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Many-body hierarchy of dissipative timescales in a quantum computer
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We show that current noisy quantum computers are ideal platforms for the simulation of quantum many-body
dynamics in generic open systems. We demonstrate this using the IBM Quantum Computer as an experimental
platform for confirming the theoretical prediction from Wang et al., [Phys. Rev. Lett. 124, 100604 (2020)] of
an emergent hierarchy of relaxation timescales of many-body observables involving different numbers of qubits.
Using different protocols, we leverage the intrinsic dissipation of the machine responsible for gate errors, to
implement a quantum simulation of generic (i.e., structureless) local dissipative interactions.
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I. INTRODUCTION

Quantum many-body systems generically show highly
complex correlations induced by the interactions among their
constituents. This complexity is a major obstacle to their
simulability on classical computers. Quantum simulation is
a promising way to circumvent this problem [1,2]. A lot of
progress has been made in the last decades using analog quan-
tum simulators. While those are specifically built for a given
model, their digital counterparts hold instead the promise for
a general purpose quantum simulation [3]. There are several
examples of successfully implementing quantum many-body
dynamics in digital quantum simulators [4–12], however, the
intrinsic dissipation present in all platforms severely limits
the accessible time scales. Here, we demonstrate that this
disadvantage can be turned into a virtue and show that the
intrinsic dissipation responsible for gate errors in current
quantum computing platforms can be used as a building block
to simulate the physics of generic open quantum many-body
systems.

The term “generic” here indicates the absence of any par-
ticular structure, thus covering the vast majority of systems.
For isolated quantum many-body systems, this means that
states can be classified only by their energy. In this case,
generic behavior is well described within the framework of
the eigenstate thermalization hypothesis [13–23], which is
formalized via a proper random-matrix description. On the
other hand, the characterization of the generic behavior of
open quantum many-body systems is still in its beginnings.
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Recent work was devoted to setting the foundations of dis-
sipative quantum chaos [24–31]. By considering completely
random models of markovian dissipation, a characteristic
spectrum of the Liouville operator L has been identified [29],
which describes the dynamics of the density matrix ρ of
the system in terms of a quantum master equation ∂tρ =
L[ρ]. These results strongly constrain the range of dissipative
timescales one can expect in the absence of more detailed
knowledge on the system. The assumption of full randomness
is, however, too strong for experimentally relevant situations,
since it includes unphysical, nonlocal dissipative interactions.

In a recent theoretical work [32], we predicted that, if
the dissipation is constrained to be local, a hierarchy of re-
laxation timescales generically emerges, which reflects the
degree of locality of observables. The order of timescales can
be predicted quantitatively from a random matrix theory and
is nontrivial in the presence of dissipative interactions.

In the present paper, we employ a digital quantum sim-
ulator to experimentally observe this nontrivial hierarchy of
dissipative timescales and test the theoretical predictions.
Specifically, using the IBM quantum computing platform
based on superconducting qubits [33], we exploit the intrinsic
dissipation manifest in gate errors to implement local dissi-
pative interactions in a controlled manner. We then measure
the dynamics of a large number of multiqubit observables to
characterize the hierarchy of decay timescales and to test our
theoretical predictions.

Our approach differs strongly from other currently devel-
oped strategies for the simulation of open quantum systems
using appropriately extended sets of unitary gates [34–40].
While conventional approaches assume that gates are essen-
tially perfect and the precision of the simulation suffers from
intrinsic gate errors, our approach embraces the imperfections
of current platforms and uses them as central building block
for the simulation of generic local dissipation. We demon-
strate here that for capturing the generic physics of open
quantum systems, our approach is much cheaper and robust,
allowing us to observe nontrivial phenomena of dissipative
quantum many-body chaos in currently available quantum
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computing platforms. Such a deeper understanding of what
one can expect in dissipative quantum many-body systems is
also crucial to guide more detailed modeling of decoherence
and loss processes and is in particular important in the context
of quantum computing.

II. RESULTS

We simulate a generic, purely dissipative � qubit system,
described by a Lindblad master equation, on the IBM Quan-
tum Computing platform. In Sec. IV, we describe in detail the
circuits we use to implement generic one body dissipation and
generic dissipative two body interactions. The key idea is to
leverage the intrinsic dissipation responsible for gate errors
in one [U3(θ, φ, λ)] and two qubit (CNOT) gates. In order
to perform a gate operation on the quantum computer, the
relevant qubits are coupled to the environment by microwave
pulses. During this time, it is natural to expect that some
entanglement with the environment is generated, the essential
mechanism for gate errors. When the environment is traced
out, this leads to nonunitary dynamics. A gate can entangle the
qubits it acts on with each other, and the environment, so we
expect it to induce generic Linblad jumps involving all subsets
of qubits it acts on. The precise details of this dissipation are
not known and surely dependent on the specific machine and
qubit(s). We can, however, assume a priori that the dissipation
is limited to one or two qubit processes (i.e., that it is local)
and otherwise generic, an assumption we confirm a posteriori
by the very good match to theory.

The Lindblad equation for the evolution of the density
matrix ρ(t ) is then spelled out

∂tρ(t ) =
N�∑

n,m=1

Knm

(
LnρL†

m − 1

2
{L†

mLn, ρ}
)

. (1)

The set of operators {Ln}, n = 1 . . . N� describes all possible
dissipation channels we consider. For the case of one body
dissipation, it is limited to operators acting on a single qubit

L1 = I × I × · · · × I × X

L2 = I × I × · · · × I × Y

...

L3� = Z × I × · · · × I × I,

(2)

where X , Y , and Z denote Pauli matrices and I is the one qubit
identity operator.

For the case of two body dissipation, it includes in addition
all two qubit operators (which act on nearest neighbors in the
qubit geometry given by the CNOT connectivity of the quan-
tum processor). Given an open 1D chain topology, which is
what we will be using, there are a total of N� = 3� + 9(� − 1)
operators, while for the completely connected case, there are
N� = 3� + 9�(� − 1)/2

L3�+1 = I × I × · · · × I × X × X

...

LN�
= Z × Z × I × · · · × I × I.

(3)

The strength and interaction between the dissipation
channels described by the operators Ln is included in the
Kossakowski matrix Knm. We consider here a completely
generic one and two body dissipation, which means that we
model Knm by a positive semidefinite random matrix. The
positive semidefiniteness is required to conserve probability,
and therefore guaranteed, as long as no measurements are
discarded.

Surprisingly, for this case one can make detailed theoret-
ical predictions [32] for the relative decay rates of different
observables, i.e., the many-body coherence times. In this
paper, we compare the theoretical prediction to the re-
sults of our quantum simulation experiment on the IBM
machines.

In particular, the decay rates of k qubit observables
Tr[ρ0O(k)(t )] (i.e., observables O(k) which act on k qubits, and
are identity on the remaining � − k qubits) depend strongly on
k [32]. Specifically for the case of one body dissipation, the
decay timescales obey 1/τk ∝ k. In the case of two body dis-
sipation, one obtains a quadratic polynomial 1/τk ∝ −2k2 +
3k� − k, independently on the microscopic details encoded in
K matrix and for typical initial states ρ0. Our goal is to put
this prediction to a rigorous experimental test using quantum
simulation.

The general simulation strategy consists of the following
ingredients:

(i) Initialize qubits to initial product state |ψ0〉 =
|σ (γ1 )

1 σ
(γ2 )
2 . . . σ

(γ� )
� 〉, where each qubit can be in a different

local basis γi ∈ {x, y, z}. If needed, we rotate to the corre-
sponding basis using Hadamard and S gates.

(ii) “Waiting” circuit of depth t to delay measurement until
“time” t (measured in gate times) and allow dissipation to act.

(iii) Measurement of a k body observable O(k) given as a
Pauli string with k nonidentity operators (again rotating to the
corresponding local basis as necessary).

We use different designs of “waiting” circuits which intro-
duce either one body [i.e., Lindblad operators from Eq. (2)] or
two body dissipation to the system [i.e., Lindblad operators of
the form (3)].

1. One body dissipation

To study generic one body dissipation, we use a waiting
circuit of depth t , consisting of random one qubit gates, see
Fig. 1. The circuit W (t )

1 consists of a subcircuit C(t )
1 of t layers

of random single qubit unitaries U3(θ, φ, λ). It is followed by

the inverse C(t )
1

†
, undoing the unitary part of the action of C(t )

1 .
Therefore, the total action of the waiting circuit W (t ) would
be identity for perfect gates. Due to the imperfections of the
quantum computer, however, a nonunitary part remains due to
dissipative processes.

We note that the dissipation introduced by gate errors in
this protocol is much stronger than residual two qubit inter-
actions in the computer, which can therefore be neglected,
hence yielding a purely dissipative system, which we model
by a random 1-local Liouvillian. The theoretical prediction
[32] for this case is that the decay timescales τk of k body
observables O(k) should be proportional to 1/k, which means
that the real parts of the corresponding eigenvalues λ of the
Liouvillian should scale as Re(λ(k)) = 1/τk ∝ k.
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FIG. 1. Example of a waiting circuit W (t )
1 used to simulate one

body dissipation. It consists of two subcircuits C (t )
1 and the inverse

circuit C (t )
1

†
. C (t )

1 is composed of t layers, each containing � different
random one body unitary gates U3(θ, φ, λ) acting on each qubit. The
one body unitaries are sampled from the Haar measure.

Figure 2 displays these real parts of the eigenvalues, re-
constructed from measured decays of k-qubit Pauli string
observables using harmonic inversion (cf. Sec. IV), organized
by the operator order k for a large number of observables
in the five qubit machine ibmq_bogota. A clear hierarchy
is visible, revealing that more complex many-qubit operators
decay faster than less complex ones. While the distribution
of reconstructed eigenvalues reveals some fine structure, the
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FIG. 2. Real part of the eigenvalues λ of the Liouvillian L ex-
tracted from 1 body dissipation circuits W1 on ibmq_bogota. The
average inverse timescales for each order k align with predicted
linear hierarchy, where the operator order k refers to the number of
nonidentity Pauli operators in the operator. The smooth curves show
the density profile of timescales for each order.

FIG. 3. Example of waiting circuit W (t )
2 introducing two qubit

dissipation. It has the same structure as for one body dissipation see
Fig. 1, except each layer now also contains one CNOT gate acting
between a random pair of nearest neighbors according to the machine
topology.

average inverse decay timescale (orange dots) show a clear
linear scaling with k (blue curve). This confirms the behavior
predicted from theory.

2. Two body dissipation

Next, we consider the more complicated case of generic
two body dissipative interactions. In order to introduce pre-
dominantly two body dissipation, we leverage gate errors of
the two qubit CNOT gate. We design again a two component

waiting circuit (cf. Fig. 3) W (t )
2 = C(t )

2 C(t )
2

†
, which contains

random single site unitaries U3(θ, φ, λ) to introduce one qubit
dissipation as well as to rotate to a random onsite basis and
CNOT gates between random pairs of neighbors allowed by
the qubit geometry. Again, the application of the inverse cir-

cuit C(t )
2

†
removes all unitary components, and we are thus left

with a purely dissipative system with dissipation processes
corresponding to the gate errors of one qubit and two qubit
gates. It should be noted that the circuit does not purely induce
two body dissipation. The CNOT gate induces transitions on
the two qubits it acts, but these could be any combination of
one body and two body Lindblad operators. This assumption
of at most two body decay is further justified by the agreement
between theory and experimental results we see.

This can be modelled with a linear combination of random
1-local and 2-local Liouvillian [32]. The spectrum of the Li-
ouvillian splits into distinct eigenvalue clusters, each of which
governs the decay of k-qubit observables. The real parts of
the eigenvalue clusters correspond to inverse decay timescales
of k-qubit observables (consisting of superpositions of Pauli
strings with k nonidentities and � − k identities) and can be
calculated theoretically [32] to yield

1

τk
= α

9(� − 1)
(3�k − 2k2 − k) + β

3�
k, (4)

where the two parameters α, β correspond to the relative
strengths of two and one body dissipation processes, respec-
tively (the normalization of α and β count the number of
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FIG. 4. Real part of eigenvalues λ (vertical bars) of the 2-local Liouvillian reconstructed from many-body operator decay time traces
using the two body dissipative waiting circuit W (t )

2 . The reconstructed eigenvalues are organized by their complexity or operator order
(number of nonidentity operators k) of the observables and their density is indicated by the colored lines. The simulations were performed on
ibmq_16_melbourne, using different subsets of � qubits to explore a range of system sizes. For each k, the orange dots depict the average
inverse decay timescale. The blue curve corresponds to a two parameter fit (α, β) of the theoretical prediction from Eq. (4) for the decay rates.

relevant two and one body dissipation channels for an open
1D chain topology).

Surprisingly, there is a nonmonotonic behavior as a func-
tion of observable complexity k: The fastest decay rate
is found for k∗ ≈ (3(� − 1)β + �(3� − 1)α)/4�α, and more
complex observables with k > k∗ decay slower than this max-
imal rate. We call this feature of decay timescales turnback,
which is characteristic for dissipative interactions and not
present in simple one body dissipation.

As for the case of one body dissipation, we again perform
simulations to measure the decay of a large number of Pauli
string operators O(k) with k nonidentity Pauli matrices under
the action of the waiting circuit W (t )

2 . From these time traces,
we reconstruct the real parts of the Liouvillian eigenvalues
using harmonic inversion (cf. Sec. IV) and compare them to
the theoretical prediction in Fig. 4. Since the overall strength
of the dissipation is not known a priori, we fix the parame-
ters α and β by a fit, yielding excellent agreement with the
positions of the centers of the eigenvalue clusters obtained
from experiment. Most strikingly, the turnback of decay rates
with increasing operator order is well reproduced in the quan-
tum simulation. We note that different subsets of size � of
ibmq_16_melbourne include different qubits and the CNOT
and one qubit gate errors depend on the specific choice of

qubits, which explains the variance in the fit parameters (α, β )
for different �.

The reconstructed eigenvalues show some fine structure
within a given operator order, which is revealed by the eigen-
value density curves. It is important to note that all IBM
quantum computers have a notion of qubit distance, which
limits the possible combinations of qubits by CNOT gates.
Therefore, our simulation actually corresponds to a spatially
local two qubit dissipative interaction, where the spatial con-
nectivity is given by the qubit architecture. Including this
structure in the theoretical description leads to further split-
ting of each eigenvalue cluster of order k into subclusters
at different positions (cf. Fig. 5), based on the number of
neighboring nonidentity pairs p in the operator string and
the number of nonidentities on edge sites e. As explained
in Sec. IV B 1, we therefore get to leading order in perturba-
tion theory eigenvalue clusters labeled by (k, p, e), depending
on the connectivity of the qubit subset used in the simu-
lation. These corrections destroy the perfect separation of
eigenvalue clusters and are the reason why different order
k decay rates overlap in our experimental results in Fig. 4.
The overall hierarchy of the average decay rates in terms of
the number of nonidentities k in the observables, however,
remains.
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(a) (b)

FIG. 5. The eigenvalue clusters based on operator order are split due to the spatial structure of the two body dissipation. These subclusters
are indexed by operator order k, number of pairs of nonidentities, and number of nonidentities on edge sites. Subfigure (a) shows the degree the
� = 5 clusters are split on ibmq_16_melbourne. The dissipation only acts on an chain subset of � qubits with open boundary conditions, on
which we include CNOT gates in our waiting circuit W2(t ). Subfigure (b) is the distance between the subcluster centers and the cluster centers
observed in ibmq_16_melbourne and in theory. We observe qualitative agreement for all, but the normalized χ2 based on the statistical error
χ 2

stat is very large for some experiments. The large χ2 is primarily caused by a few data points with small variance, and removing those brings
χ 2

stat below 2 for all experiments.

Although the experimental precision of eigenvalue re-
construction is limited, we compare the predicted cor-
rections to the decay rates for a subset of � qubits of
ibmq_16_melbourne arranged as a linear chain with open
boundary conditions in Fig. 5(b). This is achieved by includ-
ing only CNOT and U3 gates on the chain in our waiting
circuit W2(t ). For each predicted “subcluster” of eigenvalues
of L, we calculate its deviation from the original location
both for our experimental and theoretical results and plot them
against each other. Despite relatively large error bars from the
experiment, these results appear to be statistically significant
and confirm that the fine structure in decay rates can indeed be
explained by the qubit connectivity of the machine, an obser-
vation which holds for different choices of machine subsets as
shown in Fig. 5(b).

III. CONCLUSION

We have demonstrated a simple and powerful way to sim-
ulate generic dissipative systems on current noisy quantum
computers. The protocol leverages gate errors of one qubit and
two qubit gates to generate single qubit dissipation as well as
dissipative two qubit interactions. Our circuits are designed
such that the unitary part completely cancels out, so that
during the action of the circuit only an effective many-body
dissipator remains. This protocol can be easily extended to
simulate Hamiltonian systems in the presence of generic dissi-
pation of this form, by reducing the amount of cancellation of
the unitary part. While the microscopic form of the introduced
dissipation cannot be controlled, generic features, such as
the locality of dissipation channels, can be selected at will.
The simulation therefore corresponds to a fully generic, local,
dissipative quantum many-body system, which we recently

described using a random matrix theory [32]. Our experimen-
tal results on the IBM quantum computer provide evidence
for the emergence of a hierarchy of dissipative timescales,
based on the k-body nature of observables, with a nontrivial,
nonmonotonic behavior of the timescales as a function of k
in the case of dissipative interactions. This observation is in
excellent agreement with the theoretical prediction, including
fine structure caused by the qubit connectivity in the quantum
processor.

These results put forward current quantum computers as
ideal platforms for studying the physics of generic quantum
many-body systems, thereby opening an avenue in the field
of digital quantum simulation. This should be particularly
relevant for the growing community investigating dissipative
quantum chaos.

IV. METHODS

A. Experiment

1. Simulation protocol

Here we provide details on our implementation of generic
open quantum systems in the IBM quantum computer.

The general form of circuits we use is shown in Fig. 6.
Our goal is to measure Tr(ρ0O(k)(t )) for a large array of
k-body observables of different degree of locality k for dif-
ferent initial states ρ0. For simplicity, we use simple pure
product states |ψ0〉 = |σ γ1

1 . . . σ
γ�

� 〉 (yielding ρ0 = |ψ0〉 〈ψ0|,
where γi ∈ {x, y, z} denotes the local basis and σi ∈ [0, 1] are
the quantum numbers of the corresponding Pauli operator σγi .

After preparation of the initial state |ψ0〉, we run different
“waiting circuits” of depth t , which have the purpose of letting
a generic local purely dissipative Liouvillian L act on the
qubits for a time t . For nontrivial waiting circuits, we work
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FIG. 6. The circuit we use to measure the decay rate of operators
in a purely dissipative quantum system is made of three components.
(i) The initialization stage, where a product state is created, rotating
locally to the appropriate basis (x, y, or z). (ii) A waiting circuit
of a variable depth n (corresponding to simulated time), which is
where the dissipation acts on the system. (iii) A measurement stage,
with appropriate rotations to the computational basis followed by
a measurement of each qubit in this basis, allowing us to find the
evolution of expectation values of up to 2� − 1 different operators as
we vary t .

in units of time given by the depth of the circuits, i.e., we will
have integer time in units of the average gate time. For small k
(i.e., few body Pauli strings), we measure all strings made of
I , X , Z , i.e., for each depth t of the waiting circuit, we perform
8192 shots to measure Tr(ρ0O(k)(t )).

We then analyze these time traces using harmonic inversion
to decompose them into their contributions from complex
exponential functions of the form

Tr(ρ0O(k)(t )) =
∑

n

eλnt cn, (5)

where λn ∈ C correspond to the eigenvalues of the effec-
tive adjoint Liouvillian governing the time evolution of the
operators.

2. Harmonic inversion to extract Liouvillian eigenvalues
from time traces

To decompose the experimental time traces Tr(ρ0O(k)(t ))
into sums of complex exponentials eλnt , we use the harmonic
inversion algorithm by Mandelshtam and Taylor [41], which
extends traditional filter diagonalization methods. Its distinct
advantage lies in the possibility of extracting both oscillation
frequencies Im(λn) and decay rates Re(λn), without the fre-
quency precision being limited by the total observation period
of the signal as it would be with Fourier transformation. In
the present case, this is useful as the decaying nature of our
signals prevents long time observation.

By choosing a small frequency interval of interest, and a
maximal number of eigenvalues to look for in this interval,
we can turn the problem of finding cn, λn into a small matrix
singular value decomposition problem. The maximal number
of eigenvalues should be much greater than the expected
number and is limited only by the information content of the
signal; from t time steps, one can at most extract ∼t/4 complex
pairs cn, λn. Noise will shift the true eigenvalues slightly and
create spurious modes. The spurious modes can largely be
identified based on a combination of their low amplitudes,
distinct position, and an error metric for λn arising in the SVD
problem.

The operators considered for the one body and two body
dissipation experiments are dominated by eigenvalues closer
to a point on the real axes. The reason for this is the following:
The natural dissipation channels (given by eigenmodes of
the Kossakowski matrix K) can be expected to be essentially
expressed in a random (local) basis, while we measure the
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FIG. 7. Generic time traces of k-body operators in the � = 5 ibmq_16_melbourne (vertical bars) superposed with the predicted time
traces from their harmonic inversion decompositions. The initial state was chosen to be |1x1x1z1x1z〉. Good agreement is seen, which justifies
our use of harmonic inversion.
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FIG. 8. Eigenvalues extracted by harmonic inversion from 1000
simulated time traces Tr(ρ0O(k)) of a two body spatially local � = 5
Liouvillian L. The inset shows the true spectrum, obtained by exact
diagonalization. It is colored by the average operator order of the
eigenoperators of the adjoint Liouvillian L†. The initial states ρ0 and
operators O(k) are chosen in a similar fashion to our experimental
procedure. The eigenvalues are colored by the order k of the operator
of the decomposed time trace. We see good agreement in terms of the
overall Re λ structure, and closer investigation reveals that various
cluster centers due to locality and operator order also agree well. The
slight between the two spectra arise due to some eigenvectors of L
having significant contributions from multiple operator orders. The
imaginary structure is reproduced less clearly, since it is orders of
magnitude smaller than the real part and so has only a small impact
on time dynamics and also due to the basis mismatch between the
eigenoperators of L† and Pauli string observables as explained in
the text. We can still extract the scale of the imaginary part of the
spectrum.

decay of Pauli string observables in the x, y, z basis. Due to
this basis mismatch, we find that each observable sees con-
tributions of essentially all eigenvalues of L corresponding
to a certain locality class k, which have different imaginary
parts but very similar real parts due to the timescale hierarchy.
This means that oscillating contributions essentially cancel
due to interference, leaving only decaying contributions, with
decay timescales ranging over the width of the corresponding
eigenvalue cluster.

It is therefore theoretically possible to use exponential re-
gression to extract the decay rate of a time trace. We choose
to use harmonic inversion as it generalizes to the case where
the imaginary part of λn is significant, and in practice we find
better agreement between theory and experiment than with
regression. We believe this is because harmonic inversion is
better able to filter out spurious modes in noisy time traces.

As harmonic inversion is not standard in the literature,
we supply evidence that it is suitable in Figs. 7 and 8. In
particular, they show that harmonic inversion can reproduce
the spectrum of a two body spatially local Liouvillian from

simulated time traces and that there is good agreement be-
tween the experimentally observed time traces and the time
traces their harmonic inversion decomposition predicts.

B. Theory

1. Perturbation theory

We use non-Hermitian degenerate perturbation theory de-
tailed in the main text and Supplemental Material of Ref. [32].
In a nutshell, we consider a purely dissipative � qubit system,
governed by a set of Lindblad operators {Li}, i = 1, . . . , N�.
The adjoint Liouvillian L† is given by

L†[•] =
N�∑

n,m=1

Kn,m

(
L†

m • Ln − 1

2
{L†

mLn, •}
)

. (6)

Since K needs to be a positive semidefinite matrix, we sample
it using a diagonal random matrix D with nonnegative eigen-
values di and a random CUE matrix U sampled from the Haar
measure to yield K = U †DU . We normalize TrK = N = 2�,
and it turns out that K is diagonal dominant with on average
mean(Knn) = N/N� = d . Therefore, we can approximate K =
dI + K ′, with a small perturbation K ′ [32]. If we approximate
K by dI (I is the identity), we obtain the starting point for
perturbation theory and can analyze the block structure of
the adjoint Liouvillian. We use for convenience the basis of
normalized Pauli string operators

Sx = 1√
N

σx1 × σx2 × . . . σx�
, (7)

where xi ∈ {0, 1, 2, 3} and can calculate the diagonal el-
ements (off-diagonals vanish) of the adjoint Liouvillian
in this basis:

Lxx = Tr(SxL†[Sx]) =
N�∑
n

dTr

(
SxLnSxLn − 1

N
I

)
. (8)

Here, we note that Ln are Pauli strings and therefore if Sx

and Ln commute, we get zero, since Pauli matrices square to
identity. It is now easy to see that we get “blocks” of identical
Lxx under certain conditions. (i) If the Ln are all only one
body operators, we get the same Lxx for all strings Sx, which
have the same number of nonidentities. (ii) If Ln furthermore
include all two body operators, we get the same condition, but
different diagonal matrix elements of the adjoint Liouvillian.
(iii) If there is a spatial structure in the two body Lindblad
operators, allowing only nearest neighbor operators, we get
different “blocks” based on the number of nonidentities k in
Sx, the number of edge nonidentities (since edge sites have
less neighbors), and the number of neighboring nonidentities.

For K = dI , we therefore get a diagonal matrix represen-
tation of L†, which is the starting point of our perturbation
theory, yielding degenerate eigenvalues given by the diagonal
elements Lxx. Now, we include the off-diagonal part of L†,
generated by K ′ = K − dI as a perturbation, which lifts the
degeneracy of the eigenvalue clusters.

2. Exact diagonalization of L
We use exact diagonalization of model Liouvillians on

few qubit systems. For this, we build the adjoint Liouvillian
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superoperator as a matrix in the many-body operator Hilbert
space of dimension 4� for � qubits, spanned by all possible
Pauli strings. We then diagonalize this matrix using standard
lapack routines to find its eigenvalues and eigenvectors.

Note. After the completion of our work, we became aware
of a related paper where one qubit noise was used in a quan-
tum chemistry simulation [42].
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