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Abstract. We propose an enhanced optical interferometer based on tailored non-classical light generated
by nonlinear dynamics and projective measurements in a three-level atom cavity QED system. A coherent
state in the cavity becomes dynamically entangled with two ground states of the atom and is transformed
to a macroscopic superposition state via a projective measurement on the atom. We show that the resulting
highly non-classical state can improve interferometric precision measurements well beyond the shot-noise
limit once combined with a classical laser pulse at the input of a Mach–Zehnder interferometer. For a
practical implementation, we identify an efficient phase shift estimation scheme based on the counting of
photons at the interferometer output. Photon losses and photon-counting errors deteriorate the interferom-
eter sensitivity, but we demonstrate that it still can be significantly better than the shot-noise limit under
realistic conditions.

1 Introduction

Measurement is a process of transferring information from
an object under investigation to the detector, be it a ruler,
a radio telescope, or a human eye. For the measurement to
be precise, the detector must be susceptible to small per-
turbations induced by the object. This susceptibility can
be quantified by ∆θ – the best resolution attainable during
the measurement of a physical quantity θ. With N being
the number of interferometric resources, i.e., the number
of entities in which information about θ is encoded during
the measurement, and in absence of quantum correlations
between those entities, there is a lower bound to the value
of ∆θ, namely the shot-noise limit (SNL). It states that
∆θ > 1√

N
[1]. Overcoming the SNL can become crucial

for the detection of small perturbations such as minuscule
variations in the gravitational acceleration experienced by
an ultra-cold coherent Bose gas [2,3] or the detection of
the gravitational waves [4–6].

To improve beyond the SNL, one must introduce tai-
lored quantum correlations to the detector system [7,8].
Quantum states can be more susceptible to perturbations
than the classical ones and, in principle, the resolution
∆θ = 1

N can be achieved. While this Heisenberg-limited
sensitivity was considered a largely academic concept,
major progress has recently been made in the prepara-
tion of many-body entangled states potentially useful for
ultra-precise quantum metrology. This goal was achieved
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by manipulating a highly-controllable and coherent Bose
gas to create spin-squeezed states [9–16] or systems with
correlated atomic pairs [17–20].

Light interferometers also improve their performance
when operating on non-classical electromagnetic fields
[21,22], for instance, formed by pairs of photons obtained
in the parametric down conversion [23–25]. The Mach–
Zehnder interferometer (MZI) fed with a coherent beam
through one port and a squeezed vacuum through the
other one yields the sub-shot-noise (SSN) scaling of ∆θ
with the intensity of light [26,27].

Here we discuss a quantum non-demolition (QND) pro-
tocol [28–31] involving an optical cavity mode interacting
with a single atom. We demonstrate that this protocol
yields a non-classical state of light [32] that combined with
a coherent pulse at the input of an optical interferome-
ter can provide SSN sensitivity of the phase estimation.
This result persists in the presence of realistic cavity losses
and moderate imperfections of the photon counting at the
output of the interferometer. Our protocol provides an
alternative to parametric down conversion, allowing for
larger entanglement for applications where low intensities
are desirable.

A successful QND protocol generating non-classical
light has been introduced at ENS Paris [28] using
the superconducting microwave cavities. Similar propos-
als followed in the optical regime [29–31,33,34] where
the generated field emitted from the resonator can be
directly analyzed or used for interferometric protocols,
as studied in the following. Recent technical progress
in microwave amplification and detection also allows
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Fig. 1. Three level atom system in a cascade configuration.
The transitions a → b and b → c are allowed, while a → c
is forbidden. The cavity field of frequency ν is detuned from
a→ b transition by an amount ∆ = ν − ωab.

for direct microwave photon detection in the co-planar
waveguide cavities [35].

The manuscript is organized as follows. First, we
describe the method of generating non-classical state
of light via the QND protocol. Next, we introduce the
interferometric scheme and characterize its sensitivity.
Subsequently, we introduce two distinct sources of noise
to the interferometric scheme. Finally, we provide the
concluding remarks.

2 Generation of a non-classical cavity field
via atom-based QND measurements

Consider a three-level atom in a cascade configuration
shown in Figure 1. A π/2 pulse puts the atom into a
coherent superposition

|ψA〉 =
1√
2

(|b〉+ |c〉), (1)

which passes through the cavity where it interacts with a
single-mode electromagnetic field

|ψL〉 =
∞∑
n=0

Cn|n〉. (2)

Here, |Cn|2 is the probability of having n photons, each
with a frequency ν detuned by ∆ from the a− b transition
frequency ωab. We assume that the detuning is large, i.e.,
4g2n
∆2 � 1, where n is the number of photons, and g is

the atom-light interaction strength. In this regime, the
population of the state a is negligible, while the lower
lying state b attains a dispersive phase shift

|b〉 → e−inU0t|b〉, (3)

where U0 = g2

∆ , with t being the interaction time. At the
output of the cavity, a π/2 pulse mixes the levels b and c.
The result is an atom-light entangled state

Fig. 2. A schematic illustration of the interferometric setup.
An atom passes a cavity where it interacts with a single mode
of electromagnetic field. After the atom leaves the cavity, its
internal state is measured, and only one result is kept. In effect,
a non-classical pulse of light |ψL〉 is created and outcoupled
from the cavity. The beam mixes with a coherent state |β〉 on
a first beam-splitter of the MZI.

|ψA+L〉 =
∞∑
n=0

Cne
−inU0t

2 |n〉

⊗
[

sin

(
nU0t

2

)
|b〉+ cos

(
nU0t

2

)
|c〉
]
. (4)

Finally, the state of the atom is measured in the b/c basis
and only the outcomes where the atom is found in one
of the states, say |b〉, are selected. Assuming that initially
the light is in a coherent state with the amplitude α, i.e.,

Cn = e−
|α|2
2

αn√
n!
, (5)

we obtain that after the complete sequence the state of
light is

|ψL〉 =
1√
A

∞∑
n=0

Cne
−inU0t

2 sin

(
nU0t

2

)
|n〉, (6)

where A = 1
2

[
1− e|α|2(cos(U0t)−1) cos

(
|α|2 sin(U0t)

)]
[36].

Note that the state from equation (6) can be expressed as
a sum of two coherent states, i.e.,

|ψL〉 ∝ |α e−iU0t〉 − |α〉. (7)

Clearly, for U0t = π, we obtain a superposition of two
coherent states with opposite amplitudes (Schrödinger’s
cat state). In the following, we discuss an interferometric
sequence utilizing the non-classical features of the state
(7) for the SSN interferometry (Fig. 2).

https://epjd.epj.org/
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3 Interferometric scheme and
characterization

We take the MZI with the port a fed with |ψL〉 from
equation (6) and the port b with a coherent state |β〉,
namely

|ψ〉 = |ψL〉a ⊗ |β〉b. (8)

The MZI transfers the state (8) into

|ψ(θ)〉 = e−iθĴy
[
|ψL〉a ⊗ |β〉b

]
, (9)

where Ĵy =
(
â†b̂− b̂†â

)
/2i is expressed in terms of the

annihilation operators â and b̂ for the two arms. When
the phase θ is estimated at the output ports of the inter-
ferometer, the sensitivity is bounded by the Cramer–Rao
Lower Bound (CRLB)

∆θ >
1√
m

1√
Fq
, (10)

where Fq is called the quantum Fisher information (QFI)
[37]. The Fq describes how much information about the
parameter θ can be deposited in a quantum system, and
for a pure state transformed according to equation (9), it
takes a particularly simple form

Fq = 4
[
〈Ĵ2
y 〉 − 〈Ĵy〉2

]
, (11)

where the mean values are calculated using the output
state (9). Equation (10) tells that the higher the value of
the QFI, the better the sensitivity can be achieved.

At every instant of time, the value of the Fq can be
optimized by a proper choice of the complex amplitude
β = β0e

iϕβ of the coherent beam. To read out which phase
ϕβ is optimal (with the amplitude β0 fixed), we first note
that the precision of the phase estimation is directly linked
to the distinguishability of the neighboring states |ψ(θ)〉
and |ψ(θ + δθ)〉, i.e.,

|〈ψ(θ)|ψ(θ + δθ)〉|2 ' 1− (δθ)2

4
Fq. (12)

According to this formula, the higher the Fq, the more
the two states differ, and in consequence, the parameter
θ can be estimated with a higher resolution [37,38], see
equation (10). On the other hand, the same quantity (12)
can be approximately written using the Wigner function
of the state |ψL〉 defined as

W(α) =

∫
d2λ

π2
〈ψL|eλ(â

†−α∗)−λ∗(â−α)|ψL〉. (13)

If the intensity of the coherent beam is high, the MZI
transformation can be approximated by replacing the

Fig. 3. Wigner function of the state (6) displayed at U0t = π/4
(a), U0t = π/2 (b), U0t = 3π/4 (c) and U0t = π (d). Direc-
tions perpendicular to fringes indicate the direction of optimal
interferometer.

annihilation and the creation operators for the mode b
with the complex numbers β and β∗, i.e.,

e−iθĴy = e−
θ
2 (â†b̂−b̂†â) ≈ e−

θ
2 (â†β−β∗â). (14)

This is the displacement operator which shifts the Wigner
function in the complex plane by the distance β0θ

2 in the
direction set by the phase ϕβ . To complete the picture, we
notice that the scalar product from equation (12) can be
expressed in terms of the overlap of the Wigner functions

|〈ψ(θ)|ψ(θ + δθ)〉|2 = π

∫
d2αW(α)W(α+ δα), (15)

where δα = β0·δθ
2 . By combining equations (12) and (15),

we conclude that high values of the QFI require low
overlap of the Wigner functions of the neighboring states.

We now plot W for four different instants of time
U0t = π

4 ,
π
2 ,

3π
4 , π, see Figure 3. The emergence of the

interference fringes at later times signals the growing
quantumness of the state, and to obtain a minimal over-
lap one should shift the Wigner function in the direction
where the change (i.e., the gradient) of W is maximal.
According to equation (14) this condition determines the
phase ϕβ of the coherent beam. For instance, the panel (b)
of Figure 3 indicates that the phase should be ϕβ = −π4 ,
while for (d) it should be ϕβ = π to make a shift along
the imaginary axis.

When the overlap between the two components of the
state (7) is negligible, the Fq optimized at every instant
with respect to the phase ϕβ reads

F opt
q ≈ nα + nβ + 4nαnβ sin2(U0t), (16)

https://epjd.epj.org/
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Fig. 4. (a) Quantum Fisher information as a function of the rescaled cavity-atom interaction time U0t for different phases of
the coherent amplitude of the field |β〉. The black solid line is optimized over the phase ϕβ at every instant. Also, we show
the QFI for ϕβ = π/2 (dotted blue), ϕβ = π/4 (dot-dashed green) and ϕβ = 0 (dashed red). The solid orange line is the limit
one could achieve with 10.3 dB squeezed vacuum field (see Ref. [39]) on one port and a coherent state on the other one given
nα +nβ = 20. (b) ϕβ = 0 case: the Fc calculated with equation (19) at θ = 0 (solid black) and θ = π/13 (dotted blue), compared
with the QFI (dashed red). All results for nα/β = 10. Here and in the following figures, the gray area represents the classical
interferometry regime.

where nα/β is the mean number of photons in each beam.
On the other hand, if one keeps ϕβ = 0 for all times, the
QFI is well approximated by the formula

F
ϕβ=0
q ≈ nα + nβ + nαnβ sin2

(
U0t

2

)
. (17)

Figure 4a shows the QFI calculated with different choices
of ϕβ where for the reference we also show the limit that
one could achieve with a squeezed vacuum state [39].
The gain from the Wigner-function approach is that we
now intuitively understand what is a proper choice of the
coherent state |β〉 at every moment of the evolution.

From now on we fix ϕβ = 0 and take α ∈ R in all the
calculations. This is not always an optimal choice, and the
comparison of equations (16) with (17) reveals a factor
of four deterioration of the QFI in the maximal value,
nevertheless, the purely real coherent amplitude β retains
the Heisenberg scaling.

Once the coherent field is fixed and the ultimate sen-
sitivity provided by the CRLB from equation (10) is
evaluated through the equation (17), we proceed to cal-
culate the sensitivity in a particular estimation protocol
based on the measurement of the number of photons n
and m in the output ports. With the probability

pnm(θ) =
∣∣∣〈n,m|ψ(θ)〉

∣∣∣2, (18)

at hand, we use the maximum likelihood estimator to
deduce the value of θ [40]. The sensitivity in such case
is bounded by the CRLB (10) with the QFI Fq replaced
by

Fc =
∑
n,m

1

pnm(θ)
(∂θpnm(θ))

2
. (19)

Fig. 5. The probability of measuring a fixed number of photons
(N = 20) as a function of θ (polar variable) and relative photon
number ∆N (radial variable). (a) and (b) correspond to real
β with U0t = π/2 and U0t = π. (c) Used imaginary β and
U0t = π, (d) is the polar grid. Darker regions correspond to
larger probability.

In Figure 4b, we display the Fc calculated with nα/β = 10
photons as a function of the interaction time for two differ-
ent values of the phase. We observe a strong dependence
of the FI on θ, however the numerical tests for different
α’s and β’s reveal that at θ = 0 the FI is smaller than
the QFI by only (nα + nβ)/2 and retains the Heisenberg
scaling.

We now further inspect the strong dependence of the
FI on θ. To this end, we pick a subspace of a fixed num-
ber of photons n+m = 40 and plot the probability from

https://epjd.epj.org/
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Fig. 6. (a) Behavior of the QFI in presence of cavity losses during state preparation for nα = 10, nβ = 10, κ = 0.05. The solid
black line is the exact QFI calculated with equation (21) and the blue dotted line is the QFI calculated with the approximated
formula equation (23). The dashed red line is the QFI for κ = 0. (b) The QFI as a function of α and the interaction time. The
dashed-red line represents the condition t = τ , and the dotted-blue line is the cut shown in (a).

equation (18) as a function of θ and the relative number
of photons ∆n = n−m. Figure 5 reveals the presence of
fine structures in the probability, which translate to high
interferometric sensitivity [41,42].

4 Impact of imperfections

4.1 Cavity losses

We now examine the impact of the photon losses from
the cavity during the state-preparation. To this end, we
incorporate a Lindblad term into the Heisenberg equation
for the atom-light density matrix in the dispersive regime,
namely

∂t%̂ = − i
~

[
Ĥ, %̂

]
+ L[%̂]

= − ig
2

∆

[
â†â|b〉〈b|, %̂

]
+ κ

(
{â†â, %̂} − 2â%̂â†

)
, (20)

where κ is the loss rate. Just as previously, after the atom
leaves the cavity a π/2-pulse mixes the two internal states
|b〉 and |c〉, and subsequently the state of the atom is mea-
sured with only the |b〉 results kept. As a result of this
sequence, due to decoherence a mixed state of light %̂L(t)
is generated, contrary to the ideal case of equation (6).

First, we characterize the performance of an interfer-
ometer in the presence of losses with the QFI which for
mixed states is

Fq = 2
∑
i6=j

(λi − λj)2

λi + λj
|〈i|Ĵy|j〉|2, (21)

where λi/j and |i/j〉 are the eigenvalues and the eigenvec-
tors of the density matrix propagated through the MZI
[37], i.e.,

%̂(θ) = eiθĴy [%̂L(t)⊗ |β〉〈β|] e−iθĴy . (22)

Although analytical predictions similar to those from
equation (16) are not possible anymore, numerical inquiry
reveals the presence of a time scale τ associated with the
strength of losses and the interactions, κτ(U0τ)2nα = 1.
When t . τ the numerical results for the QFI are well
fitted with

Fq ≈ nα + nβ + exp

[
−2

3

(
t

τ

)3
]

sin2(Uot)nαnβ . (23)

This simple phenomenological formula illustrates how
the nonlinear term responsible for the SSN scaling is
suppressed by cavity losses. As the time grows, the sup-
pression is more significant. Also, when the intensity nα
is high, the losses are more harmful.

A comparison between the approximate expression from
equation (23) and the complete calculation (21) is shown
in Figure 6a. Figure 6b shows in addition that increasing
nα does not increase the QFI. Clearly, for a given set of
parameters, there is an optimal choice of the interaction
inside the cavity and the intensity nα. The formula (23)
allows for a rough estimate of the working point of the
interferometer.

Knowing the lower bound for the sensitivity, we focus
again on the estimation from the measurement of the
number of photons. First, we plot the photon number dis-
tribution of the signal outgoing from the cavity. In the
absence of losses, the interaction of the cavity field with
the atom imprints oscillations in this distribution (see the

https://epjd.epj.org/
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Fig. 7. (a) Effect of the photon losses on the number distribution of the light field with initially nα = 10, outgoing from the
cavity at U0t = π for an ideal case (solid black line) and κ = 10−2 case (dotted blue line). (b) The FI calculated at θ = 0 with
nα/β = 10 for: κ = 0 (dashed red), κ = 10−3 (dotted blue) and κ = 10−2 (solid black). Dot-dashed green line is the κ = 10−3

case optimized over θ for every instant.

sine function in Eq. (6)). These fine structures, drawn for
the no-loss case with a solid black line in Figure 7a drive
the high performance of this particular estimation scheme
[7,41,43]. Even moderate losses smooth out these struc-
tures, as depicted by the dotted blue line and shown in
more detail in Figure 8. This indeed has a profound impact
on the sensitivity, as confirmed by the numerical calcu-
lations of the Fisher information shown in Figure 7b for

κ = 0, 0.01 and 0.001 (in units of g
2

∆ ). For each case, the FI
is calculated with the formula (19) where the probability
from equation (18) is generalized to mixed-states

pnm(θ) = Tr [|n,m〉〈n,m|%̂(θ)] , (24)

and %̂(θ) is defined in equation (22). We notice that not
only the Fc decreases, but also as soon as κ 6= 0, it reveals
fast oscillations as a function of the interaction time. The
value of the FI varies strongly as θ is changed, though this
dependence can be smoothed out by choosing an optimal
θ at each time, as shown by the green line in Figure 7b.

4.2 Imperfect photon counting

The other imperfection we consider is the finite resolution
of the photon counting at the output ports of the MZI.
We model this effect by the convolution of the ideal-case
probability from equation (24) of measuring n′ and m′

photons with a Gaussian distribution

P(n,m|θ) = N
∞∑

n′,m′=0

p(n,m|θ)e−
(n′−n)2+(m′−m)2

2σ2 , (25)

where σ accounts for the level of uncertainty, and N is the
normalization constant.

We display the FI calculated with three different values
of σ = 0, 1 and 5, see Figure 9. Clearly, imperfections
in the photon counting have a significant impact on
the sensitivity. Characteristically for any implementa-
tion of non-classical states, improvement beyond the SNL
requires highly efficient detectors.

Fig. 8. The probability of measuring N = 20 photons as a
function of θ (polar variable) and relative photon number ∆N
(radial variable). Panels depict state (7) with U0t = π for an
ideal case (a) and for a lossy case with κ = 10−2 (b).

5 Implementation

The scheme for tailored creation of entangled states of a
light mode and a single atom was proposed decades ago
[44] and experimentally first implemented at ENS Paris
using the superconducting microwave cavities [45,46]. The
subsequent measurement of the atomic population allows
to implement it as the QND measurement of the light
field, giving highly non-classical states [47]. These ideas
were extended to the optical regime [48,49] where the long-
distance propagation of photons can be readily exploited
to implement basic quantum information processing tasks
[50]. Using excitation sequences, tailored superposition of
propagation photon states were engineered with a single
atom in a cavity [51] as well as controlled nonlinear phase
shifts [52].

As we focus here on the interferometric applications, the
optical regime where photons can be efficiently extracted
from the cavity and recombined on a beam-splitter is
the operating regime of choice, though the physics for
microwaves does not differ. The need to extract photons
from the cavity directly reveals the twofold role of the pho-
ton leakage. On the one hand, during the state preparation
photon leakage is detrimental to the atom-field entangle-
ment as it provides potential information on the state of

https://epjd.epj.org/
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Fig. 9. Fisher information with imperfect detectors for nα/β =
10 and σ = 0 (dashed red), σ = 1 (dotted blue) and σ = 5
(solid black).

the system [53] and therefore limits the interferometric
precision. At first sight this suggests fast state prepara-
tion during which photons are not detected outside the
cavity.

On the other hand, the non-classical field inside the cav-
ity is transformed to entangled photons solely via leakage
through the mirrors, which acts as beam splitters [32].
Clearly, it is crucial to extract enough photons out of the
mode to create a propagating non-classical wave-packet.
For cat states (achieved in the ideal preparation scheme), a
single photon lost from the wave-packet renders the out-
put state classical [30]. However, as we will show next,
the SNL can still be beaten in presence of an imperfect
extraction once we are dealing with more classical states,
as those obtained after the imperfect preparation scheme
discussed above.

In order to examine how the imperfect extraction of
photons from the cavity affects QFI, we propose a simple,
albeit qualitative, model in which the extracted photons

are treated as a new mode b̂. In this picture, one of the
mirrors in the cavity serves as a beam-splitter which can
absorb photons, and thus the time evolution of the density
matrix is

∂t%̂ = − i
~

[
ĤT , %̂

]
+ L [%̂]

= −iκT
[
â†b̂+ b̂†â, %̂

]
+ κ̃

(
{â†â, %̂} − 2â%̂â†

)
, (26)

where κT is the rate at which the photons are extracted
from the cavity, and κ̃ is the loss rate corresponding to
photons being absorbed within the mirror and therefore
not reaching the input of the interferometer. The behav-
ior of the QFI as a function of the preparation time t and
the extraction time τ is shown in Figure 10 for a fixed
value of the mirror absorption rate κ̃. As expected, the
QFI increases as a function of transfer time up to the
moment when all the photons are transferred: κT τ = π/2.
For τ = 0 the cavity output does not reach the interfer-
ometer, which is then fed with a single coherent state,
resulting into a value of QFI corresponding to half of the
SNL (compare with Fig. 6a). For κT τ = π/2, there is an
optimal atom-cavity interaction time U0t for the largest

Fig. 10. QFI for Mach–Zehnder interferometer as a function of
interaction and transfer time. QFI is calculated by taking the
light extracted from the cavity on one of the interferometer’s
input port and a coherent field on the other one. Here κT =
0.049 and κ̃ = 0.001. At transfer time equal to π/2κT all the
photons are extracted from the cavity, and at interaction time
π/U0 the cat state is created in the cavity.

QFI to be achieved, the latter depending obviously on the
absorption rate κ. Comparison with Figure 6a reveals (i)
that the optimal interaction time is decreased to a finite
absorption rate, (ii) the largest QFI at the optimal time
is also decreased as a result of the additional decoherence
channel. As anticipated, the SNL can still be overcome by
using more classical intracavity states.

As already discussed, the transfer rate κT and the cavity
loss rate κ affecting the state preparation are not indepen-
dent in general and actually essentially of the same order
in a standard Fabry–Perot cavity. It is thus clear how this
situation requires an optimisation of the coupled quanti-
ties κ and κT . To avoid such timing problems, an ideal
experimental setup would include the possibility for fast
control of the photon loss rate, keeping it as small as pos-
sible during the preparation stage, while switching it to a
much higher value after the state is prepared [54]. While
technically not easy, the cavity decay and coupling can be
quickly tuned in nano-fiber setups with evanescent wave
coupling. This simultaneously minimizes unwanted mir-
ror losses allowing for optimized photon out-coupling and
routing [55].

6 Conclusions

We have studied a Mach–Zehnder interferometer oper-
ating with the highly non-classical light generated by
nonlinear atom-light interaction in a high-Q Cavity QED
system. An injected coherent light pulse gets dynami-
cally entangled with the internal atomic state, so that
a subsequent projective measurement of the latter yields
a highly non-classical state of light, conditioned on the

https://epjd.epj.org/
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measurement outcome. When this state is injected into
one port of the MZI in conjunction with coherent light at
the other port, the system exhibits a strongly enhanced
phase sensitivity significantly surpassing the SNL. To test
and benchmark a practical measurement procedure, we
suggest and numerically evaluate an efficient phase shift
estimation scheme based on number resolved counting of
photons at the interferometer output. Photon losses and
photon counting errors deteriorate the interferometer sen-
sitivity, but it proves to still be significantly better than
the shot-noise limit under realistic conditions.
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