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To characterize the generic behavior of open quantum systems, we consider random, purely dissipative
Liouvillians with a notion of locality. We find that the positivity of the map implies a sharp separation of the
relaxation timescales according to the locality of observables. Specifically, we analyze a spin-1=2 system of
size l with up to n-body Lindblad operators, which are n local in the complexity-theory sense. Without
locality (n ¼ l), the complex Liouvillian spectrum densely covers a “lemon”-shaped support, in agreement
with recent findings [S. Denisov et al., Phys. Rev. Lett. 123, 140403 (2019)]. However, for local
Liouvillians (n < l), we find that the spectrum is composed of several dense clusters with random matrix
spacing statistics, each featuring a lemon-shaped support wherein all eigenvectors correspond to n-body
decay modes. This implies a hierarchy of relaxation timescales of n-body observables, which we verify to
be robust in the thermodynamic limit. Our findings for n locality generalize immediately to the case of
spatial locality, introducing further splitting of timescales due to the additional structure.
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Introduction.—For unitary quantum many-body dynam-
ics, the characterization of generic features common to the
vast majority of systems is well developed, in the form of
an effective random matrix theory [1–6]. It is, for example,
a crucial ingredient to our understanding of thermalization
in unitary quantum systems, manifest in the eigenstate
thermalization hypothesis (ETH) [7–13].
For open quantum many-body systems analogous organ-

izing principles are yet missing. Only very recently, the first
developments in this direction appeared with the inves-
tigation of spectral features of a purely random Liouvillian
[14–18], describing generic properties of trace preserving
positive quantum Markovian maps. The purely random
Liouvillians considered in Refs. [14,15,17] constitute the
least structured models aiming at describing generic fea-
tures of open quantum many-body systems. A main result
of these recent studies is that the spectrum of purely
random Liouvillians is densely covering a lemon-shaped
support whose form is universal, differentiating random
Liouvillians from completely random Ginibre matrices
with a circular spectrum [1,19–21].
How close is a completely random Liouvillian to a

physical system? In this Letter, we make a step towards

answering this question by adding the minimal amount of
structure to a purely random Liouvillian, namely, a notion
of locality. We consider a dissipative spin system of size l
with Lindblad operators given by Pauli strings classified by
their length n ≤ l, the latter being a measure of their n
locality in a complexity-theory sense [22]. This concept is
more general than spatial locality and we discuss the case of
spatial locality below and in Ref. [23].
In this language, purely random Liouvillians are com-

pletely nonlocal and structureless, since they include the
full operator basis including Pauli strings of all lengths
1 ≤ n ≤ l.
Here, we restrict the maximal number of nonidentity

operators in the Lindblad operators to nmax and examine the
spectral properties of the adjoint Liouvillian as nmax is
varied, nmax ¼ l corresponding to the nonlocal case.
We find that the complex spectrum generically decom-

poses into several simply connected, lemon-shaped eigen-
value clusters, whose center of symmetry lies on the real
axis (cf. Fig. 1). Each well isolated cluster corresponds to
decay modes (right eigenvectors of L) which govern the
relaxation of n-local observables. That is, the eigenvalue
clusters are organized by the complexity of observables,
whose relaxation their eigenvectors control (cf. Fig. 3).
If two clusters overlap (typically for large n), they merge

as opposed to just joining their supports as their respective
eigenvalues interact and show level repulsion (cf. Fig. 2),
such that the merged cluster exhibits random matrix
statistics.
Our findings correspond to a separation of relaxation

timescales between observables with n locality; e.g., one-
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body operators decay at a different rate compared to two-
body operators, etc. This hierarchy, which we characterize
analytically and confirm by time evolution [23], is present
for sufficiently local Liouvillians and observables, and
persists in the thermodynamic limit, since the separation of
the eigenvalue clusters decays more slowly than their width
(cf. Fig. 4).
We show also that a thermodynamically stable separation

of timescales exists for spatially local Liouvillians, i.e.,
including Lindblad operators acting as a non-identity only
on adjacent sites of a ring. In this case each n-local cluster
further splits into subclusters, since spatially local observ-
ables of a given complexity relax slower than spatially
nonlocal ones.
Local Liouvillian model.—The simplest description of

the dynamics of an open quantum system is in terms of a
Markovian quantum master equation ∂tρt ¼ LðρtÞ, where
L is a Liouvillian superoperator.
A generic Liouvillian takes the Gorini-Kossakowski-

Sudarshan-Lindblad form [24–26] LðρÞ¼LHðρÞþLDðρÞ,
where LHðρÞ ¼ −i½H; ρ� is the unitary evolution with
Hamiltonian H and

LDðρÞ ¼
XNL

i;j¼1

Kij

�
LiρL

†
j −

1

2
fL†

jLi; ρg
�

ð1Þ

is the nonunitary contribution, where the braces denote
the anticommutator. The traceless Lindblad operators Li,
i ¼ 1; 2;…; N2 − 1 (with N ¼ dimH the size of the
Hilbert space and NL ≤ N2 − 1), satisfy the orthonormality
condition TrðLiL

†
jÞ ¼ δij and together with the identity

constitute a complete basis of the associated operator space.
If the Kossakowski matrix K is positive semidefinite, the
generated time evolution of the density matrix ρ preserves
the trace and positivity of ρ. Here we restrict the discussion
to purely nonunitary evolution LH ¼ 0, leaving the effect
of the Hamiltonian for future work. Thus we use L ¼ LD.
An alternative approach has been considered by studying
ergodic many-body Hamiltonians perturbed by a non-
Hermitian term [27–30].
We focus on dissipative quantum spin systems of l spins

1=2, with a tensor product Hilbert space ⊗
l

i¼1
Hi.

To introduce a notion of locality in our system, we use
Lindblad operators Li given by normalized Pauli strings
Sx⃗ ¼ 1=

ffiffiffiffi
N

p
σx1 ⊗ σx2 � � � ⊗ σxl (xi ∈ 0, 1, 2, 3), and clas-

sify them by the number n ¼ P
ið1 − δxi;0Þ of nonidentity

Pauli matrices (such that they correspond to n-body
operators, and are n local [22]), including terms up
to n ≤ nmax.
Nn ¼ ðlnÞ½ðdimHiÞ2 − 1�n is the dimension of the space

of all n-local operators. For nmax ¼ l the total number
NL ¼ Pnmax

n¼1 Nn of traceless operators employed becomes

equal to the size of a complete basis N2 − 1 with
N ¼ ðdimHiÞl. For our spin-1=2 system, N ¼ 2l.
In the present work, we are interested in the generic

features of dissipative n-local Liouvillians, and therefore
consider random Kossakowski matrices. Each K matrix is
generated by sampling its (non-negative) i.i.d. eigenvalues
di from a box distribution and then transforming it to a
random basis with a random unitary U sampled from the
Haar measure, K ¼ U†DU is normalized by TrK ¼ N.
Because K is positive semidefinite, the mean of its
eigenvalues is positive: d ¼ meanðdiÞ ¼ TrK=NL > 0.
Spectrum of local Liouvillians.—In Fig. 1, we show the

spectrum of the Liouvillian L for one random realization of
K and different degrees of locality nmax of the involved
Lindblad operators. For nmax ¼ 1, Li act nontrivially only
on a single site and the spectrum shown in Fig. 1(a) shows
several smeared-out eigenvalue clusters. Once two-body
operators are added, nmax ¼ 2, the spectrum shows clearly
distinct eigenvalue clusters [cf. Fig 1(b)], each of which is
composed of a different number of eigenvalues. Further
increasing nmax leads to a merging of the eigenvalue
clusters, and once all possible traceless operators are
included nmax ¼ l (thus removing the locality entirely),
a single eigenvalue cluster remains, which has the shape of
a “lemon.” In Ref. [14], an analytical form of the envelope

(a) (d)

(b) (e)

(c) (f)

FIG. 1. Eigenvalue distribution (steady state λ ¼ 0 omitted) for
system size of l ¼ 6 (N ¼ 2l ¼ 64) and different n locality of
the Lindblad operators Li. (a) Li are only one-body Pauli strings.
(b) Two-body Pauli strings are added, leading to four eigenvalue
clusters. (c)–(e) Higher order Pauli strings are progressively
inserted and the eigenvalue clusters begin to merge until (f) the
full basis of traceless matrices fLng is obtained once six-body
Pauli strings are included. The support of the single eigenvalue
cluster matches the result for purely random Liouvillians (gray
curve) [14].
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of spectra of completely random Liouvillians was derived,
which is shown as the gray curve in Fig. 1(f). We notice that
the individual shapes of the different eigenvalue clusters we
obtain are close to this lemon shape. Furthermore, different
realizations of the random K matrix yield very similar
results.
Before we discuss the origin of the separation of

eigenvalue clusters, we analyze the statistics of complex
level spacings. Complex spectra have no ordering, but it is
straightforward to generalize level spacing ratios [31]
(which get rid of the otherwise necessary unfolding of
the local density of states) to the complex case by finding
the nearest λ1 and next-nearest neighbor λ2 of an eigenvalue
λ0 and defining r ¼ jλ0 − λ1j=jλ0 − λ2j. This definition was
recently generalized to include phase angles [32].
In Fig. 2, we show our results for the distribution of level

spacing ratios r for a system of size l ¼ 7 and different n
locality of the included Lindblad operators. We compare
the distribution to the case of completely random
Liouvillians as studied in Refs. [14,15] and to random
square matrices with Gaussian matrix elements (i.e., from
the Ginibre ensemble). All spacing distributions are iden-
tical and it does not matter whether we consider all
eigenvalues or subsets (as indicated in the inset). This
confirms that local spectral properties of generic
Liouvillians admit a random matrix description and dem-
onstrates that eigenvalue clusters which have merged
(cf. blue rectangle subset) do not simply overlap but also
show level repulsion. We stress that we obtain level
repulsion generically, even though we sample the matrix
K with Poisson statistics. According to the detailed analysis

in Ref. [14], the precise sampling of K can be expected to
be unimportant.
Hierarchy of relaxation timescales.—The existence of

distinct clusters with different real parts of the correspond-
ing eigenvalues suggests that there are different relaxation
timescales in the system. The corresponding eigenvectors
are decay modes and we analyze their properties in the
following. Since the Liouvillian contains n-local terms, it is
natural to consider the relaxation of n local operators O.
The time evolution of such an operator is given by
Tr(ρðtÞO) and each decay mode ρm contributes with a
term eλmtTrðρmOÞ, where λm is the corresponding eigen-
value of L and hence ReðλmÞ sets the relaxation timescale
of this term. It is natural to ask which relaxation modes
contribute most to each locality class of operators O. We
show in Fig. 3 for a system of size l ¼ 8 with a 2-local
Liouvillian (i.e., nmax ¼ 2) all eigenvalues λi of the
Liouvillian (except the steady state λ0 ¼ 0) for one reali-
zation of a randomKossakowski matrixK. Each eigenvalue
is shown in a color corresponding to the contribution of its
eigenstate (decay mode) ρi to a random k-local operator
OðkÞ, given by TrðρiOðkÞÞ. Figure 3(a) shows eigenvalue
coloring for the relaxation of a random one-body operator,
Fig. 3(b) for a two-body operator, Fig. 3(c) for a three-body
operator, etc. It is obvious from this analysis that only
eigenvalues from the cluster with the largest real part
contribute to the relaxation of one-body observables
[Fig. 3(a)], the second eigenvalue cluster corresponds to
two-body observables and the third to three-body observ-
ables. More complex observables fall in the largest eigen-
value cluster which has an interesting substructure: its left
part seems to include five-, six-, and seven-body observable
relaxation, its right part covers four- and eight-body
operators.
This finding thus implies a separation between the

timescales of relaxation of observables with a different
degree of locality.
Perturbation theory.—To understand the rich spectral

structure observed in Fig. 3, it is helpful to consider
the adjoint Liouvillian describing the evolution of an
operator X

La½X� ¼
XNL

n;m

Kn;m

�
L†
mXLn −

1

2
fL†

mLn; Xg
�
; ð2Þ

keeping in mind that the Lindblad operators Ln ¼ Sy⃗n are
given by normalized Pauli strings. Since the matrix K is
sampled in its diagonal basis as D and rotated to a random
basis K ¼ U†DU with a circular unitary ensemble matrix
U, it is easy to show that meanðKnnÞ ¼ ðN=NLÞ ¼ d, while
the mean of the off diagonal matrix elements of K vanishes.
The standard deviation of its matrix elements is given by
stdðKnmÞ ¼ N=ð ffiffiffi

6
p

N3=2
L Þ. Therefore K is typically diago-

nally dominant.

FIG. 2. Probability density of the spectral gap ratio r ¼ jλ0 −
λ1j=jλ0 − λ2j computed for each complex eigenvalue λ0 and its
nearest (λ1) and next-nearest neighbor (λ2). We compare the
eigenvalues of Liouvillians of a system of size l ¼ 7 (100
realizations) of different n locality to random Ginibre ensembles
(1000 realizations) and completely random (n ¼ l) Liouvillians.
Because of the symmetry of the spectrum across the real axis for
random Liouvillians—which disproportionately weights ratios of
1 near the real line when next-nearest and nearest neighbor dis-
tances are the same—only the eigenvalues for which ImðλÞ > 0
are included in the statistics. We also show results for a
completely random dissipative Liouvillian (full operator basis,
100 realizations, yellow) as in Ref. [14] and analyze two subsets
of eigenvalues (inside the blue and red rectangles in the inset).
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Thus, we can consider the off diagonal part of K as a
perturbation and decompose K ¼ d1þ K0. Then, we re-
present La in the basis of normalized Pauli strings
with matrix elements Lxy ¼ TrðSx⃗La½Sy⃗�Þ. We define
L ¼ L0 þ L1, where L0 contains all terms stemming from
the constant part d1 of K and L1 contains the rest K0 ¼
K − d1 [23].
It turns out that the off diagonal parts ðx⃗ ≠ y⃗Þ of L0

vanish, while the diagonal is given by

L0xx ¼ d
XNL

n¼1

�
TrðSx⃗Sy⃗nSx⃗Sy⃗nÞ −

1

N
TrðS2x⃗Þ

�
: ð3Þ

The terms in the sum in Eq. (3) vanish if ½Sx⃗; Sy⃗n � ¼ 0,
otherwise, they yield −2=N if the number of differing Pauli
matrices on the sites where both Sx⃗ and Ln are not the
identity is odd, and yield zero if this number is
even. Counting the nonzero terms is a simple matter of
combinatorics, the result depends only on the number
m of nonidentity Pauli matrices in the Ln operators, the
number nx of nonidentity Pauli matrices in Sx⃗, and
on l: then fmðnx;lÞ is the number of noncommuting
terms. For m ¼ 1, we get f1ðnx;lÞ ¼ 2nx, for m ¼ 2,
f2ðnx;lÞ ¼ 6nxl − 4n2x − 2nx.
In total, the eigenvalues of L0 are therefore

L0xx ¼
−2
NL

Xnmax

m¼1

fmðnx;lÞ; ð4Þ

and depend (for a fixed set of nmax-local Ln) only on the nx
locality of the basis operator Sx⃗, making them highly
degenerate. They represent the leading-order perturbation
theory result and we show the corresponding values as red
dots in Fig. 3, where they perfectly predict the location of
the nx-local eigenvalue clusters (see also Fig. 4). These
leading order results also imply that the position of the
cluster centers will differ between the case considered here
and the (also nmax-local) case where only nmax-local

(a) (b)

FIG. 4. Left: Analytical predictions of eigenvalue cluster
centers xi vs 1=l, shaded area indicates the cluster width wi ¼
max½ReðλiÞ� −min½ReðλiÞ� from degenerate perturbation theory
(PT), circles are exact positions from full diagonalization of L.
Right: Comparison of the distance x1 − x2 of the first two clusters
with their width wi. Circles correspond to estimates of the width
from full diagonalization of L, the red and blue points with error
bars correspond to degenerate perturbation theory up to l ¼ 30,
averaged over ≈20 realizations.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. Color: Overlap TrðρiOÞ between n-local operators O (given by random superpositions of n-body Pauli strings) and decay
modes ρi, for all (except steady state) eigenvalues λi of the 2-local Liouvillian (i.e., nmax ¼ 2), l ¼ 8. The coloring of the eigenvalue
markers is done for random one-body O (a), two-body O (b), etc. It is clearly visible that the eigenvalue clusters correspond to the n
locality of the decay modes, revealing different relaxation timescales based on the degree of locality of the observable O. The red dot
indicates the analytical prediction of the centers of n local eigenvalue clusters (cf. main text).
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Lindblads are present. Therefore, while the number of
clusters is the same in both cases, two given clusters might
be separated in one case and merged in the other, and this
would depend on nmax and l.
The last step is to use non-Hermitian degenerate pertur-

bation theory to lift this degeneracy and to calculate the
spread of the eigenvalue clusters. This means that we
simply have to diagonalize L1 in the degenerate block of n-
local operators. We summarize our results in Fig. 4, where
we show in Fig. 4(a) the analytical result for the centers of
the n-local “lemons” together with the numerical results,
showing a perfect match. Figure 4(b) compares the width of
the first two (1-local and 2-local) clusters to their distance,
showing that the clusters remain well separated in the
thermodynamic limit, since the width of the clusters decays
much faster compared to their distance. The validity of
perturbation theory is confirmed by the perfect match of the
predicted width compared to the full calculation (up to
l ¼ 8). The separation of timescales is possible due to the
diagonally dominant nature of the Kossakowski matrix,
which in turn is a consequence of the map being positive
and possessing a finite nonunitary component.
The above perturbation theory and the arguments leading

to the separation of clusters are valid also in the case of
spatially local L operators. We demonstrate [23] the
emergence of a thermodynamically stable separation of
clusters also for this case. Each n-local cluster splits into
subclusters, since spatially local observables relax slower
than nonlocal ones of the same order n. This can be
immediately understood from the combinatorics of non-
commuting terms determining the position of the cluster
centers at leading order in perturbation theory.
Conclusion.—We have shown that, for random local

Liouvillians, observables with different degrees of locality
relax with sharply separated timescales. This type of
hierarchy appearing in the Liouvillian spectrum is generi-
cally present in the nonunitary case due to the positivity of
the map, while it is absent for purely Hamiltonian dynam-
ics. By adding the minimal amount of structure, our work
brings the emerging field of Liouvillian random-matrix
theory one step closer to modeling actual generic open
systems.
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