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Multimode optical cavities can be used to implement interatomic interactions which are highly tunable in
strength and range. For bosonic atoms trapped in an optical lattice we show that, for any finite range of the
cavity-mediated interaction, quantum self-bound droplets dominate the ground state phase diagram. Their
size and in turn density is not externally fixed but rather emerges from the competition between local
repulsion and finite-range cavity-mediated attraction. We identify two different regimes of the phase
diagram. In the strongly glued regime, the interaction range exceeds the droplet size and the physics
resembles the one of the standard Bose-Hubbard model in a (self-consistent) external potential, where in
the phase diagram two incompressible droplet phases with different filling are separated by one with a
superfluid core. In the opposite weakly glued regime, we find instead direct first order transitions between
the two incompressible phases, as well as pronounced metastability. The cavity field leaking out of the
mirrors can be measured to distinguish between the various types of droplets.
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Introduction.—Ultracold atoms in optical cavities re-
present a unique experimental platform for the study of
strongly interacting quantum many-body systems of light
and matter [1,2]. Recent experiments involving a single-
mode cavity [3,4] have implemented a Bose-Hubbard (BH)
model extended by a global-range cavity-mediated inter-
action [5–15]. A rich phase diagram has been observed,
featuring, besides the known compressible superfluid and
incompressible Mott-insulating phases, a lattice supersolid
as well as an incompressible density-wave phase.
The use of a second cavity mode has allowed us to

observe a supersolid with continuous translational sym-
metry breaking [16–19]. By tuning cavities around the
confocal degenerate point [20,21], it has become possible
to even control the range of the cavity-mediated interaction
[22,23], and to realize an optical lattice featuring phonons
[24]. With finite-range cavity-mediated interactions, super-
solids have been predicted to feature crystalline topological
defects and to appear through non-mean-field phase tran-
sition dominated by fluctuations [25,26].
Here, we study a BH model extended by an attractive

tunable-range interaction which can be realized in

state-of-the-art confocal-cavity experiments. We demon-
strate that, due to the competition between cavity-mediated
finite-range attraction and the on-site repulsion, the phase
diagram is actually dominated by a variety of phases of
droplets, i.e., self-bound many-particle quantum objects.
These feature one or multiple compressible or incompress-
ible shells, and for sign-changing interactions can become
supersolid or density-wave modulated. Extended phases
exist instead only for sufficient repulsion (see [27] for the
classical, purely attractive case). We identify two physically
different regimes. When the attractive interaction range
exceeds the size of the droplet, the latter is strongly glued
and its phase diagram can be qualitatively explained via the
standard BH model in a self-consistent trap determined by
the long-range interaction potential. Here, two incompress-
ible droplet phases of different fillings are separated by one
with a superfluid core. In the opposite weakly glued
regime, we find a direct first-order transition between
the two incompressible droplets. This is due to the strong
dependence of the energy on the droplet density profile in
this locally interacting regime, which also results in
pronounced metastability. The light leaking out of the
cavity offers a nondestructive experimental probe to dis-
tinguish between the different droplet phases, as the
coherent part contains information about the density profile
while the incoherent one encodes the density correlations.
We compute the ground-state phase diagram with a worm
quantum Monte Carlo (QMC) algorithm, using a canonical
version [28–30] necessary to describe droplet phases.
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Without the lattice, quantum droplets of bosons have been
experimentally observed using dipolar interactions [31–33]
and bosonic mixtures [34,35], see [36] for review. In dipolar
systems the anisotropic interactions lead to quantum-coherent
(supersolid) chainsof droplets [37–40], aswell as other droplet
arrangements [41–44] stabilized by long-range repulsion.
Lattice bosons with dipolar interactions [45–48] and mixtures
[49,50] have been proposed for implementing various types of
extended Hubbard models [51]. While currently for dipolar
gases and bosonic mixtures the challenge is to reach appreci-
able interactions beyond thenearest neighbor, cavity-mediated
interactions are instead naturally strong at large distances. This
feature is shared by other types of photon-mediated inter-
actions based on refraction [52] or diffraction [53–55] (the
latter also predicted to induce droplet phases [56,57]), which,
however, lack the tunability of the range.
Model.—We consider ultracold bosons trapped in an

optical lattice within a cavity. The system can be described
by an extended BH model (see [58] for the derivation)
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X

hi;ji
ðb̂†i b̂jþH:c:ÞþU

2

X

i

n̂iðn̂i− 1Þþ
X

i;j

Vi;jn̂in̂j:

ð1Þ

Here, hi; ji denotes nearest-neighbor sites in a D dimen-
sional square lattice, with the linear size L t is the hopping
between the nearest neighboring sites, b̂†i and b̂i are
bosonic creation and annihilation operators, n̂i ¼ b̂†i b̂i,
U > 0 is the on-site contact repulsion, and Vi;j is the
tunable-range cavity-mediated interaction between par-
ticles at sites i and j. In the main text we consider the
quasi-1D geometry illustrated in Fig. 1, and in the
Supplemental Material [58] a quasi-2D geometry is con-
sidered. In a multimode optical cavity, the finite range ξ is
achieved by having a large number of transverse modes
within a given degenerate family. Alternatively, Floquet
modulation [59] or multifrequency driving [60] can
render the range finite even for nondegenerate cavities.
Experiments with ultracold bosons in confocal cavities
have demonstrated the ability to tune this range [22]. We
model this using the following generic form of the
interaction potential:

Vi;j ≡ Vi−j ¼ −V0 exp

�
−
ji − jj2
ξ2

�
; ð2Þ

where V0 > 0 (attractive interaction). All lengths are
measured in the unit of lattice spacing. We stress that
the results presented in the following do not qualitatively
depend on the particular form of interaction, as long as a
single scale ξ can be associated with it. The latter helps to
define a proper thermodynamic limit for a droplet phase,
given by L → ∞, N → ∞, ξ → ∞, V0 → 0, while V0ξ

D ¼
const and N=ξD ¼ const ≃ n0. Here, V0ξ

D gives the

characteristic integrated interaction strength and the
“droplet filling” n0 gives the characteristic density of
particles in a droplet of radius ξ. A further important
parameter is the characteristic slope of the density profile,
σ ≃maxðdn=drÞ ≃ n0=ξ ¼ N=ξDþ1 (see [58]). This “steep-
ness” parameter vanishes in the droplet thermodynamic
limit defined above, and quantifies the amount of finite-size
effects in the phase diagram. As we discuss later and in
[58], these finite-size effects are experimentally measurable
and have to be considered for the correct extrapolation to
the thermodynamic limit.
Method.—Wemap the ground-state phase diagram of the

model using a canonical worm QMC algorithm [28–30]
with a fixed total number of particles N ¼ P

i ni and
periodic boundary conditions. Since we explicitly work in
the canonical ensemble, we can deal with arbitrary occu-
pation numbers (up to the total number of particles in the
system). For the search of potential droplet phases the
method is thus superior to other traditional methods of
studying the BH model, like grand-canonical QMC [62–
64] methods or density matrix renormalization group [65],
which require fine tuning of the chemical potential and/or
moderate cutoffs for the local occupation. In order to
construct the ground-state phase diagram of the model,
we perform calculations at small nonzero temperature T ¼
0.1t (and check that it is low enough by benchmarking
versus Lanczos exact diagonalization in 1D for sizes up to
L ¼ N ¼ 16 [58]).
We characterize the droplets using two observ-

ables. (i) The droplet order parameter Odr ¼ ð1=NÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ns=ðNs − 1Þ�Pi ½ni − ðN=NsÞ�2

p
where Ns ¼ LD. It

characterizes the deviation from a uniform density ni ¼
N=Ns and is similar to the inverse participation ratio in
real space. The normalization is chosen in such a way that
for a single-site droplet ni ¼ Nδi;0 we have Odr ¼ 1, while
for the uniform density Odr ¼ 0. (ii) The single-particle

FIG. 1. (a) A quasi-1D gas is trapped in an optical lattice within
the midplane of the cavity z ¼ 0, along the x direction. The
interactions are generated in the dispersive regime via two-photon
transitions involving retroreflected laser beams (red arrows)
which are red detuned from a given degenerate family of a
multimode cavity. The interaction potential results from the
interference between the laser and the cavity field. The trapping
optical-lattice potentials are generated by three additional far-off
detuned lasers (oriented along the x, y, and z directions, not
shown) which do not interfere with the cavity field [4]. (b) Cav-
ity-induced interaction, which decays over a scale ξ controlled by
the number of degenerate, transverse cavity modes [22,61].
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superfluid correlations between neighboring sites hb̂†iþ1b̂ii,
used to distinguish superfluid from Mott phases.
Phase diagram.—Figure 2 shows the ground-state phase

diagram. For U ¼ V0 ¼ 0 the system is in the SF state. For
V0 ¼ 0 and a fixed integer average filling n ¼ N=L, upon
increasing U we have a conventional SF-Mott transition at
U=t ≈ 4n [66]. By increasing V0 at U ¼ 0 we enter a
single-site droplet phase at V0=t ∼ 1=N [67]. Upon increas-
ing U and decreasing V0 we observe smooth crossovers
between droplets of different “diameters” [Fig. 2(a)] up
dmax ≃minðL=2; NÞ, bounded either by the size of the
system or the total number of particles. After the maximum
droplet size is reached, a first-order transition to a phase
with uniform density occurs, either a Mott insulator for
integer fillings or a SF for noninteger fillings. Figure 2(c)
presents a close-up view into the V0=t < 0.5 part of the
phase diagram, featuring the extended SF phase. We can
estimate the critical value of V0 for the transition between
the Mott droplet with the filling at the core nc ¼ 1 and the
SF phase by equating the characteristic droplet energy
EMott−dr ∼ −NV0ξ

D with the superfluid energy ESF ∼ −Nt,
leading to V0 ∼ t=ξD.
Figure 2(b) shows the nearest-neighbor superfluid cor-

relators, where we observe the various superfluid and Mott
quantum droplet phases. The incompressible Mott phases
correspond to different fillings at the core of the droplet,
e.g., nc ¼ 1, 2, 3. The real-space density profiles of the
droplet are shown as insets labeled by ①–⑦. Moving
outward in the radial direction of the phase diagram we
first observe the fully superfluid droplet ① (see [58] for an
analytic Thomas-Fermi description), which gradually
develops incompressible outer shells, and finally crossovers
to a droplet with only the core being a compressible
superfluid ④. Moving along a vertical line U=t ¼ 50, the
droplet core instead alternates between being compressible
④, ⑥ and incompressible ⑤, ⑦, while the outer shells remain
incompressible. The succession of SF and Mott droplets

can be qualitatively understood using the standard BH
phase diagram [68] in a trap, whereby the chemical
potential is set by the local occupation at the droplet core.
We emphasize, however, that, unlike the Mott-SF transi-
tions in a trap, here the droplet size and density distribution
are not externally fixed but rather emerge from the
competition between local repulsion and finite-range attrac-
tion, since the droplet creates its own self-consistent trap by
spontaneously breaking the translation symmetry of the
Hamiltonian. In this situation, the superfluid core can be
locally nucleated on top of an incompressible background,
which results into smooth crossovers between SF and Mott
droplets [see also Fig. 3(a)]. In contrast to the SF droplets,
droplets containing one or more Mott shells become not
only self-bound but also self-pinned, i.e., they do not move
under the action of infinitesimal force. This is due to the
fact that such movement occurs only as a perturbative
process in t=U with the perturbation theory order growing
with the size of Mott shells.
We explicitly checked (finite-size scaling data up to

L ¼ 500, N ¼ 100, ξ ¼ 100 presented in [58]) that the
droplet regime of the phase diagram has a well-defined
thermodynamic limit, L;N; ξ → ∞, while N=ξ ¼ const.
For finite-size droplets featuring a steepness parameter
σ ≳ 1, we observe additional features, e.g., mesoscopic
first-order phase transitions associated with change in the
droplet size [58].
Strongly and weakly glued droplets.—In the case con-

sidered so far in Fig. 2, the interaction range ξ was such
that, even for the droplet of the maximum size dmax (i.e., the
Mott droplet with nc ¼ 1), all the particles within the
droplet interacted with each other. We call this the “strongly
glued” regime ξ≳ d. In the opposite regime of a “weakly
glued” droplet ξ ≪ d, each particle interacts only with
∼Nðξ=dÞD neighboring particles.
Figures 3(a) and 3(f) compare the regimes of strongly

and weakly glued droplets showing the hb̂†iþ1b̂ii correlators

FIG. 2. The ground-state phase diagram in the coordinates V0 (long-range attraction) vs U (on-site repulsion). The droplet
thermodynamic limit ξ, N → ∞ with n0 ¼ N=ξ ¼ 1 is calculated by extrapolation up to L ¼ 500, N ¼ 100, ξ ¼ 100. (a) Droplet order
parameter Odr. (b),(c) Nearest-neighbor superfluid correlator hb̂†iþ1b̂ii. Solid lines are guides for the eye indicating the crossovers
between SF droplets and Mott droplets. (c) Close-up view into region V0=t < 0.5 of (b), featuring the SF phase. Insets ①–⑦ show the
spatial density profiles of the droplets at the corresponding points in the phase diagram; the error bars show the standard deviation of
density from its mean value.
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as a function of V0 for a fixed value of U. In the strongly
glued regime [Fig. 3(a)], the all-to-all character of inter-
actions makes the interaction energy only weakly depen-
dent on the density profile, which allows the SF core to
continuously grow inside the Mott nc ¼ 1 bulk with
increasing V0. As noted above, this regime can be under-
stood as a BH model in an effective self-consistent trap. On
the other hand, in the weakly glued regime [Fig. 3(f)], we
observe instead a direct first-order phase transition between
the nc ¼ 1 and nc ¼ 2 Mott droplets, without a SF
component being nucleated. The transition corresponds
to a sudden rearrangement of the density distribution in the
bulk. This is preferred in this locally interacting regime:
ξ ≪ d, where the energy strongly depends on local changes
of the density. This dependence introduces also a pro-
nounced metastability, which renders QMC computations
very demanding for large system’s sizes.
Droplet imaging via the cavity.—The droplets can be

nondestructively imaged using the cavity output. In the
confocal-cavity experiments of [22,23] the inverse photon
loss rate 1=κ is by far the fastest timescale. In this adiabatic
regime the cavity field instantaneously adapts to the density
of the atoms, so that photon correlators are proportional to
density correlators. In particular, we get simple relations
between the average density and the coherent component of
the cavity field quadrature [58]:

Xr ≡ hX̂ri≡ 1

2
ðâr þ â†rÞ ¼ −

Δa

g0Ω0

X

i

Vr;ihn̂ii; ð3Þ

where â†r is the creation operator for the cavity photon at
position r, Δa ¼ ωa − ωL is the detuning between the
atomic transition ωa and the laser frequency ωL, Ω0 and g0
are the maximum Rabi frequencies of the pump field and
the maximum single atom-photon cavity-QED coupling
strength, respectively. The incoherent part of the cavity
field quadrature δX̂r ¼ X̂r − hX̂ri is instead related to the
density fluctuations δn̂i ¼ n̂i − hn̂ii:

hδX̂rδX̂ri ¼
Δ2

a

g20Ω2
0

X

i;j

Vr;iVr;jhδn̂iδn̂ji: ð4Þ

The same density correlators are also measurable directly
from the incoherent number of photons hδâ†rδâri, but their
relation doesn’t simply depend on V. We also note that in
this adiabatic regime the deviation of the atoms from
thermal equilibrium can be neglected for typical exper-
imental timescales [69], and the cavity loss just renorm-
alizes the interaction potential [58].
Figure 3 shows both the coherent and the incoherent

component of the cavity field. For the strongly glued
droplet regime [Figs. 3(a)–3(e)], we compare the Mott
droplet (b),(d) and the SF droplet (c),(e). Since the cavity
field resolution is limited by the length scale ξ, the coherent
part of the field (b),(c) cannot differentiate these two
droplets. They can, however, be distinguished in the
incoherent cavity field (d),(e): the SF droplet has higher
particle number fluctuations relative to the Mott droplet,
hence the higher overall scale of the incoherent field. For
the weakly glued droplet regime (Fig. 3(f)–3(j)), we
compare the two Mott droplets with nc ¼ 1 (g),(i) and nc ¼
2 (h),(j). The resolution here is fine enough to distinguish
these two droplets using the coherent field (g),(h).
Moreover, the incoherent field (i),(j) clearly identifies the
droplet edges, where the particle number fluctuations
are the highest. The double-peak structure near the edge
i ¼ ie is due to the fact that hðδn̂ieÞ2i ≈ hðδn̂ieþ1Þ2i ≈
−hδn̂ieδn̂ieþ1i across the edge because of the particle
number conservation. Since other terms are small, the
sum (4) is then maximal at r − ie ≃�ξ, where the deriva-
tive of the interaction potential is maximal. The corre-
sponding results for the strongly glued droplet can be
understood in a similar fashion: in Fig. 3(d), the two inner
peaks of (i) are merged into one due the much larger ξ,
while in Fig. 3(e) the SF core plays the same role as the
edges for the Mott droplet (particle number fluctuation is
indeed highest there), giving rise to two peaks at r ≃�ξ.

FIG. 3. Comparison between strongly and weakly glued droplets regimes. (a)–(e) Strongly glued droplet for L ¼ 500, N ¼ 100,
ξ ¼ 100, U=t ¼ 50. (f)–(j) Weakly glued droplet for L ¼ 200, N ¼ 100, ξ ¼ 8, U=t ¼ 25. (a),(f) Nearest-neighbor superfluid
correlators hb̂†iþ1b̂ii. Arrows indicate the values of V0=t used in the neighboring panels. (b),(c),(g),(h) Dimensionless coherent cavity
output XðxÞ=X0 (where X0 ¼ ΔaV0=g0Ω0) and local particle density n. (d),(e),(i),(j) Dimensionless incoherent cavity output
hδX̂†

xδX̂xi=X2
0, where δX̂x ¼ X̂x − XðxÞ. (b),(d) Mott droplet, nc ¼ 1, V0=t ¼ 1.8 (⑦ in Fig. 2). (c),(e) SF-droplet V0=t ¼ 3.6 (⑥ in

Fig. 2). (g),(i) Mott droplet, nc ¼ 1, V0=t ¼ 1.5. (h),(j) Mott droplet nc ¼ 2, V0=t ¼ 1.92.
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Outlook.—Other unexplored classes of extended BH
models related to the one studied here might be also
realized by trapping bosonic mixtures [34,35] or dipolar
Bose gases [31,33,37–40] in a lattice. The numerical
methods and the analysis employed here offer a helpful
guide for the future investigation of new quantum droplet
phases in wide class lattice versions of such models. For
example, our results can be readily extended to the case of
sign-changing interaction, which is naturally realizable in
optical cavities and makes possible the existence of
density-wave and supersolid droplet phases [58]. In the
future, it will be interesting to explore the consequences of
the metastability, especially pronounced for weakly glued
droplets, for the relaxation dynamics and possible ergo-
dicity breaking or disorder-free localization [47,48].
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and G. G. Batrouni, Phase diagram of bosons in a two-
dimensional optical lattice with innite-range cavitymediated
interaction, Phys. Rev. B 95, 144501 (2017).

[11] J. Panas, A. Kauch, and K. Byczuk, Phase diagram of
bosons in a two-dimensional optical lattice with innite-range
cavitymediated interactio, Phys. Rev. B 95, 115105 (2017).

[12] E. I. Rodríguez Chiacchio and A. Nunnenkamp, Tuning the
relaxation dynamics of ultracold atoms in a lattice with an
optical cavity, Phys. Rev. A 97, 033618 (2018).

[13] D. Nagy, G. Kónya, P. Domokos, and G. Szirmai, Quantum
noise in a transversely-pumped-cavity Bose-Hubbard
model, Phys. Rev. A 97, 063602 (2018).

[14] R. Liao, H.-J. Chen, D.-C. Zheng, and Z.-G. Huang,
Theoretical exploration of competing phases of lattice Bose
gases in a cavity, Phys. Rev. A 97, 013624 (2018).

[15] L. Himbert, C. Cormick, R. Kraus, S. Sharma, and G.
Morigi, Mean-eld phase diagram of the extended Bose-
Hubbard model of many-body cavity quantum electrody-
namics, Phys. Rev. A 99, 043633 (2019).
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