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Abstract. Environmental and human benefits of Urban
Green Spaces (UGSs) have been known for a long time.
However, the definition of a reasonable greening strategy
still remains challenging due to the lack of sufficient base-
line information as well as a lack of consensus what con-
stitutes a UGS. Therefore, accurate identification of the ex-
isting green spaces in cities is crucial for developing UGS
inventories for urban planning and resource management
activities. In this paper we explore the potential of freely
available highest resolution multi-spectral remote sensing
imagery to identify large homogeneous as well small het-
erogeneous UGSs. The approach of using a Random For-
est classification on Sentinel-2 imagery is shown to be use-
ful to identify various UGSs with a 97 % accuracy. Freely
available data and a relatively straightforward implemen-
tation of the proposed approach makes it a valuable tool
for decision and policy makers.
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1 Motivation

The list of services provided by Urban Green spaces
(UGSs) is very extensive: e.g., reduction of urban heat is-
lands (Sun and Chen, 2017), improvement of micro cli-
mate in densely populated urban centers (Buyadi et al.,
2013), and positive effects on human well-being (Reyes-
Riveros et al., 2021) are only few of these services. Precise
maps of UGSs should provide a basis for urban planners
and resource managers (Chen et al., 2021). Yet, two ma-
jor questions have not been adequately addressed: which
types of green spaces do exist (ontology) and how to pre-
cisely and cost-effectively map all the different UGS types
(identification).
A typical source of detailed UGS information are Land
Use and Land Cover (LULC) maps. At the European level,
the Urban Atlas (UA) (Montero et al., 2014) is one of the
most frequently used ones. Additional information can be
found for instance in Open Street Map (OSM) or in maps

and geo-databases provided by local authorities. In our
search, we stumble upon the fact that on the one side de-
tailed local LULC maps are not free of charge or simply
do not exist; on the other side, UA is not detailed enough
to represent UGSs at different scales, sizes and types. Due
to the minimum mapping unit (MMU), only green spaces
larger than 0.25 ha are included into the UA (Ludwig et al.,
2021). Further, the role of small green spaces is not always
well understood (Semeraro et al., 2021), and this could be
another reason why e.g., urban gardens that store consid-
erable amount of greenery, are part of the class "sports and
leisure activity" instead of the UGS class. These observa-
tions show that there is a need to establish which types
of green spaces might exist in an urban area, their sizes
and whether they are spatially heterogeneous or homo-
geneous. It is then a policy decision, which of the green
spaces should be included in the UGS class. This infor-
mation should serve as a basis for the creation of detailed
UGS maps.
Most novel approaches to develop LULC maps include
the usage of remote sensing (RS) data and an implemen-
tation (or application) of machine learning (ML) or deep
learning (DL) techniques (Abdi, 2020; Singh et al., 2021).
The mapping of UGSs is approached in a similar manner
(Huerta et al., 2021; Chen et al., 2021). The success of
an accurate mapping of UGSs depends on many factors,
of which the accuracy of the input data, its spatial resolu-
tion and the selected classification methods are the most
common ones. Depending on the final aim and level of
detail, authors utilize medium resolution Landsat imagery
(Huang et al., 2018) as well as high resolution Sentinel-2
imagery (Chen et al., 2021) and very high resolution im-
agery (Haase et al., 2019; Huerta et al., 2021). The lat-
ter approach appears to be particularly helpful to identify
small-scale UGss, such as greenery in front and backyard
gardens (Haase et al., 2019). The drawback of very-high
resolution imagery is in its acquisition costs and the in-
creased processing costs. Therefore, many authors utilize
freely available geodata and heavily rely on the perfor-
mance of the selected classification method.
Random Forest (RF) as an ensemble machine learning
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(ML) classification method is the most frequently used
LULC classification technique. Many studies including,
but not limited to Talukdar et al. (2020) and Abdi (2020)
confirm that a combination of Sentinel-2 data with es-
pecially RF has a great potential to accurately classify
LULC. The usage of RS data for UGSs is challenging in
terms of the mixed pixels and spectral variability of vege-
tation (Chen et al., 2021). Yet many studies show that RF
can successfully deal with these challenges and produce
accurate LULC maps (Phan et al., 2020; Feng et al., 2015).
Consequently, in this paper, we investigate the potential of
the combination of Sentinel-2 data together with the RF
classification method to identify those UGSs in the study
area that are both spatially homogeneous (e.g. forest) and
heterogeneous (e.g. greenery in gardening areas) and have
different sizes (large, small). We also evaluate the quality
of the utilized approach in terms of its accuracy and im-
plementation ease for decision and policy makers.

The paper is structured as follows: the following section
details the workflow of the automated classification pro-
cess, including a description of preparing the geodata (de-
riving diverse indices), training data acquisition as well as
the classification modelling using Random Forest. Section
3 presents the results for our case study area. In section
4, we discuss the results and conclude with insights and
future work.

2 Workflow of the classification process

We identify UGSs in Augsburg, Germany with a combi-
nation of RS data and the RF ML method. The study area
is comprised of different UGS types such as forest, parks,
green corridors alongside roads and rivers, urban garden-
ing areas and others. The total size of the study area is ap-
proximately 147 km2. According to the UA, this includes
38km2 of forest and 6 km2 of green urban areas. These
figures do not include greenery in gardening areas that are
part of the sports and leisure facility class in the UA as well
as greenery between and around residential and industrial
areas.
The workflow of the UGS classification approach imple-
mented in this study is given in Fig. 1 and described in the
the following sections.

2.1 Preparation of RS data

In this analysis we utilize single date Sentinel-2A imagery
from 14th of August 2021. Sentinel-2 is a multi-spectral
imagery, collected in 13 spectral bands with a spatial res-
olution varying between 10-60 meters. For the analysis
we download the freely available data from the Coper-
nicus Open Access Hub1. Sentinel-2A data has already
been radiometrically, geometrically and atmospherically
corrected. Therefore,in the pre-processing step we only
define the correct coordinate reference system, resample

1https://scihub.copernicus.eu

Figure 1. The Flowchart of UGSs classification using RS and
ML method.

all the bands to a 10m spatial resolution and clip them to
the extent of the study area. We further use the bands 2-8
and 8A in the analysis. These pre-processed spectral bands
serve as basis for the calculation of vegetation indices.

2.1.1 Vegetation indices

Vegetation Indices (VI) are mathematical combinations
of different spectral bands of remotely sensed data.
They prove themselves useful as they reduce soil, and
atmospheric effects as well as enhance the information
contained in single spectral bands. Further, these indices
help to bring out the variability in the vegetation character-
istics (Viña et al., 2011). As we intend to identify UGSs,
which consist of different types of greenery, we choose
the following vegetation indices from the Sentinel-2 index
database (Henrich et al., 2009): Normalized Difference
Vegetation Index (NDVI), Normalized Difference Water
Index (NDWI) and Soil-Adjusted Vegetation Index
(SAVI). In the following, we provide short descriptions
of the selected indices as well as the equations used to
calculate them.

NDVI
NDVI is used to differentiate healthy vegetation and based
on the knowledge that chlorophyll absorbs the red light
while the mesophyll leaf structure scatters near-infrared
light (NIR). NDVI values range from -1 to +1, where pos-
itive values represent healthy vegetation and negative val-
ues indicate an absence of or sparse vegetation (Myneni
et al., 1995).
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NDV I =
NIR−Red

NIR+Red
(1)

NDWI
NDWI is a VI that helps to delineate healthy vegetation
versus vegetation affected by drought or water shortage
as it is sensitive to changes of the liquid water content of
vegetation. It is calculated based on the ratio of NIR and
green bands (Gao, 1996).

NDWI =
Green−NIR

Green+NIR
(2)

SAVI
VIs can be affected by background noises such as soil
brightness, soil moisture and saturation effects from high
density vegetation. To reduce this noise, transformation
techniques are developed and applied to create new in-
dices. SAVI is one of these indices and it helps to mini-
mize the soil brightness noise that might be present in e.g.,
NDVI. It is calculated based on red and NIR bands while
applying an additional canopy background adjustment fac-
tor (Huete, 1988).

SAV I =
(NIR−Red) ∗ (1+L)

NIR+Red+L
(3)

where L is a soil brightness correction factor. In this study
L is equal to 0.5 as this value is suitable for most land
cover types.

2.2 Training data acquisition and Software
availability

The amount and the quality of the training data, apart from
being a key part of the classification procedure, can have a
large impact on the actual classification accuracy (Millard
and Richardson, 2015). We collect training data for model
development using very-high resolution Google Earth im-
agery as well an orthophoto. Since we perform two class
classification, we sample data that is either UGSs or any
other LULC type (e.g. roads, buildings, water). We ex-
plicitly pay attention to include samples from all possi-
ble greenery types such as deciduous and coniferous trees,
herbaceous parks etc. Yet, we keep out areas that do in-
clude "greenery" which is not an UGS, e.g. pitches. We
randomly distribute the training points over the study area
as suggested in Millard and Richardson (2015).
We further confirm the accuracy of the training points sam-
ples using a very-high resolution orthophoto. Only cor-
rectly sampled points are later included into the analysis.
In total, 1500 pure training points, in a 50:50 ratio for both
classes (green vs anything else), are utilized in the final
models. There is no accepted training data size in the ex-
isting literature that can perfectly suit every spatial classi-
fication task. Therefore, we proceed with 1500 points as

they adequately represent our both classes.
The pre-processing of the data and the classification anal-
ysis have been performed using R software (R Core Team,
2020). For reproducibility purposes, we provide bands of
the Sentinel-2 image, a portion of the training data as well
as the complete R code here: https://doi.org/10.6084/m9.
figshare.19551022.v1. We complement the R code with
necessary comments for ease of understanding.

2.3 Random Forest classification modelling

In order to identify all the existing green spaces in the
study area we use a Random Forest (RF) classification
method. RF as proposed by Breiman is an ensemble learn-
ing method that can be utilized for both classification and
regression tasks (Breiman, 2001). We choose RF due to
its proven high performance with noisy data and its in-
sensitivity to the initialization of parameters (Dong et al.,
2019). In the process, RF implements bootstrap sampling
(random sub sampling) to grow the forest and the major-
ity of votes by each tree determines the final classifica-
tion result. RF allows the optimization of the the results
by a parameter tuning process. Two parameters that can
be manipulated are the number of variables used to split
a node (mtry) and the number of trees grown in the for-
est (ntree). Unlike many other classifiers, an increase in
the ntree leads to an improved classification performance
(Breiman, 2001). Thus, this parameter must be wisely ad-
justed.
For identification of UGSs, apart from the RF model,
we also explore the potential of single spectral bands of
Sentinel-2 data (Model 1), VIs derived from the spectral
bands (Model 2) and a combination of spectral bands with
VIs (Model 3). Thus we build three different RF models
including the mentioned variations. Here, we use the 10
fold cross validation approach for training the model. It is
a data partitioning strategy, where RF utilizes 9 parts of the
data set to train the model and one part to test the model.
The process is repeated until all the parts have been trained
and tested. This approach is less biased in comparison to
the traditional train/test split. The performance of the RF
classifier is assessed with the overall classification accu-
racy and the out of bag error rate (OOB), sensitivity and
specificity values. After we find the model with a satisfac-
tory accuracy, we use this model to make predictions on
the whole study area.
Based on the final prediction we calculate the total amount
of greenery identified with the RF classification. We fur-
ther inspect the UGS types, which the identified areas be-
long to. For comparison purposes we refer to the latest Ur-
ban Atlas.

3 Results

In this work we classify Sentinel-2 imagery using three RF
models in order to identify all UGSs in the study area. We
run each RF model three times, each with various com-
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binations of explanatory variables in order to evaluate the
efficacy of these variables. (Table 1).

Table 1. Table of implemented RF models and explanatory in-
formation.

Model 1 contains bands 2-8 and 8A of the Sentinel-2 im-
agery. The accuracy of the model reaches about 90 %. We
then check which predictor variables have the highest in-
fluence on the prediction accuracy. The variable impor-
tance calculation shows that the red and NIR bands bring
the highest contribution to the model accuracy. We repeat
the same procedure with Model 2, which contains the VIs,
namely NDVI, NDWI and SAVI. The accuracy of the clas-
sification hits nearly 98 % with the NDWI and SAVI in-
dices being the slightly more influential explanatory vari-
ables. The performance of the final Model 3, which con-
tains raw spectral bands and VIs as predictive variables, is
at around 97 %. SAVI, NDVI and Red band appear to be
the most contributing predictive variables.
Comparing the three models, Model 3 has a slightly better
performance in terms of all accuracy estimates, especially
the sensitivity (ability to predict true positives) and the
specificity (ability to predict true negatives) of the model.
Therefore, we use Model 3 as the final model to make pre-
dictions to the whole study area.

In total we classify approximately 56 km2 of UGSs seen
on Fig. 2. We further perform detailed examinations of the
results and compare them with the Urban Atlas (UA). We
calculate the area of the same UGSs class in UA and in
the RF classification. The post-classification examination
reveals that RF identifies 36 km2 of forest UGSs in the
study area that constitutes of 38 km2 in the UA. The class
Green urban spaces of the UA covers 6 km2 of the study
area while RF classify 4.3 km2 into the same category.
The class Sports and Leisure activity of the UA includes
urban gardening areas among other classes. The area of
this class in the UA is around 6 km2 and within this class
RF identifies about 3 km2 of green space. Another 13 km2
accounted for green space by RF are covered by different
land uses in UA.

4 Discussion and Conclusions

In this paper, we aim at an automated identification of all
possible green spaces in a study area, especially the ones

Figure 2. Results of the UGS classification using Sentinel-2 and
RF method.

that are not a part of LULC maps or are considered under
different LULC classes. For this purpose, we first eval-
uate whether single spectral bands or Vegetation Indices
(VIs) or the combination of both can help to precisely
identify green spaces. The results reveal that the selected
approach has great potential in green space classification.
However, there are no dramatic differences between the
implemented models and both single bands as well as VIs
are performing well. We use VIs to emphasize the spec-
tral behavior of vegetation in contrast to other targets on
the surface and because according to Viña et al. (2011),
VIs are shown to be helpful to distinguish vegetation. Yet,
similarly to da Silva et al. (2020), we do not observe sig-
nificant performance differences between the selected VIs.
We chose Random Forest (RF) as a classifier based on its
high performance in the existing literature, such as Abdi
(2020) and Talukdar et al. (2020). RF is also straightfor-
ward in its implementation and the results are relatively
easy to interpret. Our expectation is mostly fulfilled as in
our setup RF reaches a very high classification accuracy in
every model.
Many model validation approaches do exist. On one hand,
we can calculate statistical measures such as overall clas-
sification accuracy, OOB error rate and others (Dong et al.,
2019). On the other hand, ground truth data can be used to
validate the classified areas (Carranza-García et al., 2019).
In this study, we rely on the first approach. The overall

AGILE: GIScience Series, 3, 38, 2022 | https://doi.org/10.5194/agile-giss-3-38-2022 4 of 6



accuracy of the final model is around 97 % with espe-
cially high rate of correctly classified true positive and
negative classes. Since we use the model trained on nearly
1500 training points and make final predictions on the total
study area, there is a need to validate predictions outside
of those 1500 training points. However, ground truth data
collection is time and labor expensive. Therefore, we con-
duct a visual confirmation study using very high resolution
Orthophotos.
Our visual examination confirms that although overall
classification is very good, there are still areas that are
wrongly classified. This can be observed in areas such as
narrow river banks or in areas with very heterogeneous
green-space vs build-up-area composition. We think this
might be due to the spatial resolution of the utilized data.
Sentinel-2 is considered high resolution remotw sensing
data (Chen et al., 2021), yet we find a 10m resolution to
be still too coarse for reliable identification of greenery
in such complex areas as urban gardens or back and front
yard gardens as well as very patchy green spaces e.g. be-
tween buildings.
The outcome of this study shows that greenery in large
and homogeneous areas such as forests and parks can be
very accurately identified using Sentinel-2 data with the
RF classification. For instance, RF identifies about 2 km2
less vegetation in the forest than the urban atlas (UA).
UA generalizes and smooths the polygons and thus elimi-
nates very small patches that belong to another class. This
combination of data and method can also very well dis-
tinguish between UGSs and e.g. ball pitches that are also
"green". Further, the green corridors alongside water bod-
ies and roads are also well detected with the used method-
ology unless the corridors are too narrow and the 10m
resolution is not sufficient. In this case the usage of even
higher resolution data is required. Finally, we can also de-
tect the green areas that exist in urban gardens or back and
front yard gardens. Urban gardens are included in the sport
and leisure facility class in UA, while our results show
that in the study area this class accommodates nearly 3
km2 of greenery. Back and front yard gardens are typi-
cally privately owned and do not appear in LULC maps.
Further, we acknowledge the need of usage of very high
resolution imagery also in this case, as gardening areas a
very small and the precise detection of vegetation is not
very accurate with Sentinel-2 data. The successful exam-
ples of usage e.g. RapidEye for garden vegetation identi-
fication, is showcased by Haase et al. (2019). Finally, we
identify a substantial amount of vegetation between and
around residential and industrial areas. This information,
to our knowledge, is not included in any LULC map. How-
ever, these areas also contribute to the overall greenness
of cities. Similarly to gardening areas, this type of UGSs
might be better to identify with very high resolution im-
agery.
Concluding, the approach proposed in this study is well
suited for the studies or decision making processes that
require knowledge of the overall amount of greenery in
urban areas. However, if the task is to identify how many

different green space types exist such as parks, gardens 
etc., there is a need of a more object oriented classifica-
tion approach. In our future studies we will concentrate on 
the latter one by using a combination of RS imagery and 
machine learning/deep learning methods.
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