6,115,116].

Supporting this view, an elegant study with endoge-

nously tagged SPPL3 ruled out that the intra-Golgi

co-localization alone would be sufficient for SPPL3 to

cleave a given type II Golgi protein, like GOLM1

whereas well-established substrates were shown to be

cleaved under the same setting. [31]. Hence, the

authors conclude that sequence-intrinsic substrate

properties are required for substrate recognition. This

is well in line with observations by others, as for

instance SPPL2a and SPPL2b selectively recognize R-

SNAREs while none of the analyzed Q-SNAREs were

processed despite the presence in the same compart-

ments [51].

Initial cleavage

For c-secretase, the site of initial substrate

cleavage was trapped in the substrate complex struc-

tures for Notch and APP. It takes place three residues

upstream of the hydrophilic sequence on the C-

terminal (intracellular) side of the TM domain. This

region adjacent to the cleavage site is forming the

hybrid b-sheet with enzyme, and the intervening

sequences between the substrate transmembrane helix

and the b-strand harbor the primary cleavage site

(Fig. 3) [72,73]. Initial cleavage sites have been mapped

for some SPP/SPPL substrates [42,55]. In these, the

initial cleavage sites are also located just a few residues

upstream of a hydrophilic stretch. Hence, it is tempt-

ing to speculate that also here the primary cleavage

site would be located between such b-strand and the

TM helix. Experimental structural data as proof are

however missing. Sequence analysis of cleavage regions

so far has not led to the identification of consensus

recognition sequences within the substrate’s TM

domains [2,55,117]. For SPPL3, it was suggested that

an M or Y in position P1 might be favorable [33];

however, a recent N-terminomics study on the enzyme

did not detect a consensus sequence [118]. Yet, the

authors found that when substrate and SPPL3 are

located in the same compartment, the exchange of the

TM domain can turn a nonsubstrate to a substrate

[119]. They conclude that despite the lack of a clear

consensus sequence structural properties of the TM

domain determine cleavability. For c-secretase, it has

also recently been shown that an artificial nonsubstrate

poly-leucine TM domain was turned into a substrate

by reintroducing a few selected residues from the APP

TM domain [119]. The lack of a consensus sequence is

a fundamental difference to most soluble proteases

and holds true for many other intramembrane prote-

ases, including the members of the presenilin family

[120]. Only for some rhomboids, a specific amino acid

sequence which may represent a recognition site for

cleavage was reported [121]. Based on this, there is an

ongoing debate whether intramembrane proteases

rather sense structural properties like flexibility and

dynamics of the TM domains or other 3D structural

motifs in their substrates [6,101,115]. In this context, it

was shown that certain amino acids in the substrate’s

TM helix, although not being part of a consensus rec-

ognition site, do influence cleavage efficiency and can

even promote distant shifts in cleavage product spec-

trum [101,122,123,124]. The reduction of helical con-

tent within the substrate seems to be a general

requirement for limited proteolysis [117,125] and is

also reported for intramembrane proteolysis [72,73].

Soluble proteases are known to cleave in flexible loop

regions and b-strands [117,126]. Natural mutants in

the APP-gene prone to early development of Alzhei-

mer’s disease have been analyzed [45,127], and in sev-

eral studies, mutations were introduced into the TM

domain of substrates for rhomboids, c-secretase, SPP,
SPPL2a, SPPL2b, and SPPL3 to decipher the underly-

ing mechanisms [6,55,101,122,128,129,130,131,132].

The overarching observation is that changes leading to

a greater flexibility in the TM helix mostly increase

cleavage [6,115,122]. This goes well in line with the

general requirement for local unfolding in proteolysis.

In this scenario, exchange of residues at the cleavage

sites that decrease helix flexibility, like exchanges to P,

should increase cleavage, whereas exchanges to L,

which are known to stabilize a-helices, should result in

decreased cleavage [101,120]. This was confirmed for
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noncanonical shedding of TNFa by SPPL2a, since sev-

eral proline substitutions resulted in increased initial

cleavage, while exchanges to leucine had the opposite

effect [101]. Interestingly, the strongest increase in

cleavage was observed when the TNFa TM helix was

destabilized distant from the initial cleavage site, while

stabilization directly at the initial cleavage site resulted

in the most prominent reduction of cleavage [101]. A

similar effect was observed for a cleavage site in APP

(G38) where the mutation to leucine reduced the cleav-

age [120]. However, a mutation to proline at the same

position also resulted in cleavage reduction and it was

hence concluded that the overall substrate positioning

was altered, since a proline at the cleavage site could

present too much of a sterical hindrance for efficient

cleavage [120]. In line with that a proline substitution

at the SPPL2a, initial cleavage site in TNFa had no

quantitative impact on processing but changed the

product spectrum [101]. For the SPPL2b substrate

Bri2, only one out of four glycines of the TM helix

was identified as critical for cleavage efficiency [122].

Mutation of this glycine to alanine resulted in signifi-

cantly reduced cleavage [122]. Also for SPP, a helix

break in the substrate was shown to be required for

efficient initial cleavage [130].

Processivity

The precise mechanism underlying the processive

cleavage following the initial cleavage still remains

enigmatic. To date, two models exist: In the unwinding

model, the substrate’s TM helix would unwind succes-

sively allowing for the next cleavage sites to reach the

catalytic aspartates, while in the piston model the sub-

strates maintain helical conformation and are shifted

to the active site [72,133,134]. The later model would

require the hydrophilic sequences N-terminal of the

TM domain (extracellular in case of c-secretase; intra-
cellular in case of SPP/SPPL proteases) to enter the

membrane [72] and, thus, the unwinding model with

successive b-strand formation accessibility of new

cleavage sites was favored [72]. In line with this sub-

strate unwinding theory, some mutations were shown

to influence the processivity of GxGD proteases. In

the logic of processivity, the shifts toward larger frag-

ments might be due to hindered processivity whereas

the disappearance of fragments could result from very

fast processive cleavage, which prevents detection in

the experiment. For c-secretase, processive substrate

cleavage is best studied for Notch and APP [99,100]

and SPPL2a and SPPL2b were reported to act on

TNFa in a processive manner [62,101]. Some muta-

tions leading to early onset Alzheimer’s disease localize

to the TM domain of APP, affect the processivity of

c-secretase and, thus, cause a shift in ratio of the dif-

ferent product species, resulting in an increase of lon-

ger and more aggregation-prone Ab species [45].

Impact of flexible hinges in the substrate on

cleavage and processivity

Apart from local unwinding, helical stability could

also impact substrate processing by other mechanisms.

A flexible hinge region within the substrate’s TM

domain was suggested as crucial factor for efficient

cleavage [6]. Such flexible hinges might, for instance,

allow for proper substrate positioning in the catalytic

center, facilitate entry of the substrate to the active site

or support large-scale bending movements resulting in

close substrate–protease interaction [6]. Flexible hinge

regions or curve-inducing bendings have been identi-

fied in the TM domains of several substrates of intra-

membrane proteolysis such as APP [120,135,136],

TatA [6,137,138], TNFa [101], and GnT-V [55]. Muta-

tions at the proposed hinge in TNFa from AGA to

helix stabilizing LLL reduced initial cleavage by

SPPL2a [101]. In line with this, a proline mutation in a

proposed hinge region in the TM domain of GNT-V,

a substrate of SPPL3, resulted in increased initial

cleavage of the substrate [55]. Computational analysis

of 23 SPPL3 substrates indicates a modest enrichment

of glycine residues in the middle of the cleavable TM

domain [118]. A recent study including deuterium

exchange experiments on the APP substrate’s TM

domain analyzed the effect of mutations on the N-and

C-terminal part of the substrate’s TM domain as well

as of a hinge region between them. The authors con-

clude that flexibility in N-terminal part as well as in

the hinge region promotes efficient cleavage. Flexibility

in the C-terminal part of the substrate was suggested

to allow for the formation of a cleavage-competent

state near the active site [119]. These observations are

in our opinion in line with the unwinding model

[72,134] and nicely correlate with the data on TNFa
and SPPL2a [101].

Outlook

Despite significant progress in understanding the struc-

ture and function of the SPP/SPPL family, there are

still several challenges that need to be addressed to

fully comprehend their catalytic mechanisms and phys-

iological roles. A major limitation is the reliance on

mainly cellular assays to study substrate recognition

and processing, which makes it difficult to obtain

accurate kinetic and affinity data. One reason for this
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is the localization of these proteases in membranes

of different subcellular compartments, which hampers a

purely biochemical analysis of their interaction

with substrates. To overcome this limitation, the

development of in vitro proteolysis assays analogous to

c-secretase [139,140] is necessary to unambiguously vali-

date substrates, nonsubstrates, and inhibitors. Such

assays with at least partially purified proteases and sub-

strates could be extended to include interacting proteins

that may influence substrate recognition and processing.

While the AI predictions exhibit a high confidence

level in the core of the enzymes, there is still a lack

of information on the parts involved in substrate

recruitment and potential higher molecular weight

complex formation.

To finally completely decipher substrate recognition

and cleavage mechanism of aspartyl intramembrane

proteases, more high-resolution 3D structural data

would be most valuable.

The elucidation of a structure-based substrate recog-

nition mechanism could facilitate the process of sub-

strate identification and enable a more comprehensive

understanding of the molecular mechanism and physi-

ological function of this protease family.
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