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Abstract
The non-linear coupled particle light dynamics of an ultracold gas in the field of two independent
counter-propagating laser beams can lead to the dynamical formation of a self-ordered lattice
structure as presented in (2016)Phys. Rev.X 6 021026.Here we present newnumerical studies on
experimentally observable signatures tomonitor the growth and properties of such a crystal in real
time.While, at least theoretically, optimal non-destructive observation of the growth dynamics and
the hallmarks of the crystalline phase can be performed by analyzing scattered light,monitoring the
evolution of the particle’smomentumdistribution via time-of-flight probing is an experimentally
more accessible choice. In this workwe show that both approaches allow us to unambiguously
distinguish the crystal from independent collective scattering as it occurs inmatter wave super-
radiance. As a clear crystallization signature, we identify spatial locking between the two emerging
standing laser waves, together creating the crystal potential. For sufficiently large systems, the system
allows reversible adiabatic ramping into the crystalline phase as an alternative to a quench across the
phase transition and growth from fluctuations.

1. Introduction

Adilute cold atomic gas illuminated by a laser far from any optical resonance experiences an optical potential
with particles drawn to high or low intensity regions depending on the sign of their linear polarizability. The
induced forces on the particles are accompanied by a forward scattering phase shift of the laser beams as well as
coherent Rayleigh scattering of light. In the ultracold regime of a BEC, atoms and photons are completely
delocalized and the interaction is a collective process from the point of view of a photon aswell as an atom [1–3].
It turns out that for a cold and large enough sample of atoms, the coupled effectivemeanfield equations for
bosonic atoms and light arewell suited to correctly capture the essence of this complex collective non-linear
dynamics [4, 5]. In particular, theGross–Pitaevski (GP) equation for atomic quantumgas and theHelmholtz
equation for photons can be used to efficiently describe the coupled nonlinear time evolution in the system.
Within this approximation, the atoms simply form a dynamic refractive index for the light proportional to their
density, while the light creates a dynamic optical potential proportional to the local light intensity guiding the
particles. Note that thesemeanfield descriptions of atoms and fields automatically account for the collective
enhancement of coherent atomic scattering (Bose enhancement), which has been studied in depth in a series of
experiments and theoreticalmodels of of single laser excitation fromone side. The same is true for stimulated
light scattering. As has been known for quite awhile now, even for single side illumination by a strong enough
laser light, the systemhas an instability leading to growing density fluctuations, acceleration and heating [3, 6–9].

In a recent work [4], we studied a refined setup using a new symmetric and translation invariant geometry of
an elongated large cloud of atoms in thefield of two counter-propagating independent lasers. To prevent the
a priori appearance of an optical lattice, we assume that the two lasers have either orthogonal polarization or
sufficiently different frequency to prevent interference and coherent light scattering between the two injected
fields. Interestingly, we found that despite the fact that no a priori laser intensity or atomic densitymodulation is
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present, above a certain pump intensity threshold, the system spontaneously enters an ordered crystalline phase.
In this limit, the particles form a periodic density grating and the two laserfields develop into two standing
waves, which are coupled and synchronized by the atoms. This can be viewed as a crystallization of the particles
fromhomogeneous to periodic order together with the lightfield. Obviously in this phase transition, the system
has to choose an effective wave vector and break its continuous translational symmetry. Since nomode selective
boundaries are present, a continuumoffieldmodes have to be taken into account allowing for the emerging
wave-vector, which governs the spatialmodulation of the light intensities and the properties of collective
excitations in the formof phononwave packets propagating through the crystal. This distinguishes this
crystallization from related cavity-based effects as collective atomic recoil lasing [8, 10–13] or transverse self-
structuring by a reflectingmirrorwhere the Talbot length determines the ordering length scale [14].

The focus of [4]was to present the basic physicalmechanisms leading to this type of crystallization
instability. However,many important questions concerning the experimental observability of the crystal phase
and the connection tomatter wave superradiance weremissing in [4]. These questions are addressed in the
following. Therefore, we present new results to study the onset of crystallization and the characteristics of the
buildup of the crystal.We performdetailed simulations andmodify ourmodel to contain relevant features for
present experimental setups. Therebywe identify common and distinct features of conventionalmatter wave
super-radiance [6]. One particular goal is of course to identify and study clearly distinguishing experimental
signatures of crystal formation. Such signatures can be found fromdirect time-dependentmeasurements of the
scattered or transmitted light on the one hand, or by analyzing the particle’smomentumdistribution via time-
of-flight (TOF) studies on the other. An extended characterization of the properties of the crystalline phase is
another central aim of this work. From a practical point of view, it seems thatmany of those features are not so
easy to observe as current experiments are limited in particle number.While in principle for any particle number
an instability and ordering threshold exists, the necessary power to reach the ordering instability at sufficiently
large detuning is very high and simultaneously leads to heating and fast particle loss. This strongly limits the
observation time and accuracy of the scattered fieldmeasurements. In order to obtain some estimates of these
perturbations, we phenomenologically introduce particle loss in ourmodel equation [4] so that its effect on the
real time dynamics can be predicted.

In particular, during the initial time evolution of the system, where onlyweak light back scattering occurs,
thefields act rather independently and the predicted signals and atomicmomentumdistributions are very
similar tomatter wave superradiance [2, 5, 6]. One possible signature includes a careful analysis of the instability
threshold of a homogeneous density for single side versus symmetric pumping. In this respect, we perform very
detailed studies of the short time dynamics, varying the pump geometry from symmetric pumping for ideal
crystallization via asymmetric pumping towards the single side pump case as the standard configurationwhere
matter wave super-radiance is usually observed. Such detailed predictions should be valuable in order to
distinguish the processes, even at current experimental limitations. Indeed the onset of the predicted crystal
phase could be observed in a recent experiment which implements the proposed geometry [15].

As the atom-field crystal corresponds to an at leastmetastable ground state of the system, one aim is certainly
to prepare it as adequately as possible. Since a sudden quench leavesmuch entropy in the final crystal, an
alternative approach is the controlled adiabatic ramp into the crystalline phase. Varying the switch time from a
sudden quench across the threshold to a slow almost adiabatic ramp, we can address the created entropy via the
reversibility of the ordering dynamics. Of course, a very slow ramp increases the effect of background heating
which again increases the final entropy in the crystal. In fact, the best way to reach a clean crystal would be using a
time-dependent laser field found by optimal control algorithms [16, 17]. This is certainly interesting but goes
beyond the scope of this work.

2.Model

As a basis for our analysis we use the effectivemeanfieldmodel introduced in our previous work in [4]. Herewe
will only briefly describe itsmain properties to give a self-contained basis for our following detailed studies. For a
detailed description and derivationwe refer to section two in [4].

An extended atomic BEC interacting with two off-resonant and counter-propagating independent
electromagnetic planewaves injected from twoopposite sides (see figure 1) is studied. The two electromagnetic
fields Stark shift the atomic ground state and create an optical potential for the BEC atoms, which in turnmodify
thefield propagation as they constitute an effective density-dependent index of refraction.

The dynamics of this setup can be efficiently described by a coupled systemofmeanfield equations. The BEC
dynamics is well approximated by theGPmeanfield regime, where the condensate wavefunction y ( )x t,
satisfies the equation:
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Herem denotes the particlemass, gc is the effective atom–atom interaction strength,N denotes the atom
number,A is the transversal BEC cross section and ( )V xopt stands for the optical potential generated by the
electromagnetic fields. The treatment of the dynamics is restricted to one dimension, i.e. we assume the
dynamics in the y and z directions is frozen due to the transverse confinement of the BECby an external trapping
potential. Actually, theGaussian pump laser beams could in principle provide such a potential, but we refrain
from this complication in ourmodel and assume laser beamsmuch broader than the BEC. Such a one-
dimensional treatment is only valid if the BEC’s chemical potentialμ ismuch smaller than the characteristic trap
frequency m w y z, .

Within this limit the optical potential, which determines the BECdynamics in thr x direction, can bewritten
as

a= - + +( ) [∣ ( )∣ ∣ ( )∣ ] ( )V x E x E x V 2opt L
2

R
2

ext

whereαdenotes the atomic polarizability. Thefirst term corresponds to an optical dipole potential in the low-
saturation regimewhere ( )E xL,R are the twofield envelopes of the electromagnetic fields
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with thewavenumber k0 of the incoming beams and the BEC’s susceptibility c( )x . The susceptibility depends
again on the condensate’s density via
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where y ( )x t, is the solution of(1) and e0 denotes the free space permittivity.Vext is an externally prescribed
potential chosen as a square box potential for computational convenience.

Again, the constantα in equations (3) and(4) denotes the absolute value of the real part of the atomic
polarizability. Hence, the absoluteminus sign in(3) indicates (far off-resonant) red-detuning from any atomic
transition, i.e. high field seeking atoms. In addition, this impies that the potential depth is proportional to dG∣ ∣
whereΓ is the spontaneous decay rate and δ the detuning relative to the internal atomic transition. As a result,
the potential depth scales with d -∣ ∣ 1. In the followingwewill use the dimensionless quantity

z
a

e l
a
e l
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A
n

L
5

0 0 0 0

to quantify the light–matter interactionwhere l0 is thewavelength of the incoming laser beams and the three-
dimensional density n of the homogeneous BECwhich is supposed to have length L in the x direction.

The systemdescribed by the set of equations (1)–(4) is, apart fromVext, a priori translation invariant. If one
simulates the dynamics described by this set of equations in a self-consistentmanner, i.e. updating the electric
field distribution for the corresponding BECdensity within each timestep of theGPE solution, onefinds the
following remarkable behaviour. As long as the BECdensity is homogeneous, the light fields propagate through
the samplewithout any spatialmodulation.However, we have shown that when the pump light intensity
exceeds a certain critical value, the light spontaneously crystallizes togetherwith the atoms by breaking the
translation invariance. For a detailed description of the numericalmethods used in this context, we refer readers
to appendix B of [4].

3. Real-time observation of spontaneous crystallization via back-scattered lightfields

When the driving intensity exceeds a certain critical value, smallfluctuationswill grow and break the translation
invariance. Performing a linear stability analysis of equations (1)–(4) as it is presented in [4] leads to a critical

Figure 1. Schematic view of the setup. An elongated BEC interacts with two counterpropagating planewaves of orthogonal
polarization. The beams are assumed to be far off-resonant from the atomic transition to avoid polarizationmixing.
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intensity value (in the limit  ¥L and =N const.)which depends inversely on the particle number in the
form:
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Herewe introduced the recoil energy ≔ ( )E k m2rec
2

0
2 . In the followingwewill use the quantity

l≔ ( )I cE A0 rec 0 as the natural unit for intensities.
We see that threshold(6) scales with the inverse square of the atomic polarizability a dµ-2 2 and hence

grows approximately with the square of the laser detuning from resonance. Qualitatively, this behavior can be
traced back to the non-linear nature of the interactions of the considered system. Initially, for a homogeneous
system, the backscattered field amplitude is proportional toα. This coherently backscattered field interferes with
the incoming laser, leading to an initial potentialmodulation proportional toα, which then translates into an a2

termoriginating from the non-linearity of the refractive index term in theHelmholtz equation. Note that also
the heating via spontaneous scattering exhibits the same detuning scaling; the essential route to small heating at
the threshold is a large particle number.

For intensities above the threshold a periodicmodulation of the optical potential for the atoms is formed
spontaneously and the atoms crystallize into a periodic structure together with light fields. Sincewe consider the
full electromagnetic field in ourmodel (see equation (3)) all possiblemodes can be addressed in general.
Therefore, the lattice spacing is emergent and the new solutions of(3) are planewaves of the form

= ( )E C k xexp iL,R eff propagatingwith amodifiedwavenumber


p
l

a
= + ( )k n

2
1 , 7eff

0 0

which is a result of themodified BECdensity n. Example solutions for the system’s ground state of the coupled
set of equations (1)–(4) for the density andfields are shown infigure 2. A box potential is included in theGPE
equation in order to simulate the systemboundaries. Obviously, the density stays homogeneous (up to small
modulationswhich havefinite size effects) for intensities below the threshold and so does the intensity
distribution (see figures 2(a) and (b)). Above the threshold, the continuous translational symmetry is broken and
a periodic optical potential is generated for the atoms. This spontaneous crystallization relies on the fact that a
counter propagating field component with the same polarization is generated from the BECwhich acts as a
Braggmirror for the fields. In the limit of deep local traps, the behavior very closely resembles the case of an array
ofmobile beam splitters which can be used as a toymodel to understand optical lattice dynamics, as shown in
figure5 of [18]. Hence, we expect the complete system’s reflectivity to growdrastically as soon as the intensity of

Figure 2. Steady state atomic density and light intensity as a function of position along the axis for effective coupling strength z = 0.2
and a calculation box length of l=L 30 0 which is significantly larger than the external deep trapping potential wells starting at

l= -x 12 0 and ending at l=x 12 0. The intensity threshold for this regime lies at = =I I I12.5c c
L R

0 (see also figure 3). (a)The
particle density, and (b) the light intensity below the threshold for an incoming light intensity =I I10l r,

0
0. The y-axis is rescaledwith

respect to this incoming light intensity. The inlay zooms to values close to = =I I I I 1.0l l r r
0 0 showing that only a small part of the

light is reflected. (c) and (d)The same densities for =I I200l r,
0

0, i.e. far above the thresholdwhere about half of the incoming intensity
is back reflected by the self formed lattice.
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the incoming lightfields lies above the threshold value. Indeed, both the absolute value and the phase of the
reflection and transmission coefficient demonstrate this expected behavior (see figure 3). The change in the
phase of the transmission spectrum at the threshold also implies that the threshold could also bemeasured by
phase-contrast imaging of the BEC [1, 19]. This process leads to the fact that the field amplitudes outside the
systemboundaries lie far below the initial incoming laser intensity infigure 2(d). In this case it is of specific
interest if there is a certain upper boundary value for the index of refraction. Infigure 4we plot the value of the
constant intensity part outside the BEC for different light interaction strengths ζ. Obviously, this value decreases
drastically with increasing ζ. However, due to the interaction of the two lightfields via the BEC atoms, the
intensity pattern always adjusts in away that the envelope of the total intensity is notmodulated at all. This
‘phase-locking’ of the intensity patterns will be studied inmore detail below.

The system’s properties described above lead to the fact that the phase transition from a homogeneous BEC
to a spontaneously formed crystal can be non-destructively observed bymeasuring the light reflected from the
atomic cloud. In fact, thewhole time-dynamics of the system can bemapped out bymeasuring these properties
of the lightfields.

Let us now turn to a closer analysis of the light intensity distributions. If one zooms into the region around
zero infigure 2(d), onefinds that the intensity distributions of the field coming from the right side and the field
coming from the left are not in phase (see figure 5(a)). This feature of the solution to theHelmholtz equation (3)
is a fundamental feature of the crystal phase. The fact that themaxima of the single light fields do not coincide
leads to a strong coupling of the atoms to the fields due to the large intensity gradient which is felt from each
individual lightfield. This is a fundamental difference in, for example, standard optical lattices. Interestingly, the
dynamics of the full system again leads to a potential which in total results in an overall homogeneous density
modulation. The question one can address in this context is the intensity dependence of the dephasing fD as it is
defined infigure 5(a). As one can see from figure 5(b), this dephasing becomes smaller for growing intensities
until it reaches a certain constant value.

Figure 3.Dependence of the total reflection coefficient r on the pump intensity: (a) the absolute value squared, (b) the phase of the
reflection coefficient, (c) the phase of the transmission coefficient for l=L 100 0 and all other parameters are chosen as infigure 2.

Figure 4.Relative fraction of the intensity transmitted through thewhole atomic crystal as shown infigure 2(d) for different values of
the effective coupling parameter ζwith all other parameters chosen as infigure 2(d).
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4. Time evolution of atomicmomenta fromBragg diffraction

Event though the non-destructivemeasurement of the properties of the coupled BEC-light crystal via the
reflected lightfields is a special feature of the studied system, it is of specific interest how the crystallization
process and its properties can be observedwith a standard experimental technique like TOFmeasurement. It
consists of releasing the external trapping potential and letting the BEC expand ballistically. After a certain TOF
(typically a fewms) a laser pulse is imposed from the side and the absorption image generated by the BEC is then
captured on aCCDcamera. If the far-field regime is reached for a sufficiently long time evolution, the
absorption image corresponds to the BECmomentumdistribution. Therefore, the corresponding TOF
measurement outcome for a specific solution of equations (1)–(3) can be easily obtained by calculating the
Fourier transformof the BECwave function. Infigure 6, a typical example of such amomentum space
distribution at different intensities of the crystallization procedure is shown.

Of course, the homogeneous BEC contains only the  =k 0 momentum component (see figure 6(a)).
However, for intensities above the threshold, the  k2 and highermomentum components become populated
(see figures 6(b)–(c)). This is a clear indication of an emerging periodic structure. If it is possible to verify that no
interference is possible between the two counterpropagating lightfields, thismeasure can be used as a clear
indication of an emerging crystal. As amatter of fact, the  k2 eff peak dominates among the highermomentum
peakswhich are present but small. This occurs even at strong intensities, indicating that the emerging
modulation ismostly sinusoidal.

Another important observation is that the height of the k2 eff peak relative to the central peak behaves as the
system’s reflectivity. Thismeans that the value of the ratio

h
y
y

=
=
=

∣ ( )∣
∣ ( )∣

( )k k

k

2

0
8eff

2

2

where òy y=( ) ( )k x xd e
L

kx1 i is the Fourier transformof the BECwavefunction can be used tomeasure the
crystallization threshold(6). In this case the TOFmeasurement has to be performed for several different pump

Figure 5. (a)Enlarged view of the central part of the intensity distribution of the twofields as shown infigure 2(d) exhibiting a relative
shift of the intensitymaxima (phase shift) of the left and right injected field. (b)This phase shift for the stationary ground state for
different incoming laser intensities.

Figure 6.Momentumdistribution (Bragg diffraction pattern) for the system ground state obtained via imaginary time evolution for
different pump intensities. (a) =I I10 0, (b) =I I100 0 and (c) =I I200 0. The chosen systemparameters are: z = 0.1, l=L 100 0,

=g N E1.0c rec with the height of the k=0 peak normalized to 1.
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intensities and the ratio η has to be estimated for eachmeasurement. The resulting threshold estimation is in
good agreement with the one via the system’s reflectivity ∣ ∣r 2 (see figure 7). As a result, the parameter η is an easy
to access quantity tomeasure the physical properties of the systemdirectly via the TOF image.

5. Scaling of the collective dynamics

One centrally important feature of the crystallization process is its collective nature. Since all atoms in the BEC
interact synchronously via the scattered lightfield, we expect a strong particle number dependence of the
crystallization process. In particular, themore particles the less the threshold power and saturation of the atomic
transition. The collective nature of the scattering also remains in the ordered phase above the threshold, which
can be directly verified from the reflectivity for different particle numbersN. Indeed, the total system’s
reflectivity above the threshold increases with the particle number (see figure 8) until a saturated value is reached
wheremost of the light is reflected. An interesting question here is what could one expect in the thermodynamic
infinite particle number limit? Is there an instability when all the light fromone side is reflected and the system
acts as a perfectmirror?What is the dynamics of the transition region here? For a transversely pumped casewe
previously found a fractioning of the system [20]. Unfortunately the required system sizes are too large for a
straightforward analysis here.

For current realistic experimental setups, the particle number is limited towell below 106 so that the
ordering threshold occurs at rather high saturation parameters. To better understandwhat is going on in this
case, particle loss has to be included in themodel. This designates how long the coherent collective growth of the
reflection signal persists against the reduction of reflection due to particle loss. In any case only a transient signal
can be expected. Since a full treatment of particle loss via spontaneous emission heating rates would be very
demanding, we simply introduce a phenomenological toy lossmechanism to study the effect.

Figure 7. Intensity dependence of the ratio η of the height of the central peak and versus the k2 eff peak (solid blue, left axis). One
recognizes good agreement of the growth point of this ratiowith the threshold estimation via the reflected light (dashed red, right
axis). The parameters are the same as infigure 6.

Figure 8.Particle number scaling of the reflection coefficient. The particle number of the dashed red curve is a factor of 1.5 larger and
the one for the dash dotted green curve is a factor 2.0 bigger than that of the solid blue curve. Note that the axes have been rescaled by
the corresponding critical intensities (z = 0.1, l=L 100 0, =g N E1.0c rec). The inset shows the linear dependence of the reflectivity
on the particle number.
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For this purpose, we include a loss term to theGP equation that in this case takes the form

y y y y g y¶ = + - +∣ ∣ (∣ ( )∣ ∣ ( )∣ ) ( )i H
g N

A
i E x E x 9t

c
0

2
L

2
R

2

where γ is a phenomenological parameter corresponding to the particle loss rate. Infigure 9 the effect of different
choices of γ on the total particle number is shown.Note that the introduced type of loss term takes into account
the fact thatmore particles are lost at higherfield intensities than at lower ones. This is due to the fact that in this
region, the spontaneous decay rate leading to recoilmomentawhich kick the particles out of the condensate is
larger.

Simulating the real time dynamics of(9) and examining the dynamics of the system’s reflectivity shows a
clear damping of the dynamics in time.However, the crystallization still takes place, as one can seewith the
exponential growth of ∣ ∣r 2 at short time periods infigure 10.

Finally, the particle number dependence of the index of refraction is an interesting property as well. For this
purposewe fix the loss parameter γ and calculate the time evolution of the index of refraction. From the green
dash dotted line in figure 10 one can see that the dynamics is getting faster for higher particle numbers, which is
another indication of the collectivity of the effectmentioned above. In addition, it should bementioned that the
particle number dependence of the effect can already be observed in the short time regimewithout waiting for
the crystal to fully form and stabilize. Similar curves to those presented infigure 10 have also been observed
experimentally in afirst implementation of the phase transition [15].

6. Crystal formation via a slow ramp across the phase transition

A routine path to study quantumphase transitions in ultracold gas experiments is an adiabatic ramping of the
parameters (fields) between two points in the phase diagram [21]. If enough time is given, this process is quasi-
adiabatic and reversible. Due to losses, timewas limited in our setup; we introduced a sudden switch of the laser,
and the resulting quench dynamics of the crystallization process has been studied in detail in [4]. In a quench, a
lot of interesting physics occurs at the same time, fromdensity fluctuations to phonon excitations of the atom-
light crystal. Nevertheless, the process introduces entropy and does not lead to the system’s ground state.

As an alternative, it is thus of specific interest as to under which conditions the system’s stationary ground
state can be reached by performing a sufficiently slow adiabatic passage. For this, one has to ensure that no higher
motional states are excitedwhen crossing the threshold, which implies sufficiently large ramping times for the

Figure 9.Time evolution of the particle number for different choices of the intensity-dependent particle loss rate γ as defined in(9).
g = 0.001 (solid blue), g = 0.01 (dashed red). The dotted black line corresponds to g = 0. Other parameters: = =I I I100l r 0,

l=L 10 0, =g N E1.0c rec and z = 0.1.

Figure 10.Real-time dynamics of the reflection probability for different particle loss rates and particle numbers. g = 0.0 (dotted
black), g = 0.001 (solid blue) and g = 0.01 (dashed red). The dash dotted green curve shows the dynamics for a BECwith a particle
numberwhich is a factor 1.5 bigger than for the other curves and g = 0.01. All other parameters are as infigure 9.
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system to remain in its ground state during thewhole crystallization procedure. Actually, as some of our
excitations are gapped due to long range interactions, thismight be less critical than expected. To determine
suitable ramping times, the real time evolution for simple linear intensity ramps is numerically evaluated. Please
note that no damping is taken into account in this case. The corresponding results are presented infigure 11.
Most likely better ramping functions exist and one could even think of optimal control to improve the results.

The reflection coefficients again give valuable real time information regarding the dynamics and one sees
howdifferent ramping times affect the dynamics.We see that for ramping timesmore than 20 times the inverse
recoil frequency, only little noise is left and an almost perfect adiabatic passage can be realized (see figure 11). To
quantify the quality of the adiabaticity and the number of phonon-like excitations remaining, we calculate the
variance of the reflectivity around itsmean value for the last 50 time steps and plot it as a function of the ramping
time. This variance tends to be close to zero for ramping times >t 60ramp wrec (seefigure 12).

Anothermeasure of the introduced heating and entropy through the ramp can be derived from the
reversibility of the ramping process without invoking any cooling. For this purpose, one has to look at a ramp
realizing a transition fromhomogeneous order to crystalline order and back (see figure 13(a)). For an ideal
ramping procedure, one should end back in a perfect BEC in the end. Infigure 13(b), the space–time density plot
for y∣ ( )∣x t, 2 is shown. TheBECperforms the transition fromhomogeneous to periodic order as expected. After
ramping down the laser intensity again, one can recognize that the BEC is not perfectly homogeneous but some
density and phasefluctuations remain. This could come as simple fluctuations or even lead to the formation of
vortex pairs [22]. Nevertheless, the periodic order is completely lost and only some higher excitations remain. It
can be claimed that for increasing ramping times, these higher excitations will become smaller and smaller. To
quantify the energy remaining in the system,we calculate at the dynamics of the kinetic energy

ò y= ¶∣ ∣ ( )E
m

x
1

2
d . 10xkin

2 2

Figure 11.Time dependence of total reflection ∣ ∣r 2 for different ramping times (a) =t 0ramp , (b) =t 20ramp (the insetfigure shows an
exemplary ramping function), (c) =t 100ramp . The blue curve shows the dynamics of real time evolution and the red dashed line the
corresponding imaginary time evolution. The vertical dashed black line indicates the ramping time. = =I I I200l r 0, z = 0.1,

l=L 10 0, =g N E1.0c rec.

9

New J. Phys. 19 (2017) 125002 SOstermann et al



The result is shown infigure 14. Of course, the kinetic energy initially follows the ramping procedure. The
important question is how small it is in the presence of higher excitations after the ramping process. Figure 14
shows that for w>t 100 rec the kinetic energy is very small (but not zero). This implies that the heating imposed
by the ramping process is small and that despite the small excitations the BEC can be restored. This is very similar
to the physics observed in the superfluid toMott insulator transition in a BEC. In summary, it can be posed that
the spontaneous crystallization process can be reversed if the ramping times are sufficiently large.

7. Crystallization versusmatter-wave superradiance

Laser-induced instabilities of Bose–Einstein condensates have been found and studied formore than a decade
now, startingwith seminal experiments atMIT [2]. Soon after the early experiments with BECs, it became
obvious that not only the Bose enhancement from the BECbut also stimulated light emission interpreted as self-
stimulatedKapitza–Dirac scatteringwas a keymechanismbehind these observations [3, 6]. In these
experiments, the BECwas driven from a single direction and above a certain pump threshold an instability

Figure 12.Time averaged variance of the time-dependent reflection probability for a real-time evolution simulation in the stationary
lattice regime during the last 50 time steps for different ramping times as a quantitativemeasure of adiabaticity. The parameters are the
same as in figure 11.

Figure 13. (a)Ramping function used for quasi adiabatic transfer to the crystalline phase and back. (b)Real time evolution of the
particle density during a rampwith the same parameters as infigure 11.

Figure 14.Time evolution of the system’s kinetic energy during the ramping procedure shown infigure 13(a).
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towards a densitymodulationwas found, which in turn enhanced the light scattering in analogy to collective
atomic recoil lasing [3]. This effect is known as superradiant Rayleigh scattering (SRS). As single side pumping
breaksmirror symmetry andmomentum is injected only fromone side, obviously no stablefinal state could
exist. Using cavity enhancement allows better control of these scattering processes [13] and one can even use
them for cooling [23]. This directly connects to cavity-based self-ordering phenomena for standingwave
pumping [24].

In our configuration of symmetric counter-propagating pumping along the longitudinal BECdirection,
mirror and translational symmetry ismaintained, but the fundamentalmicroscopic light–matter interaction
parameters are rather similar. It is therefore natural to askwhat is the relation between spontaneous
crystallization,matterwave superradiance and collective atomic recoil lasing? In particular, the initial phase of
the self-ordering process, where allfields act independently, should bear some similarities.

Apart from the obvious fact that a one-sided setup cannot lead to a steady-state, there seem to be deeper
differences between the two phenomena. In fact, spontaneous crystallization can be understood using only
optical potentials and dipole forces. Apart from creating initial fluctuations, no spontaneous scattering is
needed. Both the lightfield and the atoms are dynamicmeanfields which exchange energy andmomentum in
the dispersive regime. Indeed, even though the crystallization threshold(6) is proportional to the Rayleigh
scattering rate scalingwith d1 2, as is the case formatter wave super-radiance, the full dynamics of crystallization
actually depends on the effective dipole-potential depth proportional to d1 . The quadratic dependence of Ic on
δ is only due to the non-linearity of themodel, as explained in section 3.

Nevertheless, when applied to the case of single-side driving, the dispersivemodel also shows amodulation
instability qualitatively similar to the one observed in [2]. Two representative examples are shown infigure 15 .

One clearly recognizes a certain directionality in the Bragg-diffraction pattern, but in general both positive-
and negative-momentumpeaks are present. In addition, a high initial peak of the reflection coefficient in time
shows that at the point where atomic bunching occurs, a lightflash can be observed. The effect becomesmore
prominent if the atom–light interaction strength (i.e. the optical density of themedium) is high.We also note
that the pump threshold for the instability differs from the one for the symmetric driving given in equation (6)
only by a geometrical pre-factor of order one. The corresponding phase diagram is shown infigure 16wherewe
defined the beam asymmetry


-
+

≔ ( )I I

I I
. 11l r

l r

Even though themomentumdistribution of the gas and the amount of reflected light behave qualitatively
similar to the SRS experiment of [2], there is an important quantitative difference which is evidence for the
different physical origin. The time scale over which the instability appears in ourmodel is of the order of one

Figure 15. (a)BECmomentumdistribution at w =t 1.6rec for z = 0.1, gcN=1, l=L 100 0 and Il=200, Ir=0, and (b)
corresponding time-dependent reflection coefficient. (c) Same as above at w =t 0.4rec for z = 0.2, gcN=1, l=L 100 0 and Il=300,
Ir=0with (d) the evolution of the reflection coefficient.
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inverse recoil frequency w1 rec or shorter, while in the SRS experiment of [2], the instability grows on a time
scalemuch longer than inverse recoil. The difference in the nature of the instability between long and short time
scales was experimentally investigated in [6]. Amore recent experiment [5] showing qualitatively similar results
as the one presented in this work and shown infigure 15 has been performed in the short-pulse regime. A
comparison of our predictionwith the experiments of [6] and [5] suggests that themodel described in 2 and the
physics of superradiantmodulational instabilities induced by dispersive forces and not by Rayleigh scattering
should be relevant in the short-pulse regime.

8. Conclusions

Our numerical simulations illustrate that realmonitoring of the backscattered light as well as TOF studies of the
atomicmomentumdistribution contain all the essential signatures to demonstrate the concept of spontaneous
atom-field crystallization introduced in [4].While the initial growth of themomentumdistributions, apart from
a threshold shift, strongly resembles single beammatter wave superradiance, the subsequent locking of the two
standingwaves is a unanimous sign of long range order in this translation andmirror symmetric configuration.
Measuring the particle number-dependent stationary reflection coefficient clearly can be traced back to a
collective effect. Additional signatures are contained in shifts and oscillations of the atomic center ofmasswhich
can also be observed via the time dependence of the atomicmomentumdistributions.

As ourmodel includes atomic self-interaction, a quasi-stationary crystal will even formby a quench type
sudden laser turn on, but to obtain a low entropy ordered phase a slower, close to adiabatic, ramping over the
phase transition is required.We have seen that varying the ramping procedure presented in section 6 provides
insight into entropy generation during the crystallization process and shows that crystallization is reversible even
at rather fast ramp speeds.We also see that symmetric pumping reduces the instability threshold as compared to
single side super-radiance and there is strong indication of amaximumpossible value of the pump asymmetry,
underwhich an order state is at leastmetastable.

Interestingly, there appears no obvious size limit of the crystal, and for a large enough effective particle
number almost 100%of the light of both lasers will be reflectedwithout the crystal becoming unstable, as, for
example, for the transverse pump case [20]. Outside the transition regionwhere all the reflection occurs, one
simply obtains an ordinary atomic lattice from the atom-reflected beams.

At this point the central experimental challenge is preparation for a BECwith large enough particle numbers.
In fact, the available observation time until heating sets in is short in general, as an estimation in table I of [25]
shows.However, the observation time increases at least linearly with the particle number, which leads to the
conclusion that for typical atomic configurations, about 106 particles would be needed for clear signatures of
stable order.When the system size is further increased by one or two orders ofmagnitude, the formation of a
stable crystal with signatures of a gapped phonon spectrum should be possible.
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Figure 16. Stability region of the homogeneous phase showing themaximal threshold of the total laser power applied fromboth sides
for different pump asymmetries as defined in(11). The threshold is obtained by calculating the stationary state via the imaginary time
evolution of the coupledfield equations for different total intensities. z = 0.1, l=L 100 0, =g N E1.0 .c rec
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