
1894

An Introduction to Online Video Game QoS
and QoE Influencing Factors

Florian Metzger , Stefan Geißler , Alexej Grigorjew , Frank Loh , Graduate Student Member, IEEE,
Christian Moldovan, Michael Seufert , Member, IEEE, and Tobias Hoßfeld , Senior Member, IEEE

Abstract—Online video games and cloud gaming are rapidly
growing in pervasiveness. Their resource demands can put sig-
nificant stress on the global communication infrastructure. And
network conditions are amongst the chief factors that influence
one’s enjoyment while playing games. This makes it impera-
tive for video games to be considered for network dimensioning,
server placement or protocol development. For that reason, in
this work we provide an introduction to the technical aspects of
video games in general and of their network aspects in partic-
ular. This understanding forms the basis for a rich taxonomy
of factors that influence and provide context to a video game’s
Quality of Service (QoS) and Quality of Experience (QoE). The
taxonomy covers influence factors from all aspects involved in a
video game, from the subjective player and game influence fac-
tors to the system and networking influence factors. Finally, this
work gives an overview of conducted and ongoing research as
well as future research opportunities while taking into account
lessons learned from past approaches.

Index Terms—Communications technology, communication
systems, quality of experience, quality of service, consumer elec-
tronics, multimedia systems, multimedia communication, com-
munication system software, streaming media, systems, man, and
cybernetics, man-machine systems, interactive systems.

I. INTRODUCTION

V IDEO games, and online video games in particular,
have moved from being a niche hobby to being con-

sidered a mainstream media. In 2019 alone, the gaming
industry generated $120 B in revenues with an audience of
almost one billion people [1]. During the 2020 pandemic
year the growth intensified, not only driven by global social
distancing measures but also by the launch of a new con-
sole generation. For example, the U.S. gaming market saw
a 27 % increase [2]. Apart from the economic perspective,
the online video game growth poses significant challenges
and opportunities for communication networks. Cisco pro-
jected that gaming Internet traffic will grow ninefold between
2017 and 2022 [3]. This is aligned with the recent trend
towards commercial Cloud Gaming solutions [4]. All these
developments make online and cloud gaming an important

(Corresponding author: Florian Metzger.)
The authors are with the Chair of Communication Networks, University

of Würzburg, 97070 Würzburg, Germany (e-mail: florian.metzger@
uni-wuerzburg.de; stefan.geissler@uni-wuerzburg.de; alexej.grigorjew@
uni-wuerzburg.de; frank.loh@uni-wuerzburg.de; christian.moldovan@
uni-wuerzburg.de; mmichael.seufert@uni-wuerzburg.de; tobias.hossfeld@
uni-wuerzburg.de).

Digital Object Identifier 10.1109/COMST.2022.3177251

and relevant research area. To accommodate these new and
complex services, networks have to be scaled, algorithms and
protocols have to be adjusted, user behavior has to be analyzed,
and cloud environments have to be improved to deliver the
ideal gaming Quality of Experience (QoE) to end uses.

Online video game developers and Internet Service
Providers (ISPs) want to deliver the best possible gaming
experience using the available physical network structures. In
today’s landscape, consisting of numerous and heterogeneous
network providers and access technologies, it is a complex
challenge for video game developers and publishers to provide
acceptable service quality—i.e., Quality of Service (QoS)—to
all users. The experience can degrade if any of the involved
components at any one of the operators start to misbehave or
become overloaded, potentially leading to increased customer
churn rates and eventually also impacting revenues [5].

In addition to these technical challenges, the heterogeneous
user base and gaming environments as well as the subjective
perception of games reinforce the complexity. Not only do
different types of games pose different requirements to the
hardware and available network resources, but every player
will have different tastes, access to different hardware and
platforms as well as different past experiences and skills. All
of these factors will also influence the subjective quality as
perceived by the players—i.e., QoE [6]. In order to be able to
deal with any potential degradation or issue and to generally
improve both QoS and QoE of online video games it is cru-
cial to understand all involved aspects. Only then, detailed and
general models can be developed and specific scenarios, influ-
ence factors, and system interactions can be evaluated. The
resulting research challenge is the development of solutions to
evaluate and improve both the QoS and QoE for video games
with network involvement. To this end, research questions con-
cerning each aspect of the networked gaming setup need to be
examined. On the game provider’s side, problems like resource
provisioning, scaling, load balancing as well as game distribu-
tion have to be solved. From a network perspective, operators
have to ensure adequate bandwidth and delays for these highly
interactive applications. Finally, at the users’ side, the interplay
between the received QoS and the resulting QoE, user behav-
ior, and satisfaction need to be analyzed. The heterogeneous
landscape with multiple stakeholders makes the evaluation of
QoS and QoE in video gaming scenarios a non-trivial task.

In order to address these challenges and to provide a point
of entry for research into this highly complex topic, the con-
tribution of this work is (i) to provide a general taxonomy of

https://orcid.org/0000-0002-1729-0943
https://orcid.org/0000-0002-1783-8454
https://orcid.org/0000-0002-9716-3994
https://orcid.org/0000-0001-7410-0790
https://orcid.org/0000-0002-5036-5206
https://orcid.org/0000-0003-0173-595X

 1895

Fig. 1. Structural overview of this manuscript. Dashed box indicates the main
contents of this work. Sections in green contain mostly subjective aspects,
yellow sections primarily concern objective and technical aspects.

influence and context factors of the QoS and QoE of video
games and, based on this taxonomy, (ii) to provide a com-
prehensive introduction into the inner workings of networked
video games as well as an introduction to video game QoE
research.

To the best of our knowledge this is the first work that sheds
light on the video game ecosystem as a whole. It includes
both online video games as well as cloud gaming and offers a
combined overview over the technical, networking, and sub-
jective aspects. But this also means, that certain aspects can
not be treated with the utmost depth in this manuscript, as this
would result in a full-length book. Instead, we will direct the
interested reader to more in-depth material on those particular
topics. Other surveys and tutorials in this area are often of a
narrower focus, and can additionally become outdated rather
quickly due to the rapidly developing field of QoE in cloud
gaming. The technical aspects of cloud gaming services, the
makeup of modern online games but also the users’ expec-
tations towards services have drastically changed today, thus
inviting a fresh perspective on the field while not disregard-
ing established fundamentals. Previous works include several
general and QoE-focused publications on Cloud Gaming,
including [7]–[9]. Of these, only the latter has been written
with the current development of cloud gaming in mind (as of
2021). Other works focus solely on aspects of online video
games and not on cloud gaming. Here, [10], [11] can give
a good, albeit rather old, academically focused overview on
online gaming, while [12] is written from the perspective of
a game developer. To our knowledge, no other work attempts
to cover all of these aspects and their recent developments
together under one umbrella.

In order to facilitate our contribution, this work is split into
portions that focus more on tutorial aspects of explaining cer-
tain video game relationships, while others primarily serve as
survey to past and current research. These are further split
into technical and subjective aspects. Figure 1 illustrates our
approach. Section II presents a detailed taxonomy of influ-
ence factors of different categories, derived both from the

knowledge of previous QoS and QoE research and from a
fundamental comprehension of online video games. The tax-
onomy itself is illustrated in Figure 2, and serves as the
conceptual reason for how we split this work up.

The subsequent sections guide through the aspects described
in the taxonomy, starting with a brief overview of player
and game influence and context factors in Section II-B.
Section III then introduces technical and system aspects of
video games, including a simple model representation of video
game systems. Section IV is dedicated to introducing and
exploring all network-related aspects of online and cloud
gaming, while Section V focuses solely on covering their dif-
ferent networking architectures. Based on all these insights,
the following two sections are concerned with the evalua-
tion and assessment of QoS and QoE. Section VI covers the
performance evaluation of games and system factors that can
influence them. In particular, a series of measurement points
are introduced that are able to cover specific influence factors.
Section VII encompasses a survey of game QoS and QoE eval-
uation metrics, and how they are used in past video game user
studies. With all this information compiled together, we formu-
late future challenges and open research tasks in Section VIII.
Finally, Section IX concludes this work.

II. VIDEO GAME QOS AND QOE

To start any discussion about QoE one has to first agree on
a common understanding of what that term means for video
games. QoE is often described as the acceptability of a ser-
vice, or as the perceived, i.e., the experienced, quality of a
service. A prominent definition is for example given in [6].
Common to all definitions of QoE is the subjective opinion
component that distinguishes them from purely objective QoS
metrics. The existing definitions of QoE are generic and unspe-
cific to any topic and can thus be applied to video games as
well.

However, there is also some overlap in the definitions of
QoS, QoE and User Experience (UX). The overlap of UX
(which also deals with interaction design and quality) and
QoE is a broader subject of discussions and not a topic of
this work [13]. For this work we can assume that QoE is a
broader term, that deals with matters of interaction quality in
addition to, e.g., image quality assessment.

Video game QoS metrics include measurable interactions of
players with a game, such as task completion times or high-
scores. They are therefore also called application layer QoS
factors or player performance metrics, as they describe fac-
tors directly associated with a game itself and not with some
lower layers as other QoS metrics would. The existence of
player performance metrics in many video games makes it
often much easier to perform user studies solely based on
these performance metrics, instead of directly assessing sub-
jective QoE. While factors of the lower layers are directly
influencing QoE factors, the relationship of application layer
QoS with the QoE is not fully understood yet. There are no
good models yet that would, for example, map a specific high-
score to a subjective rating of that game. And just performing
well in a game does not necessarily imply that you actually
enjoy playing the game.

1896

Fig. 2. Overview of factors and aspects of the gaming environment that influence and provide context to QoS and QoE evaluations of video games. Concrete
examples are depicted in a light gray font color. The provided section numbers direct to the primary sections where the corresponding aspects are discussed.

Two further aspects differ when it comes to interactive appli-
cations in particular. Compared to passively consumed media,
the interactive nature of video games brings a number of addi-
tional system, human and contextual factors along that need
to be taken into account. Second, the approaches to assess-
ing video game QoE are more challenging, as the range of
system parameters exceeds those of, e.g., video streaming.
Video games implement very diverse and often complex sets of
interaction mechanics, and there is no one-size-fits all assess-
ment approach yet that would cover all aspects at once. This
becomes even more complex when distinguishing between
online video games and cloud gaming (more on that later).
Cloud gaming introduces further spatial and temporal com-
plexity through its RTP-based video streaming in addition to
any other gaming QoE factor.

All of these circumstances and open issues have been rec-
ognized by the QoE community and are being worked on, e.g.,
see [14], [15]. Our work intends to contribute to these ongoing
discussions. The taxonomy introduced in this section—in con-
junction with the subsequent sections that explain and discuss
the concrete taxonomy factors—tackles the issue of a common
understanding of video games and influencing aspects for the
purpose of video game studies. The second issue—of survey-
ing video game assessment approaches—is the focus of the
latter half of this manuscript. In that second half, Section VI
highlights game performance metrics and where and how to
measure them. These mostly center around the influence of
lag and other network QoS factors, their sources and measure-
ment approaches. And Section VII highlights QoE assessments
performed in the past as well as general QoE assessment
methodologies.

A. A Taxonomy of Video Game QoS and QoE Factors

Figure 2 depicts our approach at a cohesive taxonomy of
direct and indirect video game QoE and QoS influencing fac-
tors, and forms the basis for the subsequent sections. The
taxonomy consists of five larger factors that each represent
a separate entity in video gaming: the player, the game, the
game client (which runs the actual, user-visible game), the
game server (runs and coordinates the backend of multiplayer
online games in a centralized approach), and the network. Each

factor can be drilled down further to more specific influencing
properties of that entity. The figure gives concrete influencing
factor examples for each of them. The separation of the game
client into local and remote factors—and for example not just
a differentiation between client and server—becomes neces-
sary due to cloud gaming. Here, the game client can also be a
remote entity (with its output provided to the user in the form
of a video stream), but is otherwise functionally identical to a
locally running game. Depending on whether the game client
is used for cloud gaming or not, different influencing factors
apply that would otherwise not.

In turn, the factors are allocated into three areas, cover-
ing subjective and context aspects (continued in Section II-B),
technical and system aspects (continued in Section III), as
well as networking aspects (continued in Section IV). The
assignment is not unambiguous, as most of the factors con-
tain aspects of several areas. For example, a game has several
system aspects affixed to it with regards to its design and
implementation of specific elements, but their perception and
reception is subjective to the individual, and may thus result
in different experiences. By this it is also placed in a larger
context and environment.

The basic purpose of this taxonomy is to highlight all
aspects and types of influencing factors that potentially impact
the assessment of video game QoE. It specifically contains
many factors that may not be immediately evident to be an
influencing property during assessment. However, these still
need to be considered, and may be the deciding parameter,
e.g., for the creation of high-fidelity video game QoE models.
Such QoE models are of high interest for the research com-
munity, especially when it concerns cloud gaming. Various
approaches are already underway, e.g., by the ITU-T SG.12 in
the form of a Parametric bitstream-based Quality Assessment
of Cloud Gaming Services (P.BBQCG, [16]).

This is of course also not the first approach to such a taxon-
omy. Already the 2013 Qualinet whitepaper [6] debated three
areas of influence factors (unspecific to video games): human,
system, and context. Another 2013 approach to a video game
taxonomy offered a separation of QoS and QoE factors and
how they can be assessed with a questionnaire [17]. For a more
recent and topical example, both ITU-T Rec. G.1032 [18] and
Rec. P.809 [19] contain approaches with a focus on collecting

 1897

game quality and QoE influencing factors. Our approach is
aimed at extending all these prior approaches with additional
factors and factor interactions that may not have been in the
spotlight in the past, and explain why we think that they are
important. We want to especially highlight concrete techni-
cal influence factors that may affect the QoS and QoE and
have only been scarcely integrated into past taxonomies. The
goal of this new taxonomy is also in line with those past
approaches: to map out the landscape of video game param-
eters that are relevant for measurement experiments as well
as user assessments, and to provide means to direct future
research efforts towards factors that might not have been in
the spotlight yet. Furthermore, we see this work as an addi-
tional contribution to currently ongoing efforts to standardize
assessment and provide QoE models for cloud gaming [16].

B. Subjective and Context Aspects of Players and Games

The following sections discuss all areas of the taxon-
omy, supplemented with the necessary introductions into their
respective topics. And the remainder of this section provides a
brief overview of the aspects that focus on quality influencing
factors directly belonging to players and their environment, as
well as on factors belonging to an individual video game. This
is purely meant as on overview over these subjective and con-
text aspects and is in line with the approaches taken by prior
taxonomies (e.g., [17]). Further information that pertains to
the assessment of these factors is provided in Sections VI, VII,
and VIII.

1) The Player as a Quality-Influencing Factor: Player
aspects and factors generally give context and meaning to the
subject, as they describe a player and their past experiences,
abilities, and preferences. However, this does not necessar-
ily imply that these factors are only relevant for subjective
studies. As video games are interactive applications some of
these factors will also influence application layer QoS, such
as the subjects’ skills and past experiences with video games
in general. Thus, these factors influence both the measur-
able player performance players have when interacting with
a game, but also influence their impression of the game when
doing so. However, the concrete relationship between player
performance metrics and QoE has not yet been exhaustively
investigated. This means, it is not clear if a high performance
metric automatically implies that the player had a good sub-
jective experience while playing, and vice versa. For example,
losing a game has often been associated with increased frus-
tration (see, e.g., [20]). But that does not describe the strength
of the relationship, or even if it is always the case nor that
frustration is necessarily a bad thing.

Among these influencing factors in our taxonomy, experi-
ences relates to specific skills regarding specific game features
as well as expectations on how certain game mechanics and
features should work and feel.

Physiological factors directly describe the player them-
selves. These are the typical influencing factors of concern
in subjective studies, e.g., age and gender, but include poten-
tial physical limitations and accessibility needs as well. For
example, players with a form of color blindness might only

Fig. 3. Tag cloud showing the diversity of tags attributed by users to games
on the Steam platform. Font size scaled by the frequency of the tags (most
used tag occurred 57617 times). Data collected via https://steamdb.info/tags/.

be able to properly engage with games that provide appropriate
accessibility options or players with repetitive strain injuries
might tend to avoid fast-paced games with repetitive inputs.
Thus, these physiological aspects can also describe how certain
game mechanics and features feel to a certain individual.

Preferences describe factors like the game types a player
tends to choose, or which game modes they prefer. Preferences
may even include finer details, like the controller, typi-
cal graphical settings or type of gaming device they are
comfortable with.

Environmental factors contextualize a subject’s surround-
ings and, in our definition, also includes a wider range of
socio-economic factors. These may include their social con-
text, e.g., game recommendations by friends, economic factors,
e.g., decisions whether they buy high-end PC hardware, full
price games or prefer budget titles or subscription services,
and also their physical surroundings during play, e.g., whether
they play in their comfortable living room or mobile in public
transport.

2) The Video Game as a Quality-Influencing Factor: Video
games are made up of both technical as well as artistic design
choices. While the technical aspects will be discussed in the
subsequent sections and may explain significant portion of a
resulting quality impression, artistic choices still can provide
additional explanations and context for a specific result. Take
the game tempo as an example. Slow games might be com-
pletely unfazed by high input delay or a low frame rate, while
a fast game might be nigh unplayable under the same exact
conditions. Thus, this warrants a separate discussion of these
game influencing factors in this section.

The genre—e.g., a Real-time Strategy game (RTS),
First-Person Shooter (FPS) or a racing game—can give a
rough, albeit subjective, categorization of games, but does
not necessarily govern more concrete factors pertaining
to the games design and gameplay. Genres also do not
follow a unified scheme on which aspects they describe, and
range from describing technical properties (e.g., the camera
viewport), economic aspects (e.g., “Indie” games) to artistic
choices (e.g., a strategy game). Additionally, many games
may belong to more than one genre. This is also highlighted
by the diversity of tags seen in Figure 3, depicting all the

1898

genre tags that users associated with games on the Steam
platform.

The available game modes describe aspects such as whether
a game is played in singleplayer, cooperative or competitive
mode, but also the number of concurrent players in a game
session, as well as the difficulty and accessibility options the
game provides.

Next, the actual gameplay elements are a group of factors
on their own, and they describe which actions a player has to
perform to solve the game’s tasks and challenges, and which
tools are given to them to perform these. These are often also
dubbed game mechanics and may include elements of, for
example, movement, combat or puzzle solving.

This directly leads to the design decisions taken to imple-
ment gameplay mechanics but also narrative and aesthetic
aspects of the game. Among these, precision represents the
temporal and spatial complexity of interactions within the
game, randomness governs the need to react to unpredictable
actions, and tempo measures the pace of interaction.

The classic experience factors describe one’s background
with a game and its design and gameplay elements—including
challenge, flow and immersion—and are by definition sub-
jective to a player and only captured by questionnaires or
physiological measures.

Finally, environmental factors include a variety of different
aspects, from a game’s current popularity—and partly related
to that, its potential appeal to new players—to its development
budget and length, to the availability on different video game
platforms and hardware requirements.

These insights into subjective and game-specific aspects are
picked up again in the measurement experiment (Section VI)
and subjective study sections (Section VII). Furthermore, these
factors seamlessly lead over to the system influence factors and
technical details of the game client in the following sections.

III. TECHNICAL GAME COMPONENTS AND MODELLING

This section provides a general understanding of technical
and system influence factors. It explains the basic systems
with their core components, introduces a simple model with
key aspects for its interpretation and how they are used for
communication between the systems. Thus, using the taxon-
omy’s designations this section covers the technical system
aspects of the game, client and server.

A. Core Components

Traditionally, video games were intended to be played on a
single platform, to be self-contained and perform all tasks with
no technical details exposed to the players. With the introduc-
tion of general purpose computers, the underlying platforms
for video games began to diversify and games could no longer
be reviewed independently of the deployed system. Further,
when the Internet became available to a large playerbase, game
developers leveraged this means of communication to enable
multiplayer experiences over the network. This step massively
increased the complexity of the games. They are no longer
contained to a local system, but they now depend on exter-
nal components that not only operate independently of the

local core system, but also introduce further variation to the
performance. The current condition of the network now has a
direct influence on the perceived gaming experience, hence it
needs to be fully understood.

1) Local Game Client: The local game client—or generally
speaking, the local game system—always includes all input
and output components that directly interface with the player.
This includes general interfaces, such as mouse and keyboard,
gaming-specific interfaces such as game controllers, means for
communication such as microphone, headset and speakers, or
various other motion controlling interfaces. The output usually
is a monitor of various types, sizes, and other properties. Other
variants are hand-held systems with built in displays, and head
mounted displays that simultaneously capture the motion of
the head.

The game engine is the central piece of software that
continuously computes new game states and presents them
to the player. As the underlying systems may vary—different
systems and platforms offer different types of CPUs,
Graphics Processing Units (GPUs) and operating systems—
the game engine usually provides means to adjust the game’s
graphical settings and by this also the game’s performance,
measured by it’s frame rate. Such settings are necessary to
ensure a good performance to all players and their different
systems. Finally, if the game offers an online multiplayer
mode, the underlying connectivity and the corresponding
netcode (umbrella term for the concrete networking mech-
anisms implemented in a game, see Section III-C) are also
implemented in the game client and represent important influ-
ence factors. Even if the local system can provide sufficient
performance for the central game loop (cf. Section III-B),
bad connectivity may still impact the experience
severely.

2) External Game Server: If the game does rely on
networking, the other side of the communication must be
considered, too. The communication partner is often a ded-
icated game server that is responsible for a global game state
computation. As such, it contains similar components as the
local game client, without the graphics-related parts such as
the GPU, and without direct interfaces for local input and
output.

3) Cloud Rendering and Streaming Server: Recently, the
heterogeneity of local systems has lead to a trend that offloads
computationally intensive tasks to another, external system.
While the key components on the local game client remain
the same by name, the local system’s influence on the game
performance is reduced such that almost any system with
adequate input and output suffices. Instead, the actual client
running the game now reside within a cloud server, and is
responsible for game loop execution and frame rendering.
It inherits the local client’s system components and depen-
dencies. The new local client is now heavily dependent on
network connectivity. Even for single player games that were
previously contained to their local system, since all input and
output actions need to be exchanged between the local and
remote system. The individual responsibilities of these three
core components and their relations are covered in more detail
in Sections IV, V, and VI.

 1899

Fig. 4. Basic models of a game engine’s core loop. Adapted from [22].

B. Basic Video Game Model

The discussion of the individual steps of the game loop
relies on a sequential model of processes. This model is intro-
duced as a simple local queuing model here, and extended by
external components in later sections.

In general, any video game, regardless of its genre, can be
described as a discrete real-time simulation. A game is repre-
sented as a continuously running loop during which everything
that is happening needs to be calculated, loaded, rendered, and
displayed. The time available to perform these tasks at a high
frequency is constrained by the need to display the output
in real-time. Exceeding the available time may significantly
reduce the playability and overall quality of the game [21].
The specific tasks performed within a game loop depend on the
individual game and factors like the involvement of network
communication.

In the most basic scenario, covered in this section and
shown in Figure 4a—a locally rendered game with no network
involvement—the loop consists of three steps: input process-
ing (IP), game state update (GSU), and frame rendering (FR).
During the first stage, input from the user is collected by
querying attached peripherals. Based on user input and the
current, discrete game state, the update stage is responsible
for calculating the updated game state. This includes anima-
tion states, actor behavior, and the game logic itself. During
the final stage, the updated scene is rendered and sent to a
display in the form of an updated game frame [22].

In the simple coupled model (as depicted in Figure 4a and
adapted from [22]) all three stages are executed sequentially
in a single thread. In general, one stage must complete its
computation before the information can be passed on to the
next stage. However, the sequential nature of the model does
not properly reflect the multi-tasking capabilities of modern
platforms and could quickly run into performance problems,
e.g., in fast-paced and technically complex games if those
were actually implemented this way today. To this end, in
order to leverage the multi-tasking capabilities of modern
hardware, some processes can be executed independently and
asynchronously and can have their own loop. For example,
the game state could always update periodically, irrespective

of whether there has been new input to process. Once there
has been new input, this information is passed along as soon
as the process is executed again. We refer to the latter as a
clocked process.

Hence, the multi-threaded uncoupled model shown in
Figure 4b is a more adequate representation of modern game
systems, albeit still extremely simplified. It divides the loop
into multiple threads that execute the rendering stage on the
GPU asynchronously and independently of the CPU-bound
game state update. More detailed descriptions of these and
further models can be found in [22] and [23]. In the following
sections, we will extend this simple system model to adapt it
to different networking scenarios and include additional com-
ponents required to properly model modern, networked video
game systems.

C. Game Engine and Netcode

While it is impossible to cover every individual game’s
implementation, they are often based on generic game
engines [24]. These provide pre-built libraries for the most
common game functions. Most importantly, they provide
(i) the means for 2D and 3D world construction and render-
ing with an underlying graphics library, (ii) interactions with
this world such as moving around, and underlying physics
such as gravity, (iii) serialization of world and object state,
(iv) libraries that simplify or fully undertake sound, input,
and data management, and finally (v) pre-built functions and
interfaces that handle interactions with the network. The latter
are often summarily called the netcode. What the game engine
cannot provide is the actual game logic and how the game
uses the components provided by the engine. Thus, while the
engine is an influential factor, it is not solely responsible for
the resulting game’s behavior.

When reviewing the performance of games, those backed by
the same engine often show similar technical system behavior.
Previously mentioned configuration options are often pro-
vided by the game engine, and can be passed through to the
player. However, it is common practice to adjust some func-
tions and to provide individual implementations, effectively
replacing the pre-built functions as required. For example,
while most engines already provide basic functionality for
online multiplayer many games still replace this with their
own implementation that is better tailored to their needs of,
e.g., fast-paced shooters with many simultaneous players. For
an abstract understanding of the underlying behavior during
performance evaluation, knowing the applied game engine
may already be sufficient, but when individual scenarios
involving game-specific logic are being reviewed, a more pro-
found understanding of the individual game’s implementation
and logic is often required.

In particular, when reviewing the influence of the network
on a game’s performance, the underlying netcode and serial-
ization techniques become important factors. In slowly paced
games with a rich game state and game world, the effec-
tive data rate of the connection may actively influence the
frequency at which actors and objects in the game load and
are synchronized. Therefore, the game must provide efficient

1900

serialization techniques, and, e.g., only transfer state differ-
ences and only the state of objects that are currently of interest
to the client. In fast paced games, mere milliseconds of delay
can severely influence the resulting game state at the dedicated
server. As a result, the netcode commonly includes mitigation
techniques for delay and packet loss. The netcode is usually
specifically designed for each individual game, and the imple-
mentation often depends on the game logic itself. For example,
the game could prioritize the synchronization of objects close
to the player and synchronize distant objects less frequently to
improve performance. Fast paced games would apply various
mechanisms that ensure that an action is performed as per-
ceived by the local client. These mechanisms include giving
the client more authority over its game states and let the client
compute some game state updates by itself, estimate delays to
re-apply an action in a previous state as intended by the client,
or re-sending previous input commands at later game loop iter-
ations in case of packet loss. During performance evaluation,
the respective techniques and when they are applied by the
game logic should be known. A more in-depth look at con-
crete networking mechanisms in games offers the subsequent
Section IV.

In the era of cloud gaming, the network influences the per-
ceived gameplay quality in a different way. Here, delay and
bandwidth have a more direct influence on the output latency
and quality. While the type of game often has a subjective
influence on the experience, it should be understood that nei-
ther the game engine nor the netcode are directly related to
cloud gaming performance. Instead, the cloud gaming system
is a system separate from the actual game. It merely acts as a
redirector of the game’s inputs and outputs, similar to a remote
desktop system. A local client only records user inputs and
records them to a remote server where the game is running
and rendering its outputs. These outputs are encoded into a
video stream, sent back to the client and decoded there. Thus,
the influencing factors of the cloud gaming system apply in
addition to the game that it is running.

It is also possible to experience the effects of both cloud
gaming and game engine networking at the same time, when
multiplayer games are being rendered on a cloud server. The
above game loop models from Figure 4 will be extended with
these networking effects in the remainder of this paper.

IV. NETWORKING ASPECTS

The following section describes networking aspects of video
games, starting with general uses of networking in games as
well as aspects on different layers, outlining the direct as well
as indirect use of network communication during gameplay.

A. Networking in Games

Networking in modern games is crucial in multiple ways,
and the traffic generated during multiplayer gaming is influ-
enced by many aspects of the game itself as well as the
surrounding environment. Network usage in modern games
can be roughly divided into two blocks, which are dis-
cussed in the following: (i) direct and (ii) indirect gameplay
communication.

1) Direct Gameplay Communication: In a networked video
game, some parts of the game pipeline run on one or more
remote entities. Therefore, to be able to actually play the game,
it is required that each gaming client exchanges data with these
entities. Depending on the architecture, these entities can be
either game servers or other gaming clients. In the following,
the main types of gameplay communication will be described.
Please note that the involved gameplay communication highly
depends on the game type as well as the selected video game
network architecture. Naturally, this also influences the criti-
cal QoS requirements for different game types using different
architectures. Details on architectures are given in Section V,
while Section VIII-B discusses the impact of game types.

Game input upload: The user interacts with the game by
issuing commands using an input device in order to influence
the game state. In a networked game, either the commands
themselves (e.g., [25]), or the resulting game state differ-
ences (e.g., [26]) have to be uploaded to the game server
or broadcast to the game peers. Basic input commands can
also be aggregated (e.g., [27]) or locally abstracted into higher
level commands before the upload, such as moves, events, or
changes to objects [28].

Game state download: Each pass of the game loop results
in the creation of a new game state. The game state incor-
porates the decisions and inputs of each player subject to
the game logic. The server, as the authority over the global
game state, must synchronize this state back to all clients
in a serialized format. The state synchronizations can be
performed as standalone downloads (so-called snapshots) to
each client, or the server can first calculate the differences to
the previous state to reduce download sizes. The server can
even present each client with a different view on the global
game state in order to reflect, e.g., limited viewpoints of each
client [29]. Upon reception by the client, the server’s game
state will be merged with the local game state, such that global
state changes are reflected when rendering the game output
(e.g., [27]). If there are multiple game servers—or only equal
peers with no central server—responsible for a game session,
the different game servers also have to keep a consistent state
among them, and thus, need to exchange state information for
synchronization [10].

Figure 5a extends the previously presented local models
of the game loop with a game server component alongside
the necessary adjustments to the client that were previously
described. First of all, after the user’s input has been processed
locally, the input has to be packed into an input upload mes-
sage. This input message is transmitted to the game server,
which then incorporates that input (and those inputs of any
other clients) into the next periodic global game state update.
This new game state will be transmitted to the client, which
merges the new game state with its locally computed version
and renders a new frame. Note that multi-threaded uncou-
pled models (from Figure 4b) can be extended accordingly
by inserting the same network components.

A special case is cloud gaming, also referred to as game
streaming. In general, game streaming can be conducted
between any two computers regardless of their location. This
then encompasses both streaming a game from a cloud server

 1901

Fig. 5. Gaming loops with and without game streaming. Colors indicate which device the processes belong to. Circles with arrows indicate clocked processes,
they run with a certain tick rate (e.g., 60 Hz) independently of available input.

to a local device and streaming between two local devices. The
streaming client itself only is mostly just a video player and
input handler and forwarder. All game inputs are forwarded to
a remote rendering server which performs all resource-intense
tasks. The server processes the game state, and renders and
encodes the game video. The rendered video is then streamed
back to the game client, who receives the video data, decodes
and displays the game video to the user [4]. Figure 5b depicts
the respective game loop, with the additional cloud rendering
server highlighted in blue.

In multiplayer and online games, the rendering server—
that performs all of the graphics-intense client task—and the
game server—responsible for computing and synchronizing
the game state between all clients—will be separate entities.
After the game server has received the input uploads and com-
puted the state updates, the game state is sent back to the
rendering server, where it is rendered and encoded for the
client. In other, typically singleplayer, cases, there is no sep-
arate game server. In this case the rendering server only acts
as a remote game client and directly processes the game state
itself. The discussion of game streaming will be continued in
Section V-D.

2) Indirect Gameplay Communication: Indirect gameplay
communication refers to any communication which is not an
integral, continuous part of the actual gameplay, but which
still is a prerequisite for playing the game or can interact with
gameplay communication.

Game delivery and distribution, which includes download-
ing a digital copy of the game, are often essential prerequisites
before a game can actually be played. Many contemporary
games additionally also feature the purchase and subsequent
download of additional Downloadable Content (DLC) or vir-
tual goods. Prerequisite communication in a game also often
includes authentication to a game platform, from which the
clients are redirected to the game server, as well as account
and session management. The required networking for this
kind of indirect gameplay communication typically relies on
standard Web technology for the communication with the gam-
ing platforms or servers, including the download of large
files to the user’s device for game delivery and distribution,
the authentication of users, and the encryption of exchanged

data, e.g., with Transport Layer Security (TLS). As these are
already well researched topics, which are not exclusive to
online video games, they will not be discussed in any further
detail in this work.

The participation of clients in a multiplayer match is often
managed by a separate matchmaking server. This matchmak-
ing server matches clients according to their preferences and
skill [30]–[33], allocates or starts a game server for their new
match, and finally redirects the clients to their assigned game
server, which will be responsible for all direct gameplay com-
munications. An important goal of matchmaking is to match
those clients together which have similar Internet connection
conditions (e.g., expressed as bandwidth and latency) to the
game server [34]. To this end, players can often pre-select
a geographic region, and the actual game server within the
region is selected by the matchmaking.

It might also be necessary to download level or world data
before the game starts, or even dynamically during game-
play (e.g., seen in the 2020 Microsoft Flight Simulator).
This might cause waiting times until all clients have down-
loaded the required data. Depending on the game, that data
can even be part of the game state download performed by
game clients (and thus be a part of direct gameplay com-
munication). However, some architectures require additional
connections to dedicated world servers for obtaining level
or world data, which interleaves with the gameplay commu-
nications. During a running game, game clients can upload
analytics data to the game server or dedicated analytics servers.
This can include statistics about the connection, such as link
capacity and latency, which can be used to improve the
networking or mechanics of the game [35], but also gameplay
statistics, which can be displayed or queried outside of the
actual gameplay (e.g., highscore lists). Such statistics can also
unlock achievements, which in turn can trigger the download
of data, such as animations, unlocked game content, or virtual
goods, which can be used during gameplay. Some games also
employ Digital Rights Management (DRM) to prevent copy-
right infringement, which can additionally require a persistent
connection to an authentication server (always-on DRM).

Finally, gameplay might also trigger the communica-
tion of players via side channels, often with additional

1902

software for messaging or voice chats, causing additional traf-
fic [36]–[38]. Some players also stream their gameplay to
other spectators via live streaming platforms like YouTube
or Twitch [39]–[41].

In summary, as a prerequisite or in addition to actual game-
play communication, several secondary applications may be
used by players that result in traffic not directly related to
gameplay. This can include text and voice communication
applications with which player communicate when playing a
game together. Such indirect gameplay communication also
has to be considered when analyzing networked online games,
since it might also immediately influence players’ behavior
and assessment of a situation.

B. Network Performance Influence Factors

With the distinction between indirect and direct gameplay
communication at hand we can now more closely scruti-
nize the impact of network parameters and influence factors
on video games. Indirect gameplay communication, such as
game and content downloads, text and voice communication,
or account and session management are closely related to
classical Internet applications. Hence, insights from research
regarding file downloads, VoIP, and Web browsing can largely
be applied [42]. For example, file downloads are known to
require high throughput but are relatively resilient against
delay, jitter and loss. VoIP and Web browsing, on the other
hand, are generally more sensitive to delay, while only requir-
ing a limited amount of bandwidth with the former suffering
especially under the influence of packet loss. Similarly, when
it comes to direct gameplay communication between a game
server and a client, studies have shown that, depending on
the specific game, latency, jitter, as well as loss generally
impact the gameplay quality. Bandwidth nowadays only plays
a minor role during gameplay, while the continuous gameplay
communication must be timely in its arrival, gameplay update
sizes are only marginal when compared to typical residential
Internet access speeds [43], [44], but may pose to be more
problematic in mobile networks.

1) Online Game Network Performance: In the following,
a more detailed look will be taken at what data is actually
being sent through the network. In general, three scenarios pre-
vail in modern games, which were already identified by early
Internet games [45]. All scenarios involve an input upload (IU)
step in Figure 5, as well as a game state download (GSU)
step. However, the mechanisms differ with regards to which
data is transmitted. First, the game client can simply com-
pute the game state locally and transmit the full game state
to other involved entities. This, however, requires additional
computation on the client side as well as increases the needed
upstream bandwidth. In return, the game server only has to
notify clients about small deviations in their local game state
to unify multiple clients. In the second scenario, clients trans-
mit only the player input, such that the interactions with the
game state are executed on the game server (Client-Server)
or on another game client (Peer-to-Peer (P2P)). This reduces
the complexity of the client but introduces additional latency,
as the client has to wait for the updated game state from the

server before being able to proceed. Additionally, the server
has to return the full game state to the client in order to ensure
consistency. In a third approach, only the portions of the game
state that is relevant to a client are sent back from the game
server. This comes with the additional complexity of deciding
which information is relevant and which parts of the game
state can be omitted. This task is commonly called interest
management. When it comes to modern games, a combina-
tion of these mechanisms is often used to form a trade-off
between efficiency and complexity [46]. All three scenarios
have in common that the amount of data transmitted by a sin-
gle client is, by today’s standards, fairly low [45], [47]. Thus,
this process is generally more sensitive to latency and jitter
while being very resilient against throughput fluctuations.

Reference [48] investigated the bandwidth requirements at
the game server and connected clients. They also evaluated
the latency to resolve game state inconsistencies for three
different architectures, namely, client-server, P2P, and P2P
with a central arbiter for detecting state inconsistencies. They
provided models for the bandwidth requirements and the max-
imum inconsistency period for all three architectures. With
this, they identified both the large bandwidth requirement at
the game server in a client-server architecture, as well as the
large overhead in the P2P architecture to synchronize the game
state. Their proposed hybrid architecture with a central arbiter
combined the merits of both architectures.

Surveys of past online video game traffic studies are avail-
able at, for example, [49]–[51]. In addition, the sources and
relevance of network latency, jitter, and loss have been inves-
tigated in [10]. The authors of [11] and [52] commented on
acceptable latency in networked multiplayer games, stating
that it ranges between 0.1 s to 1 s depending on the game genre.
There, Real-time Strategy games were considered to be less
sensitive than First-Person Shooters. These numbers were con-
firmed by past empirical studies [53]–[55]. But these results
are only applicable for a very narrow type of game in a specific
scenario and for a specific application layer metric. In general,
genres might not be as clear-cut as previously assumed and
do not necessarily govern the game’s speed. Due to this, it is
almost impossible to define generalizable QoS requirements
without considering game type, video game network archi-
tecture, and required gameplay communication. This issue
becomes even more apparent when attempting a full subjec-
tive assessment of the participants’ opinions. However, these
missing aspects would be important puzzle pieces on the road
to a more complete and generalizable QoE model for video
game. This notion will be picked up again in Sections VII
and VIII. More details on the impact of network conditions
on the game performance will be presented in Section VI.

2) Cloud Gaming Network Performance: When it comes
to cloud gaming, the scenario changes substantially as, in
addition to regular direct as well as indirect gameplay com-
munication, player input needs to be streamed to the rendering
server, which then has to return a high resolution, high bitrate
video with as little delay as possible [56]. The upstream and
downstream parts of this process are shown in Figure 5b as
CIU and FDL, respectively. Hence, cloud gaming requires
significantly more and different resources on the server side

 1903

compared to regular online gaming. However, as both direc-
tions of this additional communication are closely related to
well established applications, insights from other areas can be
applied here. On the one hand, the upload of player input is
similar to the regular input upload already discussed before
as well as other latency-sensitive, low bandwidth applica-
tions such as Web browsing or remote control in industrial
environments [57]–[59]. On the other hand, the video down-
load behaves similar to live streaming or video conferencing,
albeit with much stricter real-time requirements. The impact
of network characteristics on adaptive streaming has already
been studied in-depth in the past [60].

Finally, when it comes to the delay requirements, cloud
gaming providers may employ proprietary mechanisms to
reduce actual as well as perceived latency [61]–[63]. But such
approaches are still subject to research and evaluation of their
effectiveness. Naturally, network management solutions like
DiffServ [64] or Active Queue Management (AQM) [65]—
mechanisms to mark specific traffic types and reduce the queu-
ing delay in the network—can also be deployed to improve
QoS for gaming related network interactions within edge and
core networks. While the details of these network management
mechanisms are out of scope some future research directions
on this regard are presented in Section VIII-C.

The following section provides a more detailed overview of
client and server-based mechanisms that aim to improve the
perceived latency of players.

C. Networking Mechanisms Within Games

When it comes to understanding the networking behavior
of video games, some aspects beyond the implementation and
usage of network connectivity need to be taken into account.
Games employ several application layer mechanics that either
directly influence the resulting network traffic or change appli-
cation layer behavior based on the current network state,
forming a feedback loop in which the game behavior reacts to
current network conditions, thereby influencing the resulting
traffic characteristics.

Similar to other network applications in which data pro-
tection, privacy as well as authentication concerns are highly
relevant, the encryption of network traffic is widely used for
direct and indirect gameplay communication. The encryp-
tion of network traffic offers some additional protections
against cheating and manipulation of game state information.
However, most games do not solely rely on data encryp-
tion to ensure tamper-proof gameplay, since cheating does
not necessarily happen during transmission, but at the game
client’s system itself. Instead, the aspect of game state author-
ity is leveraged to exclude the client from decision-making
processes that could be used to manipulate the game state.
In environments with authoritative game servers, the client
still performs the local game state simulation. However, the
resulting game state will be overwritten by the game state
authority (i.e., the server) if the states don’t match. If the local
game client is not authoritative on the global game state, many
opportunities for local manipulation are removed. This also
means that any local input has to be validated by the authority

and is only then included in the global game state [66]. If
there is no central authority (e.g., in a P2P approach) con-
sensus between the peers can be difficult to reach and slow
to converge to a consistent state across all peers [67]. This is
often considered too slow for fast-paced gameplay, nor resis-
tant enough against cheating, and may impose a significant
traffic overhead.

The type of game itself is also highly correlated with
the occurring network traffic. The traffic patterns of slow,
round-based games without real-time interactions will differ
significantly from fast-paced, real-time shooters. The tick rate,
the rate at which a game client and server exchange state
information, generally describes the number of updates per
second and is provided in Hz. With slow, round based games
having tick rates as low as 1 Hz and fast paced shooters featur-
ing tick rates of up to 120 Hz, it is clear that different games
are more or less sensitive to jitter as well as packet loss.

This sensitivity has lead to the introduction of several mit-
igation techniques applied to diminish, or at least conceal,
the effect of network transmissions on gameplay features.
The following paragraphs provide an overview over the most
prominent mechanisms.

On of the earliest game state synchronization mechanisms is
called deterministic lockstep [47]. The basic idea is that every
game client executes the exact same code at the exact same tick
rate, with every input being directly shared between clients.
However, this can lead to the problem that the game state
update cannot be executed until a game client or server has
received all input uploads from all the players, which causes
the game to stall [68]. While this is not a large problem for
turn-based games, games with real-time interactions will suf-
fer. In addition, to make the game look and feel smooth, the
consequences of user interactions can be locally predicted and
presented at a higher frequency (client-side prediction) before
other players or the game server have acknowledged the input
and updated the game state [69], [70]. The drawbacks of the
deterministic lockstep mechanism are that it does not scale
well for many players [26]. An improvement called rewind
and replay or deterministic rollback was proposed, in which a
game client could also predict the remote players’ actions for
a more responsive gameplay. When the remote players’ input
uploads are received, they are compared to the predictions.
If there is a discrepancy, the game simulation is rewound
to the first incorrect tick. Then, the game client re-predicts
the inputs for each player based on the updated input stream,
and advances the simulation to the current tick using the new
prediction [27], [71]–[74].

As described above, the problem of synchronizing the game
simulation between all game clients increases with the num-
ber of participating game clients. This issue can be solved
by introducing a single, central authority—the game server,
or host—which solely runs the game simulation, and thus,
keeps a single, unified game state. All game clients send their
input upload messages to the host, which executes all inputs
and updates the game state. Afterwards, the server sends back
state download messages to each game client. Since it might
not be feasible to transmit the complete game state, only snap-
shots of the game state are sent in intervals, which contains

1904

Fig. 6. Timelines of snapshot interpolation and lag compensation mechanics.

all or parts of the state of the game simulation. To further
reduce the snapshot size, geometry transmission [75], snap-
shot compression [76] or other delta compression techniques
can be employed. Here only the differences to the previous
game state are transmitted [77]–[79]. Snapshots can be com-
piled in such a way that they only contain the parts of the
game state of interest to a particular client. This interest man-
agement [80], [81] allows the game server to send a subset
of the game state to each client, but requires a more complex
management of the state updates. This, combined with the fact
that the authority now solely resides with the server, removes
a lot of potential to cheat from the client [66], [69].

The game clients take those snapshots to reconstruct a visual
representation of the game simulation without running the
game state simulation themselves. But since the intervals of
the snapshot reception might be larger than the time between
two frames, a further technique, called snapshot interpolation,
can be employed. Hereby, the client shifts back its render-
ing time and interpolates the game state between the two last
received snapshots, which adds constant but additional latency.
Once the rendering time progresses towards the last snap-
shot and a new snapshot does not arrive in time, the game
client has to switch to extrapolation, which can cause a game-
play degradation in case erroneous extrapolations have to be
corrected [26], [69], [82]. A depiction of the interpolation
mechanism is available in Figure 6a.

Typically a technique called lag compensation is employed
in conjunction, which takes into account the amount of inter-
polation at the game client (cf. Figure 6b). This means, with
lag compensation, the game server does not apply input actions
to the current game state update. Instead, it takes into account
the simulation time at which the user performed the actions,
then rewinds the game simulation to the observed game state
at the client, applies the input actions, and from there moves
forward to the current game state. Note that lag compensation

allows for each player to run on their own simulation clock
with no apparent latency. However, paradox situations might
occur, especially when clients experience significantly differ-
ent latencies to the game server, e.g., the “shot through a
wall”-inconsistency [69]. Finally, state synchronization is a
hybrid approach borrowing from both deterministic lockstep
and snapshot interpolation. The idea is to run the game sim-
ulation not only on the game server but also on the game
clients. Here, each client again sends input messages to the
authoritative game server, and the game server sends state
download messages to keep the game simulations synchro-
nized. As the simulation runs also on the clients, they do not
have to wait for input from the game server, but the game can
progress locally, i.e., by extrapolating from the last received
game state. However, this can result in only approximate
synchronization, which might require some effort to correct
extrapolation divergence towards the global game state of the
game server [29].

Most importantly, there is need for mechanisms that enable
latency compensation or concealing [10]. A client will always
observe a delay > 0 between sending an input upload mes-
sage over a network to the game server or other game clients,
and receiving one or more corresponding game state download
messages. A simple solution, which was already presented
above, is client-side prediction, such that the consequences
of user interactions are locally predicted and rendered before
game state download messages arrive. Similarly, the input
actions of other players can be predicted and rendered before
the corresponding game state download messages arrive. This
mechanism is often called dead reckoning [83], when positions
and paths of moving objects are predicted. Both mechanisms
extrapolate from the game state, and thus, can be prone to
prediction errors. In this case, the extrapolation divergence
towards the global game state has to be corrected, which,
if perceived by the end user, might negatively affect their
experience with the game.

Finally, to further reduce the latency to and from the game
server, the game server itself can be moved closer to clients.
This is a use case of the emerging edge computing paradigm,
which allows the use of computational resources at the edge of
the network, close to the end user. However, the performance
of such mechanisms highly depends on the availability of
edge data centers and the geographic distribution of players.
To enable good matchmaking for a game, game servers are
often placed in the middle of larger population areas, as the
matchmaking process requires a large pool of eligible players.
To alleviate the problem, [84] presented a migration algo-
rithm, which allowed a player to choose a better server and
migrate the game state in the middle of a game. Considering
world-spanning multiplayer online games [85] applied core
selection to find an optimal node in the system for placing
a virtual zone, and correspondingly the players interacting in
that region. The authors of [86] considered first-person shooter
games and proposed a platform that determines where and
when to move game servers. A simulation-based performance
evaluation of edge server resource migration policies was con-
ducted in [87]. Today, due to the disruptively long pauses
during gameplay, migrations are usually never performed

 1905

during a running game session in fast-paced games in
practice.

D. Online Video Game Protocol Stack

Besides the way games use the network for various commu-
nication purposes, they also rely on specific network stacks and
protocols to optimize efficiency, resilience, as well as security.

A networked video game is, essentially, just like any other
type of networked application, it sends and receives data over
an IP network and wraps its data in an application layer pro-
tocol. Note that properties specific to layers 1 and 2 protocols
are out of scope for this manuscript, but it should be empha-
sized that specific circumstances—like random access in a
shared medium, such as WiFi, or issues like bufferbloat—will
impact the delay-intolerant game communication in a negative
way. It should also be noted that many games outsource their
networking implementation to third party libraries provided
by either the used game engine or explicitly use networking
libraries like Valve’s GameNetworkingSockets.1 This means,
even though there is no standardized game protocol stack,
many games still share similar codebases and behavior.

When it comes to transport protocols, TCP and UDP also
prevail for networked video games [88], including the usual
advantages and disadvantages. TCP has the advantage of a per-
sistent connection with congestion-controlled, reliable in-order
delivery. However, the retransmissions required for reliable
delivery can introduce Head-of-line blocking—i.e., newer seg-
ments are blocked by missing older segments that are still
unacknowledged—and with that additional delay and jitter,
two aspects detrimental for interactive real-time applications.
Thus, TCP is mostly used to handle data with less strict dead-
lines and in cases in which reliability is more important, i.e.,
indirect gameplay communication. For example, it is not suited
to transmit an immediate game state but possibly some future
world data or player communication. In contrast, UDP allows
for the fastest possible transmission in a lossy environment
without intrinsic reliability or ordering guarantees. If such
properties are still desired they can be tailored to the game
on top of UDP.

Looking at research, [88], [89] supported TCP for sit-
uations in which occasional delay is acceptable, such as
stateless queries, updates, or slow-paced online games. The
authors of [45], [90] argue against the use of TCP for
video games. These papers agreed that for fast-paced games,
in which occasional lag is not tolerable, UDP should be
used and required mechanisms, such as the retransmission
of lost packets, have to be implemented by developers
on top of UDP (e.g., [45], [91], [92]). Reference [93]
evaluated the TCP performance in online games [93],
and showed that TCP cannot perform well for Massively
Multiplayer Online Role Playing Game (MMORPG). The
authors proposed guidelines for protocol design and extended
their work in [88], which investigates more protocols, namely
TCP, UDP, Datagram Congestion Control Protocol (DCCP)
and Stream Control Transmission Protocol (SCTP) as well as
other content-based transport strategies. They found that their

1https://github.com/ValveSoftware/GameNetworkingSockets

proposed strategies could reduce End-to-End (E2E) delay and
jitter significantly. Moreover, other transport protocols have
been proposed in research for networked video games as well.
The authors of [94] propose an energy-aware transport proto-
col for mobile multiplayer games. And a TCP-like transport
protocol specifically designed for the transmission of game
events has been developed in [95].

Moving up the stack, the protocols encountered in video
game network communication start to differ from other appli-
cations. Unlike the Web, where HTTP and other standardized
protocols are the defining elements, the gaming landscape has
no such widespread standardization. Instead, developers often
utilize third-party networking libraries and frameworks for
general data serialization, state replication, and remote proce-
dure calls such as Google’s ProtoBuf2 which is used in popu-
lar titles like CounterStrike: Global Offensive or
DOTA 2.3 These tools make it relatively easy to develop a cus-
tom communication protocol for each game (e.g., [96]), but
makes comparative analyses between games more challenging.

There have been only scarce works in literature to analyze
the traffic patterns of video games and while the observations
made may not be entirely applicable to any game beyond the
one investigated, they can still give valuable insights into what
behaviors can be expected from video games, even though
most studies have to operate on encrypted traffic and are lim-
ited to identifying patterns. In addition, even a simple version
upgrade or a change in game settings, could entirely change
the observed behavior. Past examinations include Counter
Strike [97] and Overwatch [98] as well as several sur-
veys [49]–[51] that cover traffic analyses of additional games.
Further sources of information exist in the form of developer
documentation [25], [28] and open-sourced approaches [71].

V. VIDEO GAME NETWORK ARCHITECTURES

Video game network architecture designs can generally
be divided into two large categories, namely, client-server
architectures and P2P approaches, and while other, hybrid
approaches exist (e.g., [10], [99], [100]), these are less widely
spread and are seldom used outside of research. In the fol-
lowing, we provide an entry point into the research body of
network game architectures as well as the concept of cloud
gaming. Table I provides a summary of the references in this
section. Note that this table is designed to provide an index of
the respective literature, and does not contain results, e.g., with
respect to QoS or QoE implications of the presented architec-
tures. As the interactions between architecture, game type, and
gameplay communication of each game significantly impact
the presented results, the outcomes of the discussed works
are typically very specific to the applied methodology and
considered use case, and thus, cannot easily be generalized.

A. Client-Server Architectures

All clients in a session of a client-server game send
their respective user inputs to a single logical game server

2https://developers.google.com/protocol-buffers/
3https://github.com/SteamDatabase/Protobufs

1906

TABLE I
TAXONOMY OF RESEARCH WORK REGARDING VIDEO GAME NETWORK ARCHITECTURE

to be processed into a new session game state. The game
server then performs the game state replication to all clients.
Additionally, most client-server games compute a game state
out of their locally available information which does not nec-
essarily include all (or correct) information from other players.
An advantage of this approach is that there is only one authori-
tative game state, namely the state managed by the server. This
substantially eases game state synchronization, as the server’s
state simply overrules any deviations clients have computed

locally since the server state replaces the local state. The
approach eliminates the need for any direct synchronization
or consensus protocols between clients.

In [146], different policies were outlined regarding the
control and location of the server with two main variants.
First, the server is installed together with the client and
under full control of one player. Several potential disadvan-
tages apply, including the susceptibility to local manipulation
(i.e., cheating), asymmetry of delay among players, and lower

 1907

availability, potentially leading to the remaining clients having
to migrate the game session to another server if the server is
not available any more. Second, and common to most larger
competitive multiplayer games today, the servers are hosted
and maintained by the game publisher or platform operator in a
data center. Moreover, while network connectivity is obviously
mandatory for online multiplayer games, many singleplayer
games have also begun integrating client-server interactions,
for example to simplify switching to a multiplayer mode in a
running session, prevent cheating, or for business reasons. The
client-server game architecture can also act as a centralized
solution for other game-related activities, such as account man-
agement, monitoring, persistence, or partitioning of the game
world [147]. The authors of [137] discuss client-server archi-
tectures for Massively Multiplayer Online Games (MMOGs),
in which several thousand players interact with the game
server.

While up until now only the use of a single server has
been mentioned, it should always be understood as a log-
ical (or virtual) server and in practice can be represented
by more than one physical entity. For this, either a single
game server is mirrored to several physical machines, or func-
tionality is split amongst different entities that synchronize
their state accordingly. This includes, for example, front-end
servers, matchmaking servers, or database servers. Such vir-
tualized servers can then be scaled up or scaled out, such
that running server instances always meet the current load.
Splitting responsibility is especially useful in the domain of
MMOGs. Many different approaches have been proposed and
used in practice. Such concepts include zoning, instancing, and
replication [114]. Zoning partitions the game world into geo-
graphically disjoint zones, which are then assigned to different
servers (e.g., [102]). Instancing creates multiple, independent
instances of one zone and splits the players in this zone
between the instances. The instances can then be run on differ-
ent servers. Finally, replication distributes load by maintaining
copies of the same game world (or zone) on multiple servers
but distributes the clients between the servers. Contrary to
instancing, replication should not be noticeable by players.

The following works are presented here to given an impres-
sion of the diverse directions research has taken in the past
for client-server architectures. An early architecture concept
was presented in [101], in which a remote server executes the
game logic and clients only render the graphics. The necessary
game data for this was to be pulled on-demand from a sep-
arate storage server. A completely distributed communication
architecture was used by the authors of [115] for their imple-
mentation of a networked multiplayer game. Reference [116]
investigated the issue of load balancing for dynamic change of
workload in a networked game. Their proposed algorithm con-
sidered the geographical relationship among game units and
the short response time of frequent user interactions. A review
and analysis of current multiplayer online game system archi-
tectures in 2003 was given in [104]. In addition, the authors
proposed a scalable, clustered server architecture. Further, the
authors of [105] conducted a performance study on multi-
server based systems for large distributed virtual environments
and discussed various implementation issues. The concept of

gamelets as a middle layer between monitoring and commu-
nication to increase scalability was introduced in [106], such
that the logical partitions of the virtual world are assigned to
a gamelet for processing. Here, a single server can then hold
several gamelets at the same time.

A distributed algorithm was developed by [108] to select
game servers for a group of clients participating in a large
scale interactive online game session. Reference [107] showed
a locality-aware dynamic load management algorithm for mas-
sively multiplayer games. Considering the same type of games,
in [136], a scalability model was presented to analytically
compare the suitability of different network topologies for
certain classes of massively multiplayer game designs. A two-
phase approach to efficiently assign the participating clients
to servers was proposed in [110]. The goal was to enhance
user experience in interacting within virtual environments,
such as networked video games. Tackling the problem of dis-
tributing the server part of networked games over multiple
servers, the authors of [124] presented a system to replicate
game objects over different server nodes. Also, in [109] an
architecture that supported zoning was developed. The authors
of [137] discussed how to distribute server resources over
several machines in massive multiplayer online games. A mid-
dleware system was developed in [111], which distributed the
game state among participating servers, and supported parallel
state update computations, as well as efficient communication
and synchronization between game servers and clients. The
proposed system could be applied for the high-level develop-
ment of multi-server online games [112], [148]. Finally, the
authors of [114] investigated an ecosystem for autonomous,
self-adaptive hosting and operation of MMOGs on unreli-
able resources on commercial cloud services with limited
availability.

B. Peer-to-Peer Architectures

In P2P gaming architectures there is no central authority and
all game clients are equal. This should not be confused with
a client-server scenario where one of the clients exclusively
hosts the game, i.e., acts as the server. In full P2P scenarios
there is no server. Typically, a fully-connected network layout
is used and all clients maintain and update their own local
game state using their local inputs in addition to those sent
by other peers. The challenge is to ensure consistency in a
real-time manner between all peers in the absence of author-
ity and in the presence of network delays [35], [67], [99].
Specific notions of P2P mechanisms for gaming are out-
lined in [100], which include super peers, P2P overlays of
distributed servers, or particular neighbor-based connectivity
types. It can be advantageous that this architecture does not
need a server, potentially removing one round-trip from the
networking delay. Moreover, this architecture is robust with-
out a single point of failure. A game session can continue
if one client disconnects from it [67]. However, in a typical,
fully connected scenario with n peers, n(n+1)

2 active connec-
tions have to be maintained, which increases the potential of
failure and latency [35]. Some works criticized this lack of
scalability [135], while others argued that P2P architectures

1908

were scalable, because each new peer adds additional, shared
resources to the session [67].

The academic literature has many examples of and
surveys about P2P game architectures, amongst oth-
ers [122], [124], [132]. The following works again serve to
give an overview of the breadth of works concerning P2P
video game architectures. A detailed description how the P2P
model was used successfully in the early Age of Empires
games is given in [35]. The game simulation was synchronized
with the help of an adaptive game speed, which dynamically
changed the length of the turn to keep the animation and
gameplay smooth over changing conditions in communication
latency and processing speed. The authors of [117] presented
a protocol for cheat-proof event ordering in P2P games, which
reaches a playout latency independent of network conditions
and can adapt to network congestion to optimize performance.

With regards to concrete architectures, the authors of [127]
propose a framework for a P2P network with super peers.
A P2P architecture was introduced in [128]. It provides a
client-server-style programming model, hiding the complex-
ity of setting up the P2P network among the clients. Another
P2P approach was described in [149]. It exploits specific game
knowledge to improve the mechanisms for requesting and pro-
viding information to clients. P2P architectures can also be
adopted for massively multiplayer online games, which has
gained a lot of attention from research in the past [119]–[121],
[123], [125], [126]. Design issues and alternative approaches
were discussed in [129]. The works covered the dissemination
and persistence of the game state in large virtual worlds with
many server-controlled Non-Player Characters (NPCs) with
the additional goal of cheating mitigation. Considering the
demanding game type of MMOG, the surveys in [130], [131]
cover further P2P architectures for MMOG. More recently,
the authors of [133] conducted a simulative performance eval-
uation of P2P protocols, and an architecture for fast-paced
MMOG was presented in [150] presented. Finally, [151]
presented formulae to compare client-server and P2P archi-
tectures with respect to the required bandwidth.

While pure P2P game architectures have seen much aca-
demic research, they do not play a significant role in practice
today. Besides practical hurdles like NAT traversal, major con-
cerns relate to achieving consensus and state replication in
a constrained time and with regards to cheating prevention.
This can practically be solved with significantly less effort in
a client-server architecture.

C. Hybrid Client-Server/Peer-to-Peer Architectures

Many practical implementations employ hybrids of the two
previous concepts. In the following, some notable examples
are outlined, while more examples can be found in a survey
by [100].

An important hybrid approach are relay servers [152], which
forward P2P packets between peers. Players can more eas-
ily connect to them in environments where direct connections
might be prohibited, e.g., through NAT middleboxes. Relay
servers can also reduce traffic in P2P games. Instead of dis-
tributing all messages to all other players, messages only have

to be sent to the relay server, which then takes care of the
distribution. Both [134] and [153] describe a hybrid archi-
tecture with mirrored game servers. Another approach was
presented in [118]. It adapts multiplayer online games to P2P
architectures by constructing game server clusters on a dis-
tributed hash table. Further, the authors of [138] presented
a P2P architecture that additionally used multiple mirrored
servers to maintain the game state. Other hybrid P2P cloud
architectures for MMOGs were proposed in [139], [140].
Another approach, which integrates centralized and P2P archi-
tectures, was discussed in [141], specifically in order to
support interest management. Reference [135] suggested to
deploy middleboxes in the ISP to intercept game traffic and
offload some game logic calculations to them. The authors
of [113] presented an adaptable client-server architecture for
mobile games, which dynamically decides where which parts
of the game logic are executed, either client-side or server-side,
reaching improved global consistency under high and varying
latency network conditions. Finally, the required bandwidth
and latency to resolve game state inconsistencies in different
architectures was investigated and modeled in [48].

D. Cloud Gaming

In the past decade a new type of service called game stream-
ing or cloud gaming has made technological advances and
has been become increasingly popular. Instead of running a
game locally, it is now rendered on a remote game client and
the finished output is streamed to the player’s end device.
At the same time, input provided by the player is streamed
to the remote game client for processing. This overall pro-
cess is generally not considered a video game architecture
like client-server or P2P, but rather as a different approach to
running and playing games. Any game that is available on a
local PC could therefore also be played via one of the open,
self-hosted cloud gaming systems (e.g., ParSec or NVIDIA
Gamestream). However, there are also closed cloud gaming
platforms, such as Stadia or PlayStation Now, which offer
only a small selection of games that also may not be available
on any other platform. This mainly depends on the business
model the operator has selected, c.f. e.g., [154].

Figure 7 illustrates the differences between online gaming
and cloud gaming. In cloud gaming, the local device only
acts as an input forwarder to a remote rendering server, which
implements a remote version of the game client. This server
forwards the inputs to and receives state updates from the
game server. It then renders the game video, redirects its ren-
dered frames into a video encoder, and transmits the stream
towards the local client, where it is decoded and displayed.
This means that the local device is not required to have
any significant graphics processing power or computational
resources to partake. However, it naturally comes at the cost
of additional delay, as shown in Figure 5b, and potential visual
quality degradation due to encoding, streaming, and decoding
as discussed below.

While the first commercial service providing cloud gam-
ing was launched as early as 2005, the technology only
became popular with the first wave of commercial solutions

 1909

Fig. 7. Differences between online gaming and cloud gaming.

like OnLive (2010) [155] and Gaikai (2014) [156]. However,
these initial services were largely commercial failures due
to technical and qualitative limitations. They also garnered
little interest from consumers due to pricing and a limited
selection of games at the time. Recently, a second wave of
commercial services began to emerge, with PlayStation Now,
Geforce Now, Amazon Luna, Microsoft Xbox Cloud Gaming,
and Stadia being the most prominent installments of cloud
gaming as of writing this manuscript.

Apart from commercial services, many existing game plat-
forms also implement game streaming from a locally installed
copy on one device to another. This can not only be used
to stream the game from a more powerful computer to a TV
or mobile device, but streaming can often also be performed
over the Internet. Examples are Steam Remote Play, Xbox
Console Streaming, NVIDIA Gamestream, and PlayStation
Remote Play. The following paragraphs briefly survey the
ongoing research work into these services and systems.

Already several years before the commercial rise of game
streaming, [142] investigated the interactive performance when
streaming a video game on an early thin client setup in a
local area network. Also the authors of [157]–[159] presented
early generic client-server systems for streaming 3D graphics
and virtual environments to mobile devices. Other special-
ized systems for interactive video games were proposed
in [143], [160], [161]. Regarding commercial cloud gaming
platforms, two works [4], [162] described their architectures
and conducted first performance evaluations of the first wave.
Since then, a plethora of architectures and systems were
investigated and open research challenges were identified,
e.g., [163]–[166]. A comprehensive survey was performed
in [8]. The same group of authors additionally provided some
very insightful future perspectives in another article of the
same year [167], not all of which have proven to become real-
ity to this date. Finally, several recent works (e.g., [62], [168])
performed traffic analysis of current cloud gaming services.
These analyses revealed that individual games may differ in
their streaming traffic characteristics, such as the packet size,
inter-packet times, and load.

Further, the authors of [169] investigated the networking
behavior of Stadia, PSNow and GeForce Now and identified
the used protocols as well as performance requirements regard-
ing bandwidth and loss. They identified PSNow and GeForce
Now to be based on the RTP protocol while State relies on the
WebRTC API. Furthermore, in their tests all platforms could
cope with a packet loss of up to 5% before a degradation of
streaming quality occured.

Apart from those works, there is for the moment little aca-
demic research that focuses on these latest services due to the
recency of the current, second wave of cloud gaming services.

Two core aspects govern most technological decisions of
game streaming, namely the aspects of stream quality and
latency. The latter concern begins with the placement of cloud
gaming servers in order to keep the propagation delay below
a tolerable threshold. This represents a strong contrast to
most other cloud computing services, where E2E lag plays
a diminutive role and data center placement might be more
directed by factors like energy efficiency and multiplexing
gains. For example, [170] suggested a maximum distance of
1600 km from a data center for streaming fast paced games.
This would result in a round-trip propagation delay alone of
slightly below 100 ms in addition to other lag factors, which
is considered too high nowadays, as most current services
operate at RTT ranges of about 15 ms to 30 ms. The authors
of [171] give some insights on this placement problem and
how it relates to other lag factors. The authors of [144] formu-
lated a constrained stochastic optimization problem to derive
an online control algorithm for request dispatching and server
provisioning. The same problem was tackled in [172] with a
linear program focusing more on the resulting QoE, and [145]
leveraged the edge computing paradigm to place additional
servers closer to the game clients.

When it comes to video streaming technology, cloud gaming
is most similar to traditional RTP-based video streaming on top
of unreliable but non-blocking UDP transport. Indeed many
current services simply use WebRTC (e.g., Stadia [62]), of
which RTP is a main component. Additional video bitrate and
quality adaptation mechanisms that adjust to current network
conditions can be employed by the rendering server as well.
These typically adapt the resolution, frame rate, or the com-
pression of the encoded and streamed video, and can also be
dynamically coordinated with the game’s current output set-
tings to achieve the best effects. For example, [173] presented
a system, which can dynamically select the video frames and
adjust forward error correction coding to achieve optimal video
quality in mobile cloud gaming. A study on the video quality
of commercial cloud gaming services of the first wave was
conducted in [162].

It is important to note that one of the main differences
of game streaming to on-demand video streaming services
is that content cannot be pre-encoded and distributed, e.g.,
by a content delivery network. Instead, it is more similar to
video conferencing, in that the video content has to be ren-
dered and encoded right before the delivery. However, while
some broadcast delays are acceptable when passively watching
a live event, the interactivity of networked video games drasti-
cally confines the amount of acceptable delay to a minimum.

1910

Fig. 8. E2E lag for common scenarios (networked: yes/no, cloud: yes/no) and frame time model. Measurement points can be defined between any two
individual delay components Bi .

Consequently, video rendering and encoding latencies have
to be controlled and minimized in game streaming, which
especially concerns the chain of video encoder, stream trans-
mission, and decoder. Furthermore, the game’s frame rate
should be as high as possible, typically 60 Hz or beyond, with
the video encoder operating at the same frequency with mini-
mal coding delay [174]. Due to this low time budget, encoders
will operate at lower coding efficiency, thus producing either a
lower quality output or higher bitrate videos. Current services
recommend an available bandwidth of about 50 Mbit/s for
1080p60 (Geforce Now) or 2160p60 (Stadia) video. Finally,
buffering of the streamed video must be avoided, apart from
a shallow jitter buffer. Thus, any disturbance that exceeds this
buffer will result in a stall on the last received frame, and a
subsequent skip to newly received frame to catch up the time
lost. This is in concept similar to the playback interruptions
in HTTP Adaptive Streaming (HAS), where it as been deemed
the worst quality degradation [60]. This means, that adaptation
technology has to ensure that stalling is avoided by conserva-
tively selecting the enconding bitrate of the game video stream,
which especially includes that motion and scene complexity
have to be considered [175]. In addition, the non-blocking
nature of UDP transmissions also helps in avoiding stalls.

VI. PERFORMANCE EVALUATION OF GAMES

The previous sections have introduced numerous system and
networking components of games. But it might not yet be
immediately obvious how all these can affect the perceived
quality. To understand this relation, we now look at how these
components are used in games and in specific scenarios. The
key metric of this section is the total delay—or End-to-End
(E2E) delay—as it is known to have a large impact on the
interaction quality of games. This term subsumes the induced
delay of all system components, not just the network delay.

The effects of delay differ not only with its magnitude, but also
by its source. For example, network delay may cause severe
problems in some aspects of a game while being entirely
masked in another scenario. Therefore, the benefits and draw-
backs of different measurement methodologies, metrics, and
measurement points must be understood and applied correctly.
This includes a basic understanding of a game’s netcode, as
different games may behave differently and expose different
lag inducing components via the same measurement methodol-
ogy. As an example, measuring just the network delay does not
catch delays caused by the game engine, graphics card, oper-
ating system, input and output devices, or any intermediate
buffers. In this section, common delay inducing components
are discussed along with possible measurement points and
scenarios which typically include these components.

A. Delay-Inducing Components

One critical aspect of delay-inducing components is that
they are not all equally important, ordered in the same way, or
even present at all in every observed game and every system
that can be played on. Figure 8 shows the path of a user’s
input to the display of the results in different system mod-
els. This path represents all components that together make
up the full E2E lag. Which model applies depends on the
specific game and requires knowledge about the game’s inter-
nals, e.g., whether it applies a coupled or uncoupled model (cf.
Section III-B). These relations are also presented in different
scenarios. With and without a game streaming solution, and a
fully local game versus an external game state update server.

In addition, Figure 8 may also be used to derive mea-
surement points for various metrics that define a game’s
performance. Thereby, Figures 8a–8d illustrate the lag between
a button press and its corresponding information appearing on
the screen, while Figure 8e is used to derive measurement

 1911

points for the frame time4 in the uncoupled game loop model.
Note that most performance measures only capture part of the
entire delay, e.g., purely software-based measurements cannot
include delays caused by the display or input devices.

The following measurement points are used to classify
common measurement methodologies in literature. The indi-
vidually considered delay components are presented in the
following paragraphs. While this description is self-contained,
similar models and illustrations have been presented in lit-
erature and may be consulted for further details [12, Ch. 3,
Figs. 3.1–3.4].

a) Input processing (IP), (CIP): This includes the input
device [176], the interface of the device [177], potential delays
caused by wireless communication, software-induced delays
such as by the operating system [178], and the game engine’s
processing time. As an example, [179] collects and explains
the delays of various keyboard models. Delays of other input
devices are often of a similar magnitude.

b) Network delay (CIU), (IU), (GSD), (FDL): The network
delay includes the packet delay of the entire network path, but
also related components like processing delays, e.g., by the
operating system’s network stack, and engine-induced delays,
e.g., data serialization and packetization. It is present in both
game streaming (cloud input upload CIU, frame download
FDL) and in networked video games (input upload UL, game
state download GSD).

c) Game state update (GSU): This delay consists of the CPU
time required for the computation of the new game state. The
associated computation can be conducted locally (Figure 8d),
on a streaming server (Figure 8b), or by the authoritative game
server for networked games (Figure 8a and 8c). Note that
user input arrives asynchronously at the game engine and does
not trigger immediate computation, thus any new input needs
to wait until the ongoing game state update cycle is finished
before being considered for the next one. This represents one
of the aforementioned clocked processes.

d) Game state processing (GSP): This type of delay is only
present in networked games with external game state updates
(Figure 8a and 8c) and consists of updating the local game
state based on the information received from the authorita-
tive game server. The current local view and preliminary state
predictions need to be merged with the server’s authoritative
state.

e) Frame rendering (FR) and encoding: The frame ren-
dering does take up a significant portion of the frame time.
In particular, it is the time spent by the GPU to render the
previously computed game state and scene. A new frame may
only be rendered if the previous frame has been completed,
potentially incurring additional delays. These frames may
either be displayed directly5 (Figure 8c and 8d) or encoded
into a video in streaming setups (Figure 8a and 8b). Depending
on the setup, the encoding may either be done in software, or
by a dedicated hardware encoder such as NVENC [180].

4A frame time is the time it takes to create and render a single frame, e.g.,
a frame time of about 16.6 ms would result in a frame rate of 60 Hz.

5Directly may still mean storing the rendered frame in the video card’s
double or triple buffer before displaying it, further delaying the output but
avoiding potential artifacts like frame tearing.

f) Frame decoding (FDC): This step is only necessary in
game streaming (Figure 8a and 8b). It consists of decoding
the received frame and preparing it for display.

g) Display latency (DL): Finally, the display latency mea-
sures any delay after the frame leaves the local video card
and is being processed by the display. It is influenced by
the applied preprocessing steps, panel technology, and the
refresh rate of the display panel. Modern displays with
Variable Refresh Rate (VRR) can adjust their refresh rate to
match the rendering rate in order to avoid artifacts or VSYNC
delays, but also bringing another dynamicity into the display
latency consideration.

h) Frame time: In contrast to the other delays, the frame
time (or its inverse metric, frames per second) is not associated
with a specific input or action taken by the user. It describes
the time that is required to produce a new frame, with all
associated computations necessary. As indicated by Figure 8e,
this may include delay components from different actions, as
the game state update process (GSU) may happen in parallel
to the rendering process (FR) of the previous state’s frame.

Note that more than one scenario of Figures 8a–8d might
apply to an individual game, depending on the actual situation.
Some actions could be predicted or executed locally, bypassing
network components, in order to provide a smoother gaming
experience, while others may need to travel the full network
path before being displayed on screen.

B. Measurement Points and Metrics

Based on the models above, this section presents common
measurement points in the literature and discusses their appli-
cability to the presented scenarios. In general, four major
measurement point classes can be derived, each allowing
to obtain various metrics representing different performance
aspects of their respective part of the system. These classes
are later used to classify relevant literature in Table II.

a) Full End-to-End (E2E) lag dfull: This first class mea-
sures all occurring delays, beginning from the local button
press up to the corresponding information being displayed
on the screen. It is applicable to all four presented scenar-
ios (Figures 8a–8d) and, depending on the scenario, measures
the sum of all their respective delay components (from input
processing to display latency). A high frame rate camera can
be used to capture both the moment of the button press right
before (IP) and the moment when the reaction is shown on the
screen right after (DL). For a controlled measurement error,
the camera speed should be at least twice as high as the refresh
rate of the display, as the maximum measurement error is
defined by the time between two camera frames. Often, the
input device is modified to visually display the moment of
button press via an external LED, e.g., hooked directly to the
mouse. Contemporary variants of this method omit the camera
in favor of a photoresistor affixed to the screen [181], or even
provide a full closed loop solution that connect a photoresistor
directly to a mouse6 or with additional functionality in some
modern monitors.7

6NVIDIA LDAT: https://developer.nvidia.com/nvidia-latency-display-
analysis-tool

7NVIDIA Reflex: https://developer.nvidia.com/reflex

1912

TABLE II
METRICS OBSERVED IN IMPORTANT MEASUREMENTS AND USER STUDIES ON VIDEO GAMES. THE TECHNICAL MEASURES ARE DEFINED IN

SECTION VI-B. THE INDIVIDUAL COLUMNS DENOTE WHAT FEATURES THE INDIVIDUAL STUDY INVESTIGATES. “d” COLUMNS REPRESENT DELAY

INVESTIGATIONS, “j” REPRESENTS JITTER, AND “pl” AND “br” DENOTE PACKET LOSS AND BITRATE INVESTIGATION RESPECTIVELY

b) Game streaming network measurements: This specifically
concerns network measurements for all applications of game
streaming, i.e., Figures 8a and 8b. The measurement points
revolve around the delay components (CIU) and (FDL), with
the actual points depending on the obtained metric. When mea-
suring the Round-Trip Time (RTT) dcloud, the time difference
between the moment before (CIU) and the moment after (FDL)
is reported. Many measurements approximate this by simple
ping-based RTT measurements, and thus omit the remaining
components (CIP) to (FR). Besides taking into account the
RTT as a mean delay (CIU + FDL) it is equally important to
consider its variance over time (i.e., jitter) since it may also
severely impact the experienced quality, even at an otherwise
lower mean delay.

In addition to raw latency metrics, packet loss plcloud plays
an important role in perceived gameplay smoothness. While
packet loss on the receiving end (FDL) is often perceived as
a visual degradation and artifacts in the output video stream,
loosing an input data packet (CIU) can be a more disruptive
experience as the expected reaction might not only be delayed

but skipped entirely. Thus, typical approaches to ascertain the
streaming video quality also apply here. Finally, the available
bandwidth or used data rate brcloud is an important metric, and
is highly asymmetric. On the receiving end (FDL), the available
bandwidth is directly related to the attainable quality of the
video feedback from the cloud server. Note that input streams
(CIU) typically consist of very frequent (e.g., 60 Hz) but small
packets. Hence their overhead should be considered, especially
when redundancy is included to cope with potential loss.

c) Game server network measurements: The connection
towards the authoritative game server (Figures 8a and 8c) can
be measured with regard to RTT dserv, i.e., mean delay (IU +
GSD), jitter jserv of this delay, packet loss plserv and required
bandwidth (or bit rate) brserv. Therefore, the measurement
points are located right before (IU) and after (GSD) to mea-
sure the time difference between transmitting and receiving
a network probing packet. Once again, the actual game state
update (GSU) is commonly omitted and the reply is returned
directly in order to isolate the networking delay during these
measurements.

 1913

However, unlike in cloud gaming networking aspects, most
online multiplayer games apply prediction techniques and
predict preliminary game state updates in order to hide delays
where possible. Therefore, network delay does not necessarily
fully correlate with the subjectively experienced delay effect
by a player of the game. In any case, the network delay still
remains a crucial metric for a game’s performance, as any
such technique can lead to inconsistencies and rollbacks that
are more severe at higher delays.

d) Frame time measurements: Finally, frame times and
frames per second can be measured in any of the consid-
ered scenarios (Figures 8a–8d). The appropriate measurement
point is right after the rendering process (FR) has finished.
The frame time measures the time between two consecutive
unique frames, as opposed to comparing the timings of differ-
ent measurement points like in the other metrics. However, it
does represent more than just the pure GPU rendering time.
It is influenced by all delay components that are located on
the same machine as the one conducting the rendering process
(FR), except for the external display (DL), i.e., (CIP), (GSP)
and (FR) in Figure 8a; (CIP), (GSU) and (FR) in Figure 8b;
(IP), (GSP) and (FR) in Figure 8c; and (IP), (GSU) and (FR) in
Figure 8d. Depending on the engine’s game loop model, these
delays influence the frame time differently, e.g., for a coupled
model (Figure 4a) it could be given by their sum (IP + GSU
+ FR). In an uncoupled model, such as in Figure 4b and 8e, a
game’s frames per second are usually bound by either the CPU
or GPU, resulting in a frame time of max(IP + GSU,FR).
Some games are able to report the individual time portions
of the CPU (IP + GSU) and GPU (FR), e.g., DOOM (2016),
making them great candidates for in-depth measurements.

It should be noted that, while frame times and frames per
second are the inverse of each other, the latter is often reported
as a mean value over a larger period of time, e.g., an entire
second. While this can still reflect the mean performance of a
game, it fails to properly record stuttering or periodic hiccups
in the rendering process, e.g., periodically skipping frames due
to VSync [182]. Therefore, a time series of values or summary
statistics beyond the mean, especially the standard deviation
and the 99 % or even 99.9 % percentile, are the preferred
approach to report frame times and frames per second.

A selection of related literature and community efforts
that cover some of these measurement points is presented in
Table II.

C. Lessons Learned

When conducting performance evaluations, including objec-
tive measurements and subjective evaluations, it is necessary
to clearly communicate the applied measurement points and
the type of observed scenario. Many of the described influ-
ence factors of the taxonomy are only visible at certain points
of the chain, and could thus be overlooked if the measure-
ment point is not carefully selected and known. Some delay
components appear in multiple forms, such as networking and
processing delays. Most importantly, the scenario should be
properly identified and mapped to the corresponding model
of Figure 8. Special care needs to be taken when considering

delay mitigation and concealment techniques, since they are
only visible in the full E2E lag, but also introduce speculative
and even subjective components that can be very sensitive to
the exact experimental design.

Some works listed in Table II have not mentioned their
circumstances explicitly and fully. As such, only the measure-
ment points were able to be identified clearly. But in many
cases, the exact involved components and system parametriza-
tion of the study remained unclear, as this would require to
have knowledge of the game’s internal makeup (e.g., engine
and programming). As a result, the surveyed performance
evaluations are often inconclusive and open to interpretation
with respect to some network performance requirements.
Individual results sometimes contradict each other, possibly
due to being based on different games—even if they are of the
same genre—or slight variations in overlooked or unreported
influencing factors of the respective experimental design.

In general, future evaluations should identify and control
their selected scenario and measurement points as accurately
as possible. More often than not, it might be necessary to
measure the full E2E lag in order to not overlook any critical
influences. In any case, evaluations should provide a com-
prehensive description of all involved components in between
these measurements, while avoiding game- or genre-specific
wording. To facilitate this, this section offers a common ter-
minology of components and measurement points with which
future works could be better compared. What’s still missing
now is to put these directly measurable effects into relation
with the subjective effects that players experience. While sub-
jective assessment will be covered in the next section, the
mapping of QoS to QoE aspects for gaming is a more chal-
lenging topic and still mostly a matter of future work (and
further discussed in Section VIII).

VII. SUBJECTIVE USER STUDIES

In this section we cover metrics and methods commonly
used in subjective gaming user studies, beginning with
network-related metrics that describe a negative impact on
a video game. After that, we examine how QoE and in-
game performance are affected when typical application layer
problems occur.

Each user has different expectations when it comes to
the perceived quality of a game subjected to certain addi-
tional influencing factors, as discussed in the taxonomy of
Section II and with specific examples given in Section II-B.
Some interaction effects can be described by the timeliness,
precision, and predictability of the actions a player can exe-
cute in a game. Such player actions are impaired through lag,
with specific games, and even specific actions within the same
game, being more or less susceptible to lag. For example,
competitive First-Person Shooters can be severely affected as
they often benefit from quick reactions and good hand-eye
coordination. But even in such games, lag might be more
noticeable for some actions (e.g., targeting and shooting) than
for others (e.g., unhindered movement). And it also depends
on the specific game and how its actions are designed and

1914

implemented. As described previously, the general lag behav-
ior can be derived and modeled with extensive measurements
and gives insights into the interactions that contribute to a lag
profile of various actions [98], [174]. However, this does not
necessarily lead to a full understanding of the subjective expe-
rience under the given conditions as a multitude of additional
influence factors exist as depicted in our taxonomy in Figure 2.

One attempt to summarily describe aspects of the subjec-
tive experience is by investigating user engagement, which
has been the topic of several video game studies. An ini-
tial description of user engagement in video games is given
in [206]. Here, the authors describe characteristics that moti-
vate or engage someone to play, and continue playing. They
conducted a user questionnaire with which they investigated
which structural video game characteristics are important to
players. According to [209] the engagement process consists
of four stages: the point of engagement, the period of sus-
tained engagement, disengagement and finally re-engagement.
The extent of which different video game characteristics can
be leveraged to predict user engagement and happiness has
been studied in the past [207]. The authors came to the
conclusion that audiovisual properties as well as punishment
mechanics, like losing a life or having to start a level over,
positively contributed to player happiness and the achievement
of a flow state. Flow can also be described as an aspect of
engagement, as a phase in which players achieve maximum
immersion [208], [210].

The authors of [208] conducted a questionnaire which con-
sists of 19 items to self-assess video game experiences and
engagement. It has been suggested to be used as a measure-
ment of video game engagement. Other studies suggested that
engagement directly impacts happiness [211]. Finally, a survey
on engagement and classification of engagement factors along-
side consumer experience aspects has been conducted in [212].
In a follow-up study, the authors found that consumers first
engage in playful consumption and gain experience from it,
which leads to increased engagement [213].

Questionnaires have generally been an important tool to
investigate the subjective natures of QoE and engagement for
video games. Several works, including [208], [214]–[217],
tackled the design of such questionnaires. Past works have
demonstrated the challenges in their design. Questionnaires
would need to define specific subjective factors they want
to identify (e.g., flow, immersion, or frustration), and then
design questions that can be unambiguously attributed to a
single factor. The questions also need to be easily compre-
hensible by the subjects and need to be able to be mapped
to a specific game in a specific experimental scenario (i.e.,
a post-hoc or intermittent approach). All of these challenges
combined may explain why there is no one-size-fits-all solu-
tion available yet that encompasses all subjective aspects for
gaming.

And the complexities of capturing all subjective impres-
sions with questionnaires can also explain why it is often
more promising to shift the investigation to player performance
metrics, even though there are no reliable all-encompassing
mappings from those player metrics to subjective experience
developed yet. Therefore, the following sections highlight such

works that investigated the influences of specific QoS factors
on player performance metrics and QoE.

A. Delay Investigations

Inevitably, network impairments will be perceived by the
player as delay, delay variation or stuttering. The authors
of [202] investigated the influence of delay on various games
using subjective and objective metrics. They concluded that
both player performance as well as perceived quality decreased
with increasing delay. A further user study performed in [201]
showed a correlation of QoE to the delay as well as the jit-
ter in World of Warcraft. In this case the total delay
had more impact than the delay variation. While looking at
First-Person Shooters, the authors of [191] found a strong
impact of the delay and packet loss on player experience.
Ivkovic et al. [185] quantified the effect of local latency,
including input, rendering, and output devices. They found that
as the latency increased, the ability of the study participants to
track targets decreased. Their results were qualitatively simi-
lar to a much earlier study [186] on the difficulty of reaching
for static objects on virtual reality displays, conditioned to the
virtual object’s size and the motion-to-display lag.

Concerning cloud gaming, Chen et al. [162] already per-
formed a suite of measurements on the first generation cloud
gaming services and proposed a novel measurement method-
ology to assess the QoS—and especially the latency—of
cloud gaming services. The same group of researchers also
developed a testbed environment for cloud gaming [143],
which can also be very helpful for delay investigations and
other metrics. In another work, the authors of [218] give
insights on delay requirements of streamed games and the
implications for data center distance as well as placement.
In [7] identified influence factors on the subjective quality
of cloud gaming through a user survey for games in three
different categories (slow, medium, fast games) that have
been subjected to worsening QoS parameters. Downstream
packet loss and delay was noted to be especially problem-
atic for achieving good quality. Similarly, the authors of [44]
observed a correlation of players that quit playing an MMOG
with deteriorating QoS. A recent study [193] focused on
faster and multiplayer games specifically affected by deteri-
orating network conditions. They find that the concept they
dub ’frame age’ (a portion of the total E2E delay) is highly
correlated to the experienced quality. In 2021 the authors
of [192] investigated three commercial cloud gaming services.
Their novel evaluation approach was able to give estimates
on specific game delay components, thus separating, e.g., the
network delay from the cloud gaming server processing time.
Depending on the game, the cloud server processing time was
often much larger than the network delay. Additionally, the
authors were able to demonstrate the bitrate adaptations these
services perform under constrained conditions.

Many evaluation approaches also focus on in-game objec-
tive performance metrics, like highscores or task completion
times. For example, a user study performed in [43] observed
a decrease in the playing duration in an MMOG when the
network QoS degraded. The authors of [52] categorized player

 1915

actions and their relationship to latency with special regards
for the precision and deadlines of actions. In the genre
of Multiplayer Online Battle Arenas (MOBAs), [197], [219]
measured the effects of lag on the player’s ability to hit targets
in League of Legends. The authors of [220], [221] inves-
tigated lag in DOTA 2 using a novel crowdsourcing approach.
Further, [205] noted the influence of network QoS on in-
game actions and specifically look at player performance in
first person games. They observed significantly worse player
performance in a degraded network.

As a further in-game performance metric, the “kills per
minute” of players in the First-Person Shooter Quake 3 were
investigated by [222]. The study observed a steady decline of
this metric with increasing network delay. QoE measurements
from a custom-made racing video game again showed a strong
dependence of the player’s performance on the delay and sug-
gest that a network RTT of 200 ms is barely usable and 500 ms
completely unusable [53]. Finally, the authors of [200] found
a strong and negative influence of high delay on the player’s
performance as well. Contrary, Beigbeder et al. [203], looked
at player performance in Unreal Tournament 2003 in
a controlled in-game environment, and found almost no influ-
ence of increased delay. Player performance remained steady
even at delay values of 200 ms, indicating that the impact of
delay on player performance varies between games and sce-
narios. Other influence factors besides the networking delay
may be in play here, but were not investigated. This is sup-
ported by works like [174], that indicate that the networking
delay does not necessarily need to be the dominating compo-
nent of the total delay. Other factors, like the framerate, can
play an equally important role and can not be neglected in
delay investigations.

B. Jitter Investigations

The authors of [202] investigated the impact of jitter in
First-Person Shooter (FPS) and racing online games by cre-
ating random delays for each packet between consecutive
packets without correlation. They found that increasing the
jitter led to a decrease in the Mean Opinion Score (MOS),
but that its impact was much weaker compared to increased
delay values. Similarly, [201] investigates the impact of jitter
on the MOS for an MMORPG. They conclude that jitter is a
performance indicator for MMORPGs and give it a higher neg-
ative impact factor in their QoE model than delay. A stronger
impact of jitter was also observed on user departure behav-
ior in an MMORPG by [44]. In another departure rate model
for MMORPGs, [43] includes jitter as the highest impact fac-
tor in a regression equation. The authors of [200] studied the
influence of different factors on the performance of games in
automated tests without involving actual players. They found
that jitter has little influence on the game score.

C. Packet Loss Investigations

In their large-scale study on player behavior in an
MMORPG, [43] and [44] showed that packet loss in both
directions, client-to-server and server-to-client, has a high

impact on player departures. The authors of [203] inves-
tigated the impact of latency and packet loss in Unreal
Tournament 2003. In their environment they did not detect
an effect of packet loss on the accuracy or the overall score
of players.

Some studies specific to cloud gaming came to different
conclusions than what has been noted for packet loss in regular
online gaming. For example, the authors of [7] and [190] noted
strong video distortions even under low packet loss. Packet
loss had the highest impact on QoE among all parameters in
the study and was especially noticeable in slow and medium-
paced games. Similarly, Clincy and Wilgor [191] observed that
increased packet loss caused severe stuttering and led to a
decrease in QoE when streaming a First-Person Shooter.

D. Bitrate and Video Quality Investigations

The bitrate, and other derived video quality metrics, are
only applicable to streamed games. Locally rendered games
will always just display the reference image (subject to the
selected graphical settings in the game) without any visual
degradation. The following works give an overview of past
works that concern video game video quality.

The authors of [188] investigated the impact of the bitrate
on the QoE in a cloud gaming system. They found that cloud
gaming is a bandwidth-intensive application which requires a
certain minimum bandwidth to maintain an acceptable visual
quality. However, increasing the bandwidth beyond a certain
threshold did not lead to a significant increase in QoE, as the
QoE in an interactive environment is influence by more than
just the visual quality. Importantly, they compared the QoE of
actively playing participants to passive spectators and found
that the passive viewers were more critical about video qual-
ity. This particular insight is often repeated when comparing
passive to active media consumption.

The impact of the stream bitrate on the QoE was also
investigated for Steam’s In-Home streaming [195] in 2015.
The authors found a significant correlation between the video
bitrate and the perceived graphics quality, but did not find any
correlation with overall QoE or player performance in both a
first person shooter and an action RPG. The authors of [189]
examined Electroencephalography (EEG) readings in addition
to a questionnaire to determine the impact of various influ-
ence factors on the QoE. Their test subjects were instructed to
play with different video qualities settings (stated as 1 Mbit/s
and (10 Mbit/s). They found that playing in low quality led
to a slightly more tired state than high quality. In high qual-
ity, subjects experienced higher flow and immersion, and felt
more competent and more pleasure. It should be noted that
these values are much lower than what is considered stan-
dard in today’s cloud gaming services, which currently stream
with up to 50 Mbit/s. A further overview of further QoE tax-
onomy and influence factors especially for mobile games is
given in [198].

E. Application Layer Investigations

Besides networking-related properties, there are several
game-related properties to keep in mind. The frame time

1916

or frame rate is an example of a key property described in
Section VI-B, as it also interacts with and influences the E2E
delay. Factors like display resolution, or even more abstract
concepts like descriptions of the difficulty or tempo, can be
key properties in subjective studies. Many games, especially
PC games, also allow to change their graphical fidelity. Not
only can this directly influence the enjoyment as visually more
impressive games may give more enjoyment, but it also inter-
acts with the performance and cloud gaming bitrate. Selecting
higher quality settings usually results in higher visual com-
plexity as well, in turn requiring a higher bitrate to maintain
the same quality. Changing settings may also alter the game’s
framerate, and thus may introduce additional temporal influ-
ences that need to be considered. Preliminary investigations
on this topic were conducted in [175], [223].

As an example, Slivar et al. [195] found that the frame rate
had a significant impact on the QoE in their experiments with
Steam In-Home streaming. Other works in this area com-
bined the examination of user ratings with questionnaire-based
assessments to study diverse properties like detection, quality
acceptance, difficulty, or retention and annoyance [187], [188].
A low frame rate led to a reduction in QoE here as well.

F. Lessons Learned

Due to their interactive nature, the experience of video
games naturally relies heavily on subjective factors and the
involved players. However, study results are influenced by
not just these factors. On the contrary, other game-related,
system or network influence factors have been shown to be
equally influential, and should be considered for study design
and during evaluations.

Furthermore, the impact of specific influence factors varies
heavily, and depends on the specific study, the pursued goal
as well as the specific game itself. For example, technical
parameters such as tick rate and network delay may have neg-
ligible influence when it comes to slow, turn-based games,
but are considered crucial key performance indicators for fast
and competitive real-time games. Hence, a classification of
the specific use case needs to be performed to identify rele-
vant parameters for the goal of a measurement or user study.
Studies should then be based on a diverse set of contempo-
rary games that represent a cross-section of game influencing
factors. For example, games of varying genre, tempo, modes,
gameplay elements. But also games with different technical
properties, from their graphical output and performance to how
they implement network interactions.

Studies need to further make informed decision on their
selection of metrics. Objective metrics that can represent
visual and interaction quality, and assessment approaches that
can capture the subjective experience related to that, such
as well designed questionnaires. And finally, the interactive
nature of games makes it all the more important to be able
to accurately describe the players and their backgrounds—
and include a diverse set of participants in the study—in
order to put study results into perspective. Such experimental
design can be performed with the help of insights gained from
performance evaluations described in Section VI and from the

influence factors described in the overall taxonomy through-
out this manuscript. Initial approaches to testing guidelines are
also available in standardization, e.g., in the form of ITU-T
P.809 [19].

VIII. FUTURE RESEARCH DIRECTIONS

Before concluding this work, the following paragraphs sum-
marize open research topics in the area of video games based
on the observations made in this manuscript. While some of
the following items may have no prior appearance in the
research in this field, others need to be revisited in regu-
lar intervals since the landscape of video games is quickly
changing, and previously observed characteristics, expecta-
tions, and insights may not hold true anymore when taking
recent developments and new games or services into account.

A. QoS and QoE Measurements, Studies, and Models

The continued identification and assessment of general and
game-specific video game quality metrics, player performance
indicators, and subjective experiences remains crucial in future
work. This concerns both the assessment of subjective experi-
ences using questionnaires, interviews, or physiological mea-
sures as well as application layer QoS metrics. For the latter,
popular examples from past research include the task com-
pletion time or game-specific scores under the influence of
degraded QoS parameters. This is a direct continuation from
the approaches and research works described in Section VI.
Continuously validating and refining the results of previous
studies with contemporary video games and new video game
platforms that reflect the current state of the art is also an
important aspect, especially when considering the age of some
of the works referenced in this manuscript.

Of equal importance is the establishment of best practices
and guidelines for experimental measurements and subjective
studies specific to video games and beyond what the current
literature and ITU recommendations provide. One concern
relates to past gaming experiences, skills and expectations
of subjects and how they should be factored into a study.
Others consider for example the study length and training.
Our taxonomy subsumes these into the player factors. Other
best practices might concern selecting contemporary games
with appropriate properties and a specific experimental and
task design that can capture all desired information.

Using the data from prior and future game assessments
QoS-to-QoE mappings can be constructed in order to gener-
alize findings. Generalized models that relate network aspects
to subjective quality could then serve in conjunction with
network monitoring of online and streamed games to perform
game-quality-aware network service management, which is of
special interest for cloud gaming services.

The general, abstract approach to such mappings and models
is depicted in Figure 9. The influencing factors from all aspects
(see the taxonomy in Figure 2 for examples on concrete fac-
tors) affect the individual quality aspects (here separated into
temporal, spatial and interaction). These individual quality
aspects can then be combined again into a unified, overall
quality scale for a specific scenario. One current concrete

 1917

Fig. 9. Abstract representation for a QoE model for online and cloud gaming.
Quality is affected by aspects discussed in the taxonomy of Figure 2. Results
from individual quality assements are then combined to a unified quality or
MOS rating. Based on ITU-T G.1072 [224].

model for cloud gaming that follows this abstract approach is
G.1072 [224]. The model linearly combines the results from
separated quality assessments. But this may not be an ideal
approach, since past subjective assessments have often experi-
enced exponential reactions in response to a QoS degradation
(see [225]). In addition, the strength with which a quality
aspect is influenced by an influencing factor remains gener-
ally unclear and may depend on the specific circumstance.
For example, depending on the specific game under test the
network delay may play a significant role for the interaction
quality, or it may not have an influence at all. This necessitates
the need for further research and model development, and to
take a closer look at the effects of influence factors.

B. Influence Factors and Parameter Interactions

The evaluation of correlations between subjective quality
metrics of video games and external influence and context
factors is crucial to further the understanding of QoE in video
games. The taxonomy presented in this work is an abstract,
qualitative approach to this issue, but a deeper understanding
through future, quantitative evaluations of individual factors is
mandated.

A chief endeavor to improve the significance of any indi-
vidual game study is the categorization and clustering of video
games based on observable, objective and technical properties,
such as the game speed, temporal and spatial input precision or
randomness. Results from past studies suggest that comparing
results between video game QoE studies of games, even games
of the same genre, may not be straightforward and depends
on game factors beyond the genre. It especially depends on
factors that describe a game’s interaction characteristics, such
as the tempo. Future research should thus evaluate appro-
priate metrics to quantify a game’s tempo and define other
metrics (e.g., metrics derived from our taxonomy) to classify
and cluster games. These clusters could then serve to gener-
alize results from studies and make them transferable. Metric
candidates include the Actions per Minute (APM) for game
tempo (see also [226]) and visual complexity metrics derived
from video coding. Several works already pursue attempts
to categorize games by player and game performance met-
rics [223], [227], [228]. Then, with such categories in hand,
it might even be beneficial if category-specific metrics were
introduced. For example, some high tempo categories (e.g.,
racing games) might rely on specific timings of certain actions,

while this is completely irrelevant for games with no input
deadlines (e.g., turn-based strategy). So, timing-based metrics
will mostly not be applicable to the latter case.

C. Network-Related Aspects

The network underlying any online or cloud-streamed game
is always in flux, with new trends and approaches appearing
all the time. While not specifically intended for gaming, recent
trends have recognized the general need to provide an appro-
priate QoS to time-sensitive applications. This ranges from
URLLC in 5G networks, to the standardization of Ethernet
TSN by the IEEE, and especially to the efforts to provide low
latency Internet in typical home environments with modern
AQM (e.g., FQ-CoDel), WiFi improvements (akin to 802.11e),
and improved transport protocols (e.g., IETF QUIC). The fol-
lowing four paragraphs highlight some of the most interesting
network-related research areas for video games.

1) Novel Transport Protocols: Video game traffic charac-
teristics and requirements should be taken into account when
furthering the development and research of the Internet pro-
tocol stack. Online and streamed video games have specific
needs with regards to the protocol stack that are different from
many other Internet applications. However, these needs have
not yet been exhaustively investigated and evaluated.

One main concern are future developments of the transport
layer protocols and their aptitude for real-time communica-
tion. IETF QUIC [229], of which version 1 (which is still
strongly tied to HTTP/3) was finalized in 2021, shows some
very promising properties with regards to video games. With
its optional reliability and non-blocking multi-stream capabil-
ity it could better fulfill an online game’s requirements than
UDP or TCP.

Of further note are both the composition of games’ applica-
tion layer protocols and the influences of the access network.
The delay variations of Wi-Fi networks can be especially detri-
mental to online and streamed games. Similar observations
have already been made with other interactive traffic such as
VoIP and video conferencing over Wi-Fi. Approaches that bet-
ter coordinate the channel and fairly distribute radio resources
can alleviate the issues of current real-time applications even
in a shared access medium like Wi-Fi.

2) Network Schedulers and Shapers: Furthermore, appro-
priate transport layer AQM techniques could diminish the
influence of the network on the E2E lag, since queuing delay
can be a large contributor especially in congested, everyday
situations. The concrete interactions of interactive applica-
tion traffic with AQM and the optimal mechanisms are not
yet conclusively researched. Especially game streaming could
challenge any single FIFO queue system with its non-elastic
high throughput and low delay demands. Thus, online video
game and cloud gaming traffic can be a well suited use case
for the evaluation of future AQM research. The detection and
treatment of the demands of video game network flows by the
schedulers could be improved when appropriately tagged with
a Differentiated Services Code Point (DSCP), even though
that may be bleached while traversing the Internet. A 2020
master’s thesis [230] already touches on many of the potential

1918

benefits and challenges of using AQM and novel trans-
port protocols for gaming with special attention to browser
environments.

3) Lag Mitigation and Cloud Gaming Optimizations:
Another aspect is to develop a deeper understanding of and
further refinements to lag compensation, lag concealment
and lag mitigation techniques in online video games. This
includes their potential side-effects like cheating or rollbacks.
Moreover, the existing approaches are designed to work for
conventional multiplayer online games, not game streaming
environments.

It would also be of considerable interest to advance
the research on lag mitigation techniques that could be
applied to cloud gaming. Initial ideas aim to predict user
inputs at the streaming host and pre-compute and pre-render
the resulting game states in order to ’skip’ the network
delay [61], [231], [232], enable the client to apply further
post-processing steps on the received video stream, e.g., [233],
or even attempt to modify the game world and scale the
difficulty according to current lag [234].

The ongoing research surrounding cloud gaming goes well
beyond pure lag optimizations. Particular interest resides also
on the reduction of the high throughput dependence, primarily
by tasking the client with more than just simple video decod-
ing, e.g., moving parts of the game logic or rendering process
back to the client. Examples of these approaches can be found
in [235]–[238]. Although, none of these approaches has been
realized in a practical system yet, as they can impose dras-
tic overhead or interfere with game design and development
decisions.

4) Server Placement: A final networking challenge is the
placement of game servers. The placement of online game
servers and game streaming hosts are different problems with
different objectives. While the main concern of placing online
game servers is a low network delay to its players, its addi-
tional objective is a placement in the geographical center of a
large audience to facilitate matchmaking. A good example of
the possible approaches for delay optimizing placements can
be found in [239], here with a focus on machine learning.
In contrast, game streaming placement is much more con-
cerned with delay minimization alongside providing sufficient
throughput while considering economic and resource factors.
Streaming servers can be much more resource intense in terms
of hardware, power and network while demanding even lower
delays than online game servers.

A low tolerance to delay implies very localized or
edge placement, but would diminish the potential efficiency
gains that larger, more centralized data centers would offer.
However, the effectiveness of modern edge cloud and fog
architectures might be worth to investigate, as they might be
able to dynamically allocate the necessary resources to facil-
itate cloud gaming on a case-by-case and demand-orientated
basis. In any case, the suitability of different networking and
data center architectures for all types of video game servers
is an important task.

Generally speaking, an optimal placement first requires a
consensus of the relevant optimization criteria and on val-
ues that are suitable for gaming (e.g., a low delay and jitter).

With these at hand, multi-objective placement optimizations
can be performed, which pose an interesting research challenge
themselves.

IX. CONCLUSION

It should be clear at this point that examining the QoS
and QoE of video games from a network researcher’s per-
spective is no trivial task. Not only do the ever increasing
prevalence and economic importance make considering online
video games important for network planning and traffic engi-
neering, even beyond the current strong trend of cloud gaming.
The interactive and real-time nature of gaming itself brings
unique properties and challenges to the table. While the per-
ceived quality of these games at first glance closely relates to
network QoS, there are many more aspects at play as captured
in our taxonomy.

The development of generally applicable models for the
perceived quality of online video games under the influence
of subjective, context, system, and network influence factors
is crucial to further our understanding of video game QoE.
However, the heterogeneity of modern games as well as the
rate of innovation in the area make the definition of such mod-
els an increasingly complex task. To remediate this situation
as well as to provide the networking community with a con-
densed introduction to the area of video games, we conducted
a detailed survey of current research work in the area.

This is combined with a taxonomy that compiles and dis-
sects subjective, contextual, technical, and network influence
factors of video game QoS and QoE. The taxonomy forms a
foundation that can be taken into account when conducting
video game studies. Based on these two approaches we were
able to derive a number of lessons learned that can provide
utility for future studies. These lessons suggest to perform
exhaustive parameter investigations to determine the influenc-
ing factors (e.g., as given by our taxonomy) that are significant
for a specific experiment, and to select appropriate application
performance metrics or subjective assessment tools. Both of
these require a firm grasp of the chosen game’s inner work-
ings, its placement in the greater landscape of video games
and in-depth knowledge of influencing and contextual factors.

Finally, we show that there are numerous open topics
that require additional research. And advancing research
on networking in video games can also assist research on
other, closely related interactive applications with similar
demands, from industrial and automotive remote control to
tele-medicine. We believe that our discussion of available work
and the derived taxonomy of QoE and QoS influence fac-
tors can direct researchers towards these extremely interesting
topics.

If the reader is now left wanting to know more about the
subject we can recommend some avenues to remedy this.
To further one’s understanding of the internal makeup of
online video games, both the academic as well as the game
developer perspective are worth looking into. For the former,
summary works like Armitage’s 2006 book [10] are available,
while the latter can be approached by more contemporary
books like [12] or by the numerous tech articles referenced

 1919

throughout this manuscript. But if one is, understandably,
more interested in the current landscape of gaming user study
approaches and study results, we would strongly recommend
starting with the current collection of recommendations and
efforts as organized by the ITU-T, in particular [14], [18],
[19], [224].

REFERENCES

[1] 2019 Year in Review: Digital Games and Interactive Media, SuperData,
New York, NY, USA, 2020.

[2] J. Porter, “U.S. Consumers Spent Record Amounts on Video
Games in 2020, NPD Reports.” 2014. [Online]. Available: https://
www.theverge.com/2021/1/15/22233003/us-npd-group-video-game-
spending-2020-record-nintendo-switch-call-of-duty-animal-crossing-
ps5-ps4 (Accessed: Nov. 16, 2021).

[3] “Cisco Annual Internet Report (2018–2023) White Paper.” 2020.
[Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/
executive-perspectives/annual-internet-report/white-paper-c11-741490.
html (Accessed: Nov. 16, 2021).

[4] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming:
Architecture and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21,
Jul./Aug. 2013.

[5] L. Skorin-Kapov, M. Varela, T. Hoßfeld, and K.-T. Chen, “A survey of
emerging concepts and challenges for QoE management of multimedia
services,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 14,
no. 2s, pp. 1–29, 2018.

[6] K. Brunnström et al., “Qualinet white paper on definitions of quality of
experience,” Qualinet Netw., White Paper, 2013. [Online]. Available:
http://www.qualinet.eu/aboutqualinet/

[7] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “An eval-
uation of QoE in cloud gaming based on subjective tests,” in Proc.
5th Int. Conf. Innov. Mobile Internet Serv. Ubiquitous Comput., 2011,
pp. 330–335.

[8] W. Cai et al., “A survey on cloud gaming: Future of computer games,”
IEEE Access, vol. 4, pp. 7605–7620, 2016.

[9] A. Wahab, N. Ahmad, M. G. Martini, and J. Schormans, “Subjective
quality assessment for cloud gaming,” J, vol. 4, no. 3, pp. 404–419,
2021. [Online]. Available: https://www.mdpi.com/2571-8800/4/3/31

[10] G. Armitage, M. Claypool, and P. Branch, Networking and Online
Games: Understanding and Engineering Multiplayer Internet Games.
Chichester, U.K.: Wiley, 2006.

[11] J. Smed, T. Kaukoranta, and H. Hakonen, “Aspects of networking
in multiplayer computer games,” Electron. Library, vol. 20, no. 2,
pp. 87–97, 2002.

[12] “Development and Deployment of Multiplayer Online Games.” No
Bugs Hare. 2017. [Online]. Available: ITHare.com

[13] I. Wechsung and K. De Moor, “Quality of experience ver-
sus user experience,” in Quality of Experience: Advanced
Concepts, Applications and Methods, S. Möller and A. Raake,
Eds. Cham, Switzerland: Springer Int. Publ., 2014, pp. 35–54,
doi: 10.1007/978-3-319-02681-7_3. [Online]. Available: https://doi.
org/10.1007/978-3-319-02681-7_3

[14] S. Schmidt, S. Zadtootaghaj, and S. Möller. “ITU-T Standardization
Activities Targeting Gaming Quality of Experience.” 2021. [Online].
Available: https://records.sigmm.org/2021/03/24/itu-t-standardization-
activities-targeting-gaming-quality-of-experience/

[15] A. Perkis et al., “QUALINET white paper on definitions of immersive
media experience (IMEx),” 2020. arXiv:2007.07032.

[16] “Proposal for new work item P.BBQCG: Parametric bitstream-
based quality assessment of cloud gaming services,” ITU, Geneva,
Switzerland, document ITU-T SG 12 (Study Period 2017) Contribution
489, Apr. 2020. [Online]. Available: https://www.itu.int/md/T17-SG12-
C-0489/en

[17] S. Möller, S. Schmidt, and J. Beyer, “Gaming taxonomy: An overview
of concepts and evaluation methods for computer gaming QoE,” in
Proc. 5th Int. Workshop Qual. Multimedia Exp. (QoMEX), 2013,
pp. 236–241, doi: 10.1109/QoMEX.2013.6603243.

[18] Influence Factors on Gaming Quality of Experience, Rec. ITU-T
G.1032, Int. Telecommun. Union, Geneva, Switzerland, Oct. 2017.
[Online]. Available: http://handle.itu.int/11.1002/1000/13396

[19] Subjective Evaluation Methods for Gaming Quality, Rec. ITU-T P.809,
Int. Telecommun. Union, Geneva, Switzerland, Jun. 2018. [Online].
Available: https://www.itu.int/rec/T-REC-P.809/en

[20] A. Nylund and O. Landfors, “Frustration and its effect on immersion
in games : A developer viewpoint on the good and bad aspects of frus-
tration,” M.S. thesis, Dept. Informatics, Umeå Univ., Umeå, Sweden,
2015, p. 32.

[21] M. Zamith et al., “A game loop architecture with automatic distribution
of tasks and load balancing between processors,” in Proc. SBGames,
2009, pp. 5–8.

[22] L. Valente, A. Conci, and B. Feijó, “Real time game loop models for
single-player computer games,” in Proc. 4th Brazil. Symp. Comput.
Games Digit. Entertainment, vol. 89, 2005, p. 99.

[23] D. Sanchez-Crespo and D. S.-C. Dalmau, Core Techniques and
Algorithms in Game Programming. Berkeley, CA, USA: New Riders,
2004.

[24] J. Gregory, Game Engine Architecture, 3rd ed. Boca Raton, FL, USA:
CRC Press, 2018.

[25] J. van Waveren, “The DOOM III network architecture,” Id Softw.,
Richardson, TX, USA, Inc., Rep., 2006. Accessed: Nov. 16, 2021.
[Online]. Available: http://mrelusive.com/publications/papers/The-
DOOM-III-Network-Architecture.pdf

[26] G. Fiedler, “Snapshot Interpolation.” 2014. [Online]. Available: https://
gafferongames.com/post/snapshot_interpolation (Accessed: Nov. 16,
2021).

[27] “Source Multiplayer Networking.” Valve Developer Community. 2005.
[Online]. Available: https://developer.valvesoftware.com/wiki/Source_
Multiplayer_Networking (Accessed: Nov. 16, 2021).

[28] M. Frohnmayer and T. Gift, “The TRIBES engine networking
model: How to make the Internet rock for multi-player games,” in
Proc. Game Develop. Conf., 2000, pp. 1–17. [Online]. Available:
https://www.gamedevs.org/uploads/tribes-networking-model.pdf

[29] G. Fiedler. “State Synchronization.” 2015. [Online]. Available:
https://gafferongames.com/post/state_synchronization/ (Accessed:
Nov. 16, 2021).

[30] “Matchmaking Guide.” Riot Games. 2019. [Online]. Available: https://
support-leagueoflegends.riotgames.com/hc/en-us/articles/201752954-
Matchmaking-Guide (Accessed: Nov. 16, 2021).

[31] A. E. Elo, The Rating of Chessplayers, Past and Present. New York,
NY, USA: Arco Publ., 1978.

[32] R. Herbrich, T. Minka, and T. Graepel, “TrueSkill(TM): A Bayesian
skill rating system,” in Advances in Neural Information Processing
Systems 20. Red Hook, NY, USA: Curran, 2007.

[33] T. Minka, R. Cleven, and Y. Zaykov, “TrueSkill 2: An improved
Bayesian skill rating system,” Microsoft, Redmond, WA, USA,
Rep. MSR-TR-2018-8, 2018. [Online]. Available: https://www.
microsoft.com/en-us/research/publication/trueskill-2-improved-
bayesian-skill-rating-system/

[34] J. van Dongen. “Why Good Matchmaking Requires Enormous Player
Counts.” 2014. [Online]. Available: http://joostdevblog.blogspot.com/
2014/11/why-good-matchmaking-requires-enormous.html (Accessed:
Nov. 16, 2021).

[35] M. Terrano and P. Bettner (Game Develop., San Francisco, CA, USA).
1500 Archers on a 28.8: Network Programming in Age of Empires
and Beyond. (2001). Accessed: Nov. 16, 2021. [Online]. Available:
https://www.gamedeveloper.com/programming/1500-archers-on-a-28-
8-network-programming-in-age-of-empiresand-beyond

[36] C. D. Nguyen, F. Safaei, and P. Boustead, “Optimal assignment of dis-
tributed servers to virtual partitionsfor the provision of immersive voice
communicationin massively multiplayer games,” Comput. Commun.,
vol. 29, no. 9, pp. 1260–1270, 2006.

[37] G. Papp and C. GauthierDickey, “Characterizing multiparty voice com-
munication for multiplayer games,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 36, pp. 465–466, Jun. 2008.

[38] T. Triebel, B. Guthier, T. Plotkowiak, and W. Effelberg, “Peer-to-peer
voice communication for massively multiplayer online games,” in Proc.
6th IEEE Consum. Commun. Netw. Conf. (CCNC), 2009, pp. 1–5.

[39] M. Kaytoue, A. Silva, L. Cerf, W. Meira, Jr., and C. Raïssi, “Watch me
playing, i am a professional: A first study on video game live stream-
ing,” in Proc. 21st Int. Conf. World Wide Web, 2012, pp. 1181–1188.

[40] K. Pires and G. Simon, “DASH in twitch: Adaptive bitrate stream-
ing in live game streaming platforms,” in Proc. Workshop Des. Qual.
Deployment Adapt. Video Streaming, 2014, pp. 13–18.

[41] J. Deng, F. Cuadrado, G. Tyson, and S. Uhlig, “Behind the game:
Exploring the twitch streaming platform,” in Proc. Int. Workshop Netw.
Syst. Support Games (NetGames), 2015, pp. 1–6.

[42] Estimating End-to-End Performance in IP Networks for Data
Applications, Rec. ITU-R G.1030, Int. Telecommun. Union, Geneva,
Switzerland, 2005.

http://dx.doi.org/10.1007/978-3-319-02681-7_3
http://dx.doi.org/10.1109/QoMEX.2013.6603243

1920

[43] K.-T. Chen, P. Huang, and C.-L. Lei, “How sensitive are online gamers
to network quality?” Commun. ACM, vol. 49, no. 11, pp. 34–38, 2006.

[44] K.-T. Chen, P. Huang, and C.-L. Lei, “Effect of network quality
on player departure behavior in online games,” IEEE Trans. Parallel
Distrib. Syst., vol. 20, no. 5, pp. 593–606, May 2009.

[45] P. Lincroft. “The Internet Sucks: Or, What I Learned Coding
X-Wing vs. TIE Fighter.” 1999. [Online]. Available: https://www.
gamedeveloper.com/design/the-internet-sucks-or-what-i-learned-
coding-x-wing-vstie-fighter (Accessed: Nov. 16, 2021).

[46] “Friday Facts NR. 149—Deep Down in Multiplayer.” Factorio Blog.
2016. [Online]. Available: https://www.factorio.com/blog/post/fff-149,
(Accessed: Nov. 16, 2021).

[47] G. Fiedler. “Deterministic Lockstep.” 2014. [Online]. Available:
https://gafferongames.com/post/deterministic_lockstep (Accessed:
Nov. 16, 2021).

[48] J. D. Pellegrino and C. Dovrolis, “Bandwidth requirement and state
consistency in three multiplayer game architectures,” in Proc. 2nd
Workshop Netw. Syst. Support Games, Redwood City, CA, USA, 2003,
pp. 52–59.

[49] S. Ratti, B. Hariri, and S. Shirmohammadi, “A survey of first-person
shooter gaming traffic on the Internet,” IEEE Internet Comput., vol. 14,
no. 5, pp. 60–69, Sep./Oct. 2010.

[50] X. Che and B. Ip, “Packet-level traffic analysis of online games from
the genre characteristics perspective,” J. Netw. Comput. Appl., vol. 35,
no. 1, pp. 240–252, 2012.

[51] M. Suznjevic and M. Matijasevic, “Player behavior and traffic charac-
terization for MMORPGs: A survey,” Multimedia Syst., vol. 19, no. 3,
pp. 199–220, Aug. 2013.

[52] M. Claypool and K. Claypool, “Latency and player actions
in online games,” Commun. ACM, vol. 49, no. 11, pp. 40–45,
Nov. 2006, doi: 10.1145/1167838.1167860. [Online]. Available:
https://doi.org/10.1145/1167838.1167860

[53] L. Pantel and L. C. Wolf, “On the impact of delay on real-time multi-
player games,” in Proc. 12th Int. Workshop Netw. Oper. Syst. Support
Digital Audio Video, 2002, pp. 23–29.

[54] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu, “The effect
of latency on user performance in warcraft III,” in Proc. 2nd Workshop
Netw. Syst. Support Games, 2003, pp. 3–14.

[55] T. Fritsch, H. Ritter, and J. Schiller, “The effect of latency and network
limitations on MMORPGs: A field study of everquest2,” in Proc. 4th
ACM SIGCOMM Workshop Netw. Syst. Support Games, Hawthorne,
NY, USA, 2005, pp. 1–9.

[56] A. A. Laghari, H. He, K. A. Memon, R. A. Laghari, I. A. Halepoto,
and A. Khan, “Quality of experience (QoE) in cloud gaming models:
A review,” Multiagent Grid Syst., vol. 15, no. 3, pp. 289–304, 2019.

[57] I. Pelle, J. Czentye, J. Dóka, and B. Sonkoly, “Towards latency sensitive
cloud native applications: A performance study on AWS,” in Proc.
IEEE 12th Int. Conf. Cloud Comput. (CLOUD), 2019, pp. 272–280.

[58] S. K. Barker and P. Shenoy, “Empirical evaluation of latency-sensitive
application performance in the cloud,” in Proc. 1st Annu. ACM SIGMM
Conf. Multimedia Syst., 2010, pp. 35–46.

[59] G. Brown, “Ultra-reliable low-latency 5G for industrial automation,”
Qualcomm, San Diego, CA, USA, White Paper, 2018. [Online].
Available: https://web.archive.org/web/20220117034707/https://www.
qualcomm.com/media/documents/files/readthe-white-paper-by-heavy-
reading.pdf

[60] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and
P. Tran-Gia, “A survey on quality of experience of HTTP adaptive
streaming,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492,
1st Quart., 2015.

[61] N. Nicholson. “Exploring ’Negative Latency”’ 2019. [Online].
Available: https://nolannicholson.com/2019/12/16/ exploring-negative-
latency.html (Accessed: Nov. 16, 2021).

[62] M. Carrascosa and B. Bellalta, “Cloud-gaming: Analysis of Google
Stadia traffic,” 2020, arXiv:2009.09786.

[63] D. Patterson. “Google Stadia’s Biggest Challenge With Streaming
and Meeting Gamers’ Expectations.” 2020. [Online]. Available:
https://www.techrepublic.com/article/google-stadias-biggest-challenge-
with-steaming-and-meeting-gamers-expectations/ (Accessed: Nov. 16,
2021).

[64] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of
the differentiated services field (DS field) in the IPv4 and
IPv6 headers,” IETF, RFC 2474, Dec. 1998. [Online]. Available:
https://tools.ietf.org/html/rfc2474

[65] R. Adams, “Active queue management: A survey,” IEEE Commun.
Surveys Tuts., vol. 15, no. 3, pp. 1425–1476, 3rd Quart., 2013.

[66] G. Fiedler. “Never Trust the Client.” 2016. [Online]. Available: http.//
web.archive.org/web/20160427205903 (Accessed: Nov. 16, 2021).

[67] C. Neumann, N. Prigent, M. Varvello, and K. Suh, “Challenges in peer-
to-peer gaming,” ACM SIGCOMM Comput. Commun. Rev., vol. 37,
no. 1, pp. 79–82, 2007.

[68] A. Weinkove, “Minimizing the Pain of Lockstep Multiplayer.”
2015. [Online]. Available: http://www.tundragames.com/minimizing-
the-pain-of-lockstep-multiplayer (Accessed: Nov. 16, 2021).

[69] Y. W. Bernier, “Latency compensating methods in client/server
ingame protocol design and optimization,” in Proc. Game Develop.
Conf., vol. 98033, 2001. [Online]. Available: https://developer.valve
software.com/wiki/LatencyCompensatingMethodsinClient/ServerIn-
gameProtocolDesignand_Optimization

[70] F. Smith. “Synchronous RTS Engines and a Tale of Desyncs.”
2011. [Online]. Available: https://www.forrestthewoods.com/blog/
synchronous_rts_engines_and_a_tale_of_desyncs (Accessed: Nov. 16,
2021).

[71] P. Miller. “The Lag-Fighting Techniques Behind GGPO’s Netcode.”
2012. [Online]. Available: https://www.gamedeveloper.com/
programming/the-lag-fighting-techniquesbehind-ggpo-s-netcode
(Accessed: Nov. 16, 2021).

[72] G. Gambetta. “Fast-Paced Multiplayer (Part II): Client-Side Prediction
and Server Reconciliation.” 2013. [Online]. Available: https://
www.gabrielgambetta.com/client-side-prediction-server-reconciliation.
html (Accessed: Nov. 16, 2021).

[73] R. Pusch, “Explaining How Fighting Games Use Delay-Based and
Rollback Netcode.” Ars Technica, Oct. 2019. [Online]. Available:
https://arstechnica.com/gaming/2019/10/explaining-how-fighting-
gamesuse-delay-based-and-rollback-netcode (Accessed: Nov. 16,
2021).

[74] B. House. “Choosing the Right Netcode for Your Game.” 2020.
[Online]. Available: https://blogs.unity3d.com/2020/09/08/choosing-
the-right-netcode-for-your-game (Accessed: Nov. 16, 2021).

[75] F. W. Li, R. W. Lau, and D. Kilis, “GameOD: An Internet based game-
on-demand framework,” in Proc. ACM Symp. Virtual Reality Softw.
Technol., 2004, pp. 129–136.

[76] G. Fiedler. “Snapshot Compression.” 2015. [Online]. Available:
https://gafferongames.com/post/snapshot%5C_compression (Accessed:
Nov. 16, 2021).

[77] P. A. Branch, A. L. Cricenti, and G. J. Armitage, “A Markov model of
server to client IP traffic in first person shooter games,” in Proc. IEEE
Int. Conf. Commun., 2008, pp. 5715–5720.

[78] D. Stefyn, A. Cricenti, and P. Branch, “Quake III arena game struc-
tures,” CAIA, Amherst, MA, USA, CAIA Rep. 110209A, 2011.

[79] J. Saldana, L. Sequeira, J. Fernández-Navajas, and J. Ruiz-Mas, “Traffic
optimization for TCP-based massive multiplayer online games,” in
Proc. Int. Symp. Perform. Eval. Comput. Telecommun. Syst. (SPECTS),
2012, pp. 1–8.

[80] K. L. Morse, L. Bic, and M. Dillencourt, “Interest management in
large-scale virtual environments,” Presence Teleoper. Virtual Environ.,
vol. 9, no. 1, pp. 52–68, 2000.

[81] S. Benford, C. Greenhalgh, T. Rodden, and J. Pycock, “Collaborative
virtual environments,” Commun. ACM, vol. 44, no. 7, pp. 79–79, 2001.

[82] F. Sanglard. “Quake 3 Source Code Review: Network Model (Part 3
of 5).” 2012. [Online]. Available: https://fabiensanglard.net/quake3/
network.php (Accessed: Nov. 16, 2021).

[83] J. Aronson. “Dead Reckoning: Latency Hiding for Networked
Games,” Game Developer. 1997. [Online]. Available: https://
www.gamedeveloper.com/programming/dead-reckoning-latency-
hidingfor-networked-games (Accessed: Nov. 16, 2021).

[84] L. Gardenghi, S. Pifferi, G. D’Angelo, and L. Bononi, “Design and
simulation of a migration-based architecture for massively populated
Internet games,” in Proc. IEEE Global Telecommun. Conf. Workshops,
2004, pp. 166–175.

[85] P. B. Beskow, K.-H. Vik, P. Halvorsen, and C. Griwodz, “The par-
tial migration of game state and dynamic server selection to reduce
latency,” Multimedia Tools Appl., vol. 45, nos. 1–3, pp. 83–107, 2009.

[86] V. Jalaparti, “Enabling seamless wide area migration of online games,”
M.S. thesis, Dept. Comput. Sci., Univ. Illinois, Champaign, IL, USA,
2013.

[87] V. Burger et al., “Load dynamics of a multiplayer online battle arena
and simulative assessment of edge server placements,” in Proc. 7th Int.
Conf. Multimedia Syst. (MMSys), Klagenfurt, Austria, 2016, pp. 1–9.

[88] C.-C. Wu, K.-T. Chen, C.-M. Chen, P. Huang, and C.-L. Lei, “On
the challenge and design of transport protocols for MMORPGs,”
Multimedia Tools Appl., vol. 45, pp. 7–32, May 2009.

http://dx.doi.org/10.1145/1167838.1167860

 1921

[89] C. Lernö. “Game Servers: UDP vs. TCP.” 2014. [Online]. Available:
https://1024monkeys.wordpress.com/2014/04/01/game-servers-udp-vs-
tcp (Accessed: Nov. 16, 2021).

[90] G. Fiedler. “UDP vs. TCP.” 2014. [Online]. Available: https://
gafferongames.com/post/udp_vs_tcp/ (Accessed: Nov. 16, 2021).

[91] G. Fiedler. “Reliability and Congestion Avoidance over UDP.” 2008.
[Online]. Available: https://gafferongames.com/post/reliable_ordered_
messages/ (Accessed: Nov. 16, 2021).

[92] F. Sanglard. “Quake Engine Code Review : Network (2/4).”
2009. [Online]. Available: https://fabiensanglard.net/quakeSource/
quakeSourceNetWork.php (Accessed: Nov. 16, 2021).

[93] K.-T. Chen, C.-Y. Huang, P. Huang, and C.-L. Lei, “An empirical eval-
uation of TCP performance in online games,” in Proc. ACM SIGCHI
Int. Conf. Adv. Comput. Entertainment Technol., 2006, p. 5.

[94] S. Pack, E. Hong, Y. Choi, J.-S. Kim, D. Ko, and J.-S. Kim, “Game
transport protocol: Lightweight reliable transport protocol for massive
interactive on-line game,” in Proc. Multimedia Syst. Appl. V, Int. Soc.
Opt. Photon., vol. 4861, 2002, pp. 83–94.

[95] B. Anand, J. Sebastian, S. Y. Ming, A. L. Ananda, M. C. Chan, and
R. K. Balan, “PGTP: Power aware game transport protocol for multi-
player mobile games,” in Proc. Int. Conf. Commun. Signal Process.,
2011, pp. 399–404.

[96] S. Mortenson, “Making a Multiplayer Game with Go and
GRPC.” 2020. [Online]. Available: https://mortenson.coffee/blog/
makingmultiplayer-game-go-and-grpc/ (Accessed: Nov. 15, 2021).

[97] M. Claypool, D. LaPoint, and J. Winslow, “Network analy-
sis of counter-strike and starcraft,” in Proc. Conf. IEEE Int.
Perform. Comput. Commun. Conf., Apr. 2003, pp. 261–268,
doi: 10.1109/PCCC.2003.1203707.

[98] F. Metzger and R. Heger, “Exploring the transmission behaviour of
overwatch: The source of lag,” in Proc. 30th Int. Teletraffic Congr.
(ITC), vol. 1, Sep. 2018, pp. 93–96, doi: 10.1109/ITC30.2018.00022.

[99] A. F. Ali, A. S. Ismail, and A. Bade, “An overview of networking
infrastructures for massively multiplayer online games,” in Proc.
5th Postgraduate Annu. Res. Seminar (PARS), 2021. [Online].
Available: https://pdfs.semanticscholar.org/887b/374b1010ca23a01bb8
9b71e40fd31e34ce92.pdf

[100] L. Ricci and E. Carlini, “Distributed virtual environments: From client
server to cloud and P2P architectures,” in Proc. Int. Conf. High
Perform. Comput. Simul. (HPCS), 2012, pp. 8–17.

[101] R. A. Bangun and H. Beadle, “A network architecture for multiuser
networked games on demand,” in Proc. Int. Conf. Inf. Commun. Signal
Process., vol. 3, 1997, pp. 1815–1819.

[102] W. Cai, P. Xavier, S. J. Turner, and B.-S. Lee, “A scalable architec-
ture for supporting interactive games on the Internet,” in Proc. 16th
Workshop Parallel Distrib. Simul. (PADS), 2002, pp. 54–61.

[103] S. Fiedler, M. Wallner, and M. Weber, “A communication architecture
for massive multiplayer games,” in Proc. 1st Workshop Netw. Syst.
Support Games (NetGames), Braunschweig, Germany, 2002, pp. 14–
22.

[104] C.-C. A. Hsu, J. Ling, Q. Li, and C.-C. J. Kuo, “The design of mul-
tiplayer online video game systems,” in Proc. Multimedia Syst. Appl.
VI, vol. 5241, 2003, pp. 180–191, doi: 10.1117/12.512201. [Online].
Available: https://doi.org/10.1117/12.512201

[105] B. Ng, F. W. Li, R. W. Lau, A. Si, and A. Siu, “A performance study
on multi-server DVE systems,” Inf. Sci., vol. 154, nos. 1–2, pp. 85–93,
2003.

[106] T. Wang, C.-L. Wang, and F. C. Lau, “A grid-enabled multi-server
network game architecture,” in Proc. 3rd Int. Conf. Appl. Develop.
Comput. Games (ADCOG), 2004, pp. 18–25.

[107] J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and C. Amza, “Locality
aware dynamic load management for massively multiplayer games,” in
Proc. 10th ACM SIGPLAN Symp. Principles Pract. Parallel Program.
(PPoPP), 2005, pp. 289–300.

[108] K.-W. Lee, B.-J. Ko, and S. Calo, “Adaptive server selec-
tion for large scale interactive online games,” Comput.
Netw., vol. 49, no. 1, pp. 84–102, 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128605001015

[109] M. Assiotis and V. Tzanov, “A distributed architecture for MMORPG,”
in Proc. 5th ACM SIGCOMM Workshop Netw. Syst. Support Games
(NetGames), 2006, p. 4.

[110] D. N. B. Ta and S. Zhou, “Efficient client-to-server assignments for dis-
tributed virtual environments,” in Proc. 20th IEEE Int. Parallel Distrib.
Process. Symp., 2006, p. 10.

[111] F. Glinka, A. Ploß, J. Müller-Iden, and S. Gorlatch, “RTF: A real-
time framework for developing scalable multiplayer online games,” in
Proc. 6th ACM SIGCOMM Workshop Netw. Syst. Support Games, 2007,
pp. 81–88.

[112] A. Ploss, S. Wichmann, F. Glinka, and S. Gorlatch, “From a single-
to multi-server online game: A quake 3 case study using RTF,” in
Proc. Int. Conf. Adv. Comput. Entertainment Technol. (ACE), 2008,
pp. 83–90.

[113] A. M. Khan, I. Arsov, M. Preda, S. Chabridon, and A. Beugnard,
“Adaptable client-server architecture for mobile multiplayer games,”
in Proc. 3rd Int. ICST Conf. Simul. Tools Techn. (SIMUTools), 2010,
pp. 1–7.

[114] R. Prodan and A. Iosup, “Operation analysis of massively multiplayer
online games on unreliable resources,” Peer-to-Peer Netw. Appl., vol. 9,
no. 6, pp. 1145–1161, 2016.

[115] C. Diot and L. Gautier, “A distributed architecture for multiplayer
interactive applications on the Internet,” IEEE Netw., vol. 13, no. 4,
pp. 6–15, Jul./Aug. 1999.

[116] D. Min, E. Choi, D. Lee, and B. Park, “A load balancing algorithm for
a distributed multimedia game server architecture,” in Proc. IEEE Int.
Conf. Multimedia Comput. Syst., 1999, pp. 882–886.

[117] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr, “Low latency and
cheat-proof event ordering for peer-to-peer games,” in Proc. 14th Int.
Workshop Netw. Oper. Syst. Support Digit. Audio Video (NOSSDAV),
2004, pp. 134–139.

[118] T. Iimura, H. Hazeyama, and Y. Kadobayashi, “Zoned federation of
game servers: A peer-to-peer approach to scalable multi-player online
games,” in Proc. 3rd ACM SIGCOMM Workshop Netw. Syst. Support
Games, 2004, pp. 116–120.

[119] B. Knutsson, H. Lu, W. Xu, and B. Hopkins, “Peer-to-peer support for
massively multiplayer games,” in Proc. IEEE INFOCOM, 2004, p. 107.

[120] S. Rooney, D. Bauer, and R. Deydier, “A federated peer-to-peer network
game architecture,” IEEE Commun. Mag., vol. 42, no. 5, pp. 114–122,
May 2004.

[121] A. El Rhalibi and M. Merabti, “Agents-based modeling for a peer-to-
peer MMOG architecture,” ACM Comput. Entertainment, vol. 3, no. 2,
p. 3, 2005.

[122] F. R. Wagner, M. G. Martins, and A. T. Gómez, “A peer to peer archi-
tecture applied to multiplayer games,” in Proc. 14th Int. Conf. Netw.
(ICN), 2015, pp. 1–4.

[123] A. P. Yu and S. T. Vuong, “MOPAR: A mobile peer-to-peer overlay
architecture for interest management of massively multiplayer online
games,” in Proc. Int. Workshop Netw. Oper. Syst. Support Digit. Audio
Video (NOSSDAV), 2005, pp. 99–104.

[124] A. R. Bharambe, J. Pang, and S. Seshan, “Colyseus: A distributed
architecture for online multiplayer games,” in Proc. 3rd Symp. Netw.
Syst. Des. Implement. (NSDI), 2006, p. 12.

[125] T. Hampel, T. Bopp, and R. Hinn, “A peer-to-peer architecture for mas-
sive multiplayer online games,” in Proc. 5th ACMSIGCOMM Workshop
Netw. Syst. Support Games (NetGames), 2006, p. 48.

[126] S.-Y. Hu, J.-F. Chen, and T.-H. Chen, “VON: A scalable peer-to-
peer network for virtual environments,” IEEE Netw., vol. 20, no. 4,
pp. 22–31, Jul./Aug. 2006.

[127] L. Fan, H. Taylor, and P. Trinder, “Mediator: A design framework for
P2P MMOGs,” in Proc. 6th ACM SIGCOMM Workshop Netw. Syst.
Support Games (NetGames), 2007, pp. 43–48.

[128] L. Chan, J. Yong, J. Bai, B. Leong, and R. Tan, “Hydra: A massively-
multiplayer peer-to-peer architecture for the game developer,” in
Proc. 6th ACM SIGCOMM Workshop Netw. Syst. Support Games
(NetGames), 2007, pp. 37–42.

[129] L. Fan, P. Trinder, and H. Taylor, “Design issues for peer-to-peer mas-
sively multiplayer online games,” Int. J. Adv. Media Commun., vol. 4,
no. 2, p. 108, 2010.

[130] A. Yahyavi and B. Kemme, “Peer-to-peer architectures for massively
multiplayer online games: A survey,” ACM Comput. Surv., vol. 46,
no. 1, pp. 1–51, 2013.

[131] S. A. Abdulazeez, A. El Rhalibi, M. Merabti, and D. Al-Jumeily,
“Survey of solutions for peer-to-peer MMOGs,” in Proc. Int. Conf.
Comput. Netw. Commun. (ICNC), 2015, pp. 1106–1110.

[132] E. Buyukkaya, M. Abdallah, and G. Simon, “A survey of peer-to-peer
overlay approaches for networked virtual environments,” Peer-to-Peer
Netw. Appl., vol. 8, no. 2, pp. 276–300, 2015.

[133] L. Liu, A. Jones, N. Antonopoulos, Z. Ding, and Y. Zhan, “Performance
evaluation and simulation of peer-to-peer protocols for massively
multiplayer online games,” Multimedia Tools Appl., vol. 74, no. 8,
pp. 2763–2780, 2015.

http://dx.doi.org/10.1109/PCCC.2003.1203707
http://dx.doi.org/10.1109/ITC30.2018.00022
http://dx.doi.org/10.1117/12.512201

1922

[134] E. Cronin, B. Filstrup, and A. Kurc, “A distributed multiplayer game
server system,” Dept. Electr. Eng. Comput. Sci., Univ. Michigan, Ann
Arbor, MI, USA, Rep. UM EECS589, 2001.

[135] D. Bauer, S. Rooney, and P. Scotton, “Network infrastructure for mas-
sively distributed games,” in Proc. 1st Workshop Netw. Syst. Support
Games (NetGames), 2002, pp. 36–43.

[136] J. Müller and S. Gorlatch, “GSM: A game scalability model for mul-
tiplayer real-time games,” in Proc. IEEE 24th Annu. Joint Conf. IEEE
Comput. Commun. Soc., 2005, pp. 2044–2045.

[137] M. Moraal, “Massive multiplayer online game architectures,”
BachelorŠs thesis, Dept. Comput. Sci., Radboud Univ., Nijmegen, The
Netherlands, 2006.

[138] L. Yang and P. Sutinrerk, “Mirrored arbiter architecture: A network
architecture for large scale multiplayer games,” in Proc. Summer
Comput. Simul. Conf., 2007, pp. 709–716.

[139] C. Carter, A. E. Rhalibi, M. Merabti, and A. T. Bendiab, “Hybrid
client-server, peer-to-peer framework for MMOG,” in Proc. IEEE Int.
Conf. Multimedia Expo, 2010, pp. 1558–1563.

[140] G. Wang and K. Wang, “An efficient hybrid P2P MMOG cloud archi-
tecture for dynamic load management,” in Proc. Int. Conf. Inf. Netw.,
2012, pp. 199–204.

[141] E. Carlini, L. Ricci, and M. Coppola, “Integrating centralized and
peer-to-peer architectures to support interest management in massively
multiplayer on-line games,” Concurrency Comput. Pract. Exp., vol. 27,
no. 13, pp. 3362–3382, 2015.

[142] B. K. Schmidt, M. S. Lam, and J. D. Northcutt, “The interactive
performance of SLIM: A stateless, thin-client architecture,” in Proc.
17th ACM Symp. Oper. Syst. Principles, Charleston, SC, USA, 1999,
pp. 32–47.

[143] C.-Y. Huang, D.-Y. Chen, C.-H. Hsu, and K.-T. Chen,
“GamingAnywhere: An open-source cloud gaming testbed,” in
Proc. 21st ACM Int. Conf. Multimedia, 2013, pp. 827–830.

[144] D. Wu, Z. Xue, and J. He, “iCloudAccess: Cost-effective streaming of
video games from the cloud with low latency,” IEEE Trans. Circuits
Syst. Video Technol., vol. 24, no. 8, pp. 1405–1416, Aug. 2014.

[145] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “A hybrid edge-cloud
architecture for reducing on-demand gaming latency,” Multimedia Syst.,
vol. 20, no. 5, pp. 503–519, 2014.

[146] J. Saldana and M. Suznjevic, “QoE and latency issues in net-
worked games,” in Handbook of Digital Games and Entertainment
Technologies, R. Nakatsu and M. Rauterberg, Eds. Singapore: Springer,
2015, pp. 1–36.

[147] M. Schubert, “Chapter 3: Distributed game architectures,” in Lecture
Notes: Managing and Mining Multiplayer Online Games. Munich,
Germany: Ludwig-Maximilians-Universität, 2017.

[148] F. Glinka, A. Ploss, S. Gorlatch, and J. Müller-Iden, “High-level
development of multiserver online games,” Int. J. Comput. Games
Technol., vol. 2008, pp. 1–16, Jan. 2008. [Online]. Available: https://
www.hindawi.com/journals/ijcgt/2008/327387/

[149] M. S. Gibson and W. W. Vasconcelos, “A knowledge-based approach to
multiplayer games in peer-to-peer networks,” Knowl. Inf. Syst., vol. 61,
no. 2, pp. 1091–1121, 2019.

[150] P. Mildner, T. Triebel, S. Kopf, and W. Effelsberg, “Scaling online
games with netconnectors: A peer-to-peer overlay for fast-paced mas-
sively multiplayer online games,” ACM Comput. Entertainment, vol. 15,
no. 3, pp. 1–21, 2017.

[151] “Enchanted Age Studios, Network Bandwidth Mathematics;
Peer-to-Peer Versus Client/Server.” 2008. [Online]. Available:
http://www.enchantedage.com/node/20 (Accessed: Nov. 16, 2021).

[152] J. van Dongen. “Joost’s Dev Blog: Relay Servers.” 2014. [Online].
Available: http://joostdevblog.blogspot.com/2014/09/relay-servers.html
(Accessed: Nov. 16, 2021).

[153] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin, “An efficient syn-
chronization mechanism for mirrored game architectures,” in Proc. 1st
Workshop Netw. Syst. Support Games, 2002, pp. 67–73.

[154] F. Metzger, A. Rafetseder, S. Schröder, and P. Zwickl, “The prospects
of cloud gaming: Do the benefits outweigh the costs?” Univ. Würzburg,
Würzburg, Germany, Working Paper, 2016. [Online]. Available:
https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-242452

[155] S. Perlman. “OnLive: Coming to a Screen Near You.” 2010.
[Online]. Available: https://web.archive.org/web/20100312043136/
http://blog.onlive.com/2010/03/10/onlive-coming-to-a-screen-near-you/
(Accessed: Nov. 16, 2021).

[156] S. Hollister. “Sony announces PlayStation Now, Its Cloud Gaming
Service for TVs, Consoles, and Phones.” 2014. [Online]. Available:
https://www.theverge.com/2014/1/7/5284294/sony-announces-
playstation-now-cloud-gaming (Accessed: Nov. 16, 2021).

[157] C.-F. Chang and S.-H. Ger, “Enhancing 3D graphics on mobile
devices by image-based rendering,” in Proc. IEEE Pacific Rim Conf.
Multimedia, 2002, p. 7.

[158] F. Lamberti and A. Sanna, “A streaming-based solution for remote visu-
alization of 3D graphics on mobile devices,” IEEE Trans. Vis. Comput.
Graphics, vol. 13, no. 2, pp. 247–260, Mar./Apr. 2007.

[159] R. W. N. Pazzi, A. Boukerche, and T. Huang, “Implementation,
measurement, and analysis of an image-based virtual environment
streaming protocol for wireless mobile devices,” IEEE Trans. Instrum.
Meas., vol. 57, no. 9, pp. 1894–1907, Sep. 2008.

[160] D. De Winter et al., “A hybrid thin-client protocol for multimedia
streaming and interactive gaming applications,” in Proc. Int. Workshop
Netw. Oper. Syst. Support Digit. Audio Video, 2006, p. 15.

[161] O.-I. Holthe, O. Mogstad, and L. A. Ronningen, “Geelix LiveGames:
Remote playing of video games,” in Proc. 6th IEEE Consum. Commun.
Netw. Conf., 2009, pp. 1–2.

[162] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen, C.-Y. Huang, and
C.-H. Hsu, “On the quality of service of cloud gaming systems,”
IEEE Trans. Multimedia, vol. 16, no. 2, pp. 480–495, Feb. 2014,
doi: 10.1109/TMM.2013.2291532.

[163] W. Cai, V. C. Leung, and M. Chen, “Next generation mobile cloud
gaming,” in Proc. IEEE 7th Int. Symp. Service-Oriented Syst. Eng.,
2013, pp. 551–560.

[164] O. Soliman, A. Rezgui, H. Soliman, and N. Manea, “Mobile cloud
gaming: Issues and challenges,” in Mobile Web Information Systems,
F. Daniel, G. A. Papadopoulos, and P. Thiran, Eds. Berlin, Germany:
Springer, 2013, pp. 121–128.

[165] K.-T. Chen, C.-Y. Huang, and C.-H. Hsu, “Cloud gaming onward:
Research opportunities and outlook,” in Proc. IEEE Int. Conf.
Multimedia Expo Workshops (ICMEW), 2014, pp. 1–4.

[166] S.-P. Chuah, C. Yuen, and N.-M. Cheung, “Cloud gaming: A
green solution to massive multiplayer online games,” IEEE Wireless
Commun., vol. 21, no. 4, pp. 78–87, Aug. 2014.

[167] W. Cai et al., “The future of cloud gamin [point of view],”
Proc. IEEE, vol. 104, no. 4, pp. 687–691, Apr. 2016,
doi: 10.1109/JPROC.2016.2539418.

[168] P. Graff, X. Marchal, T. Cholez, S. Tuffin, B. Mathieu, and O.
Festor, “An analysis of cloud gaming platforms behavior under
different network constraints,” in Proc. 3rd Int. Workshop High-
Precision Predictable Low-Latency Netw., 2021, pp. 551–557. [Online].
Available: https://dl.ifip.org/db/conf/cnsm/cnsm2021/1570750103.pdf

[169] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and
D. Giordano, “A network analysis on cloud gaming: Stadia,
GeForce now and PSNow,” Network, vol. 1, no. 3, pp. 247–260,
2021, doi: 10.3390/network1030015. [Online]. Available:
https://www.mdpi.com/2673-8732/1/3/15

[170] S. Perlman. “Beta Testing at the Speed of Light.” 2010.
[Online]. Available: https://web.archive.org/web/20100125174142/
http://blog.onlive.com/2010/01/21/betatesting-at-the-speed-of-light/
(Accessed: Nov. 16, 2021).

[171] T. Kämäräinen, M. Siekkinen, A. Ylä-Jääski, W. Zhang, and P. Hui,
“A measurement study on achieving imperceptible latency in mobile
cloud gaming,” in Proc. 8th ACM Multimedia Syst. Conf., 2017,
pp. 88–99, doi: 10.1145/3083187.3083191. [Online]. Available: https:
//doi.org/10.1145/3083187.3083191

[172] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Placing virtual machines to optimize cloud gaming experience,” IEEE
Trans. Cloud Comput., vol. 3, no. 1, pp. 42–53, Jan.–Mar. 2014.

[173] J. Wu, C. Yuen, N.-M. Cheung, J. Chen, and C. W. Chen, “Enabling
adaptive high-frame-rate video streaming in mobile cloud gaming
applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 12,
pp. 1988–2001, Dec. 2015.

[174] F. Metzger, A. Rafetseder, and C. Schwartz, “A comprehensive end-
to-end lag model for online and cloud video gaming,” in Proc.
5th ISCA/DEGA Workshop Percept. Qual. Syst., 2016, pp. 20–24,
doi: 10.21437/PQS.2016-5. [Online]. Available: https://www.isca-
speech.org/archive_v0/PQS_2016/abstracts/4.html

[175] M. Claypool, “Motion and scene complexity for streaming video
games,” in Proc. 4th Int. Conf. Found. Digit. Games, 2009,
pp. 34–41.

[176] H. Shimizu, “Measuring keyboard response delays by
comparing keyboard and joystick inputs,” Behav. Res.
Methods Instrum. Comput., vol. 34, no. 2, pp. 250–256,
2002.

[177] R. Wimmer, A. Schmid, and F. Bockes, “On the latency of USB con-
nected input devices,” in Proc. Conf. Human Factors Comput. Syst.,
2019, p. 420.

http://dx.doi.org/10.1109/TMM.2013.2291532
http://dx.doi.org/10.1109/JPROC.2016.2539418
http://dx.doi.org/10.3390/network1030015
http://dx.doi.org/10.1145/3083187.3083191
http://dx.doi.org/10.21437/PQS.2016-5

 1923

[178] G. Casiez, S. Conversy, M. Falce, S. Huot, and N. Roussel, “Looking
through the eye of the mouse: A simple method for measuring end-to-
end latency using an optical mouse,” in Proc. 28th Annu. ACM Symp.
User Interface Softw. Technol., 2015, pp. 629–636.

[179] D. Luu. “Keyboard Latency.” [Online]. Available:
https://danluu.com/keyboard-latency/ (Accessed: Nov. 16, 2021).

[180] A. Patait and E. Young, “High performance video encoding with
NVIDIA GPUs,” in Proc. GPU Technol. Conf., 2016. [Online].
Available: https://goo.gl/Bdjdgm

[181] J. Beyer, R. Varbelow, J.-N. Antons, and S. Zander, “A method for
feedback delay measurement using a low-cost arduino microcontroller:
Lesson learned: Delay influenced by video bitrate and game-level,” in
Proc. 7th Int. Workshop Qual. Multimedia Exp. (QoMEX), May 2015,
pp. 1–2, doi: 10.1109/QoMEX.2015.7148095.

[182] Digital Foundry. Tech Focus—V-Sync: What is It—And Should You
Use It? (Nov. 10, 2018). Accessed: Nov. 16, 2021. [Online Video].
Available: https://youtu.be/seyAzw9zEoY

[183] Battle(non)sense. Battle(Non)Sense Youtube Channel—Netcode
Analysis, Input Lag Analysis, Concept Design, Easy to Grasp
Explanations. (2019). Accessed: Nov. 16, 2021. [Online Video].
Available: https://www.youtube.com/user/xFPxAUTh0r1ty/videos

[184] J. Zhao, R. S. Allison, M. Vinnikov, and S. Jennings, “Estimating the
motion-to-photon latency in head mounted displays,” in Proc. IEEE
Virtual Real. (VR), 2017, pp. 313–314.

[185] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe, “Quantifying
and mitigating the negative effects of local latencies on aiming in
3D shooter games,” in Proc. 33rd Annu. ACM Conf. Human Factors
Comput. Syst., 2015, pp. 135–144.

[186] C. Ware and R. Balakrishnan, “Reaching for objects in VR displays:
Lag and frame rate,” ACM Trans. Comput.-Human Interact., vol. 1,
no. 4, pp. 331–356, 1994.

[187] S. Schmidt, S. Zadtootaghaj, and S. Möller, “Towards the delay sen-
sitivity of games: There is more than genres,” in Proc. 9th Int. Conf.
Qual. Multimedia Experience (QoMEX), 2017, pp. 1–6.

[188] A. Sackl, R. Schatz, T. Hossfeld, F. Metzger, D. Lister, and R. Irmer,
“QoE management made uneasy: The case of cloud gaming,” in Proc.
IEEE Int. Conf. Commun. Workshops (ICC), 2016, pp. 492–497.

[189] J. Beyer, R. Varbelow, J.-N. Antons, and S. Möller, “Using electroen-
cephalography and subjective self-assessment to measure the influence
of quality variations in cloud gaming,” in Proc. 7th Int. Workshop Qual.
Multimedia Experience (QoMEX), 2015, pp. 1–6.

[190] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming in
the clouds: QoE and the users’ perspective,” Math. Comput. Model.,
vol. 57, nos. 11–12, pp. 2883–2894, 2013.

[191] V. Clincy and B. Wilgor, “Subjective evaluation of latency and packet
loss in a cloud-based game,” in Proc. 10th Int. Conf. Inf. Technol. New
Gener., 2013, pp. 473–476.

[192] H. Iqbal, A. Khalid, and M. Shahzad, “Dissecting cloud gaming
performance with decaf,” Proc. ACM Meas. Anal. Comput. Syst., vol. 5,
no. 3, p. 31, Dec. 2021, doi: 10.1145/3491043. [Online]. Available:
https://doi.org/10.1145/3491043

[193] S. F. Lindströ̈m, M. Wetterberg, and N. Carlsson, “Cloud gaming: A
QoE study of fast-paced single-player and multiplayer gaming,” in
Proc. IEEE/ACM 13th Int. Conf. Utility Cloud Comput. (UCC), 2020,
pp. 34–45, doi: 10.1109/UCC48980.2020.00023.

[194] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games equally
cloud-gaming-friendly? An electromyographic approach,” in Proc. 11th
Annu. Workshop Netw. Syst. Support Games, 2012, p. 3.

[195] I. Slivar, M. Suznjevic, and L. Skorin-Kapov, “The impact of video
encoding parameters and game type on QoE for cloud gaming: A case
study using the steam platform,” in Proc. 7th Int. Workshop Qual.
Multimedia Exp. (QoMEX), 2015, pp. 1–6.

[196] M. Claypool, A. Cockburn, and C. Gutwin, “Game input with delay:
Moving target selection parameters,” in Proc. 10th ACM Multimedia
Syst. Conf., 2019, pp. 25–35.

[197] D. C. Hoang, K. D. Doan, and L. T. Hoang, “Lag of legends: The
effects of latency on league of legends champion abilities,” Worcester
Polytech. Inst., Worcester, MA, USA, Rep., 2017. [Online]. Available:
https://digitalcommons.wpi.edu/iqpall/2375

[198] J. Beyer and S. Möller, “Assessing the impact of game type, dis-
play size and network delay on mobile gaming QoE,” PIK-Praxis
Informationsverarbeitung Kommunikation, vol. 37, no. 4, pp. 287–295,
2014.

[199] M. Claypool and K. Claypool, “Latency can kill: Precision and deadline
in online games,” in Proc. Multimedia Syst. Conf., Feb. 2010, pp. 215–
222.

[200] M. Bredel and M. Fidler, “A measurement study regarding qual-
ity of service and its impact on multiplayer online games,” in
Proc. 9th Annu. Workshop Netw. Syst. Support Games, 2010,
pp. 1–6.

[201] M. Ries, P. Svoboda, and M. Rupp, “Empirical study of subjective
quality for massive multiplayer games,” in Proc. 15th Int. Conf. Syst.
Signals Image Process, 2008, pp. 181–184.

[202] M. Dick, O. Wellnitz, and L. Wolf, “Analysis of factors affect-
ing players’ performance and perception in multiplayer games,”
in Proc. Workshop Network Syst. Support Games, Oct. 2005,
pp. 1–7.

[203] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,
and M. Claypool, “The effects of loss and latency on user
performance in unreal tournament 2003�,” in Proc. 3rd
ACM SIGCOMM Workshop Netw. Syst. Support Games, 2004,
pp. 144–151.

[204] J. Nichols and M. Claypool, “The effects of latency on online madden
NFL football,” in Proc. 14th Int. Workshop Netw. Oper. Syst. Support
Digit. Audio Video, 2004, pp. 146–151.

[205] K. T. Claypool and M. Claypool, “On frame rate and player
performance in first person shooter games,” Multimedia Syst., vol. 13,
no. 1, pp. 3–17, 2007.

[206] R. T. Wood, M. D. Griffiths, D. Chappell, and M. N. Davies, “The
structural characteristics of video games: A psycho-structural analysis,”
Cyber Psychol. Behav., vol. 7, no. 1, pp. 1–10, 2004.

[207] D. A. Laffan, J. Greaney, H. Barton, and L. K. Kaye, “The
relationships between the structural video game characteristics,
video game engagement and happiness among individuals who
play video games,” Comput. Human Behav., vol. 65, pp. 544–549,
Dec. 2016.

[208] J. H. Brockmyer, C. M. Fox, K. A. Curtiss, E. McBroom,
K. M. Burkhart, and J. N. Pidruzny, “The development of the game
engagement questionnaire: A measure of engagement in video game-
playing,” J. Exp. Social Psychol., vol. 45, no. 4, pp. 624–634, 2009.

[209] H. L. O’Brien and E. G. Toms, “What is user engagement? A con-
ceptual framework for defining user engagement with technology,” J.
Amer. Soc. Inf. Sci. Technol., vol. 59, no. 6, pp. 938–955, 2008.

[210] P. Sweetser and P. Wyeth, “GameFlow: A model for evaluating player
enjoyment in games,” Comput. Entertain., vol. 3, no. 3, p. 3, 2005.

[211] M. E. Seligman, Flourish: A Visionary New Understanding of
Happiness and Well-Being. New York, NY, USA: Simon Schuster,
2012.

[212] A. Z. Abbasi, D. H. Ting, and H. Hlavacs, “Proposing a new
conceptual model predicting consumer videogame engagement trig-
gered through playful-consumption experiences,” in Proc. Int. Conf.
Entertain. Comput., 2016, pp. 126–134.

[213] A. Z. Abbasi and A. B. S. A. Jamak, “Playful-consumption experience
of videogame-play influences consumer video-game engagement: A
conceptual model,” Global Bus. Manage. Res., vol. 9, no. 1S, p. 244,
2017.

[214] S. Schmidt et al., Requirement Specification and Possible Structure
for An Opinion Model Predicting Gaming QoE (G.OMG), Rec. UIT-
T SG 12, Int. Telecommun. Union, Geneva, Switzerland, May 2018,
pp. 1–20.

[215] E. L.-C. Law, F. Brühlmann, and E. D. Mekler, “Systematic
review and validation of the game experience questionnaire
(GEQ)—Implications for citation and reporting practice,” in Proc.
Annu. Symp. Comput.-Human Interact. Play, 2018, pp. 257–270,
doi: 10.1145/3242671.3242683.

[216] F. Mäyrä and L. Ermi, “Fundamental components of the game-
play experience,” in Proc. DIGAREC Series Anal. Immersion, 2011,
pp. 88–115.

[217] K. L. Norman, “GEQ (game engagement/experience questionnaire): A
review of two papers,” Interact. Comput., vol. 25, no. 4, pp. 278–283,
2013.

[218] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm
in cloud gaming: A measurement study on cloud to end-user latency,”
in Proc. 11th Annu. Workshop Network Syst. Support Games, 2012,
p. 2.

[219] C. Mo, G. Zhu, Z. Wang, and W. Zhu, “Understanding gaming expe-
rience in mobile multiplayer online battle arena games,” in Proc. 28th
ACM SIGMM Workshop Netw. Oper. Syst. Support Digit. Audio Video,
2018, pp. 25–30.

http://dx.doi.org/10.1109/QoMEX.2015.7148095
http://dx.doi.org/10.1145/3491043
http://dx.doi.org/10.1109/UCC48980.2020.00023
http://dx.doi.org/10.1145/3242671.3242683

1924

[220] M. Hirth, F. Allendorf, F. Metzger, and C. Schwartz, “Assessing the
accuracy of network estimations in the DOTA 2 game client,” in
Proc. 5th ISCA/DEGA Workshop Percept. Qual. Syst. (PQS), 2016,
pp. 20–24.

[221] M. Hirth, K. Borchert, F. Allendorf, F. Metzger, and T. Hoßfeld,
“Crowd-based study of gameplay impairments and player performance
in DOTA 2,” in Proc. Internet-QoE Workshop, Oct. 2019, pp. 19–24.

[222] G. Armitage, “An experimental estimation of latency sensitivity in
multiplayer Quake 3,” in Proc. 11th IEEE Int. Conf. Netw., 2003,
pp. 137–141.

[223] S. Zadtootaghaj, S. Schmidt, N. Barman, S. Möller, and M. G. Martini,
“A classification of video games based on game characteristics linked
to video coding complexity,” in Proc. 16th Annu. Workshop Netw. Syst.
Support Games (NetGames), 2018, pp. 1–6.

[224] Opinion Model Predicting Gaming Quality of Experience for Cloud
Gaming Services, Series G: Transmission Systems and Media, Digital
Systems and Networks, Rec. G.1072, Int. Telecommun. Union, Geneva,
Switzerland, Jan. 2020. [Online]. Available: https://www.itu.int/ rec/T-
REC-G.1072/en

[225] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantita-
tive relationship between quality of experience and quality of ser-
vice,” IEEE Netw., vol. 24, no. 2, pp. 36–41, Mar./Apr. 2010,
doi: 10.1109/MNET.2010.5430142.

[226] F. Metzger, N. Stulier, K. Borchert, and M. Hirth, “Relationship sta-
tus: It’s complicated. using APM as a QoE-qualifying tempo metric,”
in Proc. 13th Int. Conf. Qual. Multimedia Exp. (QoMEX), 2021,
pp. 145–150, doi: 10.1109/QoMEX51781.2021.9465396.

[227] S. S. Sabet, C. Griwodz, and S. Möller, “Influence of primacy,
recency and peak effects on the game experience questionnaire,” in
Proc. 11th ACM Workshop Immersive Mixed Virtual Environ. Syst.,
2019, pp. 22–27, doi: 10.1145/3304113.3326113. [Online]. Available:
http://doi.acm.org/10.1145/3304113.3326113

[228] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, C. Griwodz, and S. Möller,
“Delay sensitivity classification of cloud gaming content,” in Proc.
MMVE, 2020, pp. 25–30, doi: 10.1145/3386293.3397116. [Online].
Available: https://doi.org/10.1145/3386293.3397116

[229] J. Iyengar and M. Thomson, “QUIC: A UDP-based multiplexed and
secure transport,” Internet Res. Task Force, RFC 9000, May 2021.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc9000.html

[230] K. Lepola, “Managing network delay for browser multiplayer games,”
M.S. thesis, Faculty Sci., Univ. Helsinki, Helsinki, Finland, 2020.
[Online]. Available: http://urn.fi/URN:NBN:fi:hulib-202011174485

[231] S. S. Sabet, S. Schmidt, S. Zadtootaghaj, B. Naderi, C. Griwodz,
and S. Möller, “A latency compensation technique based on game
characteristics to mitigate the influence of delay on cloud gaming
quality of experience,” in Proc. 11th ACM Multimedia Syst. Conf.,
2020, pp. 15–25, doi: 10.1145/3339825.3391855. [Online]. Available:
https://doi.org/10.1145/3339825.3391855

[232] K. Lee et al., “Outatime: Using speculation to enable low-latency
continuous interaction for mobile cloud gaming,” in Proc. 13th
Annu. Int. Conf. Mobile Syst. Appl. Services, Florence, Italy, 2015,
pp. 151–165, doi: 10.1145/2742647.2742656. [Online]. Available:
https://doi.org/10.1145/2742647.2742656

[233] J. Kim, P. Knowles, J. Spjut, B. Boudaoud, and M. Mcguire,
“Postrender warp with late input sampling improves aiming under
high latency conditions,” Proc. ACM Comput. Graph. Interact. Techn.,
vol. 3, no. 2, p. 12, Aug. 2020, doi: 10.1145/3406187. [Online].
Available: https://doi.org/10.1145/3406187

[234] E. Carlson, T. Fan, Z. Guan, X. Xu, and M. Claypool, “Towards
usable attribute scaling for latency compensation in cloud-based
games,” in Proc. Workshop Game Syst. (GameSys), Istanbul, Turkey,
2021, pp. 20–25, doi: 10.1145/3458335.3460964. [Online]. Available:
https://doi.org/10.1145/3458335.3460964

[235] I. S. Mohammadi, M. Ghanbari, and M. R. Hashemi, “A hybrid
graphics/video rate control method based on graphical assets for
cloud gaming,” J. Real-Time Image Process., vol. 19, pp. 41–59,
Aug. 2021, doi: 10.1007/s11554-021-01159-y. [Online]. Available:
https://link.springer.com/article/10.1007/s11554-021-01159-y

[236] O. Mossad, K. Diab, I. Amer, and M. Hefeeda, “Deepgame: Efficient
video encoding for cloud gaming,” in Proc. 29th ACM Int. Conf.
Multimedia, 2021, pp. 1387–1395, doi: 10.1145/3474085.3475594.
[Online]. Available: https://dl.acm.org/ doi/10.1145/3474085.3475594

[237] M. Stengel, Z. Majercik, B. Boudaoud, and M. McGuire, “A dis-
tributed, decoupled system for losslessly streaming dynamic light
probes to thin clients,” in Proc. 12th ACM Multimedia Syst. Conf., 2021,
pp. 159–172, doi: 10.1145/3458305.3463379. [Online]. Available:
https://doi.org/10.1145/3458305.3463379

[238] G. K. Illahi, M. Siekkinen, T. Kämäräinen, and A. Ylä-Jääski,
“Foveated streaming of real-time graphics,” in Proc.
12th ACM Multimedia Syst. Conf., 2021, pp. 214–226,
doi: 10.1145/3458305.3463383. [Online]. Available: https://doi.
org/10.1145/3458305.3463383

[239] A. E. Alchalabi, S. Shirmohammadi, S. Mohammed, S. Stoian,
and K. Vijayasuganthan, “Fair server selection in edge comput-
ing with Q-value-normalized action-suppressed quadruple Q-learning,”
IEEE Trans. Artif. Intell., vol. 2, no. 6, pp. 519–527, Dec. 2021,
doi: 10.1109/TAI.2021.3105087.

Florian Metzger received the Doctoral degree in
computer science from the University of Vienna,
Austria, in 2015. He has been a Postdoctoral
Researcher with the Chair of Communication
Networks, University of Wüzburg since 2018. Until
2018, he was a Postdoctoral Researcher with the
Chair of Modeling of Adaptive Systems, University
of Duisburg-Essen, Germany. His research focus are
mobile networks and online and cloud gaming.

Stefan Geißler received the Ph.D. degree from
the University of Würzburg, Germany, in 2022,
where is heading the Cloud Applications and
Networks Research Group, Chair of Communication
Networks. His research topics include software-
defined networking and network function virtual-
ization with a focus on performance evaluation
as well as the investigation of Internet of Things
technologies.

Alexej Grigorjew received the M.Sc. degree in
computer science from the University of Würzburg,
Würzburg, Germany, in 2016, where he is cur-
rently pursuing the Ph.D. degree with the Chair
of Communication Networks. His early research
interests included SDN, NFV, and programmable
data planes. Since 2018, his main focus has been
low latency networking and TSN, with an emphasis
on distributed latency bound analysis and network
configuration.

Frank Loh (Graduate Student Member, IEEE) is
currently pursuing the Ph.D. degree with the Chair of
Communication Networks, University of Würzburg,
Würzburg, Germany, with Prof. T. Hoßfeld, where
he currently is a Research Assistant. His main
research focus includes QoS monitoring and QoE
prediction, as well as Internet of Things technologies
like LoRaWAN.

Christian Moldovan received the master’s degree
in computer science and the Ph.D. degree from
the University of Würzburg, Germany, in 2014
and 2021, respectively. His dissertation was
on “Performance Modeling of Mobile Video
Streaming.” He is currently researching and devel-
oping indoor-localization technologies that rely on
industrial 5G campus networks with Comnovo,
Dortmund, Germany.

http://dx.doi.org/10.1109/MNET.2010.5430142
http://dx.doi.org/10.1109/QoMEX51781.2021.9465396
http://dx.doi.org/10.1145/3304113.3326113
http://dx.doi.org/10.1145/3386293.3397116
http://dx.doi.org/10.1145/3339825.3391855
http://dx.doi.org/10.1145/2742647.2742656
http://dx.doi.org/10.1145/3406187
http://dx.doi.org/10.1145/3458335.3460964
http://dx.doi.org/10.1007/s11554-021-01159-y
http://dx.doi.org/10.1145/3474085.3475594
http://dx.doi.org/10.1145/3458305.3463379
http://dx.doi.org/10.1145/3458305.3463383
http://dx.doi.org/10.1109/TAI.2021.3105087

 1925

Michael Seufert (Member, IEEE) received the
Diploma and Ph.D. degrees in computer science
and the B.Sc. degree in economathematics from
the University of Würzburg, Würzburg, Germany,
in 2011, 2017, and 2018, respectively. He addition-
ally passed the first state examinations for teaching
mathematics and computer science in secondary
schools in 2011. From 2012 to 2013, he was with
FTW Telecommunication Research Center, Vienna,
Austria, working in Research Area U “User-centered
Interaction and Communication Economics,” and

from 2018 to 2019, he was with AIT Austrian Institute of Technology GmbH,
Vienna, Austria, working in the Digital Insight Lab of the Center for Digital
Safety and Security. Since 2019, he has been the Head of the “User-Centric
Communication Networks” research group of the Chair of Communication
Networks, University of Würzburg. His research mainly focuses on Quality
of Experience of Internet applications, network management, artificial intel-
ligence, and machine learning for communication networks, as well as
performance analysis and modeling of communication systems.

Tobias Hoßfeld (Senior Member, IEEE) received
the Ph.D. degree in 2009, and the professorial the-
sis (Habilitation) “Modeling and Analysis of Internet
Applications and Services” from the University of
Würzburg, in 2013, where he was also heading the
“Future Internet Applications & Overlays” research
group. He has been a Professor with the Chair of
Communication Networks, University of Würzburg
since 2018. From 2014 to 2018, he was the Head
of the Chair “Modeling of Adaptive Systems” with
the University of Duisburg-Essen, Germany. He has

published more than 100 research papers in major conferences and journals,
receiving five best conference paper awards, three awards for his Ph.D. thesis,
and the Fred W. Ellersick Prize 2013 (IEEE Communications Society) for one
of his articles on QoE. He is a member of the Advisory Board of the ITC
Conference and the Editorial Board of IEEE COMMUNICATIONS SURVEYS

AND TUTORIALS.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

