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Exceptional points and the topology of quantum many-body spectra

David J. Luitz * and Francesco Piazza†

Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden, Germany

(Received 28 June 2019; published 28 October 2019)

We show that in a generic, ergodic quantum many-body system the interactions induce a nontrivial topology
for an arbitrarily small non-Hermitian component of the Hamiltonian. This is due to an exponential-in-system-
size proliferation of exceptional points which have the Hermitian limit as an accumulation (hyper)surface.
The nearest-neighbor level repulsion characterizing Hermitian ergodic many-body systems is thus shown to
be a projection of a richer phenomenology, where actually all the exponentially many eigenvalues are pairwise
connected in a topologically robust fashion via exceptional points.
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I. INTRODUCTION

Exceptional points are a particular type of spectral de-
generacy where groups of complex eigenvalues coalesce as
well as the corresponding eigenvectors. This is caused by
an underlying square-root singularity, leading to nontrivial
topological features [1].

Exceptional points play a crucial role in the understanding
of topological phases in non-Hermitian bands [2–12], both
in one [13–25] and higher [26–36] spatial dimensions. This
topic is very recently receiving large attention, since a direct
physical application to dissipative systems [37] with con-
trolled experimental platforms also became available [38–51].
So far, exceptional points have been explored in situations
where they arise in single-particle bands. While the addition
of interactions can lead to novel collective phenomena [52],
the emergence of exceptional points for many-body bands
remained so far unexplored.

Here we provide an example in quantum many-body sys-
tems and demonstrate that exceptional points actually appear
generically. We namely show that in an ergodic quantum
many-body system the interactions induce a nontrivial topol-
ogy for an arbitrarily small non-Hermitian component of
the Hamiltonian. This is due to an exponential-in-system-size
proliferation of exceptional points which have the Hermi-
tian limit as an accumulation (hyper)surface. The connection
between level repulsion in the Hamiltonian spectrum of an
ergodic system and the distribution of exceptional point has
been so far argued based on toy models [53] and demon-
strated at fine-tuned points of models without local degrees
of freedom which become classical in the thermodynamic
limit [54,55]. Here we demonstrate such a scenario in fully
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generic local many-body systems with no semiclassical limit
and without any fine tuning of microscopic parameters.

A remarkable and defining feature of generic ergodic
many-body system follows from the exponential proliferation
of exceptional point arbitrarily close to the Hermitian limit:
The many-body spectrum can be understood as a single
Riemann surface, where all eigenvalues are adiabatically con-
nected along smooth paths, as any of the N (N − 1)/2 possible
pairs of eigenvalues can be interchanged by encircling the
corresponding exceptional points. Here, N = dim(H) is the
dimension of the Hilbert space which grows exponentially
with the system size L of the quantum many-body system.

II. MODEL

In order to demonstrate the above scenario we consider a
quantum spin- 1

2 chain, described by the Hamiltonian
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with fixed real parameters Jx, Jy, Jz, gxz, gxy, gyz ∈ R and fixed
real boundary fields �h1, �hL ∈ R3. The site indices are defined
modulo L, where needed [last sum in Eq. (1)]. With these
choices, the Hamiltonian is a matrix-valued function of one
scalar complex parameter z ∈ C. For all z on the real axis,
the Hamiltonian is Hermitian, while it is non-Hermitian in
general. Throughout this paper we take the generic choice
of parameters Jx = 1.2, Jy = 1.0, Jz = 0.7, gxz = 0.91, gxy =
0.7, gyz = 1, �h1 = (0.0291241, 0.02341097, 0.0567)T , �hL =
(0.091241, 0.018924, 0.0781652)T , such that the Hamilto-
nian has no symmetries. Note that this parameter set is not
fine tuned and that we find the same phenomenology with
other parameter choices. The role of the boundary fields is
to destroy the reflection symmetry of the Hamiltonian as well
as the integrability of the Hamiltonian at z = 0.
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We have verified that the Hamiltonian for z ∈ R is ergodic
in the sense that local observables thermalize by means of
the eigenstate thermalization hypothesis [56–60], which is
valid in this system (cf. Appendix A). Furthermore, we have
considered the statistics of level spacings of the Hermitian
Hamiltonian, using the ratio of adjacent gaps [61]. We find
that the spectral statistics are in the Gaussian unitary ensemble
(GUE) universality class (cf. Appendix A).

Before proceeding with the results, a comment on the
implementation of the model is in order. One can consider
an open system described (in a Markovian approximation)
by a quantum master (Lindblad) equation, governing the time
evolution of the density matrix of the system. This dynamics
can be mapped onto a stochastic Schrödinger equation, where
the evolution is governed by a non-Hermitian Hamiltonian,
plus the action of so-called quantum “jumps” at random times.
The rate of the jumps is set by the same constant setting the
size of the non-Hermitian component of the Hamiltonian, this
constant being related to the effective system-bath coupling
[62–64]. In the limit of a small non-Hermitian component
which will be considered here, since the jump rate will be
similarly small, it should be experimentally feasible to deter-
mine whether a jump has occurred and to discard such runs
in the analysis (so-called post-selection [50,51,65]), which
leaves us with an experimental implementation of purely
non-Hermitian Hamiltonian dynamics. In order to imple-
ment the specific non-Hermitian term in our Hamiltonian
(1), which involves multiple spins, the correlation length in
the bath should amount to at least two lattice sites, which
makes the Kossakowski matrix in the Lindblad equation
nondiagonal.

III. PROLIFERATION OF EXCEPTIONAL POINTS

Since exceptional points necessarily are related to a de-
generacy of (at least) two eigenvalues of H (z), it is natural
to consider the distances between all eigenvalues λi of H (z).
We show in Fig. 1 the minimal distance of all pairs of
eigenvalues δ(z) = mini, j |λi(z) − λ j (z)| as a function of the
complex interaction parameter z. If this distance δ(z) vanishes,
it corresponds to a degeneracy of at least two eigenvalues.
While δ(z) is a continuous function of z, it is not analytic,
and exhibits a large number of kinks, when the closest pair of
eigenvalues changes.

We observe that as a function of system size the number
of very small eigenvalue distances increases significantly.
It is also clear that the minima of δ(z) appear to be very
sharp, consistent with the typical square-root singularity of
exceptional points. The extreme proliferation of degeneracies
seems to occur most strongly close to the real axis, when
Im(z) = 0.

While the results of Fig. 1 are already a strong indication of
the proliferation of exceptional points and their accumulation
on the real axis Im(z) = 0, in order to have a solid quantitative
characterization we need to resort to the defining feature of
exceptional points: the occurrence of a square-root branching
point, distinguishing them from other possible degeneracies
[66]. This leads to the swapping of a pair (or more in the case
of higher-order exceptional points, which we do not observe
here) of eigenvalues when following a closed path around an
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FIG. 1. Minimal eigenvalue distance mini, j |λi(z) − λ j (z)| be-
tween all eigenvalues λi(z) of the Hamiltonian (1) as a function of
the complex parameter z for different lengths L of the spin chain.
The sharp minima (dark colors) correspond to degeneracies of the
spectrum, which we identify to be exceptional points associated with
a square-root singularity of the eigenvalue distance.

exceptional point. We will extensively use this property to
study the density of exceptional points with respect to the
distance from the real axis in parameter space.

IV. BRAIDING ON A SINGLE RIEMANN SHEET

In Fig. 2 we demonstrate that the degeneracies appearing
in Fig. 1 are indeed associated with exceptional points. Fig-
ure 2(a) contains a color map of the minimal eigenvalue dis-
tance mini, j (|λi − λ j |) as in Fig. 1 for a chain of length L = 6.
The location of degeneracies in the spectrum is clearly visible
in dark spots. The rectangular and elliptical paths drawn in
Fig. 2(a) correspond to example paths we consider, encircling
different numbers of exceptional points. Next to each path, we
list the number of transpositions in the permutation of eigen-
values after closure of the path. This is achieved by tracking
the eigenvalues along the path as described in Appendix B and
afterward analyzing the resulting permutation as described in
Appendix C. Within one half plane of the complex plane,
these numbers correspond to the number of encircled excep-
tional points, while exceptional points at conjugate locations
(z and z∗) have opposite handedness and therefore undo swaps
mutually. We note here that in our system each exceptional
point has a conjugate partner since H (z∗) = H (z)†, and the
spectra of H and H† are identical (since this corresponds to
the adjoint eigenvalue problem). The swapping of eigenvalues
(crosses) λi is exemplified in Fig. 2(b), where each colored
line corresponds to the trajectory in the complex eigenvalue
space of one eigenvalue along one traversal of the path labeled
by P in Fig. 2(a). It is apparent that the four exceptional
points enclosed by the path swap two pairs of eigenvalues,
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FIG. 2. Braiding of eigenvalues En(z) along closed paths g(φ) :
[0, 1] → C with g(0) = g(1), encircling exceptional points for a
chain of length L = 6. (a) Overview of minimal eigenvalue distances
mini, j (|λi − λ j |) as a function of the complex parameter z. Closed
curves are examples with the number indicating the number of
transpositions in the permutation linking the final eigenvalues λi(1)
with their initial order λi(0). (b) For the white path P in (a), we show
the evolution along the curve of the relevant eigenvalues (colored).
Lower panels: eigenvalue evolution [real (c) and imaginary (d) parts]
λi(φ) along P .

and permute three more eigenvalues in a cycle corresponding
to two transpositions.

Any conjugate pair of exceptional points in the complex
parameter plane is connected by a branch cut, interconnecting
the Riemann sheets on which each eigenvalue evolves. Due
to the proliferation of exceptional points, the Riemann surface
of our ergodic quantum many-body model becomes massively
interconnected. As we shall see next, the proliferation is expo-
nential in the system size L such that there is one exceptional
point for each possible pair of eigenvalues. This means that
starting from one eigenvalue λi, any other eigenvalue can be
reached by adiabatic parameter changes in the complex plane,
that is, the spectrum of an ergodic quantum many-body system
actually belongs to a single Riemann surface.

V. STATISTICS OF EXCEPTIONAL POINTS

To characterize the proliferation of exceptional points with
increasing system size, we compute their distribution in the
complex plane Re(z), Im(z). In Fig. 3 we show the density of
exceptional points as a function of the distance Im(z) from
the real axis. We compute the density ρEP = M/A by counting
the number M of exceptional points within a given area A in
the complex plane (as described above). In order to collect
enough statistics still keeping computational times feasible,
we choose the area A such that it typically contains between
100 and 1000 exceptional points in the bulk of the distribution,
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FIG. 3. Density ρEP of exceptional points per unit area in the
complex parameter plane. We consider parameter areas at Re(z) =
0.5 and count the number of exceptional points in areas of size
d Re(z)d Im(z), with exponentially decreasing bin size d Re(z) ∝
2−L . (a) Density versus distance from the real axis in parameter
space for different system sizes. (b) Density versus distance from the
real axis rescaled by 1/L. (c) Density rescaled by the total number
of exceptional points 22L . (d) Density versus distance rescaled by
1/2−L .

independently of the system’s size (which as we shall see
implies exponential downscaling of A with L). As apparent
from Fig. 1, the density becomes more and more independent
of the position on Re(z) as L is increased. Selecting areas A of
a finite width along Re(z), we effectively average over Re(z)
to improve the statistics.

Figure 3(a) shows the density up to large distances from the
real axis, so that the tails of the distribution (compatible with
an exponential decay) are visible. More interesting is the dis-
tribution in the vicinity of the real axis, as shown in Figs. 3(b)–
3(d). In Fig. 3(b), we see that the distribution extends up to
distances from the real axis which scale with the system size
L. Moreover, as apparent from Fig. 3(c), the overall scale of
the density increases exponentially as 22L. Taking into account
the fact that the tails of the distribution extend to values of
Im(z) of the order of L, this scaling is consistent with having
a proliferation of exceptional points such that we have one
for each possible pair of eigenvalues of the Hamiltonian (1),
i.e., N (N − 1)/2 with N = dim(H) = 2L. Finally, Fig. 3(d)
shows that the bottom of the distribution has a gap from
the real axis which vanishes like 2−L, which demonstrates
the exponentially fast accumulation of exceptional points at
the Hermitian line Im(z) = 0. This scaling of the gap is
to be expected under two assumptions: (i) the exceptional
points at the bottom of the distribution are the ones connected
to the avoided crossings between nearest-neighbor levels of
the Hermitian Hamiltonian Im(z) = 0 (see discussion below
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FIG. 4. (a) Zoomed overview of the minimal eigenvalue distance
mini, j |λi − λ j | for a system of size L = 10. Solid lines are the two
exemplary paths connected to the real parameter axis for which
eigenvalue traces are shown in (c) and (d). (b) Average distance of
swapped eigenvalues of the Hermitian system by exceptional points
as a function of their distance from the real axis for L = 8 and 10.
(c), (d) Exemplary eigenvalue cluster traces swapped (colored) by
exceptional points encircled by the paths shown in (a).

and Fig. 4); (ii) the distance of each exceptional point from
the real axis is proportional to the real gap characterizing
the corresponding avoided level crossing. Assumption (ii) is
actually a mathematical fact for a single exceptional point
but not trivial in the presence of multiple exceptional points,
which are known to influence each other strongly. This issue,
which has been investigated in toy models [53] and fine-
tuned semiclassical models without local degrees of freedom
[54,55], is even less trivial for our quantum many-body model
showing an exponential proliferation of exceptional points.
Since the number of avoided level crossings in the Hermitian
case Im(z) = 0 scales as 2L and the spectral bandwidth only as
L, the corresponding real gaps must scale down exponentially
like 2−L. Therefore, making the assumptions (i) and (ii) we
can conclude that the exceptional points at the bottom of the
distribution approach the real axis like 2−L.

The assumption (i) can actually be tested by analyzing
the braidings between eigenvalues along closed paths taken
at different distances from the real axis. The result of this
analysis is shown in Fig. 4. Taking paths which start and end
at the real axis we can attribute a given order to the swap
generated by an exceptional point. As illustrated by Figs. 4(c)
and 4(d), this is given by the number of real eigenvalues
of the initial Hermitian Hamiltonian, which lie between the
two which get swapped. For large system sizes such a path
encircles so many exceptional points that only the analysis
of the permutation of the levels after closure of the path
remains possible. As described in Appendix D, from the cycle

structure of the permutation we can extract an average swap
order as a function of the distance from the real axis, shown
in Fig. 4(b). The bottom of the distribution of exceptional
points shown in Fig. 3 lies well within the region where the
average swap order is well below 2. Figure 4(b) also indicates
a linear growth of the average swap order as a function of
the distance from the real axis. This supports the hypothesis
that assumption (ii) above not only applies to nearest-neighbor
avoided level crossings, but also to eigenvalues which are
not neighbors in the Hermitian limit. Indeed, applying this
assumption to a pair of levels in the Hermitian spectrum which
are separated by a given number of levels k = 0, . . . , 2L − 2,
we would conclude that the typical distance from the real axis
of an exceptional point swapping such levels would scale as
dk ∼ (L/2L )k since the spectral bandwidth of the Hermitian
Hamiltonian scales as L and the typical level separation
scales like 2−L. This argument reproduces the linear scaling
observed in Fig. 4(b). The estimated slope, however, does
not agree with our numerics, probably because this rough
argument does not take into account the inhomogeneity of
the density of states. The above scaling expression for dk

also predicts the exceptional point distribution to extend up
to values of Im(z) scaling with L, in agreement with Fig. 3(b).

The picture that emerges from these findings is that, while
increasing the system size L, exceptional points generating
a braiding with swapping order k � 2L approach the real
axis exponentially fast. The fastest class corresponding to
the nearest-neighbor swaps k = 0, defining the bottom of the
exceptional point distribution.

VI. DISCUSSION AND OUTLOOK

An important physical implication of our results concerns
the interaction between the levels. In the purely Hermitian
picture these interactions take place pairwise between nearest
neighbors, which underlies the emergence of random Gaus-
sian spectral statistics and the eigenstate thermalization hy-
pothesis (see discussion at the end of Sec. II). Here, we verify
in a generic quantum many-body system the hypothesis that
this scenario is a projected manifestation of the more complex
phenomenology of eigenvalue braiding through exceptional
points in the complex plane. More interestingly, we show
that exponentially close to the Hermitian limit actually not
only nearest-neighbor levels interact via exceptional points,
but also all levels which are separated by a number of levels
which is not exponentially large in system size.

Our findings could also offer a useful perspective in the
characterization of quantum ergodicity in many-body sys-
tems, where also the effect of the openness on generic sce-
narios for relaxation and thermalization is currently attracting
a lot of attention [67,68]. Indeed, we can expect the prolif-
eration and accumulation of exceptional points to be generic
and peculiar to ergodic systems since, as just spelled above,
the level repulsion characterizing chaos in generic quantum
many-body systems is deeply connected with the presence of
exceptional points. Exceptional points are, on the other hand,
expected to appear accidentally at fine-tuned points in regular
systems. However, this expectation needs to be supported by a
detailed investigation of the comparison between ergodic and
nonergodic systems, which we leave to a future study.
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As anticipated at the end of Sec. II, we expect our results to
be relevant also for open systems in contact with an environ-
ment despite the fact that we consider only a non-Hermitian
Hamiltonian. Indeed, in case the coupling to the environment
is such that the non-Hermitian component of the Hamiltonian
is located in the region of proliferation of exceptional points,
only the latter are left as an effect of the openness. Indeed,
the proliferation region corresponds to an exponentially small
non-Hermitian component, i.e., to exponentially small damp-
ing of eigenvalues and correspondingly an exponentially small
rate of quantum jumps. We are therefore allowed to neglect
the latter, as the post-selection of experimental runs without
jumps is going to be exponentially efficient. In view of this
argument, interesting questions arise about the possibility of
fully isolating an ergodic quantum many-body system from
their environment. We leave the exploration of this aspect
and its compatibility with experimental observation for future
research.

Several other lines of investigation emerge naturally out
of this work, like the analysis of spectral statistics in the
complex plane and its connection to exceptional points, the
investigation of the consequences of the exceptional points
proliferation for the dynamics, as well as the extension of this
study to disordered and driven systems.
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APPENDIX A: ERGODICITY OF THE
HERMITIAN MODEL

Here we show additional data to demonstrate that the
model with the parameters used in the main text is in-
deed fully ergodic in the Hermitian limit. We consider
in Fig. 5 two aspects of ergodicity: In the left panel,
we compare the statistics of the ratio of adjacent en-
ergy levels [61] rn = min ((En+1 − En)/(En − En−1), (En −
En−1)/(En+1 − En)) for different system sizes L with the
result from random matrix theory in the Gaussian unitary
ensemble (GUE), the distributions match very well and strong
level repulsion is visible as predicted in random matrix theory.

The second criterion we use to quantify ergodicity is the
validity of the eigenstate thermalization hypothesis [56–60]
(ETH), which ensures thermalization of the closed system.
One condition is that eigenstate expectation values of local
operators should become a smooth function of the eigenen-
ergy in the thermodynamic limit L → ∞, coinciding with
the expectation value of the operator in the microcanonical
ensemble. In the right panel of Fig. 5, we show results for
the operator σ̂ x

4 σ̂ x
5 , which is a term in the Hamiltonian and a

part of the energy density, therefore showing a strong positive
correlation with the energy eigenvalue. The results are clearly
consistent with the eigenstate thermalization hypothesis. We
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FIG. 5. Left: Distribution of adjacent energy gap ratios rn =
min ((En+1 − En)/(En − En−1), (En − En−1)/(En+1 − En)) in com-
parison with the result for random matrices from the Gaus-
sian unitary ensemble (GUE). Right: eigenstate expectation value
〈 n |σ̂ x

4 σ̂ x
5 |n〉 as a function of eigenenergy En for different system

sizes. Both panels show data for the same parameters as used in the
main text and real z = 0.5, for which the Hamiltonian is Hermitian.

therefore conclude that the model used in the main text is fully
ergodic.

APPENDIX B: TRACKING EIGENVALUES

To extract the number of swaps of eigenvalues, it is neces-
sary to track the evolution of each eigenvalue along a periodic
curve g(φ) : [0, 1] → C with g(0) = g(1). After closing the
curve, the spectra of Ĥ (g(0)) and Ĥ (g(1)) are identical, up to
a permutation of the eigenvalues, where each eigenvalue is a
continuous function of the curve parameter φ.

It is in general a formidable task to track the evolution
of eigenvalues of a quantum many-body Hamiltonian Ĥ as a
function of a (scalar) parameter. Here, we consider a complex
parameter z ∈ C, including the possibility that eigenvalues
undergo branch cuts. We are using perturbation theory for
this task, which allows us to calculate the derivatives of each
eigenvalue with respect to the parameter change along the
curve. Comparing the exact new eigenvalues after a small step
along the curve with the predictions, we can match each new
eigenvalue to the previous ones.

Consider the eigenvalues E (0)
n of Ĥ (z0) at a point z0 in

the complex plane. We can predict the eigenvalues of Ĥ (z0 +
ε) for a small (complex) parameter change ε using non-
Hermitian perturbation theory.

Let |n0〉 be the right eigenvectors of Ĥ (z0) with eigenvalue
E (0)

n . Let further |ñ0〉 be the left eigenvectors of Ĥ (z0) with
eigenvalue E (0)∗

n . The normalization of the eigenvectors can
be chosen such that left and right eigenvectors are orthonormal
(note that right and left eigenvectors themselves are in general
not orthogonal):1

〈ñ0|m0〉 = δn,m. (B1)

1We note that Lapack routines like zgeev yield a different normal-
ization for the left and right eigenvectors.
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Then, perturbation theory for non-Hermitian operators [69]
yields

En(z0 + ε) = En(z0) + ε〈 ñ0 |D̂(z0, ε)|n0〉

+ ε2
∑

m �=n

〈 ñ0 |D̂(z0, ε)|m0〉〈 m̃0 |D̂(z0, ε)|n0〉
Em − En

,

(B2)

with the perturbation D̂(z0, ε) = Ĥ (z0+ε)−Ĥ (z0 )
ε

. Due to level
repulsion in our system, the denominators (Em − En) do not
lead to problems if the step size ε is small enough. While
degeneracies are possible at exceptional points, the sampled
points on the curve did not coincide with exact exceptional
points in practice for the system sizes we considered.

This approach allows us to predict for each eigenvalue at
z0 its change at z0 + ε, taking into account level crossings
and avoided crossings. We fully diagonalize Ĥ (z0 + ε) and
compare the eigenvalues to their predicted locations to attach
the labels n to each eigenvalue. This is necessary for two
reasons: first, complex eigenvalues do not have a natural
ordering and, second, any ordering of eigenvalues used for the
labeling would miss swaps and level crossings.

Our procedure depends on a good choice of the step size ε

and it is clear that in the proximity of exceptional points very
small step sizes have to be used. Therefore, we developed an
adaptive method for tracking all eigenvalues along the curve
g(φ), which for each step g(φ) → g(φ + δφ ) checks if the
eigenvalues at g(φ + δφ ) are sufficiently close to the predic-
tions (compared to the distances between the eigenvalues). If
this is not the case, instead of one step δφ , two steps of size
δφ/2 are carried out. Applying this procedure recursively, the
step size is adjusted as needed, allowing a faithful tracking of
eigenvalues of very large non-Hermitian Hamiltonians, here
up to dimensions of N = 4096. This allows a precise counting
of exceptional points without the need for precisely locating
them [70].

APPENDIX C: COUNTING OF EXCEPTIONAL POINTS

In order to quantify the extreme proliferation of excep-
tional points with system size visible in Fig. 1, we need a

method to count the number of exceptional points in a region
in the complex parameter space. Since each exceptional point
swaps two eigenvalues of H (z) if a closed path around the
exceptional point is followed, we can count the number of
exceptional points enclosed by a closed path by counting
the number of swaps. Concretely, the number of exceptional
points enclosed by a curve g(φ) : [0, 1] → C is obtained by
tracking all eigenvalues En(φ) of H (g(φ)) along the curve and
comparing the labels of the eigenvalues of the initial φ = 0
and the final point φ = 1. Since the spectra are identical, they
differ only by a permutation π : En(0) = Eπ (n)(1).

The number of exceptional points encircled by the curve is
then equal to the number of transpositions in the permutation
π :

nEP = N − ncycles(π ). (C1)

APPENDIX D: OBTAINING THE ORDER OF SWAPS

In Fig. 4, we also analyze which eigenvalues are swapped
by exceptional points, when following a path which begins
and ends on the real axis in parameter space. For z ∈ R, the
eigenvalues En(z) of H (z) are real and can be ordered by
their magnitude. Following a closed path in the complex pa-
rameter plane, we investigate which eigenvalues are swapped
by exceptional points as a function of their location relative
to the real parameter axis. Since for large systems typical
loops g(φ) encircle always multiple exceptional points, we
have to unravel this information from the final permutation
of eigenvalues after closing the loop En(0) = Eπ (n)(1). The
permutation π is decomposed into cycles of indices, such that
indices inside the cycle are shuffled around under multiple
applications of the permutation (multiple traversals of the
loop), while no other indices are involved in this cycle. There-
fore, we can analyze each cycle of the permutation separately,
as only the involved eigenvalues are exchanged with each
other by the exceptional points enclosed by the path. If only
nearest-neighbor eigenvalues are involved in each circle, we
call this swaps of order 0. If on the other hand an exceptional
point exchanges eigenvalues separated by m other eigenvalues
not in the cycle, we refer to this as a swap of order m.
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[66] T. Katō, Perturbation Theory for Linear Operators, Classics in
Mathematics (Springer, Berlin, 1995).

[67] E. Levi, M. Heyl, I. Lesanovsky, and J. P. Garrahan, Robustness
of Many-Body Localization in the Presence of Dissipation,
Phys. Rev. Lett. 116, 237203 (2016).

[68] H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber, S.
Sarkar, A. J. Daley, M. H. Fischer, E. Altman, I. Bloch, and
U. Schneider, Signatures of Many-Body Localization in a Con-
trolled Open Quantum System, Phys. Rev. X 7, 011034 (2017).

[69] M. M. Sternheim and J. F. Walker, Non-Hermitian Hamiltoni-
ans, Decaying States, and Perturbation Theory, Phys. Rev. C 6,
114 (1972).

[70] M. Feldmaier, J. Main, F. Schweiner, H. Cartarius, and G.
Wunner, Rydberg systems in parallel electric and magnetic
fields: an improved method for finding exceptional points,
J. Phys. B: At., Mol. Opt. Phys. 49, 144002 (2016).

033051-8

https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1038/nphys4204
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1126/science.aaw8205
https://doi.org/10.1126/science.aaw8205
http://arxiv.org/abs/arXiv:1908.03243
https://doi.org/10.1088/0305-4470/23/7/022
https://doi.org/10.1088/0305-4470/23/7/022
https://doi.org/10.1088/0305-4470/23/7/022
https://doi.org/10.1088/0305-4470/23/7/022
https://doi.org/10.1088/0305-4470/38/9/002
https://doi.org/10.1088/0305-4470/38/9/002
https://doi.org/10.1088/0305-4470/38/9/002
https://doi.org/10.1088/0305-4470/38/9/002
https://doi.org/10.1103/PhysRevE.97.012112
https://doi.org/10.1103/PhysRevE.97.012112
https://doi.org/10.1103/PhysRevE.97.012112
https://doi.org/10.1103/PhysRevE.97.012112
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1080/00018732.2016.1198134
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1016/j.physrep.2016.02.005
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1080/00018732.2014.933502
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevX.4.041001
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevC.6.114
https://doi.org/10.1103/PhysRevC.6.114
https://doi.org/10.1103/PhysRevC.6.114
https://doi.org/10.1103/PhysRevC.6.114
https://doi.org/10.1088/0953-4075/49/14/144002
https://doi.org/10.1088/0953-4075/49/14/144002
https://doi.org/10.1088/0953-4075/49/14/144002
https://doi.org/10.1088/0953-4075/49/14/144002

