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We study two-dimensional materials where electrons are coupled to the vacuum electromagnetic field
of a cavity. We show that, at the onset of the superradiant phase transition towards a macroscopic
photon occupation of the cavity, the critical electromagnetic fluctuations, consisting of photons strongly
overdamped by their interaction with electrons, can in turn lead to the absence of electronic quasiparticles.
Since transverse photons couple to the electronic current, the appearance of non-Fermi-Liquid behavior
strongly depends on the lattice. In particular, we find that in a square lattice the phase space for electron-
photon scattering is reduced in such a way to preserve the quasiparticles, while in a honeycomb lattice the
latter are removed due to a nonanalytical frequency dependence of the damping ∝ jωj2=3. Standard cavity
probes could allow us to measure the characteristic frequency spectrum of the overdamped critical
electromagnetic modes responsible for the non-Fermi-liquid behavior.
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Introduction.—Certain strongly correlated metals do not
behave according to Landau’s Fermi-liquid theory (see
Ref. [1] for a recent classification). In most of the cases this
happens in correspondence to a quantum critical point
separating a normal metallic phase and a symmetry-broken
phase [2,3]. Within this scenario which has special rel-
evance in two-dimensional materials, the strong coupling
between the Fermi surface and critical order-parameter
fluctuations leads to the loss of Landau’s quasiparticles
and thus to non-Fermi-Liquid behavior [4–19]. A direct
signature is a nonanalytical frequency dependence of the
quasiparticle damping ∼jωjα, with α < 1, as opposed to the
usual Fermi-liquid damping ∼ω2 which becomes instead
increasingly irrelevant towards the Fermi surface ω → 0. In
order to improve our understanding of the emergence of
non-Fermi-liquid behavior and its experimental relevance,
it would be highly desirable to determine the microscopic
origin of the bosonic degree of freedom whose critical
fluctuations are responsible for removing the electronic
quasiparticles.
The recent experimental possibility to strongly couple

electrons in two-dimensional materials with photons con-
fined within cavities [20,21] has opened new avenues for
controlling collective electronic phenomena and explore
them in novel scenarios. These include cavity induced

superconductivity [22–30], magnetism [31–35], ferroelec-
tricity [36,37], as well as topological phenomena [38–45],
that could be realized by engineering the quantum elec-
trodynamical (QED) coupling between matter and light.
These scenarios can also be investigated with synthetic
matter made of ultracold atoms [46].
In this Letter, we show that cavity QED within two-

dimensional materials offers ideal conditions to implement
and observe non-Fermi-liquid behavior. The fluctuations of
the emergent bosonic degree of freedom which induce non-
Fermi-liquid behavior in the standard scenario are here
substituted by the fluctuations of the vacuum electromag-
netic field, i.e., a microscopic degree of freedom whose
dynamics and coupling with electrons can be controlled by
cavity engineering. Moreover, two-dimensional materials
within layered structures [21] (and even more so synthetic
ultracold-atomic systems [46–48]) offer an enhanced tun-
ability of electronic properties, including Coulomb inter-
actions as well as the role of impurities and phonons. This
potentially allows us to realize a situation where the QED
coupling with cavity photons is dominant. Cavity mirrors
create a gap in the electromagnetic spectrum. However,
electromagnetic modes can be made critical by reaching the
transition point towards superradiance [49–56], at which
the hybridization with the matter creates gapless polariton
modes. Since the QED coupling depends on the electron
momentum, we find that non-Fermi-liquid behavior can
be controlled via the choice of the underlying lattice. We
consider here a square and a honeycomb lattice away from
unit filling. While in both cases the hybridization with
matter leads to overdamped polaritons at the critical point,
the phase space for electron-photon scattering is such that
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non-Fermi-liquid behavior is absent for the square lattice,
where the electron quasiparticle damping is ∝ ω2 log jωj,
but present for the honeycomb lattice, where the damping is
∝ jωj2=3. Measurements of the cavity spectrum could show,
instead of a well-defined resonance, nonanalytical power-
law tails revealing the presence of the critical bosonic
fluctuations responsible for the non-Fermi-liquid behavior.
The present scenario can also be realized with ultracold
fermionic atoms in confocal cavities [57].
Model.—We consider the cavity consisting of two

parallel perfect conducting mirrors and choose the
Coulomb gauge: divA ¼ 0 for the electromagnetic field.
The two-dimensional electronic system is placed in the
middle of the two plates as illustrated in Fig. 1. Because of
the boundary condition at the mirrors, the nth photon
modes acquire a finite “mass” ω0n ¼ nπ=L where L is the
distance between two plates [58]. For simplicity we shall
consider only the n ¼ 1 modes. Since, as we shall see, the
relevant photon momenta for non-Fermi-liquid scaling
are of the order of the inverse lattice constant 1=a, this
approximation is justified only for ultracold gases; for solid
state systems 1=a instead exceeds the photon mass scale.
However, as shown in the Supplemental Material [59], the
inclusion of all cavity modes does not change the non-
Fermi-liquid scaling. The photon dispersion is

ω2
k ¼ k2 þ ω2

0; ð1Þ

where k is the 2D photon momentum in the plane of the
lattice. The free particle Hamiltonian is

H0 ¼ −t
X

i;j;α¼�1

c†α;icα;j þ
X
k

ωk

�
b†kbk þ

1

2

�
: ð2Þ

Here i, j are lattice sites and α is the spin index. The first
term in (2) is the tight-binding electron Hamiltonian,
and the second term describes the transverse photon
modes. The free transverse photon Green’s function has
the form [58,59]

D0;ijðω;kÞ ¼ −
2

L
1

ω2 − ω2
k

eiðkÞe�jðkÞ; ð3Þ

where eðkÞ is the transverse polarization vector:
k:eðkÞ ¼ 0. Electron-photon coupling is introduced via
the Peierls substitution: ci → ci exp

R
ri
r0
A:dr in H0 [61].

For our purpose it is sufficient to keep the paramagnetic
part linear in A [55]:

V ¼ −
X
k

jðkÞ:AðkÞ; H ¼ H0 þ V: ð4Þ

In principle, higher-order terms are required for guarantee-
ing gauge invariance of the theory, but those do not
influence the results in this Letter (see below). At
ω ¼ 0, the longitudinal cavity mode decouples from
electrons as a result of charge conservation k:j ¼ 0.
Therefore, at small frequency, only the transverse cavity
mode couples strongly to the Fermi-surface, whereas the
longitudinal mode is suppressed by ω2. In what follows we
shall only consider coupling between the transverse mode
and electrons.
Superradiant critical point.—The light-matter coupling

(4) leads to hybridization between cavity photons and
electronic excitations. The properties of the resulting polar-
iton modes are described by the Dyson’s equation for the
retarded transverse photon Green’s function [see Fig. 2(b)]:

½DRðkÞ�−1 ¼ ½DR
0 ðkÞ�−1 − ΠRðkÞ; ð5Þ

FIG. 1. Summary of the main results for the two cases
considered: cavity photons coupled to electrons on a two-dimen-
sional square lattice (left column) and honeycomb lattice (right
column, red and blue atoms belong to the A, B sublattices).
Potential hot spots are shown in white circles. For each lattice we
show explicitly nesting momenta Q for one pair of hot spots in
black dots. Note that on the honeycomb lattice, the entire Fermi
surface is “hot.”

FIG. 2. One loop diagrammatic representation for (a) the
polarization function ΠðkÞ; (b) the Dyson equation for photon
propagator DðkÞ; and (c) electron self-energy ΣðpÞ renormalized
by the thick photon (polariton) line in (b).
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with the polarization function ΠRðkÞ. The superradiant
critical point is reached at given momenta k such that the
polariton gap closes: ΠRð0;kÞ ¼ ½DR

0 ð0;kÞ�−1. Beyond this
point a macroscopic occupation of photons at momenta k
becomes energetically favorable. For the case of multiple
cavity modes, DRðkÞ becomes a matrix in cavity mode
indices. The critical point is reached when one of the
eigenvalues of ½DRð0;kÞ�−1 first becomes zero [56,59].
Note that superradiance cannot happen at vanishing
photon momenta which corresponds to a pure gauge.
In this case the paramagnetic contribution is cancelled
exactly by the diamagnetic part [55,56]. In this Letter, we
consider electrons on square and honeycomb lattices
away from unit filling, when the Fermi surfaces have
imperfect nesting. As we shall see next, superradiance is
first reached at momenta k ¼ Q, where Q is a nesting
momentum. We will show that at the critical point the
polariton modes are strongly overdamped at small
frequencies and near momenta Q, and these can in turn
destroy the electronic quasiparticles.
Square lattice.—Let us start with the square lattice below

unit filling. The current operator in the tight-binding
approximation is given by

jðkÞ ¼
X
p

Λðp;kÞc†pþkcp;

Λðp;kÞ ¼ −aet sin
��

pþ k
2

�
:ai

�
ai
a
: ð6Þ

Here ai is the ith lattice vector and a is the lattice constant.
There are special points on the Fermi surface which couple
most strongly to the transverse photons. Generally, such
a hot-spot point has a symmetric partner on the opposite
side of the Fermi surface. They are connected by a nesting
momentum Q which there lies perpendicular to the Fermi
surface. On the square lattice away from unit filling, they
are four pairs indicated in Fig. 1. The nesting momentumQ
is only shown for one such pair in the figure. At the hot
spots the electron dispersion has the form (7)

ξ�ðkÞ ¼ �vFk⊥ þ
k2k
2m

; ð7Þ

where k⊥ and kk are components of k parallel and
orthogonal to Q, and vF, m are parameters of the Fermi
surface. We have assumed that we are sufficiently away
from unit filling that the Fermi velocity vF, which vanishes
at the corners of the square Fermi surface at unit filling,
can be regarded as constant here. In all cases the current-
photon vertex that connects pairs of hot spots in Eq. (6) has
the same form:

Λ:e ≈ −a2et
�
pk þ

kk
2

�
: ð8Þ

Here p is the quasimomentum measured from one of the
hot spots. The momentum-dependent vertex in (8) affects
the one-loop polarization function for the transverse
cavity photons. Given the superradiant critical point con-
dition, ΠRð0;QÞ ¼ ½DR

0 ð0;QÞ�−1 in (5), the expansion
ΠRðω;Qþ kÞ − ΠRð0;QÞ at small ω and jkj contains
the following nonanalytical contribution from near the
Fermi surface:

−
a4ðetÞ2m3

2

6πvF
ð½EðkÞ þ ωþ i0�32 þ ½EðkÞ − ω − i0�32Þ; ð9Þ

where EðkÞ ¼ vFk⊥ þ k2k=ð4mÞ. This term induces an

imaginary part at large negative EðkÞ, corresponding to
strong Landau damping of the polariton mode at the
superradiant critical point:

½−jEðkÞj � ðωþ i0Þ�32 → �i½jEðkÞj ∓ ðωþ i0Þ�32:

Subsequent terms in the expansion of ΠRðkÞ − ΠRð0;QÞ
receive contributions far from the Fermi surface and can be
written in powers of EðkÞ. They provide dynamics for
the polaritons. The retarded photon Green’s function thus
becomes

DRðω;Qþ kÞ ¼ ð½EðkÞ þ ωþ i0�32 þ ½EðkÞ − ω − i0�32
þ bEðkÞ þ c½EðkÞ�2Þ−1; ð10Þ

where we have included up to quadratic powers of EðkÞ in
the expansion [15]. The constants b and c are given by
contributions far from the Fermi surface. Note that the
free photon dispersion (1) gives in principle also powers
of ξþðkÞ in the denominator of DR. These have been,
however, neglected since they do not affect the quasipar-
ticle decay, as will be justified below.
We now calculate the electronic quasiparticle decay as a

function of frequency, due to the interaction with the
Landau-damped polariton mode. The decay rate is given
by twice the imaginary part of the electron self-energy,
shown in Fig. 2(c):

ImΣR

�
ω;

Q
2

�
∝
Z

k2kImDR½ξþðkÞ − ω;k −Q� d2k
ð2πÞ2 :

ð11Þ

Here, 0 < ξþðkÞ < ω. In Eq. (11), the photon Green’s
function at small frequency and near momenta Q is
considered, which corresponds to the polariton mode.
We evaluate this integral in the Supplemental Material [59].
Here we limit ourselves to highlighting the most important
feature, namely, that at sufficiently small ω, the dominant
contribution to (11) comes from the region in the
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phase space in which polariton Landau damping is strong:
−EðkÞ ≫ ξþðkÞ ∼ ω > 0. This justifies neglecting ξþðkÞ.
The final result is

ImΣR

�
ω;

Q
2

�
∼ ω2 log jωj: ð12Þ

The electron quasiparticles remain thus well defined in this
case. This can be attributed to the momentum dependence
of the QED coupling (4) inherited from the electronic
current operator (6), which suppresses the effect of the
Landau-damped polaritons near the Fermi surface [com-
pare with Eq. (17) on the honeycomb lattice below].
Honeycomb lattice.—We now turn to the honeycomb

lattice. For simplicity we shall focus on the K0 point in
quasimomentum space. The single-particle Hamiltonian
H0 then has the form

H0ðkÞ ¼ vFσ:k: ð13Þ

Here σ are Pauli matrices in pseudospin space and k is a 2D
quasimomentum measured from K0. Equation (13) gives
two particle-hole symmetric bands with energies ελðkÞ and
eigenstates uλðkÞ:

ελðkÞ ¼ λvFk; uλðkÞ ¼
1ffiffiffi
2

p
�

1

λ expðiφkÞ

�
; ð14Þ

where λ ¼ � and φk is the polar angle of k. At finite
positive chemical potential μ, the Fermi surface is a circle
on the electron band. Contrary to the square lattice case, the
current operator has no momentum dependence:

j ¼ δ

δA
H0ðk − eAÞ ¼ −evFσ: ð15Þ

Moreover, the whole Fermi surface is nested, i.e.,
Q ¼ 2pF. At low-enough energies, we will assume each
of the infinitely many hot-spot pairs to contribute inde-
pendently [12] and therefore consider only one such pair,
with dispersion given by Eq. (7) with m ¼ pF=vF. It gives
a nonanalytical contribution to the polarization function
quantified by the expansion around the critical point
ΠRðω;Qþ kÞ − ΠRð0;QÞ, which reads

e2vF
ffiffiffiffi
m

p
2π

ð½EðkÞ þ ωþ i0�12 þ ½EðkÞ − ω − i0�12Þ; ð16Þ

where we have neglected terms of order k2=p2
F. The

details of computing (16) are given in the Supplemental
Materials [59]. In what follows, we include in (16) also a
linear term in EðkÞ for polartion dynamics. As is the case
for the square lattice, powers of ξþ do not need to be
included. Therefore, for large negative EðkÞ, we find

strongly Landau damped polaritons at the superradiant
critical point, albeit with a different nonanalytic power law.
The quasiparticle decay rate at the hot spots due to

interactions with overdamped polaritons at small ω now
becomes [59]

ImΣRðω;pFÞ ∼ jωj2=3; ð17Þ

Therefore, the quasiparticle decay exhibits non-FL scaling
contrary to the square lattice case, despite the presence of
strong Landau damping for both lattices. This is because,
on the honeycomb lattice, the dominant contribution comes
from the region −EðkÞ ∼ Λ0ðω=Λ0Þ2=3 ≫ ω, Λ0 being a
UV cutoff, whereas on the square lattice this region is
suppressed by the additional powers of momenta from the
current operator (6).
We note that the nonanalytical form of the quasiparticle

damping in (17) is the same as predicted for noncommen-
surate charge-density-wave [4,15] and Fulde-Ferrel-
Larkin-Ovchinnikov [16,17] quantum critical points. The
same damping form is found for 2D fermionic systems
with emergent Uð1Þ gauge fields as well, despite the
important physical difference consisting in the gauge
propagator being Landau damped at small frequencies
and momenta [4,9,62]. We conclude this part by mention-
ing that the result (17) does not affect the polariton
Landau damping (16), which is induced by electrons at
large momenta. This is typically the case for one-loop
Eliashberg-type theories [63].
Implementation.—The light-matter coupling (4) is rel-

evant for electrons in solid state, which couple to photons
via the current [21]. For neutral atomic gases instead, the
dispersive coupling between photons and the atomic center
of mass is independent of the momentum of the latter [46].
Therefore, non-Fermi-liquid behavior of Eq. (17) will be
present regardless of the lattice, as long as unit filling is
avoided. The same situation can be engineered also in solid
state using two-photon transitions exploiting the diamag-
netic coupling [64] or auxiliary electronic bands [34].
Accessibility.—The accessibility of our non-Fermi-liquid

regime relies upon reaching the superradiant transition. In
the solid-state microcavity setup, the related challenges
have been addressed in Refs. [55,56]. Here one must also
consider higher cavity modes n ≠ 1, but the non-FL scaling
remains unaffected [59]. On the other hand, for ultracold
Fermi gases superradiance has been already observed [65],
albeit only with a single isolated cavity mode. The required
extension to a 2D continuum of modes is available in
confocal cavities [57,66].
Observability.—With the purpose of probing the non-

Fermi-liquid behavior, layered structures allow us to
precisely measure the electronic spectral function of an
embedded 2D material using techniques like momentum-
and-energy-resolved tunneling spectroscopy (MERTS) [67]
and thus potentially to directly probe the nonanalytic
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behavior of the quasiparticle damping. Such measurements
are standardly available also for neutral atomic gases through
radio-frequency spectroscopy [68].
Since in our scenario the bosonic order parameter

fluctuations affecting the electrons are in fact photons, cavity
probes can provide direct access to their characteristic
overdamped behavior responsible in turn for the electronic
quasiparticle damping. At sufficiently low frequencies
jωj < −EðkÞ, the usual resonant peaks in the cavity spectral
function Aðω;Qþ kÞ ¼ ImDRðω;Qþ kÞ=π are substi-
tuted by a continuum of overdamped modes:

Aðω;QþkÞ∼ ½ωþjEðkÞj�α− ½jEðkÞj−ω�α
f½ωþjEðkÞj�α− ½jEðkÞj−ω�αg2þb2EðkÞ2 ;

ð18Þ
where α ¼ 3=2 for the square lattice and α ¼ 1=2 for the
honeycomb. The distinct power-law dependence in (18) at
small ω can be an experimental signature of the critical
electromagnetic fluctuations affecting the electrons. While
such frequency- and momentum-resolved cavity probes are
available in state-of-the-art experiments with atomic gases at
the relevant frequencies and momenta [69], they seem rather
challenging in the solid-state case, since the momentum
scale Q ∼ pF is much larger than the characteristic photon
wave vectors.
Conclusions.—We have shown that cavity QED with 2D

materials allows us to implement and probe non-Fermi-
liquid behavior under pristine conditions: (i) the underlying
critical bosonic fluctuations which destroy the electronic
quasiparticles are provided by the electromagnetic vacuum
field and are thus controllable via cavity engineering;
(ii) 2D materials (or the synthetic versions based on
ultracold gases) allow for enhanced tunability of electronic
properties and control over unwanted effects.
Our Letter introduces a new (experimentally relevant)

model for the emergence of non-Fermi-liquid behavior,
thus offering a new playground for controlled experimental
investigations as well as for theoretical approaches.
Future studies shall provide improved theories for the

superradiant criticality and the associated non-Fermi-liquid
behavior (also including the unit-filling case on the square
lattice where logarithmic divergences appear in the polari-
zation), possibly identifying deviations from the univer-
sality class predicted for noncommensurate charge-density
wave [4,15] or Fulde-Ferrel-Larkin-Ovchinnikov [16,17]
quantum critical points.

We thank Ahana Chakraborty and Bernhard Frank for
discussions.
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