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Abstract: Thermoplastic composites (TCs) enjoy high popularity in the field of engineering. Due
to this popularity, there is a growing need to assemble this material with the help of fast and
efficient joining processes. One joining process, which has seen increased use, is the process of
ultrasonic welding. To make reliable statements about the quality of the joined material, some kind
of quality assurance has to be made. In terms of ultrasonic spot welding, there are already some
documented approaches for observing or predicting the joining quality, but some of these most
promising parameters for quality assurance are difficult to measure in the process of continuous
ultrasonic welding. This is why new parameters are investigated for their potential to improve the
prediction of ultrasonic-welded TCs’ quality. Thermography and sound emission data have been
found to have a correlation with the produced weld quality and are fed into different machine learning
algorithms. Despite the relatively small dataset, trained algorithms reach binary classification rates of
over 90%, indicating that the newly discovered parameters show the potential to improve the quality
assurance of ultrasonic-welded TCs in the future. This improvement may enable the establishment of
the ultrasonic welding of TCs in manufacturing.

Keywords: machine learning; ultrasonic welding; quality prediction; thermoplastic composite
materials; thermography; acoustic emission

1. Introduction

Thermoplastic composites (TCs) are increasingly used in the aerospace and automotive
industries [1–5]. Outside of the engineering sectors, TCs have demonstrated an increase
in popularity in the sports sector [3]. The advantages of a thermoplastic matrix over a
thermoset matrix include shorter cycle times, weldability, unlimited storage times for
the semi-finished products, and higher specific strength [1,6,7] and stiffness [1,6,8]. In
addition to these mechanical properties, TCs are low in weight in comparison to other
construction materials, for example, metal [6,8] (TCs—i.e., 1.59 g cm−3 [9], in comparison
to aluminum—2.7 g cm−3). Since there is already a high demand for TC structures in the
market, fast and efficient manufacturing processes are necessary in order to cover the
demand and generate economic growth. Especially when considering aero-structures, there
is a need to reduce the production cost of part suppliers in order to stay competitive [10].
For example, some composite parts for aircraft are still riveted together [10], which could
be avoided by using other, faster joining techniques that, additionally, have the advantage
of using no extra material for the joining process.

One of these joining techniques is the process of ultrasonic welding (UW). UW can be
divided into two sub-categories: ultrasonic spot welding (SPW) and continuous ultrasonic
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welding (CUW). In the process of spot welding, single-spot welds are performed in
order to join two welding parts. If a joining area is larger than one single spot weld, it is
possible to align spot welds together so that they form a semi-continuous seam. Better
suited for continuous welds is the process of CUW, which is faster and leads to more
evenly shaped seams. Despite these differences, both welding techniques rely on the same
physical principles: Using a converter, an electrical current is transformed into a mechanical
oscillation [8,11,12]. This mechanical oscillation is transferred with a horn into the parts
for welding [8,11]. The mechanical oscillation results in heat generation through internal
damping [13] (surface friction and intermolecular friction [14]) in the welding zone. In
an optimized process, an energy director (ED) may be placed in the welding zone since
the use of a differently shaped ED influences the resulting welding quality in a positive
way [11,15].

If it is possible to reliably monitor and predict the created joint of an ultrasonic welding
process, the fast and cost-efficient [8] technique of ultrasonic welding has the potential to
revolutionize the manufacturing process of TC-composed design parts. This work presents
a qualitative investigation of different welding process parameters regarding their use as
input parameters for an machine learning (ML) algorithm, which learns to predict welding
quality in a reliable way.

In the following section, different approaches to monitoring and predicting the weld-
ing quality of ultrasonically welded thermoplastic composites will be introduced. An
investigation of non destructive testing (NDT) methods for quality assurance follows. Sub-
sequently to this investigation, the NDT methods are evaluated as fitting or not-fitting
input parameters for an ML algorithm by training ML approaches with the collected and
processed data. Finally, a conclusion is drawn and further challenges are explained.

1.1. Quality Assurance in Ultrasonic Welding

Several research groups are already investigating the topic of monitoring, influencing,
and predicting the quality of ultrasonic-welded TCs. One approach, described by Li et al.,
is to predict the weld quality by building a wave transmission model of the welding pro-
cess [14]. Using this technique of modeling, the researchers achieved error rates in the
quality class prediction of 2–42%. Another study shows that power and displacement data
of the sonotrode can be investigated in order to deduce a statement about the produced
welding quality [16]. In addition, there are many other parameter studies that investigate
the interplay of different welding parameters (e.g., weld energy, humidity, amplitude,
welding force, process times) and the resulting weld quality [8,12,14–19]. All of the men-
tioned studies mainly focus on the investigation and understanding of the welding process
itself. Through a deeper understanding of the process and the interplay of recordable
welding parameters, predictions of the resulting welding quality can already be made on a
rudimentary level.

With the help of artificial intelligence (AI) approaches, some research is conducted
regarding training an ML algorithm to predict welding quality. One advantage of using ML
techniques is that there is no deeper understanding of the system required as long as the
training data contain information that enables the algorithm to learn and approximate the
correlation between input and output data. In general, the use of ML can reduce computa-
tional costs and is sometimes faster than detailed calculations of physical principles; i.e., it
is possible to approximate partial differential equations by overfitting an ML algorithm so
that the solution to an equation does not have to be solved iteratively [20]. One research
group tried to make quality predictions of ultrasonic spot-welded composites [21]. For the
training process of the algorithm, the process parameters’ annealing temperature, surface
condition, welding energy, plunging speed, and trigger force were selected. In parallel
to their ML approach, they made quality predictions with a finite element model (FEM).
Both attempts led to solutions that are able to predict the quality of a weld with a relative
error smaller than 5%. In comparison to the ML algorithm, the FEM approach seemed to
be more expensive regarding its computational costs [21]. Additionally to the prediction
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error, it was discovered that the quality predictions deviate from the experimental results
when passing a weld energy of 800 J [21]. This indicates that the model has borders in
which it is able to operate sufficiently and that have to be recognized when using it. The
input parameters power, time, clamping force, and clamp displacement were used by
Wang et al. to train a long short-term memory (LSTM) algorithm to predict one out of
three quality classes [22]. During testing, the authors achieved a prediction accuracy of
97.5% [22]. Li et al. trained an ML algorithm with information about the duration of the
different welding states of a forming weld and the corresponding net acoustic wave energy
(total energy consumed by the welding system [14]) of each state [23]. In one of their
approaches, an artificial neural network was trained to predict the failure load while a
random forest (RF) algorithm was used to make assumptions about the welding quality
classes [23]. The neural network achieved relative errors of 7.1% (between prediction and
experimental results), while the random forest made quality predictions with an accuracy
of 96.7%. In our own research, it was shown that the quality prediction of CUW using
an AI approach may also be possible [24]. Building on this evaluation, a bigger trial with
nearly 500 samples was conducted [25,26]. Neural networks with a prediction accuracy of
around 72% were trained as a result of these experiments [25,26]. All algorithms that were
used for the experiments can be classified as deep learning algorithms. More specifically,
fully connected neural networks and a combination of a fully connected neural network
with a one-dimensional convolutional neural network were used. The welding parameters
of the applied welding force, amplitude output, power output, welding speed, pressure
of the consolidation unit, layer thickness of the ED, number of EDs, and the position of a
sample in the welded seam were selected for training and testing data [25,26].

Since there seems to be a gap in prediction quality between the ML approaches for spot
welding and the ML approaches for continuous welding, the question of how this gap can
be explained surfaces. Görick put forward the hypothesis that it may be possible that the
number of data for training the algorithm was too small or that the data used for training
did not correlate strongly enough with the welding quality, which means that the process is
not represented in a detailed enough manner with the input data used [26]. In comparison
with other training attempts [22], the number of data seems sufficient and the input data
have a similar content as the data described previously for the quality prediction in spot
welding. Nevertheless, one mentioned input parameter that has a significant influence on
the welding quality is the horn displacement data [16]. However, this parameter is difficult
to measure for the CUW process due to the continuity of the process. In order to produce
a continuous welding seam, the sonotrode moves over the length of the material. Below
the sonotrode, the melting of the material occurs, which means that at all points in time,
the status of the material is static. Since the material below the sonotrode is always in the
same state, it is not possible to measure the displacement of the sonotrode with common
measuring equipment. This leads to the conclusion that some of the important factors for
predicting the weld quality cannot be recorded in the same way as for spot welding because
the continuous process is static when the conditions under the horn are observed. This
is also true for the other recorded data mentioned above. An additional challenge when
addressing the process of CUW is the difficulty of describing it as a whole. Simulations
of the welding process have an unknown grade of uncertainty, with the exception of the
fact that a full-scale simulation would only come with high computational costs of the
model [21]. The challenges described above lead to the conclusion that it is necessary to
find other input parameters that show a causal correlation with the welding quality in order
to be able to train an ML algorithm and achieve high reliability in the quality prediction
of continuous ultrasonic welded parts. In the following section, the research for possible
new input parameters is described, followed by an experimental study that investigates
the correlation of these new input parameters with the welding quality. Due to the fact that
new input parameters for an ML algorithm should be evaluated and the conduction of spot
welding trials is simpler than CUW experiments, the experimental study described herein
will be conducted with spot welding only.
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1.2. Parameter Research

Our approach to finding new input parameters is to investigate the material transitions
during the welding, investigate the finished transition as a result of the welding process,
or investigate a combination of both parameters. In order to find the right measurement
methods and sensors, different NDT methods are evaluated. Through the use of these
techniques, it may be possible to evaluate what is happening underneath the horn rather
than investigating parameters that describe the welding signal before it has entered the
welding samples. Two of the NDT methods, which carry the most potential to support the
task defined, will be described in more detail in this section.

1.2.1. Thermography

The first method for evaluation is thermography. In thermography, infrared radia-
tion is measured and can be displayed as black-and-white or colored images, where the
temperature is mapped over a color scheme. One application field of thermography is
medicine. Here, thermography is used to make images of breasts in order to detect whether
a patient has breast cancer [27]. For the interpretation of the thermal images, AI algorithms
are documented as a useful technique [27]. Another example of the use of thermography in
diagnostic medicine is the use of thermal images and AI to determine different stages of
cellulite [28].

In the field of engineering, thermography is mainly documented as being helpful
with quality inspection. One of the less complicated applications is to inspect the state
of electrical wiring by observing whether irregular heating patterns are formed when
equipment is running with electricity [29]. Furthermore, research has been conducted by
exciting metal plates and observing their heating patterns, which develop because cracks
in the material heat up differently than material without cracks [30]. With the technique of
lock-in thermography (in the cited literature, excitation with halogen lamps), it is possible
not only to detect sub-surface defects in steel plates but also to make assumptions about
their size and depth in the examined material [31]. Besides the investigation of metals, it is
also possible to investigate composite materials with thermography. It is possible to look
for defects in composite materials such as glass fibre reinforced polymers (GFRP) [4,32] or
carbon fibre reinforced polymers (CFRP) [33,34] and to evaluate the quality of the adhesive
bonding of two reinforced glass fiber samples [35]. In the work of Marani et al. [4], the
possibility of detecting artificially created holes in GFRP structures is demonstrated, while
Montanini and Freni [32] describe the detection limits and opportunities of thermography
on GFRP structures. Both research teams used halogen lamps as an excitation source with
the technique of lock-in thermography. In the field of CFRP materials, Yang et al. [33]
used ultrasonic infrared thermography to examine defects and their sizes in aerospace
composites, while Mian et al. showed the possibility of visualizing fatigue defects with the
technique of infrared sonic imaging [34]. The research group of Junyan et al. conducted
lock-in thermography and pulse thermography to detect defects and, in parallel, simulated
their experimental tests with heat transfer models [36]. In their simulations, they discovered
that smaller errors (approximately 1–2 mm in diameter) result in almost three times weaker
signals than larger defects that are approx. 6 mm in diameter (defects 0.5 mm under the
surface, a statement that depends on the excitation time) [36]. They define weaker signals
as the contrast in a simulated signal. Their experimental results reveal that it is possible to
detect defects in composite materials but that there seem to be limitations regarding defect
depth and the quality of defect resolution [36].

In most applications, some kind of excitation energy (e.g., ultrasound or light), which
is damped in different ways regarding whether a defect exists in a structure or not, leads
to heat patterns that can be used for defect detection and can also provide information
about the depth of an existing defect [37]. In ultrasonic lock-in thermography, the different
heating patterns of a structure can be measured, and phase images can be calculated,
making it possible to investigate defects [38]. The technique of ultrasonic thermography is
suggested as an NDT technique for a wide range of possible application fields [38], and the
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fact that polymers have a high emissivity of infrared radiation [37] makes thermography
an interesting option for the observation of ultrasonic welding. Despite the wide use of
thermography, there are also a few drawbacks to the technique mentioned. Through the
literature research, it was discovered that the resolution of the thermal images can become a
problem, especially if the errors are becoming smaller [31] or lay deeper in the material [36].
Regarding the resolution of thermal images, some experiments regarding improving the
data acquired by thermal measurements have already been conducted [33]. However, these
experiments focus on improving images with rather large defects [33].

The principle of exciting a structure and looking at the thermal response works fine for
large and medium-sized defects but seems to lack in detail when it comes to smaller defects.
Nevertheless, the methods and opportunities of thermography seem to be promising for
the prediction of ultrasonic welds’ quality, and we therefore formulate the hypothesis that
the internal shape of the welding zone (defects, cavities, unevenness, and irregularities)
may result in different heating patterns or different temperatures of the welding part in
general, which may correlate with the quality of the weld. In the recorded temperature data,
the influence of developed cavities (even if not seen directly) could be present in the mean
temperature of the welding zone. Based on this hypothesis, the ability of thermographic
information as input data for ML algorithms will be investigated qualitatively.

1.2.2. Acoustic Signals

Included in the field of acoustic signals is the field of acoustic emission (AE). AE
is described by Rizzo as a passive method to monitor transient stress waves that are
generated by the rapid release of energy from localized sources [39]. In comparison to other
NDT technologies, in AE, detected signals originate not from an external source but from
within the observed structures [39]. AE signals can develop during crack initialization
or propagation [39–41] in materials (e.g., concrete [40] or composite structures [41]) or
as a result of friction between two (cracked) surfaces [41]. Another potential source of
AE signals is melting and other material phase changes [42–45]. Based on the variety
of sources for AE signals, this kind of signal offers the possibility for real-time process
monitoring [39,41,46,47]. It is already described in the literature that measuring AE signals
has the potential to detect and localize cracks [39–41].

AE is already applied in a wide range of tasks and is described as being used to
supervise different processes and materials: measuring the AE signals of machines and
classifying the signals gives the opportunity to supervise machines and diagnose occurring
failures [48]. In addition, it is possible to identify the failure mechanism of observed
materials [41]. Choi and Takahashi describe how crack information in short-fiber-reinforced
thermoplastics can be mapped to different failure mechanisms [49], while Garrett et al.
show that an AI algorithm is able to binary-classify crack length in sheet-metal structures
(98.4% accuracy in binary classification) with AE signals as input data [50]. Not only for
crack evaluation but also for the monitoring of the quality of additive manufacturing, AE
can be used [47] because processes such as additive manufacturing or laser welding carry
information about material changes [51]. Arul et al. mentioned that the changes in an
AE signal during drilling processes can be used to monitor the sharpness of the drill and
evaluate the optimal point of time for a tool change [1]. In addition to the monitoring of
drilling processes, in the literature, it is described how AE signals can be useful for the
quality monitoring of welding processes [46,52,53]. One research team conducted gas metal-
arc welding and used a combination of AE signals and other welding input parameters
to predict the weld quality [52]. In this research, features like mean square, mean signal
level, and absolute energy from the time-driven data and features like counts, amplitude,
frequency centroid, and peak frequency from the hit-driven data were used as relevant
data [52]. It is worth mentioning that the author described how these parameters are only a
few options of many when it comes to feature selection from the measured AE signals [52].
This statement indicates that the choice of feature extraction for acoustic signals seems to be
based on experience and domain understanding. In addition, Zhang et al. used time-driven
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AE signals as a passive NDT method to describe the gas tungsten-arc welding process and
make a statement about weld quality [46]. In the context of their paper, weld quality is
defined as the existence or non-existence of holes (burned through defects) in the welding
part [46].

The aforementioned literature leads us to the hypothesis that the technique of measur-
ing AE signals for evaluation processes seems to have a high potential for quality assurance
in the industry. As mentioned above, phase changes can result in acoustic emission [42–45],
which leads us to the idea of measuring acoustic signals during the welding process in
order to make assumptions about the weld quality. Different acoustic signals may appear
during the welding process, which may correlate with different material developments in
the welding zone. One possible problem in using highly sensitive AE sensors is that the
welding process takes place under high energies and at a welding frequency of 20 kHz.
This may create such violent emissions that it saturates the sensors and will not allow
for the detection of small changes in the acoustic signal. Therefore, it was decided not to
use highly sensitive and expensive AE sensors but rather to use common microphones
that measure air-coupled sound. It has to be noted that, so far, we have used the term
acoustic emission due to the need for correct citation. To avoid confusion with the field of
classic AE detection, we furthermore use the term sound emission (SE), since that is the
more accurate term for our signals. We therefore form the hypothesis that, during the UW
air-coupled sound signals are generated that make it possible to draw conclusions about
the weld quality produced. This hypothesis is investigated qualitatively in the experiments
described in this work.

2. Materials and Methods
2.1. Experimental Setup

Carbon fiber plates built of T700G fibers embedded in a low-melt polyaryletherketone
(LM-PAEK) matrix from Toray were used. The plates have a size of 1800 × 1200 mm2, are
1.68 mm thick, and have a [0/90]3s layup. They were water-jet-cut into smaller samples
with a size of 156 × 25.4 mm2. Holes were drilled in the plates to fix the samples on an
aluminum anvil. The hole furthest from the welding zone had a radius of 2.1 mm, while
the hole closer to the welding zone is a long hole with a radius of 2.1 mm and a length of
0.3 mm. The long hole brings one degree of freedom into the system and makes it easier to
mount the sample on the anvil (see Figure 1). The bottom samples are prepared for welding
by fixing two ED sheets consisting of LM-PAEK with a hand sonotrode to the samples’
surface. Each ED has a thickness of 100 µm. For each weld, one sample with EDs and one
sample without EDs were placed on the anvil and fixed with screws (2.972 N m, which
resulted in a holding force of approx. 3.9 kN) in place. Through positioning the samples
on the anvil, an overlap of the samples of 12.7 × 25.4 mm2 was created. Since the upper
sample has to be positioned horizontally for the welding process, a shorter welding sample
with the same thickness is placed below the upper sample. The ultrasonic signal for the
welding process was produced using a Branson generator with a frequency of 20 kHz. A
rectangularly shaped horn measuring 25 × 13 mm (radius at the edges of 1 mm) is used to
transfer the welding signal into the specimen. At the beginning of the experiments, test
welds were conducted, followed by 81 welds for which a design of experiment (DOE) was
created. For the experiments described, a total of 87 welds were created. The DOE had the
parameters of amplitude in percentages in the range of 92–100, welding time in ms in the
range of 700–1200, and welding force in N in the range of 800–1200. For all experiments, the
holding time after welding was set to 2 s at a holding force of 1650 N. Applied amplitudes,
welding power, and welding forces and pressures were recorded with the help of a bus
system provided by Beckhoff and the software TwinCat-Scope. The parameters for further
evaluation came from a thermography camera (FLIR A35) and two microphones (Knowles
Electoronics, tested the frequency response by the manufacturer—1 Hz–10 kHz)—which are
additionally implemented and controlled by the welding system. For the air-coupled sound
measurement, the signals of the attached microphones were scanned with a frequency of
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50 kHz in order to fulfill the Nyquist criteria. The microphones were placed at a distance of
approx. 110 mm to the welding zone and were recorded during the entire joining process.
The joining process hereby refers to the process of applying the ultrasonic signal for melting
the material (welding process) and the process of applying pressure for the consolidation
of the material in the aftermath (consolidation process). After the first trials, the integrity of
the recorded acoustic datasets outside of the manufacturer’s stated range was evaluated,
and it was found that they behaved normally. Based on this normal response, they were
used for all trials. The thermography camera was positioned at a height of approx. 110 mm
and a horizontal distance of approx. 40 mm while the mount for the camera had an angle
of view of 25° down on the welding zone. The camera is triggered by the welding system
500 ms after the consolidation process is finished (2.5 s after the welding process) to acquire
one image of the upper welding plate. The thermography camera has two sensor gain
modes, the HighGainMode (−25 to + 135 °C) and the LowGainMode (−40 to +550 °C) [54].
Since the thermographic image was recorded 2.5 s after the welding process took place,
temperatures lower than 135 °C were expected, and the HighGainMode was selected in
order to obtain a maximum resolution for the measurement.

Figure 1. Welding setup. a: Thermography camera, b: Microphones, c: Horn, d: Welding samples,
e: Plate to fix samples on the anvil, f: Long hole with screw, g: Extension of the sample, h: Hole
with screw.

For these experiments, quality is defined as the lab-shear-strength (LSS) value. The
LSS value was measured using a Zwick/Roell (Retroline 1475, ZwickRoell GmbH & Co.
KG, Germany, Ulm) testing machine. The tests were performed with clamps (ZwickRoell
GmbH & Co. KG, Germany, Ulm) that were able to create a holding force of 20 kN and had
a traverse speed of 1.3 mm min−1.

2.2. Data Processing and Analysis Steps

This section describes how the data were processed for use in correlation analysis and
training of ML algorithms. For all transformation and processing steps, Python 3 was used.
Additionally, the libraries Pandas, Numpy, scipy, sklearn, and matplotlib were used for
data analysis, machine learning, and visualization.

2.2.1. Acoustic Signals

Sound measurements were conducted using the TwinCat system. To archive sampling
rates of 50 MSps, the ELM3602-0000 measuring clamp was used. The system maps the
provided voltage range in a defined number of measuring steps, so the measured values are
unitless. To change the measured values into voltage values, all data have to be transformed
using factor multiplication. The two measurements were recorded using two different
channels (ch1 and ch2). The microphone attached to ch2 records a stronger signal, which
is why the data processing steps are explained with an example measurement of ch2. It is
not clear why the microphones have a difference in the recorded signal intensity since they
have a similar measuring range recorded in their data sheets, and further investigations
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have to be conducted to explain the observed measuring characteristics. fast Fourier
transformation (FFT) was used to investigate the sound signals. The FFT was conducted
with the help of the scipy library (rfft() method). When visualizing the results of the FFT,
peaks at the beginning of the spectrum were observed. These peaks were caused by the
offset of the signal and were not of interest for the following investigations. This is why the
FFT visualization in Figure 2 starts at 1 kHz. The cut-off makes it possible for smaller peak
frequencies up to 25 kHz to be investigated in one single graph (see Figure 2). Visualizing
the whole signal of a joining process reveals significant noise in the FFT results. This is
why, in Figure 2A, two signals of a differently processed data sample are displayed. The
first signal (blue) is the result of the FFT analysis of the joining process, while the red
signal is the FFT of the welding process only. As described above, welding refers to the
actual heating and melting process, while joining describes the whole process of welding
and consolidation. Since the FFT of the welding process seems to be less noisy and the
welding process is the time in which the material transforms and is supposed to have
characteristic sound signatures, offering the opportunity to make quality assumptions, only
the signal of the welding process is used for the FFT analysis. An algorithm is designed
that processes all the recorded data and shortens them automatically to the time duration
of the weld process. For this automatic shortening process, the border between welding
and consolidation is defined as a drop in the power signal recorded using the welding
system. This drop has an index for each measurement that has to be multiplied by the
value of 50 in order to obtain the right border for each individual measurement. The
multiplication of the index by 50 is necessary because the internal system records data with
a speed of 1 sample/ms, while the microphones record with a speed of 50 samples/ms. In
addition to the separation of the welding sound data from the joining sound data, a moving
average with a window of size 50 is calculated from the results of the FFT. This technique
reduces the noise further and smooths the curve of the analysis (see Figure 2B). After
the data are filtered, the function find_peaks() from the scipy library is used to detect
peaks beginning at a height of 0.1 for ch1 data and a height of 4 for ch2 data. Based on
the transformation method of FFT, the resulting data only carry information about the
proportion of a frequency in a measured signal. This leads to the fact that the results can
only be compared in a relative way. The minimum distance between two peaks is set to
50 data points. In Figure 2B, a red line shows at which level the peaks are detected. All data
samples are processed according to the steps described before. A data frame that stores
all detected peaks of all measurements (frequency and corresponding value) is created by
processing all data samples. The detected peaks have to be binned in order to perform
a correlation analysis. For the binning process, 2 kHz wide, half-open interval groups
are chosen:

[1, 3), [3, 5), [5, 7), [7, 9), [9, 11), [11, 13), [13, 15), [15, 17), [17, 19), [19, 21), [21, 23), [23, 25)

Some of the measurements have more than one peak value in a bin. Equally dimen-
sioned data are needed for the correlation analysis so only the maximal peak values for
each measurement in each bin are selected for further investigations. The welding process
took place at a frequency of 20 kHz, and there is a peak in the FFT results at this frequency,
which is why the 20 kHz bin ([19, 21)) is of the highest interest. If the values of this bin are
plotted against the measured LSS value of the samples, a non-linear connection between
peak intensity and the LSS value is visible (Figure 3). In addition, around a peak height
of 100, the welding quality seems to settle between 37 MPa and 45 MPa. The observable
non-linear connection leads to the conclusion that it may be necessary to calculate a Spear-
man correlation coefficient (corr coef) instead of a Pearson corr coef because it is a ranked
coefficient and measures non-linear correlations [55]. The correlation coefficients calculated
from 50 or more samples are listed in Table 1.
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Figure 2. Signal simplification of sound data. (A): Fast Fourier transformation of the sound data
(ch2) of the whole joining process (blue) and the welding process (red) only. Frequency ranges of
1 kHz–25 kHz. (B): FFT with calculated moving average with a window size of 50 (blue line) and a
peak detection border of 4 (red line).

Figure 3. LSS values plotted against the peak heights of the 20 kHz bin from ch2.

Table 1. Spearman correlation coefficients of ch1 and ch2 measurements with p-value and number of
samples. Only corr coef calculated with samples size >= 50 are listed.

Channel Frequ. Bin (kHz) Corr Coef p-Value Num. of Samples

ch1 [1, 3) 0.698 5.53 × 10−14 87
[3, 5) 0.259 0.015 87
[5, 7) −0.332 0.012 57
[15, 17) 0.182 0.187 54
[19, 21) 0.601 7.42 × 10−10 87

ch2 [1, 3) 0.225 0.059 71
[3, 5) 0.376 0.001 75
[5, 7) 0.288 0.021 64
[9, 11) −0.166 0.198 62
[15, 17) 0.253 0.039 67
[19, 21) 0.7 4.62 × 10−14 87

All values in Table 1 are rounded at a decimal precision of 10−3. A list of all calculated
coefficients can be found in Appendix A. The correlation coefficient values provide infor-
mation about the intensity of the correlation between the two investigated variables. In
detail, correlation coefficients can be interpreted as weak correlation if the absolute value
is smaller than 0.5, medium correlation if the absolute value is equal to or higher than
0.5 and smaller than 0.8, and strong correlation if the absolute value is equal to or larger
than 0.8 [55]. Since the Spearman correlation coefficient measures monotonicity [56], the H0
hypothesis is that the data have no monotonic relationship. For all tests, the α value is at a
level of 0.05. Five correlation coefficients were calculated with 50 data points or more for
ch1 data. Two of these (2 kHz and 20 kHz center frequency bin) show medium correlation.
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The corresponding p-values are also below the α-value, which leads to the rejection of H0,
and correlation is assumed. All the other correlation values are too small, or H0 could not
be rejected. In the ch2 data, the 20 kHz center frequency bin shows a medium correlation
coefficient with a p-value below the defined α, which hints at a potential medium corre-
lation. It has to be mentioned that the library states that the p-value calculation is only
accurate for sample sizes of more than 500 [56]. As a consequence, only bins storing data
with medium correlation and with a p-value smaller than 1 × 10−8 are used to create the
dataset for training an ML algorithm.

2.2.2. Thermography

The thermography data are recorded in the mono16 format, resulting in grayscale
images with a bit depth of 16 bits. The bit values stored in these images are in a specific
camera value range. In order to obtain the temperature in °C, the first two leading bits have
to be bit-masked off. The images have a bit depth of 14 bits after the bit-masking process.
Furthermore, the values have to be transformed using the following formula [57]:

T[k] =
B

ln
(

R
S−O + F

) (1)

Except for pixel value S, all other values are parameters internal to the camera, which
can be extracted from the camera registry. After this transformation, the calculated values
are shifted from Kelvin to °C. The 320 × 256-pixel images show not only the welding zone
but also the surrounding welding area and some thermal reflections (see Figure 4) because
the camera has some distance to the welding zone. To extract only the measurement of
the welding zone, an region of interest (ROI) is cut from each transformed measurement.
Here, each image is cropped with the same parameters because the camera is on a fixed
position for all welding experiments. After cutting the ROI, each image has dimensions
of 89 × 62 pixels. It has to be mentioned that the data are visualized only for a better
understanding and for the purpose of investigation; the actual analysis steps are conducted
with pickle files (one file for each image). Similarly to the processing of the sound data,
the temperature values for each image are binned (10 °C range per bin). The bins for the
temperature data are half-open intervals:

(23.999, 34.0], (34.0, 44.0], (44.0, 54.0], (54.0, 64.0], (64.0, 74.0], (74.0, 84.0], (84.0, 94.0],

(94.0, 104.0], (104.0, 114.0], (114.0, 124.0], (124.0, 134.0], (134.0, 144.0], (144.0, 154.0],

(154.0, 164.0], (164.0, 174.0], (174.0, in f ]

Each pixel of an image is sorted into a bin during the binning process. A temperature
deviation can be displayed according to the number of pixels in a bin (see Figure 5). If the
LSS values are ordered and plotted above the binned temperature values for each sample,
it seems that there is an LSS border value at which the share of the warmer pixels in an
image is increasing (beginning at sample number 40; see Figure 5). In addition, for each
image, the mean temperature can be calculated and plotted against the LSS value of the
connected sample. Similarly to the data of the sound measurement, the data seem to have
a non-linear connection (see Figure 6). Furthermore, similarly to the sound data, there
is a border (around a mean temperature of >=70 °C) at which the quality level steadies
itself between 37 MPa and 45 MPa. This leads to the need for the Spearman correlation
coefficient again. For the mean temperature of a recorded image against the LSS value
of the produced sample, a correlation coefficient of approx. 0.762 with a corresponding
p-value of approx. 1.529 × 10−17 is calculated. The p-value against an α of 0.05 leads to the
rejection of H0, and correlation can be assumed.
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Figure 4. Processing steps of the thermal image data. (A): a 16-bit monochrome image; (B): image with
calculated temperature values, (C): cut image with the region of interest (ROI). a: welding coupon,
b: reflections of the horn on the anvil, c: welding zone, d: other reflections from the surroundings.

Figure 5. Black dots: LSS values of each welding in ascending order. Colored bars: temperature
distribution of each ROI. One measurement is excluded because the thermography camera had
a malfunction.

Figure 6. Mean temperature of each ROI plotted against the measured LSS value.

2.3. Machine Learning

In order to train machine learning algorithms and see if they respond positively to
the given data, one dataset for training and testing is created. Regarding the sound data,
only the frequency bins showing the highest correlation are chosen. This means that for ch1
the peak amplitude values of the bin with a center frequency of 2 kHz and for ch2 the bin
with a center frequency of 20 kHz are included in the dataset. In addition, the correlation
analysis of the mean temperature shows a medium correlation, which is why it will also
be included in the dataset. The parameters recorded by the internal welding system are
also analyzed, and correlation coefficients are calculated. This analysis is not described in
detail in this work because most parameters are already well known. The welding time
shows a medium correlation in the investigations (Spearman correlation coefficient of about
0.70 with a p-value of 4.34 × 10−14) and is included in the data frame. To summarize the
description above, the following parameters are taken as inputs for training ML algorithms:
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• Duration of welding (number of measured data points of one parameter);
• Mean temperature of a thermal image;
• Peak amplitude of the FFT of the 2 kHz bin of ch1 data;
• Peak amplitude of the FFT of the 20 kHz bin of ch2 data.

A dataset for training with these parameters is referred to as a full data frame, while a
dataset with missing ch1 data is referred to as a reduced data frame.

One thermal image is recorded with errors and is therefore eliminated from the
analysis, which leads to a data frame for ML with 86 data points instead of 87. The
corresponding LSS value is added to each sample, and a label is created. For the trials
described here, the samples are divided into good and bad welds, where good is defined
as an LSS value of >=37 MPa and bad as the values below. When the selected parameters
(without ch1) are visualized with the corresponding LSS value, groups are formed (see
Figure 7). For this visualization, the 20 kHz bin of ch2 is selected because it is the welding
frequency, and not only correlation but also causality is assumed. The groups’ build during
the visualization primarily consists of either good or bad welds, which indicates that the
selected data could be suitable for ML. For ML approaches, the library sklearn is used.
More specifically, the options for k-nearest-neighbour (KNN), RF, and support vector
machine (SVM) are trained and tested. RF additionally provides the option to investigate
the importance of the input parameters for the predictions of the algorithm. Training for all
algorithms was performed with the same randomly selected 70% of the data. The other 30%
are used for testing the resulting model. The dataset before separation in test and training
data is balanced and contains around 48.84% of samples with the label good welding.

Figure 7. Three selected parameters for separating the good from the bad welds. Through the use of
two or three parameters, groups are formed.

3. Results

The goal of this work was to validate whether the newly investigated parameters of
the welding process not only correlate with the measured welding quality but also carry the
potential to train artificial intelligence algorithms to predict welding quality. To investigate
this hypothesis, three different ML approaches were tested. The goal was to investigate
how the algorithms respond to the provided data. Based on the fact that the dataset is
relatively small, it was not the goal of this work to develop an algorithm that can be used
in a production environment for quality assurance.

The first algorithm that is used for the evaluation of the new input parameters is
the KNN approach. The algorithm is set up to evenly weigh all k neighbors and use the
Euclidean distance for distance calculation. For the classification, seven (k = 7) neighbors
are selected. The KNN algorithm is provided with welding time (represented by the
number of the measured welding force data points), mean temperature, maximal peaks of
the 2 kHz bin of ch1, and the maximal peaks of the 20 kHz bin of ch2 as input parameters,
and a training accuracy of 90% and a testing accuracy of 96.15% are achieved. The results of
this investigation can be seen in Figure 8. The 20 kHz bins seem to be causally explainable,
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and the question arises of whether the KNN algorithm can be trained without the data
from ch1. This training leads to the same accuracies as if the ch1 data were included in the
training and testing data.

The second investigated algorithm is the RF approach. For the RF, 25 estimators
(trees) are used. The algorithm is trained and tested with the same input data as the KNN
algorithm. During the training and testing processes, accuracies of 100% and 96.15% are
reached, respectively. Without the data from ch1, the algorithm achieves the same results.
During different runs, it is observed that the importance of the factors changes randomly,
which is why no results about the individual importance are listed in this work.

Using SVM leads to training accuracies of 91.67% and testing accuracies of 100%,
independent of whether the full or reduced dataset is fed into the algorithm.

Figure 8. KNN training results. (A): Training results of a KNN algorithm with k = 7 neighbors,
(B): Testing results of a KNN algorithm with k = 7 neighbors.

4. Discussion

For the analyses described, datasets of a spot welding process are measured and
preprocessed, and features from these signals are selected. It has to be mentioned that,
in data measurement, the topic of discretization of a continuous signal is always present.
This can be, for example, a floor, when measuring acoustic signals. The measuring rate of
50 kHz makes it possible to measure the sound range of the generated welding signal and
slightly above it. However, the welding process may generate other signals in much higher
frequency ranges, which cannot be measured with the described approach. Instead of
expensive AE sensors, relatively cheap microphones are used to measure the sound during
the welding. These microphones have a response range from 1 Hz to 10 kHz defined by
the manufacturer. The recorded sound data have changing peak amplitudes at 20 kHz,
which correlate with the LSS value of the welds. This indicates that the microphones record
reliable data in these frequency ranges, and a qualitative statement about the use of sound
emission data can be made. Nevertheless, it may be advisable to upgrade the measuring
system with microphones specifically designed for higher frequencies around 20 kHz. The
use of a recording unit with a maximal frequency of 50 kHz may cut off some frequencies
worth measuring, but the described results show that it does not seem to be necessary to
cover more frequency ranges. In terms of thermography, the surrounding environment
may have an influence when acquiring the thermal images. This influence is reduced
by cropping the ROI of each image, but it is not certain that some infrared radiation is
measured that is not related to welding. The welding structures are excited by the welding
process itself, so an extra excitation, as described in the chapter about thermography, is
not necessary. When preprocessing data in general, it is worth mentioning that every
data-processing step may result in a reduction in information. Regardless of the risk of
losing information through preprocessing, the steps taken are necessary to shape the data
and to conduct a correlation analysis. Even if some information is lost, the algorithms seem
to learn, and a correlation between thermography and LSS values is shown. The described
data processing is one way of working with the data. The literature hints at the fact that
there are always several other data-processing methods, since future selection offers a
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significant range of possibilities [52]. Nevertheless, the goal of this work is to examine
the potential of the newly discovered parameters for the ultrasonic welding process and
does not consist in finding the best data processing/feature extraction process leading
to the selected methods. For future applications, it has to be investigated which form of
data is preferable. It may be advisable to use the raw image data of the thermography
camera rather than manually extracting features. One advantage of the raw image data is
that it additionally allows for the investigation of the heat pattern over the entire area at
once, possibly allowing even more information about the heating pattern to be extracted.
For the process of continuous ultrasonic welding, this information is more complex to
obtain since a sequence of images has to be cropped and stitched together. The range
of sensitivity (gain mode) has to be re-evaluated since the setup of the thermography
camera did restrict the recorded information (cut-off at approx. 170 °C). The measured
temperatures exceeded the range of the sensor mode, and the measured temperature data
may have lost some of their accuracy while leaving the calibrated temperature space. Since
this paper is about a qualitative analysis of the option to use thermography, it is of no
concern for the experiments described here, but the use of another sensor mode to measure
the entire occurring temperature range has to be considered.

The dataset size for all investigations is below 100 samples, which is relatively small.
Through the small number of testing and training data, the algorithms show differing
performance with respect to different random seeds for the separation of testing and
training data. Other publications use similarly sized datasets to train and test their ML
algorithms [22]. The border that divides the welds into good and bad samples is chosen
manually. It is not clear whether the algorithm is able to separate good from bad samples if
another border is selected. For future algorithms, it may be advisable to test some regression
instead of classification, but a much bigger dataset would be needed. More data will be
needed to train a reliable ML algorithm. Even if the results cannot be used for ML quality
assurance in the industry yet, and even if the borders that define good and bad welds are
fixed at the moment, the algorithms seem to respond to the given data in a positive way,
and the new parameters, namely sound and thermography, show great potential.

In this study, all samples were measured during spot-welding, and a transition be-
tween spot-welding and continuous welding has to be made. Further experiments have
to be conducted in order to investigate whether the described results can be applied in
the same way to CUW. Additional data-processing steps have to be evaluated. For the
sound data, another problem may occur. During the spot welding, all stages associated
with the welding process (melting material, material flow, etc.) [16] happen sequentially at
one welding position. In CUW, the different stages happen simultaneously because the
process is continuous. It is not clear whether this phenomenon pollutes the signal in a way
that makes it impossible to analyze it properly.

5. Conclusions

The prediction of ultrasonic-welded TCs’ quality based on process parameters that
are used to start the welding process has the disadvantage of not representing the process
as a whole. This is because these parameters do not carry information about the melting
and connection process itself but only describe which parameters are introduced to the
welding process. As an example, if there are small impurities in the welding zone, these
impurities are not likely to be represented in the recorded parameters that initialize the
welding process (e.g., the welding pressure).

In this work, the parameters of sound and thermography were investigated and
evaluated for their potential to help monitor the welding quality. These two parameters
have the characteristics of being recorded during (for sound) or after (for thermography) the
welding in order to be able to describe the result of a welding process using parameters not
involved in the process. Both parameters are investigated during spot-welding experiments
but also have the potential to be used in the process of continuous ultrasonic welding. This
is a substantial advantage in comparison to the parameter of sonotrode displacement that
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is used in the literature [16], since the displacement is difficult to measure during CUW.
Both new parameters were processed, and features are extracted from the data in order to
conduct correlation analysis and data visualization. Through visualization of the extracted
information of sound and thermography data, a non-linear correlation was found. In the
thermography and sound data, thresholds can be defined to separate good welds from
bad welds. The visual observations were supported by the calculation of the Spearman
correlation coefficient, with both parameters showing a correlation close to 0.7. To further
confirm the potential of the discovered parameters, ML algorithms were trained to check
for a positive response. All three approaches (KNN, RF, and SVM) responded positively
to the data and showed classification accuracies greater than 90%, even if the dataset was
comparatively small. Not using the peak frequency of ch1 data of 2 kHz does not lead to
weaker accuracies in training or in testing, which is why it is assumed that the important
frequency is in the 20 kHz bin. In order to use the new parameters in CUW, it may be
necessary to develop different data-processing steps than those described. This transfer
may be possible when using the technique of wavelet transformation, since CUW has not
only a time component but also a coordinate dependency. However, this hypothesis has
to be investigated further. The usefulness of the newly described parameters has to be
further evaluated by producing bigger datasets, but the presented results indicate that the
parameters show great potential.

The discovered parameters seem to offer the possibility of simplifying the quality
assurance of ultrasonically welded parts and help to clear the way for the further use
of this technology across broad industry sectors. A patent for the sound parameter is
already pending. Since the parameters of sound and thermography have a border at which
the quality seems to stagnate between 37 MPa and 45 MPa, further investigations into
techniques that not only seem to correlate with the LSS value of a sample but can display
the actual shape of the welding zone and produce quality assumptions based on the shape
of the created connection are advisable. This could create the possibility of differentiating
weld quality in more detail. Instead of merely predicting good and bad welds, it may be
possible to predict actual LSS values. In future experiments, not only could the LSS value
be used as a definition of quality but also visual inspections of the welding area could also
be used.

Author Contributions: Conceptualization, D.G. and T.K.; data curation, D.G.; formal analysis, D.G.;
investigation, D.G., A.S., L.L. and J.W.; methodology, D.G.; resources, D.G. and J.W.; software, D.G.;
visualization, D.G.; supervision, A.S., L.L. and M.K.; funding acquisition, M.K.; writing—original
draft, D.G.; writing—review and editing, A.S., L.L., M.K., J.W. and T.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Bundesministerium für Bildung und Forschung grant num-
ber 01IS22018B.

Data Availability Statement: All analysis data mentioned and described are included in the article.
Access to the recorded raw data is strongly restricted due to confidentiality reasons. Raw data may
be provided under restrictions and upon request.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.



J. Manuf. Mater. Process. 2023, 7, 154 16 of 19

Abbreviations
The following abbreviations are used in this manuscript:

TCs thermoplastic composites
UW ultrasonic welding
CUW continuous ultrasonic welding
SPW spot welding
ML machine learning
AI artificial intelligence
FEM finite element model
LSTM long short-term memory
RF random forest
ED energy director
NDT non-destructive testing
GFRP glass-fiber-reinforced polymers
CFRP carbon-fiber-reinforced polymers
AE acoustic emission
SE sound emission
DOE design of experiment
LSS lab-shear-strength
FFT fast Fourier transformation
ROI region of interest
KNN k-nearest-neighbor
RF random forest
SVM support vector machine

Appendix A. Spearman Correlation Coefficients of the Sound Data

Table A1. Spearman correlation coefficients of ch1 sound measurements with p-value and number of
samples for which the coefficient was calculated.

Frequency Bin (kHz) Correlation Coefficient p-Value Number of Samples

[1, 3) 0.698330539 5.53 × 10−14 87
[3, 5) 0.259039878 0.015404615 87
[5, 7) −0.332253046 0.011567735 57
[7, 9) 0.4 0.22286835 11
[9, 11) −0.067653277 0.666429017 43
[11, 13) −0.047619048 0.910849169 8
[13, 15) −0.225225225 0.180159238 37
[15, 17) 0.182237469 0.187200228 54
[17, 19) 0.238961039 0.296849183 21
[19, 21) 0.601170081 7.42 × 10−10 87
[21, 23) - - 0
[23, 25) - - 0

Table A2. Spearman correlation coefficients of ch2 sound measurements with p-value and number of
samples for which the coefficient was calculated.

Frequency Bin (kHz) Correlation Coefficient p-Value Number of Samples

[1, 3) 0.225452716 0.058705078 71
[3, 5) 0.376102418 0.000882821 75
[5, 7) 0.288141026 0.020949089 64
[7, 9) −0.03 0.886801818 25
[9, 11) −0.165722344 0.198001899 62
[11, 13) −0.018181818 0.957685241 11
[13, 15) 0.197192513 0.271353653 33
[15, 17) 0.252613936 0.039169609 67
[17, 19) −0.145894428 0.425599249 32
[19, 21) 0.699861486 4.62 × 10−14 87
[21, 23) - - 0
[23, 25) −0.028571429 0.957154519 6
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