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Summary: Research in human wayfinding shows, that integrating landmarks in route descriptions 

increases the success rate of navigational tasks for pedestrians. The salience of such landmarks is 

commonly measured using so called landmark dimensions. However, data collection for their 

attributes is difficult and time-consuming. A new promising data source emerged with the rise of 

geolocated social media content. We present a model to identify landmarks based on a social 

dimension using this content. We calculate a GeoSocial Score of objects in Augsburg using measures 

harvested from geosocial data and compare the outcomes with results of a survey. We conclude that 

geosocial data represent a reliable source of information to identify landmarks for pedestrians.

Introduction 

Landmarks are important elements for the communication of route descriptions, the 
orientation in, and navigation through space (Lynch, 1960; Allen, 2000; Michon and Denis, 
2001). Most authors dealing with landmark identification build on the definitions of 
Sorrows & Hirtle (1999) and Raubal & Winter (2002) for landmark dimensions. These are 
the visual, the semantic, and the structural dimension. Other approaches focus on 
perceptual, cognitive, and contextual dimensions to model landmark salience (Caduff & 
Timpf, 2008). However, all of these approaches have in common that they need a wealth of 
different data sources to collect the information for all the attributes of these dimensions 
(Nuhn & Timpf, 2017). Due to the lack of data density, landmarks have hardly been picked 
up in actual, running navigation systems for pedestrians (Richter, 2017). The only service 
so far offering landmark-based verbal instructions is Whereis (Duckham et al., 2010). The 
underlying approach uses categories, which requires only data of an object’s type and 
geographic location to determine an object's suitability as a landmark. However, this 
approach is based on the exploitation of points of interest (POIs) while landmarks are not 
limited to POIs (Richter & Winter, 2014). 

These drawbacks can be overcome by using the social dimension, which describes “the way 
an object is practiced and recognised by a person or a group of people” (Quesnot & Roche, 
2014 (p.1)). Since we are living in a ’geo-data-rich society’ (Boulos, 2005), geospatial 
information to feed the social dimension is more accessible than ever. Volunteered 
Geographic Information that is produced by a large number of private citizens (Goodchild, 
2007) includes data collected in social web platforms, such as Google place types (Google 
Place Types, 2022) and Foursquare (Foursquare, 2022). Quesnot & Roche (2014) argue 
that geosocial data represent a reliable source of information to precisely measure landmark 
semantic salience in an urban area. Their approach is based on Social Location Sharing, 
which consists of a check-in, which claims “I am/was at that place”. Quesnot & Roche 
(2014) do not include Google Places API because it does not provide the information about 
check-ins. However, the Google place type, which describes an objects function, is a 
valuable source to identify social landmarks. We base our calculations on the user-
generated Google place database, which is regularly updated by internet users (Quesnot & 
Roche, 2014). Furthermore, we consider Foursquare data, since they are a valuable source 
for the extraction of attributes regarding social prominence. We develop a GeoSocial model 
considering a social dimension and argue, that the model fed with data from Google place 
types and Foursquare is capable to identify landmarks, which would also be selected by 
humans. We apply the model in a pedestrian navigation scenario, where landmarks should 
be identified to be included in route directions. Finally, we evaluate the model by 
comparing the outcomes to the results of a survey. 
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GeoSocial Model – Basics 

Our model considers the attributes place type, uniqueness, social prominence, and social 
activity to quantify the social dimension. We assign salience values to each place, based on 
these attributes and calculate a GeoSocial Score (GSS) to quantify the social salience of an 
object at a decision point (DP). 

Place Type 

We extract place types from Google Places database within a 50 meter radius around a DP. 
We assign all these places a salience value, based on the object’s category of place type. 
Rousell and Zipf (2017) derive OSM place types, which are stored in each features attribute 
table, and reclassify them into broader, more general place type categories. They assign a 
weight value to each category, based on previous work of Duckham et al. (2010). We adapt 
their categorisation and transfer it to Google place types (Tab. 1). We introduce the weight 
values as tweight in our model. 

Tab. 1: Place type category weight system. 

Category tweight Google Place Types 

shopping 0.8 clothing store, drugstore, jewelry store 
grocery 0.8 supermarket, grocery store 

gastronomy 0.7 café, bar, restaurant, bakery 

health 0.5 doctor, dentist, pharmacy 

office 0.5 insurance agency, lawyer, government office 

service 0.5 hair care, travel agency, bank 

transportation 1.0 rail station, transit station 

religion 1.0 church, place of worship 

leisure 1.0 park, plaza, sport facilities 

tourist attraction 1.0 fountain, monument, theater 

Uniqueness 

Uniqueness investigates places and objects, where their associated function stands out in 
contrast to nearby objects (Quesnot and Roche, 2014). Following Rousell and Zipf (2017) 
and Quesnot and Roche (2014), we calculate the uniqueness score of an object as the ratio 
between the amount of places with the same place type (LMtype) and the total amount of 
objects in a 50 m radius at a single DP (LMtotal). The result of this is subtracted from 1. In 
order to utilise the uniqueness metric in the GeoSocial Score as a weight multiplier, we 
apply a normalisation function to re-scale all values into a new range of 0.7 - 1.0. We 
choose the lower bound of uniqueness higher than 0 because of the multiplication of 
factors. We set the lower bound to 0.7 to avoid an overly low GSS which would result in 
case we would, e.g., use a lower bound of 0.001. Highly unique candidates get a unique 
value close to 1, while less unique places are close to a value of 0.7 ( Eq. 1). 

unique = 1 – (LMtype/LMtotal)  norm0.7-1.0. (1) 

Social Prominence 

Bernardini and Peeples (2015) describe prominence as the ’Viewership’ of elements in the 
landscape, in other words, the total number of viewers. In case an environmental feature has 
a great viewership, it is referenced a lot of times and thus perceived as salient. Each 
registered Google place can be reviewed by rating the place and leaving a written review. 
We apply a normalisation method per set of objects at a DP. The most reviewed place at a 
DP gets a weight value of 1.0, while the lowest rated place gets a weight value of 0.5 (Eq. 
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2). This means that the normalisation range for social prominence is with 0.5 higher than 
the range for uniqueness, since we consider social prominence as more important in this 
work. 

prominence = LMreview  norm0.5-1.0. (2) 

Social Activity 

The two indicators derived from Foursquare are the amount of likes and the number of 
uploaded photos of a place. These indicators reflect the social activity of objects (Eq. 3). At 
each DP the range of objects’ social activity score is re-scaled into a range of 1.0 for the 
lowest values and 1.3 for the highest values. This is due to the fact, that some places do not 
have any Foursquare data, namely no measurable social activity. This way, they remain 
unchanged when multiplied by a 1.0 weight but are normalised to the same range size (0.3) 
as uniqueness. 

activity = LMlikes + LMphotos  norm1.0-1.3. (3) 

GSS 

We multiply the weights for the place type, the uniqueness, as well as the social 
prominence and activity to obtain the GSS (Eq. 4) for each object at a DP. 

GSS = tweight ∗ uniq ∗ prominence ∗ activity (4) 

Eq. 5 shows the calculation steps for a ’Starbucks’ café. We apply a tweight = 0.7 for the 
place type category gastronomy (Tab. 1). There are 5 other objects at the DP, making the 
café the least unique place type (uniqueness = 0.7). The ’Starbucks’ café has 510 reviews 
(prominence = 0.61) and 23 likes and fotos (activity = 1.018). The resulting GSS is 0.30. 

GSSStarbucks = 0.7 ∗ 0.7∗ 0.61∗ 1.02 = 0.30 (5) 

Fig. 1: Investigation area. 
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GeoSocial Model – Application 

In this chapter we demonstrate the GeoSocial Model. We use a part of the inner-city of 
Augsburg as investigation area (Fig. 1). We harvested the data for this study between 
September and October 2021 from Google Places and Foursquare.

Place Type and Uniqueness 
We identify 116 places in the investigation area. The place type and the resulting place type 
uniqueness are the first parameters in the GSS. With a total amount of 473 tags, each object 
has 4 tags on average. We classify the place types into the place type categories (Tab. 1). 
Fig. 2 shows the overall distribution of place type categories. The high number of shopping 
(47) and gastronomy (25) places is typical for pedestrian downtown areas.

Fig. 2: Place type category in the investigation area. 

Social Prominence 

In order to eliminate noise that derives from Google Places, all places in the investigation 
area with less than 10 reviews are not used for further analysis. In total, 16904 reviews 
were extracted. Tab. 2 shows the most reviewed places on Google by place type category, 
highlighting the best place per place type. The ’McDonalds’ is the most prominent place in 
the investigation area followed by the ’Starbucks’ and ’Dunkin’ Donuts’. All three of them 
are listed in the leading quick service restaurant companies of Germany by 2019, with the 
same hierarchical relationship (Statista, 2019). This may indicate that the social prominence 
of gastronomy places is linked to the quantitative popularity in Germany. 

Tab. 2: Social prominence - most reviewed places by type. 

Name Category Reviews 

McDonald’s Restaurant Gastronomy 2376 

Thalia Shopping 1577 

Travel agency Service 523 

REWE Grocery 479 

St. Anne’s Church Religion 295 

Weberhaus Tourist Attraction 204 

Königsplatz Parc Leisure 187 

OZA Health 142 

Stadtwerke Customer Centre Office 108 

Moritzplatz Transportation 22 
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The three most reviewed shopping places are the ’Thalia’ bookstore (1577 reviews), 
’SCHMID’ (1128) clothing store, and the ’o2 Shop’ (898). All of these mentioned places 
are chains that are present in several cities. This may also indicate that the quantitative 
popularity in Germany is linked to the local social prominence in the investigation area. 
More regional and local points-of-interest like St. Anne’s Church (295), Weberhaus (204), 
or Moritzplatz (22) tend to have lower social prominence values. 

Social Activity 

Out of 116 places in the investigation area, 31 places show Social Activity derived from 
Foursquare database. In other words: only 26.72% of Google Places have associated 
Foursquare activity data. All places with type tourist_attraction in the investigation area 
show social activity. These places have on average 4.8 uploaded photos. Most photos are 
uploaded for the Fuggerdenkmal (Fig. 5). The other place types show similar patterns, with 
gastronomy and shopping covering 67.7% of all social activities. 

GSS 

Fig. 3 shows a scatter plot of the GSS for all 116 places. It is visible that most shopping 
places show low scores, with a few exceptions. These exceptions are prominent and draw 
great social significance. Gastronomy places scatter the most with diverse GSSs across the 
whole scale. Health, office, and service places reveal to be not socially active. The 
remaining place types tend to achieve higher scores of the GSS (tourist_attraction, grocery, 
leisure, and religion). 

Fig. 3: GSS by place type. 

GeoSocial Model – Evaluation 

We compare the results of the GeoSocial model to the results of a survey. 51 participants 
selected at DPs in the inner-city (Fig. 1) objects useable as a landmark (Nuhn, 2020). We 
assign the number how often it was selected as a landmark to each object in the 
investigation area and compare this metric to the normalised GSS (highest GeoSocial Score 
at DP is 100%, the lowest is 0%). Then, we calculate a Pearson Correlation Coefficient. 
The  coefficient indicates a moderate correlation (0.613) (Asuero et al., 2006). This 
suggests, that the GSS outputs similar objects as landmarks as the survey participants 
choose, but some adaptations might be needed in future work (see Conclusion and 
Outlook). Tab. 3 – Tab. 5 show the results of the comparison for 3 selected DPs (Fig. 4 – 
Fig. 6). 

• DP 3: The model and the survey participants identify both the cultural building ’Weberhaus’
as most prominent landmark (Tab. 3, Fig. 4). There is one building, which hosts multiple
places belonging to shopping, gastronomy, and transportation (Fig. 4, Moritzplatz). We
select the place with the highest score as a representative for that building polygon since
most people associate one specific function with a building and often may not recognise
multiple functions of a building.

• DP 4: The tourist attraction Fuggerdenkmal achieved the highest GSS and is selected the
most from the survey participants (Tab. 4, Fig. 5). One building has no Google place type
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although it hosts a museum. We extracted place types within a 50 meter radius around a DP. 
However, the Google place of the museum is not located within the radius. This is because 
the place types are located at the centroid of the polygons. Thus, in this case, the GSS 
cannot be calculated. 

• DP 8: St. Anne’s Church reaches the highest GSSs (Tab. 5, Fig. 6). It is not accessible from
the DP and, additionally, is located behind a wall (Fig. 6). We assume that reviews, likes,
and photos have been taken from people who entered the church from a DP on the other site
of the church. The survey participants did not select St. Anne’s Church but “Dr Scherer” as
the most outstanding landmark. We believe that the participants did not select this landmark
because of its health category but because of its function as a bank (Kreissparkasse) which
is recognisable by an explicit mark. One building is missing in both, Google Places and
Foursquare, since it was neither reviewed nor liked. Thus, the GSS cannot be calculated.

Based on these findings we can confirm that the model fed with data from Google place 
types and Foursquare is capable to identify landmarks, which would also be selected by 
humans. However, there might be adjustments necessary to improve the Geoscoial Score, 
which are discussed in the next Section. 

Fig. 4: DP 3. 

Tab. 3: GSS DP 3. 
Name Category Prominence Activity GSS Landmark 

Selection 

Weberhaus Tourist Attraction 204 9 1 42 
Kutscher + Gehr Shopping 129 0 0.33 0 
Moritzplatz Transportation 22 0 0.32 5 
cheapenergy24 Service 132 0 0.17 3 
Dr. Anstett Health 38 0 0.03 1 

Fig. 5: DP 4. 
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Tab. 4: GSS DP 4. 
Name Category Prominence Activity GSS Landmark 

Selection 

Fuggerdenkmal Tourist Attraction 143 14 1 39 
nineOfive Gastronomy 270 3 0.71 6 
Siller&Laar Shopping 70 3 0.21 0 
Perfumery Shopping 71 2 0.21 0 
Hofpfisterei Gastronomy 17 0 0.18 0 
Building (Museum) - - - - 6 

Fig. 6: DP 8. 

Tab. 5: GSS DP 8. 
Name Category Prominence Activity GSS Landmark 

Selection 

St. Anne’s Church Religion 295 23 1 9 
Fountain Tourist Attraction 14 1 0.24 15 
Studio Shopping 43 0 0.08 1 
Dr. Scherer Health 48 0 0.04 23 
Building - - - - 3 

Conclusion and Outlook 

The Geosocial data, Google and Foursquare, represent a reliable source of information to 
identify landmarks for pedestrians. However, several problems still need to be addressed in 
future work. Our attributes are scaled only locally, that is there is always an object with the 
maximum GSS for each DP, independent of the absolute numbers of, e.g., views, likes, or 
photos. Thus, an alternative might be a global GSS for all the decision points. However, 
then, we need to find a solution for DPs where no landmark is identified. Additionally, 
recency of likes and reviews could be considered in future adaptations of the GSS. For 
example, a place with more current ratings could be more prominent than one with older 
ratings. Furthermore, we noticed that sometimes no reviews, likes, or photos are available 
for a specific object (compare DP 8). Moreover, sometimes not the landmark with the 
highest GSS, but another landmark seems more important to humans (compare DP 8). 
Additionally, landmarks with a high GSS might be located at a street intersection but not 
identified as most important for participants, since they are not accessible from the DP 
(compare DP 8). Furthermore, the location of the place type might not fall in a 50 meter 
radius around a DP (compare DP 4), although it could be an important landmark at the DP. 
The landmark dimensions can consider attributes such as accessibility in the structural 
dimension and the availability of explicit marks in the semantic dimension. Thus, the 
combination of our social dimension with the conventional landmark dimensions, seems 
promising for future work. 
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