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Abstract

Recent AI research has significantly reduced the barriers to apply AI,
but the process of setting up the necessary tools and frameworks can still
be a challenge. While AI-as-a-Service platforms have emerged to simplify
the training and deployment of AI models, they still fall short of achiev-
ing true democratization of AI. In this paper, we aim to address this gap
by comparing several popular AI-as-a-Service platforms and identifying
the key requirements for a platform that can achieve true democratiza-
tion of AI. Our analysis highlights the need for self-hosting options, high
scalability, and openness. To address these requirements, we propose our
approach: the ”Open Space for Machine Learning” platform. Our plat-
form is built on cutting-edge technologies such as Kubernetes, Kubeflow
Pipelines, and Ludwig, enabling us to overcome the challenges of democra-
tizing AI. We argue that our approach is more comprehensive and effective
in meeting the requirements of democratizing AI than existing AI-as-a-
Service platforms.

Keywords: Cloud Computing, Artificial Intelligence, Platform, AI-as-a-
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1 Introduction

The democratization of AI is currently a trend in AI research, driven by the
shortage of AI experts that hinders the use of AI in many areas, including stock
marking trading [1] and personalized medicine [2], to name only a couple. The
aim is to reduce the required expertise and make AI more accessible to a wider
range of users. Significant progress has been made in the development and train-
ing of AI models, enabling the creation and training of models automatically
from data, known as low-code AI. Examples of low-code tools include Ludwig
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[3], fast-ai [4], and Autogluon [5, 6]. Low-code AI tools can be coupled with
user-friendly interfaces to transition to no-code AI. These advancements hold
the potential to make AI accessible to people with little or no programming
experience, allowing them to apply AI to various tasks without the need for
technical expertise.

However, providing the infrastructure and setting up these frameworks and
tools remains a hurdle that requires expert knowledge. To overcome this obstacle
and further promote the democratization of AI, platforms are emerging that
take care of these tasks for the user and offer AI as a service. These platforms
provide a range of services, such as data storage, model training, and API
access, allowing users to easily integrate AI into their workflow without the
need for significant technical expertise. With AI-as-a-Service, individuals and
organizations can benefit from the power of AI without the need to invest in
expensive hardware, software, or personnel. As a result, AI-as-a-Service has the
potential to accelerate the adoption of AI and make its benefits more widely
available.

In this article, we aim to compare existing AI-as-a-Service platforms and
examine why they have not yet led to a breakthrough in the democratization of
AI. Based on this analysis, we aim to identify the requirements for a platform
that can successfully achieve this goal and then discuss our implementation to
meet these requirements. By exploring the strengths and weaknesses of exist-
ing AI-as-a-Service platforms, we hope to provide insights into the design and
development of a platform that can truly democratize AI and make its benefits
accessible to everyone. Through this analysis, we hope to contribute to the
ongoing efforts to democratize AI and make its benefits available to a wider
audience.

2 Study of Existing Platforms

The availability of easy-to-use AutoML solutions as a platform is a crucial factor
for the participation of non-AI experts in the technology of machine learning.
We will now take a look at the various existing platforms for AutoML.

2.1 AutoML Platforms by major Cloud Providers

The major cloud providers - Amazon SageMaker1, Google Vertex AI2, and Mi-
crosoft Azure Automated ML3 - have invested significantly in AutoML and have
developed powerful and scalable solutions. These machine learning platforms
leverage cutting-edge algorithms and state-of-the-art technologies. Additionally,
these platforms offer a high level of service, from prototyping to production, and
provide a no-code environment that enables developers to easily build and de-
ploy machine learning models.

1https://aws.amazon.com/sagemaker/
2https://cloud.google.com/vertex-ai
3https://azure.microsoft.com/en-us/products/machine-learning/automatedml/
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One major disadvantage of these platform solutions is their lack of openness.
Since these platforms are not open source, expert users are limited in their ability
to customize and modify algorithms to fit their specific needs.

Additionally, these platforms are not self-hosted, meaning that sensitive data
must be entrusted to a third-party provider.

Furthermore, the algorithms used by these platforms are often black boxes,
making it difficult to understand how they arrived at their conclusions. This
lack of transparency can be problematic, particularly when it comes to ethical
considerations and ensuring that the algorithms are not biased or discriminatory.

Additionally, customers are often locked into using a single vendor, limiting
their ability to switch providers or take their business elsewhere. Finally, while
these platforms offer a no-code environment, they are often complex and difficult
to navigate without a solid understanding of machine learning concepts and
terminology. This can be a major barrier for non-experts trying to leverage
machine learning in their work.

2.2 Standalone AutoML Platforms

An established platform that has made it its mission to overcome this obstacle is
DataRobot4. The platform stands out in terms of user-friendliness. Its no-code
environment makes it easy for non-experts to build and deploy machine learn-
ing models, and its scalable AutoML solution covers the entire machine learning
life cycle. However, like the major cloud providers, DataRobot’s platform is not
open source, meaning that experts are limited in their ability to customize algo-
rithms. Additionally, the platform has no option to self-host, and the algorithms
used are often black boxes, limiting transparency and posing ethical concerns.
Finally, users are locked into the DataRobot ecosystem, which can be a major
drawback.

On the other hand, Predibase5 attempts to achieve complete transparency
using a declarative machine learning approach [7] and utilizing open-source com-
ponents under the hood. However, minimal programming knowledge is required
for the low-code platform. In addition to this, is not foreseeable that the plat-
form will be made available as open source. Thus, it cannot be self-hosted for
sensitive data.

For users looking for a more open approach, H2O6 [8] is a powerful option.
As an AutoML platform, H2O provides a scalable solution for the complete
machine learning lifecycle that can be used either as a PaaS or self-hosted.
However, H2O’s platform does have some limitations. Its low-code environment
may not be accessible to users with no programming skills, limiting the democ-
ratization of machine learning. H2O knows about this drawback and introduced
a commercial no-code offering, H2O Driverless AI Wizard, which leverages the
full potential of AutoML for users with no programming. But this solution is
not open-source and cannot be self-hosted.

4https://www.datarobot.com/
5https://predibase.com/
6https://h2o.ai/
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3 Requirements

So far, we have gained insights into the various platforms that offer AI as a
service, and we have concluded that they are not yet sufficient for achieving
true AI democratization. Therefore, our next step is to derive the requirements
for such a platform that can lead us towards the democratization of AI. These
requirements will be crucial for creating a platform that can enable people from
diverse backgrounds to access and benefit from AI technologies. We will focus
on identifying the key features and functionalities that are needed to build a
platform that can support a wide range of users, including those with limited
technical expertise.

3.1 Platform

But first, we want to emphasize why such a platform that offers AI as a service
is a requirement for achieving true AI democratization. One of the main reasons
why such a platform is crucial is that it allows users to start using the software
without the need for a complex setup process. Especially with AI applications,
there may be a significant amount of expert knowledge required, as certain parts
of the application need to be executed on specialized hardware, such as GPUs,
for effective performance. By offering AI as a service, users can access the
power of AI without needing to invest in expensive hardware or hire specialized
personnel to configure and operate the system.

3.2 Easy-to-use User-Interface

In order to enable users with limited technical expertise to use the platform,
it is important to ensure that the user experience is optimized. The platform
should have an intuitive user interface that is easy to navigate. With just a
few interactions, users should be able to train an AI model based on their
own data without needing any expert knowledge of AI or complex technical
terms. By abstracting away the complexities of AI, the platform can become
more accessible to a wider range of users, regardless of their level of technical
expertise.

3.3 Scalability

As there are many areas where the potential of AI has not yet been fully ex-
ploited, a platform offering AI as a service could have a vast user base, making
scalability essential. With the increasing amount of data being generated and
stored, the platform must also be capable of handling large amounts of data.
Additionally, the complexity of AI models is increasing, which requires more
computing power for training, so the platform must be able to handle increas-
ingly complex AI algorithms. In summary, the platform should be scalable in
terms of its user base, data handling capacity, and ability to handle complex AI
models.
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3.4 Adaptability and Extensibility

Beyond the requirement for scalability in handling more complex AI algorithms,
there is another important aspect to consider: the platform’s adaptability and
extensibility. This is crucial because the field of AI is constantly evolving, with
ongoing research and new advancements being made. If the platform is designed
in a way that enables easy integration of these new developments, it can benefit
a wider range of users. By allowing for customization and flexibility in the
development of new AI models and algorithms, the platform can continue to
evolve alongside the latest advancements in AI, ensuring that users have access
to the most up-to-date and relevant tools and technologies. It is important to
note that this adaptability and extensibility need not necessarily be achieved
through the user interface alone. As AI experts are required to implement and
integrate these changes, they can be made directly at the code level.

3.5 Openness

Having open-source code is therefore a requirement for the platform so that
these changes can be made by as many AI experts as possible. Generally, public
access to the platform’s code offers further advantages. Firstly, it increases trust
in the platform, as independent experts can verify the internal workings of the
platform. Secondly, the platform also benefits from an open-source community
around it. This way, it can be developed faster, more efficiently, and cost-
effectively, and users can help each other with questions and problems.

3.6 Self-Hosting

Furthermore, in addition to the publicly available instance of the platform, it
may be important for some users to be able to deploy their own instance. This
allows for greater security considerations, as access can be heavily restricted. So,
the platform can also be used for data that requires a higher level of security,
expanding the use of AI in such areas. This is also another argument for making
the code of the platform open-source, as it enables the tracking of what precisely
occurs with the uploaded data.

4 Technologies

Now that we have identified the necessary requirements for a platform that
offers AI as a service, we will take a look at the technologies that we will use to
implement our own platform.

4.1 Kubernetes

In order to address the significant scaling requirements of our platform, we will
be utilizing the open-source container orchestration framework Kubernetes [9].
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By deploying Kubernetes in the cloud, we can take advantage of the auto-scaling
mechanisms provided by cloud providers.

Kubernetes provides a high level of abstraction by organizing available com-
puters as nodes and grouping them into a Kubernetes cluster. The platform’s
Control Plane API enables users to manage the state of their containers, while
the Control Plane itself distributes the workload in the form of pods to the
nodes. Pods are the smallest unit in Kubernetes and consist of one or more
containers that run on the nodes [10]. This approach allows us to efficiently
manage the scaling of our platform and ensure optimal resource utilization.

4.2 Service Mesh

A service mesh is a software infrastructure that enables managing and operat-
ing microservices-based applications. It provides a range of benefits, such as
improved scalability, reliability, and security. By using a service mesh, applica-
tion developers and operators can reduce the complexity of their architecture
while improving flexibility and agility. A service mesh allows developers to fo-
cus on application development without having to worry about the underlying
infrastructure, while providing operators with better control over application
traffic and security.

One of the main advantages of using a service mesh is its ability to provide
advanced traffic management capabilities. With a service mesh, operators can
manage and control the flow of traffic between services, allowing them to balance
the load and ensure optimal performance. Additionally, a service mesh can also
provide improved security features such as authentication and authorization,
allowing only authorized traffic to pass through.

Istio [11] is a popular open-source service mesh that provides a variety of
features such as load balancing, traffic management, security features like au-
thentication and authorization, as well as troubleshooting and monitoring. By
using Istio, developers and operators can reduce the complexity of microservices-
based applications by managing traffic between services within the application.
Overall, Istio is a powerful and flexible service mesh that helps developers and
operators operate microservices-based applications more effectively and securely.

4.3 Kubeflow Pipelines

While simple microservices can be deployed as native Kubernetes deployments,
our machine learning tasks require special treatment due to their need for sig-
nificant computing power and specialized hardware. To address this, we will be
using a workflow engine, specifically Kubeflow Pipelines [12], which is built on
top of Argo Workflow [13] - a workflow engine designed specifically for Kuber-
netes environments. With Argo Workflow, users can easily create, manage, and
run complex workflows, including creating workflow templates and executing
them with different parameters.

Kubeflow Pipelines provides additional ML functionality such as an artifact
store for data and models, visualizations for executions and metrics, and robust
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Figure 1: Example of a pet from the PetFinder dataset [14]. Fenny is a 5-year-
old dog (Type 1) that has not been adopted within 100 days (AdoptionSpeed
4)

features that increase the reliability of our workflows, such as automatic retries
and error handling. By using Kubeflow, we can ensure that our ML workflows
can handle errors and unexpected events gracefully and achieve greater efficiency
and reliability in our development process.

Kubeflow Pipelines is a component of the Kubeflow project, which is de-
signed to facilitate the development, deployment, and management of machine
learning models on Kubernetes. In addition to the pipelines component, it
includes support for Jupyter Notebooks to explore data and an interface to
TensorFlow to train and serve models. Kubeflow also offers model versioning
and monitoring, enabling users to keep track of their models’ performance over
time.

4.4 Ludwig

For our No-Code AI component, we will make use of Ludwig [3], a declarative
ML framework [7] that creates and trains ML models using a configuration file
as input. This configuration file specifies the input and target data types, as
well as other parameters needed for training, such as the optimizer, the loss
function, and the number of epochs. Ludwig’s declarative approach eliminates
the need to write low-level code, making it ideal for non-technical users who
want to build and train ML models easily.

This can best be demonstrated through an example, using the PetFinder
dataset [14]. This dataset contains information about animals in a shelter, such
as their name, age, or an image of the animal. The goal is to predict how quickly
these animals will be adopted, which is represented as categorical values in the
dataset. An AdoptionSpeed of 4, for example, indicates that the animal has not
been adopted within 100 days. An example is shown in the following figure ??,
and a Ludwig configuration for this task is shown in the next figure ??. The
configuration file defines the input and output columns and sets some additional
training parameters.

By providing intuitive selection options in a user interface, we eliminate the
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Figure 2: An example Ludwig configuration for the PetFinder dataset [14].
The input and output features are listed, along with some additional training
information.

need for manual writing of the configuration file. Additionally, we remove addi-
tional training parameters from the configuration process in favor of employing
techniques of hyperparameter optimization. This approach expands the search
space for AI models, reducing the potential for bias caused by an expert’s expe-
rience. Using a user interface, we can thus expand this low-code ML tool into
a no-code tool. This enables us to allow users with no technical experience to
interact with our platform.

5 Architecture

We will now explain how we combine various technologies to create our AI-as-a-
Service platform called Open Space for Machine Learning (Os4ML). Figure ??
illustrates the architecture of our platform.

Our platform is designed using microservices as its architectural pattern.
We have structured these microservices into a mesh topology that is accessible
through an API gateway, which we have implemented using Istio. This ar-
chitecture provides a flexible and scalable platform that enables developers to
access different microservices conveniently. The frontend and other components
can easily access the microservices through the API gateway, which simplifies
development and maintenance tasks.

One of the most crucial microservices in our platform is the Os4ml-Service. It
is responsible for managing our domain models and storing critical information
such as metrics and execution times. This service plays a vital role in providing
efficient and reliable machine learning solutions.

In addition, we have implemented the objectstore service, which offers a
dependable way to store and retrieve models and data. Furthermore, we have
the workflow service, which handles communication with the workflow engine.

8



Figure 3: Our architecture centers around the API Gateway, which serves as
the backbone of our platform by securely granting access to our microservices,
including the Os4ML Service, the Workflow Service, and the Objectstore Ser-
vice.

For our platform, we use Kubeflow Pipelines as our workflow engine. Both the
workflow engine and the objectstore service can share the same objectstore,
which ensures consistency and reliability in our platform.

Our frontend allows the user to upload data. In the background, the data is
transformed into an interface that is compatible with Ludwig (e. g., into Pan-
das dataframes), with data types detected and saved. We provide templates
for the workflow engine to create a Ludwig configuration and train a machine
learning model using the dataframe. These templates can be quickly and eas-
ily customized to create tailored machine learning models. Our platform thus
provides a user-friendly and effective way to train and deploy machine learning
models.

To ensure scalability, we deploy the entire system on Kubernetes, which
provides a robust and reliable platform for container orchestration. With Ku-
bernetes, our system can handle large volumes of data and easily adapt to
changes in demand. By breaking down the system into smaller, independent
components, we can maintain better control and reduce the risk of system-wide
failures. This architecture enables a flexible and scalable system that can effi-
ciently handle complex machine learning workloads.

6 Deployment

The requirements section has highlighted the need to allow the advanced users to
deploy the platform themselves. To achieve this, we have adopted a three-part
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Infrastructure-as-Code approach. In general, Infrastructure-as-Code involves
provisioning the necessary infrastructure using code so that it can be reproduced
or restored in a predictable manner. To implement this, we use the open-source
tool Terraform [15]. Our deployment process is divided into three steps: cloud
setup, Kubernetes cluster setup, and the actual deployment of our platform. If
steps 1 and/or 2 are not required because they already exist, the user can skip
directly to step 3.

We will be publishing the Infrastructure-as-Code scripts along with our ap-
plication code. This means that deploying the platform will only require a single
command, in our case, ’terraform apply’. This will greatly reduce the time and
effort required for the deployment process, making it more efficient and user-
friendly. Additionally, this approach ensures consistency in the infrastructure
setup, reducing the possibility of errors caused by manual configuration.

In order to realize step 3 of our deployment process, we utilize the declarative
GitOps continuous delivery tool ArgoCD [16]. This provides the administrators
of individual instances with access to updates to the platform as well as a
pre-packaged monitoring solution. By utilizing ArgoCD, we can automate the
deployment process, allowing for seamless updates and streamlined management
of our platform. Additionally, the use of declarative configurations ensures that
our infrastructure remains consistent across all environments, reducing the risk
of configuration drift and ensuring high reliability.

7 Accomplishments and Contributions

We are thrilled to report significant progress made on our AI-as-a-Service plat-
form, ”Open Space for Machine Learning”7, and are eager to share the goals
we’ve achieved and contributions we’ve made.

7.1 Transforming Ludwig from Low-Code to No-Code

Our most noteworthy accomplishment is the creation of a user-friendly frontend
that has transformed Ludwig, our low-code ML tool, into a no-code tool. With
our efforts, we have opened up the platform to a broader range of users, including
those with little to no experience in machine learning, who can now effortlessly
train and deploy AI models without the need to write any code. Our innovation
has revolutionized the industry, making machine learning accessible to anyone.

7.2 Integrating Multiple Open-Source Tools

Another proud achievement is our integration of several powerful open-source
tools, such as Istio, Kubernetes, and Kubeflow, into our platform, creating a
blueprint for highly scalable AI applications. This has opened up new avenues
for exploring the potential of AI.

7https://www.os4ml.com/
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7.3 Cloud-Enabled Platform with Self-Hosting Option

Furthermore, we have made our platform cloud-agnostic and easy to deploy for
the community. This approach allows us to take advantage of the benefits of
cloud computing, such as scalability and cost-effectiveness, while still providing
the option for users to self-host our platform on-premises. By enabling easy
deployment, we have made it simpler for the community to take advantage of
our AI-as-a-Service platform, including those dealing with sensitive data.

Overall, we are proud of our contributions to the AI community and look
forward to continuing to push the boundaries of what is possible in the world
of machine learning.

8 Summary & Outlook

In this article, we have demonstrated that the next step in AI democratization is
the provision of AI as a service through a platform. However, current solutions
have not been satisfactory, leading us to collect requirements for such a platform.
We have shown how we use existing open-source solutions and add our own
components to meet the collected requirements. Our platform is also available
as open source8, enabling further collaboration and development towards more
accessible AI solutions. Now that the foundational work is complete, the next
step is to enhance the AI component. One area of improvement would be to
incorporate an explainable AI mechanism. This would provide valuable insights
into the trained model’s decision-making process, thereby increasing trust and
transparency.
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