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We investigate rectified currents in response to oscillating electric fields in systems lacking inversion and
time-reversal symmetries. These currents, in second-order perturbation theory, are inversely proportional to
the relaxation rate, and, therefore, naively diverge in the ideal clean limit. Employing a combination of the
nonequilibrium Green function technique and Floquet theory, we show that this is an artifact of perturbation
theory, and that there is a well-defined periodic steady state akin to Rabi oscillations leading to finite
rectified currents in the limit of weak coupling to a thermal bath. In this Rabi regime the rectified current
scales as the square root of the radiation intensity, in contrast with the linear scaling of the perturbative
regime, allowing us to readily diagnose it in experiments. More generally, our description provides a
smooth interpolation from the ideal periodic Gibbs ensemble describing the Rabi oscillations of a closed
system to the perturbative regime of rapid relaxation due to strong coupling to a thermal bath.
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Introduction.—Crystalline solids lacking inversion
symmetry can display bulk photovoltaic effects (BPVE)
[1–3], namely macroscopic dc rectified currents in response
to spatially uniform ac electric fields. There is a long
tradition of studying these BPVE [4–9], but also a growing
renewed interest in investigating their connections to the
Berry phase geometry and topology of electronic bands
[10–22], and their potential for novel photovoltaic tech-
nologies [10,17,23–27].
Our study is motivated by the following question: what is

the ultimate fate of current rectification in Bloch bands in
the ideal limit where relaxation times become very large?
As we will demonstrate, there is in fact a well-defined
periodic steady state in such a limit, that we will refer to as
the Rabi regime, in which the system sustains a finite dc
rectified current.
A useful starting point to appreciate the nontrivialities of

such a clean limit is to analyze the problem perturbatively
in the amplitude of electric field, as is commonly done in
most studies (see however Refs. [12,28–31]). Perturbation
theory predicts a rectified current j, that grows as the square
of the amplitude of the field, j ∝ jEj2. For frequencies
above the threshold for interband transitions, such pertur-
bative BPVEs are often separated into two mechanisms

known as the shift and the injection current effects [3–10,
12–17,23–26,29–31]. The injection current originates
from difference of the band-diagonal velocity of the empty
and occupied bands at a given crystal momentum k. The
shift current, on the other hand, originates from the
difference of positions of Bloch wave functions between
the empty and occupied bands at a given k, and can be
computed as the contribution arising from the band-off-
diagonal velocity operator.
A crucial distinction between the shift and injection

currents is that, within perturbation theory, the shift current
appears to have a finite value in the clean limit of vanishing
relaxation rate, Γ → 0, while the injection current appears
to diverge in such limit as 1=Γ, which ultimately arises
from the vanishing quasienergy denominators appearing
at higher orders of the perturbation theory for the
rectified current (see Refs. [3–10,12–17,23–26,29–31]
and Supplemental Material, Sec. A [32]). Such divergence
is often handled in an ad hoc manner by computing the
response of the rate of change of the current, dj=dt, and
assuming that such growth leads to a current saturation to a
value proportional to the relaxation time τ ∼ ℏ=Γ. However,
recently an interesting nonperturbative study of the circular-
photogalvanic effect (CPGE) in Weyl semimetals [30]
demonstrated that the rectified current saturates to a finite
value even in the clean limit of vanishing relaxations
(Γ → 0) within a semiclassical kinetic framework. The
underlying mechanism for such saturation is the Rabi
dynamic broadening of absorption [33–36], which occurs
when the energy scale controlling the transitions between
conduction (c) and valence (v) bands exceeds the relaxation
rate, eE · hcjrjvi ≫ Γ, which we refer to as the Rabi regime.
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In the present Letter we develop a microscopic
description of the currents for arbitrary values of the
nonlinearity parameter eE · hcjrjvi=Γ, that captures the
perturbative and the Rabi regimes on equal footing. To do
so, we employ a Keldysh-Floquet formalism [37–39]
in a generic two-band system coupled to an ideal
fermionic bath, following the pioneering approach of
Ref. [12] (see also Ref. [28]). As we will see, and contrary
to the expectations of perturbation theory, in the Rabi
regime, the traditional resonant shift current contributions
vanish, whereas the injection currents approach a finite
limit that scales as the square root of the radiation
intensity in a sharp contrast to perturbation theory
expectations. We will also demonstrate that the Rabi
regime can be viewed as an example of thermalizing
synchronization of a system under an external periodic
drive that can be described by the periodic Gibbs
ensemble [40,41].
Keldysh-Floquet formalism.—We derive the nonpertur-

bative expression for currents within a two-band model
[see Fig. 1(a)]. The electric current operator is defined as:
ĵ ¼ ev̂=ℏ ¼ ∂Ĥ0½kþ eAðtÞ=ℏ�=∂AðtÞ, where Ĥ0ðkÞ is
the 2 × 2 matrix Bloch Hamiltonian, and AðtÞ is the vector
potential from a spatially uniform but time dependent
electric field. Since the crystal momentum k is conserved,
the problem is equivalent to a collection of independent
driven two-level systems. We restrict our analysis to a
monochromatic electric field with frequency ω:

A0ðtÞ ¼ i
E
ω
eiωt − i

E�

ω
e−iωt: ð1Þ

Here E is a vector with complex entries, allowing us to
capture light of an arbitrary degree of polarization, ranging
from the case of linear polarization, when all components
can be chosen to be real, to fully circularly polarized light,
when two orthogonal components differ by a phase of π=2.
The periodicity in time allows us to employ the Floquet
picture (for details see Supplemental Material, Sec. B [32])
where multiple Floquet bands appear with a quasienergy
that is boosted by multiples of the driving frequency [see
Fig. 1(a)]. We simplify the problem by truncating the
Floquet Hamiltonian to two bands that are in resonance,
in the spirit of a rotating-wave approximation [13]. This
approximation is well justified when the off diagonal terms
in the Floquet Hamiltonian are smaller in comparison to
the Floquet quasienergy difference and to other remote
Floquet bands, namely when ejE · hcjrjvi ≪ ℏω (see, e.g.,
Ref. [42] and Supplemental Material, Sec. B [32]). Thus the
approximate Floquet Hamiltonian is

HF ¼

0
B@ ϵ1 þ ℏω i eEℏω ·

�∂H0ðkÞ∂k
�
12

−i eE�
ℏω ·

�∂H0ðkÞ∂k
�
21

ϵ2

1
CA

¼ h0 þ h · σ; ð2Þ

where 1 stands for valence, 2 for conduction, and ϵ1;2 are
effective valence and conduction band energies respectively
(which could be dressed by higher order perturbative
corrections with respect to bare band energies, as further
discussed in Supplemental Material, Sec. B [32]). The
subscript F stands for the representation of the operator in
the Floquet picture, which is related to the ordinary
Schrödinger picture as follows:

ÔF ¼
�
O22 O12

O21 O11

�
; ÔðtÞ ¼

�
O11 O21e−iωt

O12eiωt O22

�
:

ð3Þ

In order to capture relaxation processes, we couple the
system to a bath and apply the nonequilibriumGreen function
technique on the Keldysh contour (see Supplemental
Material, Sec. C [32] and Refs. [13,37,43–47]). We choose
a simple model in which each fermionic site in the system of
interest is coupled to its own fermionic bath, with a common
hopping amplitude Vmix [see Fig. 1(b)]. The temperature of
the bath is Tbath ¼ 1=ðkBβÞ and the chemical potential is μ.
The effective density matrix of the system is given by the
lesser equal time Green function G<ðt; tÞ, and can be shown
as follows (see Supplemental Material, Sec. C [32]):

FIG. 1. (a) Energy crossing between boosted valence and
conduction bands in Floquet representation, (b) Depiction of
underlying tight binding model with physical sites (red balls)
which are tunnel coupled (solid lines) among themselves and
with their own identical fermionic bath (blue balls).

PHYSICAL REVIEW LETTERS 127, 126604 (2021)

126604-2



ρ̂F ¼ −iĜ<
F ¼

�
f1 0

0 f2

�

þ f1 − f2
2ðh2 þ Γ2

4
Þ

0
B@ −h2x − h2y h−

�
hz þ i Γ

2

�

hþ
�
hz − i Γ

2

�
h2x þ h2y

1
CA;

ð4Þ

where f1;2 ¼ 1=f1þ exp½−βðϵ1;2 − μÞ�g are valence and
conduction Fermi-Dirac occupation factors respectively,
h� ¼ hx � ihy and Γ ¼ 2πjVmixj2 is the relaxation rate.
The dc current of the system, Jα ¼ −ieTr½Ĝ<

F v̂
α
F�=ℏ, can

be decomposed into three contributions:

Jα1 ¼
e
ℏ

Z
dk

ð2πÞ3
Γ
2
ðf1 − f2Þ
h2 þ Γ2=4

ðhyvαx − vαyhxÞ; ð5Þ

Jα2 ¼
e
ℏ

Z
dk

ð2πÞ3
hzðf1 − f2Þ
h2 þ Γ2=4

ðhxvαx þ hyvαyÞ ð6Þ

Jα3 ¼ −
e
ℏ

Z
dk

ð2πÞ3 ðf1 − f2Þvαz
h2x þ h2y
h2 þ Γ2

4

: ð7Þ

Here α denotes the real space indices and the velocity
operator in Floquet representation v̂αF is decomposed in the
Pauli basis, namely v̂αF ¼ P

i¼x;y;z v
α
i σi. In Supplemental

Material, Sec. E [32], we compare the currents Eqs. (5)–(7)
with perturbation theory and show that Eq. (5) and
Eq. (7) recover the resonant behaviour of the shift and
injection currents respectively, whereas Eq. (6) becomes
the nonresonant component of the shift current in the
limit eEhcjrjvi ≪ Γ.
Now, to analyze the clean limit behavior of the injection

current Eq. (7), it is useful to take the approximation in
which both the diagonal hz matrix elements in Eq. (2) are
greater than Γ and the off-diagonal elements hx;y. This is
typically well satisfied in most solids except in special
situations such as resonant absorption on extremely flat
bands, and we will demonstrate that this is a good approxi-
mation by explicit calculations later on. Therefore we replace

1=ðh2 þ Γ2=4Þ ≈ πδðhzÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2x þ h2y þ Γ2=4

q
, which leads

to the following expression:

Jα3 ¼ π
e
ℏ

Z
dk

ð2πÞ3 ðf2 − f1Þðvα1 − vα2Þ

×

��� eEℏω ·
�∂H0ðkÞ∂k

�
12

���2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��� eEℏω ·
�∂H0ðkÞ∂k

�
12

���2 þ Γ2

4

r δðϵ1 − ϵ2 þ ℏωÞ; ð8Þ

where v1;2 are conduction and valence band velocities
respectively. We again see that in the limit of fast relaxation

(eE · hcjrjvi ≪ Γ) Eq. (8) reproduces the behaviour pre-
dicted by perturbation theory (see Supplemental Material,
Sec. A [32]). Remarkably, however, in the clean limit
(Γ → 0), the above formula predicts a finite current, in
sharp contrast to the naive extrapolation of perturbative
result. In other words, the relaxation rate in the denominator
of the perturbative expressions acquires a nonperturbative
modification by the driving electric field of the form:

1

Γ
→

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
��� eEℏω ·

�∂H0ðkÞ∂k
�
12

���2 þ Γ2

r : ð9Þ

Therefore in the clean limit, the injection current scales
as the absolute value of the electric field, J3 ∝ jEj, and,
accordingly, it is proportional to the square root of the
radiation intensity. On the other hand, the term J1 from
Eq. (5), which reduces to the usual resonant shift current
from perturbation theory (see Supplemental Material,
Sec. A [32] for details), can be seen to vanish in the clean
limit Γ → 0 from Eq. (5). This is noteworthy because in the
perturbative regime (eEhcjrjvi ≪ Γ) the shift current
naively approaches a finite value in the Γ → 0 limit.
Synchronization and Rabi limit of rectification.—While

the Keldysh formalism allows for a description with
arbitrary strength of coupling to the bath, there is a simpler
way to understand the ideal behavior in the limit of
vanishing coupling to the bath (Γ → 0). In fact, this limit
can be understood simply as a form of Rabi oscillations
associated with the interband transitions driven by the
oscillating field. We will describe how to understand this
limit within the picture of the periodic Gibbs ensemble
(PGE) [40,48–50] that captures the steady state synchro-
nization of the system with the driving field.
Consider an initial state described by a density matrix ρ0.

This density matrix can be decomposed in the eigenstates
of the time dependent Hamiltonian, ψαðtÞ, and therefore the
state at any later time t, is given by:

ρðtÞ ¼
X
αβ

ραβψαðtÞψ†
βðtÞ; ð10Þ

where ραβ ¼ Tr½ρ0ψαðt0Þψ†
βðt0Þ�. Now, the Floquet theo-

rem implies that, barring accidental degeneracies, the
operators ψαðtÞψβðtÞ† are only periodic when α ¼ β.
The late-time synchronization associated with the PGE
can be understood as a process in which the memory
of these off-diagonal amplitudes of the density matrix in
the Floquet basis disappears in a kind of thermalization
process, leading to a steady state that is exactly periodic and
synchronized with the drive (see Supplemental Material,
Sec. G [32]):

ρPGE ¼
X
α

ρααψαðtÞψ†
αðtÞ: ð11Þ
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Remarkably the above ensemble is identical to the one
that we have obtained within the Keldysh formalism in the
limit of Γ → 0, when one chooses the initial state ρ0 to be
the equilibrium Fermi-Dirac density matrix in the absence
of the periodic perturbation, with the chemical potential
and the temperature of the bath (see Supplemental Material,
Sec. E [32] for more details). In fact, within the same
rotating-wave approximation used to solve the Floquet
problem, this density matrix is explicitly given by (see
Supplemental Material, Sec. G [32]):

ρ̂PGEðtÞ ¼
�
f2 0

0 f1

�
þ f1 − f2

2h2

�
h2x þ h2y hzhþe−iωt

hzh−eiωt −h2x − h2y

�
:

ð12Þ

This density matrix encodes the physics of Rabi oscil-
lations (see Supplemental Material, Sec. F [32] for details).
The above reduces exactly to the density matrix in Eq. (4)
in the clean limit Γ → 0, once it is expressed in the Floquet
picture [see Eq. (3)], and therefore predicts the same
rectification currents that we have previously described
in the clean limit.
We would like to note that most studies of PGE to date

have focused on what might be called internal synchroni-
zation, which considers a closed system acting as its own
bath. In this context, the initial condition, ρ0, is freely
chosen and it is not unique. In our context, however, the
emergence of the PGE follows from different principles.
Coupled to the bath, the system loses memory of its initial
state at late times. It does so by flowing towards a unique
stable periodic solution. Remarkably, in the limit of weak
coupling to the bath, this steady state coincides exactly with
one specifically chosen PGE, whose initial condition is the
one associated with the thermal equilibrium system and
with an infinitesimal coupling to the bath in the absence of
the periodic drive.
Therefore, although we have performed our calculations

in a rather specific microscopic setting, we have been able
to recover the universality of the PGE in the limit of weak
coupling to the bath that we are using. Since the PGE can
be justified under generalized entropy maximixation prin-
ciples [40,48–50], this is a compelling indication that our
results describe the behavior of a large class of systems
coupled to ideal heat baths.
Photocurrents for 3D Weyl and 2D Dirac fermions.—

One important distinction between shift and injection
currents is their transformations under time-reversal (TR)
symmetry [51,52]. The shift current can exist in TR
invariant materials illuminated with linearly polarized light,
whereas the injection current requires breaking of TR
symmetry, namely either by shining linearly polarized light
on a TR broken material [53,54], or by shining circularly
polarized light, also known as the circular-photogalvanic

effect, which has an interesting manifestation in Weyl
semimetals [16,18,31,55–65].
We would like to illustrate this behavior for represen-

tative nodal fermions with Hamiltonians that are linear in
momentum. These linear in kHamiltonians have negligible
shift currents (see details in Supplemental Material, Sec. J
[32]) and therefore allow us to focus on the behavior of
injection currents, which we will consider in this section.
We will consider two types of model that are relevant
to a large class of materials. The first is an ideal three-
dimensional Weyl fermion, and our focus will be on the
nonperturbative modifications to the CPGE. As we will see,
our results are in perfect agreement with those obtained
recently in Ref. [30]. The second will be a two-
dimensional-tilted Dirac massive fermion, and our focus
will be to investigate the nonperturbative regime of
rectification for linearly polarized light in a time reversal
breaking system.
The ideal three-dimensional Weyl Hamiltonian is

Ĥ0 ¼ v0
X

α¼x;y;z

kα · σ̂α: ð13Þ

Here v0 is a Fermi velocity and σ̂α are Pauli matrices.
This model respects TR but breaks inversion symmetry.
When the system has a finite chemical potential, light
absorption occurs above a threshold frequency ℏω > 2ϵF
[see Fig. 2(a)]. By using the formula from Eq. (8), one
obtains the following nonperturbative approximate expres-
sion of the injection current above such a threshold (see
Supplemental Material, Sec. I [32] for details):

J3 ≈
iπ2e2ω
v0ð2πÞ3

½E� ×E�
60

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEj2 þ Γ2ℏ2ω2

4v2
0
e2

q 12jEj2 þ 5 Γ2ℏ2ω2

v2
0
e2

jEj2 þ Γ2ℏ2ω2

4v2
0
e2

; ð14Þ

where jEj2 ¼ E� ·E, with E understood as the complex
vector defined in Eq. (1) [see Supplemental Material, Sec. I
[32] for comparison of this approximate formula against
direct evaluation from the integral in Eq. (8)]. Equation (14)
in the perturbative regime (e2v20jEj2≪Γ2ℏ2ω2) approaches
the known result [16,18] J3 ≈ ℏβ½E� ×E�=Γ, where β ¼
iπe3=ð3h2Þ. However, in the Rabi regime (e2v20jEj2 ≫
Γ2ℏ2ω2) interestingly, the injection current approaches a
value that is independent of the relaxation rate and is
given by:

J3 ≈ ζ
βℏ2ω

ev0jEj
½E� ×E�: ð15Þ

Here ζ ≈ 0.3 is a numerical prefactor with a weak depend-
ence on the degree of light polarization. Its value for
perfectly circularly polarized light can be computed exactly
from Eq. (8) to be ζ ¼ 1=ð2 ffiffiffi

2
p Þ, in agreement with Ref. [30]

(see Supplemental Material, Sec. I [32] for details).
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The behavior of the rectified current in these two regimes
and their crossovers are shown in Figs. 2(a) and 2(b).
We will now consider a two-dimensional Dirac

Hamiltonian given by:

Ĥ ¼ uxkx1̂þ vxkxσ̂x þ vykyσ̂y þmσ̂z; ð16Þ

where m is the mass which breaks time-reversal symmetry,
vx, vy are anisotropic Fermi velocities, and ux > 0 is the
tilt term that breaks inversion. The above model
features absorbtion within a window of frequency given
by ð2ϵF − 2α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2F −m2 þ α2m2

p
Þ=ð1− α2Þ< ℏω< ð2ϵFþ

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2F −m2 þ α2m2

p
Þ=ð1− α2Þ [see Fig. 2(c)]. In this

window the maximum current occurs when ℏω ≈ 2ϵF
[see Fig. 2(c)], and for the electric field along the tilt
direction. From Eq. (8), the corresponding component
of the injection current can be approximated as (see
Supplemental Material, Sec. I [32]):

Jx3;max ≈
e2vx
ℏvy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2F −m2

p
60π

jEj2
ϵ2Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jEj2
ϵ2F

þ Γ2

e2v2x

q

×
5 Γ2

e2v2x

�
1þ 2 m2

ϵ2F

�
þ jEj2

ϵ2F

�
6þ 13m2

ϵ2F
− 4 m4

ϵ4F

�
jEj2
ϵ2F

þ Γ2

e2v2x

:

ð17Þ

Within perturbation theory this current would be Jx3;p ¼
e3v2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2F −m2

p
ð1þ 2m2=ϵ2FÞjEj2=ð12πℏvyΓϵ2FÞ. We use

Jx3;p to normalize the numerical nonpertubative results
shown in Figs. 2(c) and 2(d), so that deviations from 1
signal deviations from the perturbative regime.
Summary and experimental outlook.—We have devel-

oped a formalism which captures on equal footing the
perturbative regime of fast relaxation (eEhcjrjvi ≪ Γ) and

the nonperturbative regime of strong light intensity
(eEhcjrjvi ≫ Γ) of current rectification for interband
transitions. In the perturbative regime, we recover the
well-known behavior according to which shift currents
approach a value that is independent of the relaxation
rate Γ, while injection currents scale as 1=Γ.
Interestingly in the opposite nonperturbative clean limit
of slow relaxation (Γ → 0) the shift current vanishes,
while the injection current approaches a finite value
independent of Γ, but with a net current that scales as the
square root of the radiation intensity, which can guide its
identification in experiments. We have shown that this
nonperturbative clean limit can be understood as optical
Rabi oscillations synchronized with the incident radia-
tion that realizes a time dependent generalized periodic
Gibbs ensemble in a setting very different from its
initial proposal.
Nodal Weyl semimetals are promising platforms to

realize the Rabi regime because their interband dipole
matrix element diverges when approaching the Weyl node
as hcjrjvi ∝ 1=k. As a consequence, they can access
this nonperturbative regime above a light intensity that
decreases with frequency, namely when ev0jEj > ℏΓω.
For RhSi [66,67], using ℏΓ−1 ≈ 10 ps [59] we estimate that
the nonperturbative Rabi regime will be accessed at light
intensities above 4 × 105 W=cm2 for a photon energy of
ℏω ≈ 0.5 eV, but this required light intensity can be
decreased as ω2 at lower photon energies.

We wish to thank Achilleas Lazarides, Kin Fai Mak, and
Andrea Cavalleri for valuable discussions and correspon-
dence, and Nikita Leppenen and Leonid Golub for sharing
the calculations that helped us understand the precise
connection to their work in Ref. [30]. We acknowledge
financial support from the Deutsche Forschungsgemein-
schaft through SFB 1143 (Project No. 247310070) and
Cluster of Excellence ct.qmat (EXC 2147, Project
No. 39085490).

FIG. 2. (a) Rectified current dependence on frequency, and (b) on electric field amplitude for 3D Weyl fermion
[E=jEj ¼ ð0; i sin π=8 sin π=4; cos π=4þ i cos π=8 sin π=4Þ], (c) Rectified current dependence on frequency, and (d) on electric field
amplitude for 2D Dirac fermion ½E=jEj ¼ ð1; 0Þ; ux=vx ¼ 0.2; m ¼ 0.5ϵF�.
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