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Abstract

We prove several stability estimates, comparing solutions driven by different (bi, σi),
both for Itô and Stratonovich SDEs, possibly depending on negative Sobolev norms
of the difference b1 − b2. We then discuss several applications of these results to
McKean–Vlasov SDEs, criteria for strong compactness of solutions and Wong–Zakai
type theorems.
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1 Introduction

In this paper we consider multidimensional singular SDEs of the form

dXt = bt(Xt) dt+ σt(Xt) dWt, X
∣∣
t=0

= X0 (1.1)

where b : [0, T ] ×Rd → Rd, σ : [0, T ] ×Rd → Rd×d and W is a d-dimensional Brownian
motion. The interval [0, T ] is finite, although arbitrarily large, and the initial condition
X0 is possibly random, with finite m-moment for suitable m ∈ [1,∞), and independent
of W . The drift b is integrable, possibly unbounded; b and σ will be always assumed to
satify relatively standard assumptions under which strong well-posedness is known to
hold. To properly formulate them, let us first define for β ∈ [0, 1] the sets

Jβ :=

{
(p, q) : p, q ∈

( 2

2− β
,∞
)
,

2

q
+
d

p
< 2− β

}
;

we will be mostly interested in considering J0 and J1. In the next statement, given
p, q ∈ [1,∞], we will use the short notation LqtL

p
x to denote the Lebesgue–Bochner space

Lq([0, T ];Lp(Rd)); see the end of the introduction for a summary of the main notations
used throughout this paper.
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Stability estimates

Assumption 1.1. The following hold.

(Hb) There exist (p1, q1) ∈ J1 such that b ∈ Lq1t Lp1
x .

(Hσ1 ) There exists a constant K such that σ is uniformly bounded and nondegenerate,
namely

K−1|ξ|2 ≤ |σ∗(t, x)ξ|2 ≤ K|ξ|2 ∀ ξ ∈ Rd, (t, x) ∈ [0, T ]×Rd.

(Hσ2 ) σ is uniformly continuous in space, uniformly in time, with modulus of continuity h,
in the sense that

|σ(t, x)− σ(t, y)| ≤ h(|x− y|) ∀(t, x, y) ∈ [0, T ]×R2d.

(Hσ3 ) There exist (p2, q2) ∈ J1 such that ∇σ ∈ Lq2t Lp2
x .

It is well established that under Assumption 1.1, the SDE (1.1) is strongly well-posed
for any initial X0 independent of W , see e.g. [37] and the basic recap in Section 2.1.
In this work we are instead interested in deriving stability estimates, in the sense of
comparing two distinct solutions X1, X2 driven by the same W but with respect to
different initial conditions, drifts and diffusions. The next statement exemplifies some of
our main findings in this regard.

Theorem 1.2. Let (b1, σ1), (b2, σ2) satisfy Assumption 1.1 for the same parameters
(p1, q1), (p2, q2), K, h and denote by X1, X2 the associated solutions to (1.1). Then for any
m ∈ [1,∞), T > 0 and any (p̃1, q̃1) ∈ J0, (p̃2, q̃2) ∈ J1 there exists a constant C (depending
on all the aforementioned parameters as well as d, ‖bi‖Lq1t Lp1

x
and ‖∇σi‖Lq2t Lp2

x
) such that∥∥∥∥ sup

t∈[0,T ]

|X1
t −X2

t |
∥∥∥∥
Lmω

≤ C
[
‖X1

0 −X2
0‖Lmω + ‖b1 − b2‖

L
q̃1
t L

p̃1
x

+ ‖σ1 − σ2‖
L
q̃2
t L

p̃2
x

]
. (1.2)

If moreover q2 =∞ and 4/q1 + d/p1 < 1, we have∥∥∥∥ sup
t∈[0,T ]

|X1
t −X2

t |
∥∥∥∥
Lmω

≤ C̃
[
‖X1

0 −X2
0‖Lmω + ‖b1 − b2‖

L
q1
t W

−1,p1
x

+ ‖σ1 − σ2‖
L
q̃2
t L

p̃2
x

]
(1.3)

where C̃ is another positive constant with similar dependence on the parameters.

To the best of our knowledge, the first paper to discuss the importance of quantitative
stability estimates is [40]. Therein, in the case of common diffusion σ1 = σ2, an estimate
for X1 − X2 in function of ‖b1 − b2‖Lq1t Lp1

x
is presented in Theorem 1.1-(E); instead

another estimate, in the case b1 = b2 = 0 and σ1 6= σ2 is provided in [40, Lemma 5.3].
The results is however subject to several restrictions, most importantly the assumption
q = p > d+ 2 needed to show well-posedness of the corresponding Kolmogorov equation,
and the focus on m = 2. Later, again for σ1 = σ2, the stability result was generalized
in [27, Theorem 3.3], for any values (p, q) ∈ J1, but again the resulting estimate is only
in function of ‖b1 − b2‖LqtLpx and holds for m = 2. A quite general stability estimate,
true for any m ∈ [1,∞), is presented in [38, Theorem 3.10], where the SDE is also

allowed to have a multiplicative Lévy noise; however, the condition ∇b1 ∈ Lq
′

t L
p′

x for
suitable p′, q′ ∈ (1,∞) must be assumed to obtain the stability result. To the best of our
knowledge, the first paper to consider stability estimates in negative Sobolev norms
(namely in the style of (1.3)) is [11], which considers the more general framework of
SDEs driven by fBm; however in the Brownian setting H = 1/2, it only allows for additive
noise σ = I and drifts b of spatial regularity at least Cα for some α > 0. The same work
also shows how such estimates can be used to solve McKean–Vlasov SDEs. Theorem 1.2

EJP 28 (2023), paper 24.
Page 2/31

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP913
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stability estimates

can be considered a great generalization of all of the aforementioned results, allowing
for any value m ∈ [1,∞), different integrability coefficients (p1, q1) 6= (p2, q2) for b and
σ in Assumption 1.1 as well as parameters (q̃1, p̃1), (q̃2, p̃2) different from them in the
estimates (1.2) and (1.3). Let us also mention that this work is hugely inspired by the
previous work [25] by one of the authors, where numerical schemes for singular SDEs
are considered; although technically it doesn’t contain stability estimates, it is clear that
the quantity $n appearing in [25, Theorem 1.1] is closely related to the error committed
by comparing two SDEs driven respectively by drift bn and b respectively, in the case
of common diffusion σ. We refer to Section 3.4.1 for a deeper discussion on this point.
Finally, strong moments estimates of the form (1.2)-(1.3) are not the only form of stability
one might be interested in exploring; in a different direction, based on estimating the
distance of the transition probabilities of the two processes X1 and X2, it is worth
mentioning the works [3, 21, 2].

The proof of Theorem 1.2 will be presented in Section 2.3 and is in fact consequence
of a more abstract and much more general stability result, see Proposition 2.12; the
same strategy of proof allows for numerous variants, see Remark 2.14, as well as similar
results for Stratonovich SDEs, cf. Corollary 2.13.

In order to motivate the importance of results in the style of Theorem 1.2, we will
present in Section 3 several applications, ranging from existence and uniqueness results
for distribution dependent (or McKean–Vlasov) SDEs, criteria for strong compactness of
solutions to singular SDEs and Wong–Zakai type theorems. We will also shortly discuss
in Section 3.4 other applications of such results which have already appeared in the
literature, although without it being stated explicitly; indeed, we believe one of nice
contributions of this work is also to highlight the importance of stability estimates for
SDEs in a wide range of problems, which have so far been treated without recognizing
their key role in them.

Remark 1.3. For simplicity in this paper we only considered drifts with global bounds
in LqtL

p
x. Up to technical details, we expect the same strategy to work in many other

cases, including:

a) b,∇σ ∈ Lqt L̃px where L̃px is the so called localized Lpx considered in [37]; one of the
advantages of this case is that bounded b is covered as well.

b) The case of b of the form b = b1 + . . .+ bn with bi ∈ Lqit Lpix with (qi, pi) ∈ J1.

c) The presence of an additional Lipschitz term, i.e. b = b1 + b2 with b1 ∈ LqtLpx and
b2 ∈ L∞t C1

x as in [39].

d) Coefficients belonging to mixed-normed spaces, i.e. b ∈ LqtLp1
x1
. . . Lpdxd with 2/q +∑

i 1/pi < 1, as considered in [28].

Notations and conventions

We always work on a finite time interval [0, T ]. We write a . b to mean that there
exists a positive constant C such that a ≤ Cb; we use the index a .λ b to highlight the
dependence C = C(λ). For vectors x, y ∈ Rd, we write x ·y :=

∑n
i=1 xiyi and |x| =

√
x · x;

for matrices A, B ∈ Rd×d, we use the convention A : B :=
∑

1≤i,j≤nAijBij . Given a real
number z, we denote by bzc and {z} respectively its integer and fractional parts.

For any N ∈ N and p ∈ [1,∞], we denote by Lp(Rd;RN ) the standard Lebesgue space;
when there is no risk of confusion in the parameter N , we will simply write Lpx for short
and denote by ‖ · ‖Lpx the corresponding norm. Similarly for the Bessel potential spaces
W β,p
x = W β,p(Rd;RN ), which are defined for β ∈ R, with corresponding norm

‖f‖Wβ,p
x

:= ‖(I−∆)β/2f‖Lpx ;
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For α ∈ [0,∞), Cαx = Cα(Rd;RN ) stands for the usual Hölder continuous function space,
made of continuous bounded functions with continuous and bounded derivatives up to
order bαc ∈ N and with globally {α}-Hölder continuous derivatives of order bαc.

We denote by CT = C([0, T ];Rd) the path space of continuous functions on [0, T ],
endowed with the supremum norm ‖ϕ‖CT = supt∈[0,T ] |ϕt|.

Given a Banach space E and a parameter q ∈ [1,∞], we denote by LqtE = Lq(0, T ;E)

the space of measurable functions f : [0, T ]→ E such that

‖f‖LqtE :=
(∫ T

0

‖ft‖qE dt
) 1
q

<∞

with the usual convention of the essential supremum norm in the case q =∞. Similarly,
given a probability space (Ω,F ,P) and m ∈ [1,∞), we denote by Lmω E = Lm(Ω,F ,P;E)

the space of E-valued F -measurable random variables X such that

‖X‖Lmω E := E
[
‖X‖mE

] 1
m <∞

where E denotes expectation w.r.t. P. The above definitions can be concatenated by
choosing at each step a different E, so that one can define Lmω CT , LqtL

p
x and so on.

Whenever q = p, we might write for simplicity Lpt,x in place of LptL
p
x.

2 Stability estimates

2.1 Preliminaries

We shortly recall here several facts related to the SDE (1.1) which will be needed
in the sequel, including Girsanov theorem, Zvonkin transform and Khasminskii type
estimates. They are by now very classical tools in the study of singular SDEs, first
introduced in the pioneering works by Zvonkin [43] and Veretennikov [35]; see for
instance [37] for a nice self-contained presentation (in a slightly different setting).

We start by recalling that any solution X can be regarded after a change of measure
as a solution to a driftless SDE, thanks to Girsanov theorem.

Lemma 2.1. Let (b, σ) satisfy Assumption 1.1 and let X be the unique solution to (1.1).
Then there exists another measure Q, equivalent to P, and a Q-Brownian motion W̃ such
that X solves the SDE dXt = σt(Xt) dW̃t. Furthermore it holds

EP

[( dQ

dP

)n]
<∞ ∀n ∈ Z.

Proof. An application of [37, Lemma 4.1] for the choice f = |b|2, p = 2p1, q = 2q1 allows
to deduce that the solution X satisfies

E

[
exp

(
λ

∫ T

0

|br|2(Xr) dr
)]

<∞ ∀λ > 0.

From this, the finiteness of all (positive and negative) moments of the density dQ/ dP

associated to Girsanov’s theorem is a standard argument, see for instance the proof of
[7, Proposition 2.4].

The next classical ingredient we need are suitable estimates for parabolic PDEs of
the form (2.1), strictly related to the so called Zvonkin transform. In the next statement,
we are adopting the notations a = σσ∗ and a : D2f =

∑
i,j aij∂

2
ijf , b · ∇f =

∑
i bi∂if .
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Lemma 2.2. Let (b, σ) satisfy Assumption 1.1. Then there exists λ0 ≥ 1, depending
on T, d,K, h, p1, q1 and ‖b‖Lq1t Lp1

x
, such that for all λ ≥ λ0 there is a unique solution

u ∈ Lq1t W 2,p1
x ∩W 1,q1

t Lp1
x to the equation

∂tu+
1

2
a : D2u+ b · ∇u− λu = −b, u|t=T = 0. (2.1)

Furthermore there exists ε > 0, depending on d, p1, q1, such that

λε‖u‖L∞t C1
x

+ ‖∂tu‖Lq1t Lp1
x

+ ‖u‖
L
q1
t W

2,p1
x

. ‖b‖Lq1t Lp1
x
. (2.2)

Proof. The result is a special case of [37, Theorem 3.2]; indeed, by time reversal we can
reduce ourselves to the case of a forward parabolic equation with u|t=0 = 0 as therein.
Let ε > 0 be a sufficiently small parameter satisfying 2/q1 + d/p1 > 1 − 4ε and choose
p′ ≥ p large enough so that d/p′ = 2ε; setting q′ = ∞ and α = 1 + 4ε, we can apply
the result from [37, Theorem 3.2] to get an estimate for λε‖u‖

L∞t W
α,p′
x

. The embedding

Wα,p′

x ↪→ C
α−d/p′
x ↪→ C1

x finally allows to conclude.

The next lemma, which allows to control integrals of the form
∫ T

0
fr(Xr) for f merely

satisfying LqtL
p
x-integrability, is also classical; its proof comes from a combination of so

called Krylov’s estimates and Khasminskii’s lemma.

Lemma 2.3. Let (b, σ) satisfy Assumption 1.1, X be a solution to (1.1) and (p̃, q̃) ∈ J0.
Then there exists a constant C > 0 (depending on T , d, K, h, p1, q1, ‖b‖Lq1t Lp1

x
, p̃, q̃) such

that

E

[
exp

(
λ

∫ T

0

fr(Xr) dr
)]
≤ C exp

(
Cλq̃‖f‖q̃

Lq̃tL
p̃
x

)
∀λ > 0, f ∈ Lq̃tLp̃x. (2.3)

Proof. By [37, Theorem 1.1 (A)], for any s < t it holds

E

[ ∫ t

s

f(Xr) dr
∣∣∣Fs] . ‖f‖Lq̃(s,t;Lp̃x) =: w(s, t)1/q̃,

where w is a continuous control; estimate (2.3) then follows from an application of
the quantitative version of Khasminskii’s lemma from [25, Lemma 3.5], for the choice
γ = 1/q̃.

Our next ingredient will be an alternative estimate for additive functionals
∫ t

0
fr(Xr) dr

in the case where f only enjoys negative regularity, see Lemma 2.5 below; this result is
less classical and improves on the one from [25, Proposition 6.6]. To this end, we first
need to recall a result on parabolic PDEs with distributional forcing, first established in
[25].

Lemma 2.4. Let σ satisfy Assumption 1.1 with q2 = ∞, f ∈ Lq̃tW−1,p̃
x with p̃, q̃ ∈ (1,∞)

and 1
p2

+ 1
p̃ < 1. Then there exists a unique solution1 v ∈ Lq̃tW 1,p̃

x ∩W 1,q̃
t W−1,p̃

x to the PDE

∂tv +
1

2
a : D2v = f, v|t=T = 0. (2.4)

Furthermore, there exists a constant C > 0 (depending on T, d,K, p2, ‖∇σ‖L∞t Lp2
x
, p̃, q̃)

such that
‖v‖Lq̃tW 1,p̃

x
+ ‖∂tv‖Lq̃tW−1,p̃

x
≤ C‖f‖Lq̃tW−1,p̃

x
. (2.5)

1Here we mean the weak solution in the sense of [25, Definition A.1]; in particular, it can be shown
that a : D2v is a well-defined distribution belonging to Lq̃tW

−p̃
x , so that identity (2.4) holds in the sense of

distributions. See [25] for more details.
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Proof. In the case T = 1, the statement is a special case of [25, Theorem A.4]; the case
of general intervals [0, T ] follows by a simple rescaling argument.

Lemma 2.5. Let b, σ satisfy Assumption 1.1 with q2 =∞, X be a solution to (1.1) and
(p̃, q̃) ∈ J1. Then there exists a constant C > 0 (depending on T , d, K, h, p1, q1, p2,
‖b‖Lq1t Lp1

x
, ‖∇σ‖L∞t Lp2

x
, p̃, q̃) such that for all smooth function f it holds

E

[
exp

(
λ sup
t∈[0,T ]

∣∣∣ ∫ t

0

fr(Xr) dr
∣∣∣)] ≤ C exp

(
Cλq̃‖f‖q̃

Lq̃tW
−1,p̃
x

)
∀λ > 0. (2.6)

By linearity and density, we can extend the definition of
∫ ·

0
fr(Xr) dr as a continuous

process to any f ∈ Lq̃tW−1,p̃
x , in which case estimate (2.6) still holds.

Proof. First observe that, thanks to Lemma 2.1, we can assume without loss of generality
b ≡ 0; we can also assume f to be R-valued, otherwise we can argue componentwise,
and by homogeneity we can take λ = 1.

Given a smooth f , denote by v the solution to the parabolic PDE (2.4). Since (p̃, q̃) ∈
J1, (p2,∞) ∈ J1, it also holds p̃ ∧ p2 > 2 and thus 1/p̃ + 1/p2 < 1; in particular, the
assumptions of Lemma 2.4 are satisfied and thus estimate (2.5) holds. Furthermore,
using the assumption (p̃, q̃) ∈ J1 and interpolation estimates, one can find θ = 1/q̃ + ε

with ε > 0 small enough such that

‖v‖L∞t,x . ‖v‖L∞t C2ε
x

. ‖v‖L∞t W 2(1−θ)−1,p̃

. ‖∂tv‖θLq̃tW−1,p̃
x
‖v‖1−θ

Lq̃tW
1,p̃
x

. ‖f‖Lq̃tW−1,p̃
x

.

On the other hand, since dXt = σt(Xt) dWt, by Itô’s formula we get∫ t

0

fr(Xr) dr = vt(Xt)− v0(x)−
∫ t

0

(σ∗∇v)r(Xr) · dWr.

Therefore we have the estimate

E

[
exp

(
sup
t∈[0,T ]

∣∣∣ ∫ t

0

fr(Xr) dr
∣∣∣)]

≤ e2‖v‖L∞t,xE

[
exp

(
sup
t∈[0,T ]

∣∣∣ ∫ t

0

(σ∗∇v)r(Xr) · dWr

∣∣∣)];
using Doob’s inequality for the submartingale Mt := exp

( ∫ t
0
(σ∗∇v)r(Xr) · dWr

)
, as well

as the basic inequality e|x| ≤ ex + e−x, we can find a constant κ > 0 such that

E
[

sup
t∈[0,T ]

|Mt|
]
≤ I+ + I−, I± := E

[
exp

(
± κ

∫ T

0

(σ∗∇v)r(Xr) · dWr

)]
.

Let us show how to estimate I+, the other term being treated similarly. By esti-
mate (2.5), ∇v ∈ Lq̃tLp̃x, thus |σ∗∇v|2 ∈ Lq̃/2t L

p̃/2
x where by our assumptions (q̃/2, p̃/2) ∈

J0. In particular, Lemma 2.3 applies to f = |σ∗∇v|2; but then by Girsanov’s theorem and
Novikov’s condition, this implies that

Nt := exp
(

2κ

∫ t

0

(σ∗∇v)r(Xr) · dWr − 2κ2

∫ t

0

|(σ∗∇v)r(Xr)|2 dt
)

is a martingale, which together with Hölder’s inequality yields

I+ ≤ E[Nt]
1/2E

[
exp

(
2κ2

∫ T

0

|(σ∗∇v)r(Xr)|2 dr
)]1/2

. C exp
(
C ‖|σ∗∇v|2‖q̃/2

L
q̃/2
t L

p̃/2
x

)
.
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Combining all of the above with the estimate

‖|σ∗∇v|2‖
L
q̃/2
t L

p̃/2
x

. ‖∇v‖Lq̃tLp̃x . ‖f‖Lq̃tW−1,p̃
x

,

where the second passage comes from (2.5), and relabelling the constant C to include κ,
we finally obtain the desired (2.6).

Remark 2.6. The realisation that suitable diffusion processes can be integrated along
distributions goes back at least to the works of Bass and Chen [1], where the case of
measures in a suitable Kato class is considered. Among more recent developments let
us mention [9] and [41, Theorem 5.1], where autonomous f ∈ W−α,px are allowed for
α ≤ 1/2, p > d/(1− α). As already mentioned, Lemma 2.5 is an improvement over [25],
as it allows ν = 1 without further assumptions of f and reaches exponential integrability.

Among other applications of Lemma 2.5 of independent interest, let us mention
that for the choice f = ÷b ∈ Lq1t W−1,p1

x it yields uniform Lmω estimates for the Jacobian
Jφt(x) = detDxφt(x) of the flow φ associated to the SDE (1.1), which is formally given
by the formula

Jφt(x) = exp
(∫ t

0

div br(X
x
r ) dr

)
.

Compare this fact with [8, Section 3], where the additional assumption ÷b ∈ Lp, p > 2 is
imposed in order to analyse such term and derive regularity estimates.

Remark 2.7. Interpolating between Lq̃0t L
p̃0
x and Lq̃1t W

−1,p̃1
x for (q̃0, p̃0) ∈ J0, (q̃1, p̃1) ∈ J1

and applying Lemmas 2.3-2.5, one can in fact prove a more general statement: for any
β ∈ [0, 1], (q̃β , p̃β) ∈ Jβ and any f ∈ Lq̃βt W

−β,p̃β
x , the process

∫ ·
0
fr(Xr) dr is well defined

and

E

[
exp

(
λ sup
t∈[0,T ]

∣∣∣ ∫ t

0

fr(Xr) dr
∣∣∣)] ≤ C exp

(
Cλq̃β‖f‖q̃β

L
q̃β
t W

−β,p̃β
x

)
∀λ > 0.

Remark 2.8. Estimates (2.3)-(2.6) immediately imply moment bounds of the form

E

[(∫ T

0

fr(Xr) dr
)m]

. ‖f‖m
Lq̃tL

p̃
x
, E

[
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

fr(Xr) dr
∣∣∣m] . ‖f‖m

Lq̃tW
−1,p̃
x

, (2.7)

for all m ∈ [1,∞). For instance, to deduce the first estimate in (2.7), it suffices to
apply (2.3) for the choice λ = 1, f̃ = f/‖f‖Lq̃tLp̃x , so that

‖f‖−m
Lq̃tL

p̃
x
E

[(∫ T

0

fr(Xr) dr
)m]

.m E

[
exp

(∫ T

0

f̃r(Xr) dr
)]

. 1.

As a final ingredient, we need to recall an inequality involving maximal functions; the
standard version, sometimes referred to as Hajlasz inequality, is classical [34], but the
one-sided one presented here seems to be of much recent derivation, cf. [4].

Lemma 2.9. Let f be a measurable function such that ∇f = ψ1 +ψ2, where ψ1 ∈ Lq̃it Lp̃ix
for some parameters (q̃1, p̃1), (q̃2, p̃2) satisfying q̃i ∈ [1,∞) and p̃i ∈ (d,∞); then there
exists a negligible Lebesgue set N ⊂ [0, T ]×Rd and another measurable function g such
that

|ft(x)− ft(y)| ≤ [g1
t (x) + g2

t (x)]|x− y| ∀ y ∈ Rd, ∀ (t, x) ∈ ([0, T ]×Rd) \N ; (2.8)

moreover there exists a constant C = C(d, p̃1, p̃2) such that g can be chosen of the form
g = g1 + g2 satisfying ‖gi‖

Lq̃
i

t L
p̃i
x
≤ C‖ψi‖

Lq̃
i

t L
p̃i
x

for i = 1, 2.
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Proof. In the case of autonomous functions f , the statement is a simple consequence
of [4, Lemma 5.1]; more precisely, by fixing another p′ ∈ (d, p̃1 ∧ p̃2) and applying the
result therein, inequality (2.8) holds for g(x) ∼ [M(|∇f |p′)(x)]1/p

′
, whereM denotes the

Hardy–Littlewood maximal function operator. By standard properties ofM, g . g1 + g2

for gi(x) := M(|ψi|p′)(x)]1/p
′
; by construction, |ψi|p′ ∈ Lp̃i/p

′

x with p̃i/p
′ > 1, therefore

again by properties ofM it holds ‖M(|ψi|p′)‖Lp/p′ . ‖ψi‖
p′

L
p̃i
x

, from which we can deduce

that ‖gi‖
L
p̃i
x

. ‖ψi‖
L
p̃i
x

.
In the case of time-dependent functions f , one can either: i) observe that for a.e.

t ∈ [0, T ],∇ft ∈ Lp̃1
x +Lp̃2

x and apply the result at such fixed t; or ii) consider a sequence fn

of smooth functions such that fn → f and they admits decompositions ∇fn = ψn,1 +ψn,2

with ψn,i → ψi in Lq̃it L
p̃i
x ; then to any fn there is an associated gn = gn,1 + gn,2 =

M(|ψn,1|p′)]1/p′ +M(|ψn,2|p′)]1/p′ such that (2.8) holds and clearly gn,i → gi in Lq̃it L
p̃i

x , so
that inequality (2.8) still holds after the limit (up to a Lebesgue negligible set).

2.2 A general abstract estimate

We present here a fundamental estimate which is at the heart of the proof of Theo-
rem 1.2, as well as of several applications. It focuses on comparing the solution X to the
SDE (1.1) associated to (X0, b, σ) w.r.t. to any semimartingale perturbation of it; more
precisely, we will consider a process Y solving

Yt = Y0 +

∫ t

0

[bs(Ys) +R1
s] ds+

∫ t

0

[σs(Ys) +R2
s] dWs (2.9)

where R1, R2 are predictable processes, taking values respectively in Rd and Rd×d. In
the following, we will enforce the following conditions on Y .

Assumption 2.10. The following hold for any T > 0:

i)
∫ T

0
[|bs(Ys)|+ |R1

s|+ |σs(Ys)|2 + |R2
s|2] ds <∞ P-a.s.

ii) For any f ∈ Lq̃tLp̃x with (q̃, p̃) ∈ J0, it holds
∫ T

0
|fr(Yr)|dr <∞ P-a.s. Moreover for

any sequence of smooth, bounded functions f ε such that f ε → f in Lq̃tL
p̃
x as ε→ 0,

it holds

lim
ε→0

∫ T

0

|f ε(Ys)− f(Ys)|ds = 0 P-a.s.

iii) The processes Y , R1, R2 are adapted to the filtration generated by (Y0,W, W̃ ),
where W̃ is another Rm-valued process, for some m ∈ N, and Y0, W , W̃ are
independent.

Remark 2.11. While Condition i) is natural in order to give meaning to (2.9), the others
are less classical. Point ii) will be needed in order to make sense of an Itô-type formula for
functions with only integrable second order derivatives. Instead iii) simplifies the proof
of Proposition 2.12 below by allowing to disintegrate w.r.t. the initial conditions (X0, Y0);
depending on the specific structure of the processes R1, R2 it might not be even needed.
In the simplest cases, one can just take W̃ ≡ 0, but there are also applications of interest
where a nontrivial choice of W̃ must be considered, as we will see in Section 3.4.2 in the
context of interacting particle systems.

Before presenting the statement, we need a few preparations. Given (b, σ) satisfying
Assumption 1.1, by Lemma 2.2 we can choose λ large enough so that the solution u

to (2.1) has Lipschitz constant smaller than 1/2 for all t ∈ [0, T ]; from now on, we will
always work with such a fixed λ and denote by u the associated solution, so that the map
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φt(x) := x+ ut(x) is 2-Lipschitz with 2-Lipschitz inverse for all t ∈ [0, T ]. For such u, we
define an associated process

Vt :=

∫ t

0

(1

2

[
(R2 + σ)(R2 + σ)∗ − σσ∗

]
: D2u+R1 · (I +∇u)

)
r
(Yr) dr

+

∫ t

0

[R2(I +∇u)]r(Yr) dWr (2.10)

which is well defined thanks to Assumption 2.10.
The proof of the next result shares some clear analogies with those of stochastic

Grönwall lemmas, cf. [25, Lemma 3.8], as well as [12] for a general overview; however,
in order not to impose any restriction on the m-th moment we want to estimate, we will
exploit crucially the structure of the SDE which allows us to “recenter” it at each step, a
property which doesn’t hold in the more general setting of those results.

Proposition 2.12. Let X be a solution to (1.1) associated to (X0, b, σ) satisfying As-
sumption 1.1 and let Y be a solution to (2.9) satisfying Assumption 2.10. Then for any
m ∈ [1,∞), any γ > 1 and any T > 0 there exists a constant C (depending on m, γ, T , d,
(qi, pi), K, h, ‖b‖Lq1t Lp1

x
, ‖∇σ‖Lq2t Lp2

x
), such that∥∥∥ sup

t∈[0,T ]

|Xt − Yt|
∥∥∥
Lmω

≤ C
(
‖X0 − Y0‖Lmω +

∥∥∥ sup
t∈[0,T ]

|Vt|
∥∥∥
Lmγω

)
(2.11)

where the process V is defined as in (2.10).

Proof. It suffices to consider the case where the initial data X0 and Y0 are deterministic;
indeed in the general case, as they are random variables independent of the driving
(W, W̃ ), we can first condition on the knowledge of (X0, Y0), obtain the estimate, and
then take expectation again to conclude. From now on we will fix m ∈ [1,∞).

We start by applying Zvonkin transform to both X and Y ; by classical computations
based on generalized Itô’s formula (see e.g. [22, Theorem 3.7] or [37, Lemma 4.1]),
setting σ̃ := σ(I +∇u), it holds

d
(
φt(Xt)

)
= λut(Xt) dt+ σ̃t(Xt) dWt;

the computation for Y is slightly more involved, but it is not difficult to check that, thanks
to our definition of V , in the end one arrives at

d
(
φt(Yt)

)
= λut(Yt) dt+ σ̃t(Yt) dWt + dVt.

Indeed, the computation is rigorously justified thanks to Assumption 2.10, as we can
first apply Itô formula to φε, associated to some smooth approximation bε of b, and then
pass to the limit as ε → 0. As a consequence, if we integrate both equations over any
interval [s, t] and take the modulus, we find the estimate

|φt(Xt)− φt(Yt)| ≤|φs(Xs)− φs(Ys)|+ λ

∫ t

s

|ur(Xr)− ur(Yr)|dr

+

∣∣∣∣ ∫ t

s

[σ̃1
r(Xr)− σ̃1

r(Yr)] dWr

∣∣∣∣+ V̄ ,

where we set V̄ := 2 supt∈[0,T ] |Vt|; using the properties of φ, u, we arrive at

sup
t∈[s,s+h]

|Xt − Yt| .|Xs − Ys|+ λh sup
t∈[s,s+h]

|Xt − Yt|

+ sup
t∈[s,s+h]

∣∣∣∣ ∫ t

s

[σ̃1
r(Xr)− σ̃1

r(Yr)] dWr

∣∣∣∣+ V̄ . (2.12)
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Observe that this is a pathwise inequality that holds for any choice of s, h, which we may
and will take to be random as well.

Moreover, since ∇σ ∈ Lq2t L
p2
x and u ∈ L∞t C

1
x ∩ L

q1
t W

2,p1
x , the new diffusion term

satisfies ∇σ̃ ∈ Lq1t L
p1
x + Lq2t L

p2
x as well2; therefore we can apply Lemma 2.9 to find

functions gi ∈ Lqit Lpix , i = 1, 2, for which (2.8) holds for f = σ̃. Let us define the process

At :=

∫ t

0

[λ2T + |g1
r |2(Xr) + |g2

r |2(Xr)] dr

for a constant K̃ > 0 to be chosen later; we also set an increasing sequence of stopping
times by τ0 = 0 and

τn+1 = inf
{
t ≥ τn : t ≤ T, At −Aτn ≥ (4K̃)−

2
m

}
,

with the convention that τn+1 = T if there is no t ∈ [τn, T ] such that At−Aτn = (4K̃)−2/m.
Now let us take s = τn in (2.12) and elevate both sides to the m-th power, so to obtain

sup
t∈[τn,τn+h]

|Zt|m .m
[
|Zτn |m + λm hm sup

t∈[τn,τn+h]

|Zt|m + sup
t∈[0,h]

|Mn
t |m + V̄ m

]
,

where we set Z := X − Y and

Mn
t :=

∫ τn+t

τn
[σ̃r(Xr)− σ̃r(Yr)] dWr.

By Doob’s optimal stopping theorem (Mn
t )t∈[0,T ] is a continuous martingale w.r.t. to the

filtration (Gt)t∈[0,T ] = (Fτn+t)t∈[0,T ]; by the pathwise BDG inequality from [33, Theorem

3], there exists another continuous (Gt)t∈[0,T ]-martingale (M̃n
t )t∈[0,T ] such that

sup
t∈[0,h]

|Mn
t |m ≤ [Mn]

m/2
h + M̃n

h

where ([Mn]t)t∈[0,T ] denotes the quadratic variation of (Mn)t∈[0,T ]. We claim that P-a.s.
it holds

[Mn]t =

∫ τn+t

τn
|σ̃r(Xr)− σ̃r(Yr)|2 dr ≤

∫ τn+t

τn

[
|g1
r |2(Xr) + |g2

r |2(Xr)
]
|Zr|2 dr. (2.13)

To see this, let N ⊂ [0, T ] × Rd the negligible Lebesgue set associated to σ̃, whose
existence is guaranteed by Lemma 2.9; setting f(t, x) := 1N (t, x), it holds ‖f‖LqtLpx = 0

for all (q, p) ∈ [1,∞) and an application of Lemma 2.3 implies that∫ T

0

1N (t,Xt) dt = 0 P-a.s.

In view of the above, an application of Lemma 2.9 yields the desired P-a.s. inequal-
ity (2.13), as the presence of the exceptional set N doesn’t play any role.

Combining everything and taking h = τn+1 − τn, we arrive at a P-a.s. inequality of
the form

sup
t∈[τn,τn+1]

|Zt|m ≤ C
[
|Zτn |m + M̃n

τn+1−τn + |V̄ |m
]

+ sup
t∈[τn,τn+1]

|Zt|m
[
λm Tm/2(τn+1 − τn)m/2

+
(∫ τn+1

τn
(|g1|2 + |g2|2)(Xr) dr

)m/2]
≤ C

[
|Zτn |m + M̃n

τn+1−τn + |V̄ |m
]

+ 2C (Aτn+1 −Aτn)m/2 sup
t∈[τn,τn+1]

|Zt|m.

2In the sense that ∇σ̃ = ψ1 + ψ2 with ψi ∈ Lqit L
pi
x , cf. the statement of Lemma 2.9.
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Taking C = K̃ as the desired constant in the definition of τn, we find

sup
t∈[τn,τn+1]

|Zt|m ≤ 2K̃
[
|Zτn |m + M̃n

τn+1−τn + |V̄ |m
]
;

using the fact that (M̃n
t )t∈[0,T ] is a (Gt)t∈[0,T ]-martingale, taking expectation we are left

with

E
[

sup
t∈[τn,τn+1]

|Zt|m
]
≤ 2K̃ E

[
sup

t∈[τn−1,τn]

|Zt|m
]

+ 2K̃ E[|V̄ |m],

which iteratively yields (for an appropriately chosen constant κ > 0 in function of K̃)

E

[
e−κn sup

t∈[τn−1,τn]

|Zt|m
]
≤ |x0 − y0|m + E[|V̄ |m]. (2.14)

Now set ∆ := (4K̃)−2/m, C := 2κ/∆, then it holds

E
[
e−CAT sup

t∈[0,T ]

|Zt|m
]

=
∑
n∈N

E
[
e−CAT sup

t∈[0,T ]

|Zt|m1AT∈[∆n,∆(n+1)]

]
≤
∑
n∈N

E
[
e−2κn sup

j=1,...,n+1
sup

t∈[τj−1,τj ]

|Zt|m1AT∈[∆n,∆(n+1)]

]
≤
∑
n∈N

e−κn
n+1∑
j=1

E
[
e−κn sup

t∈[τj−1,τj ]

|Zt|m
]

. |x0 − y0|m + E[|V̄ |m],

where in the last passage we applied (2.14). Observe that since gi ∈ Lqit L
pi
x , |gi|2 ∈

L
qi/2
t L

pi/2
x with (qi/2, pi/2) ∈ J0, thus by Lemma 2.3 the process A satisfies

E[exp(λAT )] <∞ for all λ ∈ R; therefore for any δ ∈ (0, 1) it holds

E
[

sup
t∈[0,T ]

|Zt|δm
]
≤ E

[
e−CAT sup

t∈[0,T ]

|Zt|m
]δ
E
[
eC

δ
1−δAT

]1−δ
.δ |x0 − y0|δm + E[|V̄ |m]δ.

Taking the (δm)−1-power on both sides and relabelling m̃ = mδ, γm̃ = m, overall yields
the desired result.

2.3 Comparison of SDEs with different coefficients

With Proposition 2.12 at hand, we are now ready to give the

Proof of Theorem 1.2. Let us set X1 = X, X2 = Y , b1 = b, σ1 = σ, R1
t = (b2 − b1)t(X

2
t )

and R2
t = (σ2 − σ1)t(X

2
t ) in the setting of Section 2.2; it is then clear by Section 2.1 that

Assumption 2.10 holds and so by Proposition 2.12 our task is reduced to provide estimates
for ‖V̄ ‖Lmγ . The process V , as defined in (2.10), in this case can be decomposed as
V = I1 + I2 + I3 for

I1
t :=

1

2

∫ t

0

[(a2 − a1) : D2u]r(X
2
r ) dr,

I2
t :=

∫ t

0

[(σ2 − σ1)(I +∇u)]r(X
2
r ) dWr,

I3
t :=

∫ t

0

[(b2 − b1) · (I +∇u)]r(X
2
r ) dr,
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where ai = σi(σi)∗ for i = 1, 2; we treat each term separately. From now on for simplicity
we will write m in place of mγ, as it doesn’t affect the computation.

Recall that, under Assumption 1.1, by Lemma 2.2 it holds u ∈ Lq1t W
2,p1
x ∩ L∞t C1

x;
moreover (p1, q1), (p̃2, q̃2) ∈ J1, thus if we define 1/p′ = 1/p1 +1/p̃2 and 1/q′ = 1/q1 +1/q̃2,
it holds (p′, q′) ∈ J0. By Hölder’s inequality and estimate (2.7), we can then control I1 by∥∥∥ sup

t∈[0,T ]

|I1
t |
∥∥∥
Lmω

. ‖(a2 − a1) : D2u‖
Lq
′
t L

p′
x

. ‖a2 − a1‖
L
q̃2
t L

p̃2
x
‖D2u‖Lq1t Lp1

x

. ‖σ2 − σ1‖
L
q̃2
t L

p̃2
x
,

where in the final passage we also exploited the bound ‖σi‖L∞t,x ≤ K. A similar idea

applies to I2, combined with BDG’s inequality:∥∥∥ sup
t∈[0,T ]

|I2
t |
∥∥∥
Lmω

.
∥∥∥ ∫ T

0

|(σ2
r − σ1

r)(I +∇ur)|2(X2
r ) dr

∥∥∥1/2

L
m/2
ω

.
∥∥|σ2 − σ1|2

∥∥1/2

L
q̃2/2
t L

p̃2/2
x
‖I +∇u‖L∞t L∞x

. ‖σ1 − σ2‖
L
q̃2
t L

p̃2
x

(2.15)

where this time we applied (2.7) for (p̃2/2, q̃2/2) ∈ J0. Similarly, since (p̃1, q̃1) ∈ J0, it
holds ∥∥∥ sup

t∈[0,T ]

|I3
t |
∥∥∥
Lmω

. ‖(b2 − b1) · (I +∇u)‖
L
p̃1
t L

q̃1
x

. ‖b2 − b1‖
L
p̃1
t L

q̃1
x
‖(I +∇u)‖L∞t L∞x

. ‖b2 − b1‖
L
p̃1
t L

q̃1
x
.

(2.16)

In the case q2 = ∞ and 4/q1 + d/p1 < 1, we can give an alternative estimate for I3; to
this end, let us recall that by the product rules for distributions (see e.g. [25, Lemma A.2
(ii)]), for p ≥ d ∨ 2 it holds

‖f g‖W−1,p
x

. ‖f‖W−1,p
x
‖g‖W 1,p

x
∀ f ∈W−1,p

x , g ∈W 1,p
x . (2.17)

By Hölder’s inequality and the second estimate in (2.7) (for q̃ = q1/2, p̃ = p1, which under
our assumptions satisfy (q̃, p̃) ∈ J1), we then find∥∥∥ sup

t∈[0,T ]

|I3
t |
∥∥∥
Lmω

. ‖(b2 − b1) · (I +∇u)‖
L
q1/2
t W

−1,p1
x

. ‖b2 − b1‖
L
q1
t W

−1,p1
x

‖u‖
L
q1
t W

2,p1
x

. (2.18)

Overall, estimates (2.15), (2.15), combined with (2.16) (respectively (2.18)) and Proposi-
tion 2.12 yield (1.2) (respectively (1.3)).

We can also obtain stability estimates for Stratonovich SDEs.

Corollary 2.13. Let Assumption 1.1 hold and consider Xi solutions to the Stratonovich
SDEs

dXi
t = bit(X

i
t) dt+ σit(X

i
t) ◦ dWt, Xi

∣∣
t=0

= Xi
0.

Then for any m ∈ [1,∞) and any (p̃1, q̃1), (p̃2, q̃2) ∈ J0 and (p̃3, q̃3) ∈ J1, it holds∥∥∥∥ sup
t∈[0,T ]

|X1
t −X2

t |
∥∥∥∥
Lmω

.‖X1
0 −X2

0‖Lmω + ‖b1 − b2‖
L
q̃1
t L

p̃1
x

+ ‖∇(σ1 − σ2)‖
L
q̃2
t L

p̃2
x

+ ‖σ1 − σ2‖
L
q̃3
t L

p̃3
x
.

(2.19)
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If additionally q2 =∞ and 4/q1 + d/p1 < 1, we have∥∥∥∥ sup
t∈[0,T ]

|X1
t −X2

t |
∥∥∥∥
Lmω

. ‖X1
0 −X2

0‖Lmω + ‖b1 − b2‖
L
q1
t W

−1,p1
x

+ ‖σ1 − σ2‖
L
q̃3
t L

p̃3
x
. (2.20)

Proof. The proof is very similar to that of Theorem 1.2, so we mostly sketch it. We can
rewrite the Stratonovich SDEs into the corresponding Itô ones, with corresponding new
drift terms b̃i in place of bi given by

b̃it := bit +
1

2
(σi · ∇)σi, where [(σ · ∇)σ]j =

∑
k,l

∂lσjkσlk.

Estimates (2.19)-(2.20) then follow respectively from (1.2)-(1.3), once we estimate the
difference b̃1 − b̃2 in appropriate norms. In order to obtain (2.19), we can use

(σ1 · ∇)σ1 − (σ2 · ∇)σ2 = (σ1 · ∇)(σ1 − σ2) + [(σ1 − σ2) · ∇]σ2

and then

‖(σ1 · ∇)(σ1 − σ2)‖
L
q̃2
t L

p̃2
x
≤ ‖σ1‖L∞t,x‖∇σ

1 −∇σ2‖
L
q̃2
t L

p̃2
x
,

‖[(σ1 − σ2) · ∇]σ2‖
Lq
′
t L

p′
t
≤ ‖σ1 − σ2‖

L
q̃3
t L

p̃3
x
‖∇σ2‖Lq2t Lp2

x
,

where we set 1/p′ = 1/p̃3 + 1/p2, 1/q′ = 1/q̃3 + 1/q2 so that (p′, q′) ∈ J0. Instead for
obtaining (2.20), in the case q2 =∞ we can estimate the first term differently. To this
end, let us recall that by [25, Lemma A.2 (iii)]), whenever p > d and 1/p̄ + 1/p < 1, it
holds

‖f g‖W−1,p̄
x

. (‖g‖L∞x + ‖∇g‖Lpx)‖f‖W−1,p̄
x

∀ f ∈W−1,p
x , g ∈W 1,p

x . (2.21)

Applying estimate (2.21) for the choice p = p2 and p̄ = p̃3, we obtain

‖σ1 · ∇(σ1 − σ2)‖
L
q̃3
t W

−1,p̃3
x

.
[
‖σ1‖L∞t,x + ‖∇σ1‖L∞t Lpx

]
‖∇(σ1 − σ2)‖

L
q̃3
t W

−1,p̃3
x

. ‖σ1 − σ2‖
L
q̃3
t L

p̃3
x
.

Combined with Proposition 2.12 and estimates (2.15), (2.15), (2.16) and (2.18), this
yields the conclusion.

Remark 2.14. Theorem 1.2 and Corollary 2.13 admit several other variants, in the
sense of employing other quantities of the form ‖b1 − b2‖

L
q̃1
t W

−β,p̃1
x

in the r.h.s. of (1.3)

and (2.20). Indeed going through the proof, the only relevant difference comes from
estimating the term I3 related to

∫ ·
0
[(b2−b2)·(I+∇u)]r(X

2
r ) dr, which can be accomplished

as in Remark 2.7 under the assumption q2 =∞. There are two different regimes, related
to the parameters (β, q1, p1):

1. β < 1− 2/q1. In this case, since (p1, q1) ∈ J1, we can assume β to satisfy β > d/p1

as well (this proves a stronger estimate, as for β̃ ≤ β one can use W−β̃,px ↪→W−β,px ).
By Lemma 2.2 and standard interpolation techniques, it is easy to show that
∇u ∈ L∞t W β,p1

x and one can then apply [25, Lemma A.2 (ii)] to obtain

‖(b2 − b1) · (I +∇u)‖
L
q̃1
t W

−β,p̃1
x

. ‖b1 − b2‖
L
q̃1
t W

−β,p̃1
x

(1 + ‖∇u‖
L∞t W

β,p1
x

),

eventually leading to∥∥∥∥ sup
t∈[0,T ]

|X1
t −X2

t |
∥∥∥∥
Lmω

. ‖X1
0 −X2

0‖Lmω +‖b1−b2‖
L
q̃1
t W

−β,p̃1
x

+‖σ1−σ2‖
L
q̃2
t L

p̃2
x

(2.22)

for any choice of parameters (p̃1, q̃1) ∈ Jβ . This is in agreement with (1.2), which is
recovered for β = 0.
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2. β > 1−2/q1. In this case we only know that ∇u ∈ Lq̄tW β,p1 for 1/q̄ = 1/q− (1−β)/2;

combined again with [25, Lemma A.2 (ii)], this implies (b2−b1)·(I+∇u) ∈ Lq
′

t W
−β,p̃1
x

for 1/q′ = 1/q̄ + 1/q̃1 and the relevant condition becomes (p̃1, q
′) ∈ Jβ. Overall

we still obtain a stability estimate where ‖b1 − b2‖
L
q̃1
t W

−β,p̃1
x

appears, but now only

under the more restrictive condition

2

q1
+

2

q̃1
+

d

p̃1
< 3− 2β,

d

p1
< β. (2.23)

Condition (2.23) agrees with 4/q1 + d/p1 < 1 needed to derive (1.3), which corre-
sponds to β = 1, p̃1 = p1 and q̃1 = q1.

3 Applications

3.1 McKean–Vlasov equations

Throughout this section, for any t ∈ [0, T ] and any X, we will denote by Xt
· the

stopped process Xt
s := Xt∧s, which we ask the reader not to confuse with the pointwise

evaluatation Xt. We consider McKean–Vlasov (or distribution dependent) SDEs of the
form

dXt = Bt(Xt, µt) dt+ Σt(Xt, µt) dWt, µt = L(Xt
· ) (3.1)

for suitable coefficients B, Σ, see Assumption 3.1 below.
In the case of regular (e.g. Lipschitz) continuous functions B, Σ, equation (3.1) can

be solved classically; however in the presence of a singular drift B, several important
results in the literature guaranteeing existence and uniqueness for (3.1) require the
diffusion term Σ not depend on µ, see e.g. [29, Section 3.2], or anyway more restrictive
assumption on Σ, cf. [31, Section 4]; the reason lies in the use of transport-cost
inequalities and Girsanov transform, see also [24]. On the other hand there is another
class of results, including [16, 17], possibly involving the use of mixed Wasserstein-total
variation distances, which naturally allows Σ to depend on µ; the shortcoming is a more
restrictive assumption on B and Σ, e.g. they must be Lipschitz in µ uniformly in x, which
rules out basic cases of interest like B(x, µ) = b ∗ µ for unbounded b. Let us stress that
the literature on the topic is quite vast and there are many other works not properly
fitting in this dichotomy, see for instance [15, 30, 19]; see also the papers [26, 23] where,
under certain assumptions on the drifts, the authors are additionally able to establish
convergence of the particle system, as well as develop numerical schemes with explicit
rates of convergence. Finally, let us mention the remarkable work [42] for existence
and uniqueness results, in the presence of µ-dependent Σ, under yet another set of
assumptions.

Here we do not follow any of the aforementioned approaches, instead we derive
existence and uniqueness results for (3.1) by readapting the strategy from [11], based on
the use of stability estimates in negative Sobolev spaces and Wasserstein distances. Our
assumptions cover the basic convolutional case B(x, µ) = b ∗ µ (cf. Corollary 3.5), but
also allow for Σ to depend on µ, as well as a more general abstract class of coefficients
B and Σ with nonlinear dependence on µ (cf. Assumption 3.1).

In the following, given a separable Banach space E, we denote by P(E) the set of
probability measures on E and by Wm the associated m-Wasserstein distance, namely

Wm(µ, ν) = inf

{(∫
‖x− y‖mE π(dx, dy)

)1/m

: π ∈ Π(µ, ν)

}
where Π(µ, ν) ⊂ P(E × E) denotes the set of couplings of (µ, ν). We refer to [36] for a
complete survey on the properties of Wm; let us only recall that Wm(µ, ν) ≤Wm̃(µ, ν)
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whenever m ≤ m̃ and that for any m ∈ [1,∞), µ, ν ∈ P(E) there exists an optimal
coupling for Wm(µ, ν), which can be realised as a pair of E-valued random variables
(Y,Z) such that L(Y ) = µ, L(Z) = ν and Wm(µ, ν) = E[‖Y − Z‖mE ]1/m. We will mainly
consider E as the path space CT := C([0, T ];Rd) or E = Rd.

We are now ready to introduce our assumptions on the coefficients B, Σ.

Assumption 3.1. There exist p1, p2 ∈ (d,∞), m ∈ [1,∞) and C > 0 such that the maps
B : [0, T ]×Rd × P(CT )→ Rd, Σ : [0, T ]×Rd × P(CT )→ Rd×d satisfy the following:

i) ‖Bt(·, µ)‖Lp1
x
≤ C, ‖Bt(·, µ) − Bt(·, ν)‖

W
−1,p1
x

≤ CWm(µ, ν) for all t ∈ [0, T ], µ, ν ∈
P(CT ).

ii) ‖∇Σt(·, µ)‖Lp2
x
≤ C, ‖Σt(·, µ) − Σt(·, ν)‖Lp2

x
≤ CWm(µ, ν) for all t ∈ [0, T ], µ, ν ∈

P(CT ).

iii) C−1|ξ|2 ≤ |Σ(t, x, µ)∗ξ|2 ≤ C|ξ|2 for all ξ ∈ Rd, t ∈ [0, T ], x ∈ Rd and µ ∈ P(CT ).

Under Assumption 3.1, one can give meaning to equation (3.1) as follows: given a
continuous adapted process Y , we can define µt = L(Y t· ) and then

bYt (x) := Bt(x, µt), σYt (x) := Σt(x, µt); (3.2)

it can be readily checked that (bY , σY ) satisfy Assumption 1.1 3, thus the associated SDE
is wellposed. We then define X to be a solution to (3.1) if and only if it is a solution to the
SDE associated to (bX , σX); the concepts of strong existence, pathwise uniqueness and
uniqueness in law for (3.1) can then be readapted similarly. Let us finally recall that, as
usual for McKean–Vlasov SDEs, we will consider the initial datum X0 to be random and
independent of W ; depending on how one wants to formulate it, the data of the problem
can then be considered equivalently (X0, B,Σ) or (µ0, B,Σ), where µ0 = L(X0).

Theorem 3.2. Let B, Σ satisfy Assumption 3.1 for some m ∈ [1,∞). Then for any
µ0 ∈ Pm(Rd) strong existence, pathwise uniqueness and uniqueness in law holds for
the SDE (3.1). A similar statement holds for the Stratonovich version of (3.1), i.e. with
Σt(Xt, µt) dWt replaced by Σt(Xt, µt) ◦ dWt.

Proof. We give the proof in the Itô case, the Stratonovich one being identical (up to
applying Corollary 2.13 in place of Theorem 1.2). Standard arguments involving the
structure of eq. (3.1) (see for instance [10, Propositions 3.5-3.7]) allow to show that
any weak solution is a strong one and that pathwise uniqueness implies uniqueness in
law; thus our task is reduced to show existence and uniqueness among strong solutions.
Consider the filtration F = (Ft)t∈[0,T ] generated by (X0,W ) and let E be the space of
continuous, F -adapted paths Y ∈ Lmω CT , endowed with the metric

dE(Y,Z) := sup
t∈[0,T ]

e−λtE
[

sup
s≤t
|Ys − Zs|m

]1/m
= sup
t∈[0,T ]

e−λt ‖Y t· − Zt· ‖Lmω CT

for a suitable λ > 0 to be chosen later; define a map I from E to itself, which to a
given process Y associates the unique strong solution I(Y ) to the SDE associated to
(X0, b

Y , σY ). It is then clear that X is a solution to (3.1) if and only if X = I(X) and that
our task is reduced to showing that I is a contraction on (E, d), for suitable choice of
λ. To this end, let us fix a parameter q ∈ (2,∞) sufficiently large so that 4/q + d/p1 < 1,

3Since ∇σY ∈ Lpx for some p > d, Morrey’s inequality implies that it is α-Hölder in space for α = 1− d/p,
uniformly in time; thus conditions concerning the modulus of continuity of σX are automatically satisfied.
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2/q+ d/p2 < 1; then by estimate (1.3) for the choice (p̃2, q̃2) = (p2, q) and Assumption 3.1,
for any t ∈ [0, T ] it holds

‖I(Y )t· − I(Z)t·‖
q
Lmω CT

. ‖bY − bZ‖q
LqtW

−1,p1
x

+ ‖σY − σZ‖q
LqtL

p2
x

.
∫ t

0

Wm(L(Y s· ),L(Zs· ))
q ds

.
∫ t

0

eλqsdE(Y,Z)q ds . λ−1 eλqtdE(Y, Z)q;

overall, this implies the existence of another constant C̃ > 0 such that

dE(I(Y ), I(Z)) ≤ C̃λ−1/qdE(Y,Z),

which implies contractivity of I once we choose λ large enough.

We now pass to provide sufficient conditions for Assumption 3.1 in a practical case of
interest, given by convolutional drifts; in particular here we take µt = L(Xt) ∈ P(Rd)

and consider maps B,Σ with linear dependence on µ by means of a convolution.

Lemma 3.3. For any p ∈ [1,∞], f ∈ Lpx and g such that ∇g ∈ Lpx, it holds

‖f ∗ (µ− ν)‖W−1,p
x

. ‖f‖LpxW1(µ, ν), ‖g ∗ (µ− ν)‖Lpx . ‖∇g‖LpxW1(µ, ν) ∀µ, ν ∈ P(Rd).

Proof. Let us first prove the claim for g. Recall the basic fact that, for any hi ∈ Rd, it
holds

‖g(·+ h1)− g(·+ h2)‖Lpx ≤ ‖∇g‖Lpx |h1 − h2|.
Let (Y,Z) be an optimal coupling for (µ, ν), then by definition of convolution it holds

‖g ∗ (µ− ν)‖Lpx =
∥∥E[g(· − Y )− g(· − Z)]

∥∥
Lpx
≤ E

[
‖g(· − Y )− g(· − Z)‖Lpx

]
≤ ‖∇g‖Lpx E[|Y − Z|] = ‖∇g‖LpxW1(µ, ν).

The case of f then follows from a duality argument. Observe that 〈f ∗ (µ− ν), g〉 = 〈f, g ∗
(µ̃− ν̃)〉, where µ̃(A) = µ(−A) is the reflection of µ; it is clear that W1(µ̃, ν̃) = W1(µ, ν),
therefore

|〈f ∗ (µ− ν), g〉| ≤ ‖f‖Lpx‖g ∗ (µ̃− ν̃)‖Lp′ ≤ ‖f‖Lpx‖g‖W 1,p′
x

W1(µ, ν),

which yields the conclusion by taking the supremum over all g ∈W 1,p′

x with ‖g‖
W 1,p′
x

=

1.

Lemma 3.4. Let σ satisfy conditions (Hσ1 )-(Hσ3 ) from Assumption 1.1 with q2 =∞, p2 > d

and constant K and let π : [0, T ]×Rd → Rd×d satisfy

∇π ∈ L∞t Lp2
x , sup

t,x
|πt(x)| ≤ (1− δ)K−1/2

for some δ ∈ (0, 1). Then Σt(x, µ) := σt(x) − (πt ∗ µ)(x) satisfies conditions ii)-iii) from
Assumption 3.1.

Proof. By standard properties of convolution, for any µ ∈ P(Rd) it holds

‖∇(πt ∗ µ)‖Lp2
x
≤ ‖∇πt‖Lp2

x
≤ ‖∇π‖L∞t Lp2

x
,

which immediately implies a uniform bound on ‖∇Σt(·, µ)‖Lp2
x

; a similar argument shows
uniform boundedness of Σt(x, µ). By our assumptions and triangular inequality, it holds

|Σt(x, µ)ξ| ≥ |σt(x)ξ| − ‖π ∗ µ‖L∞t,x |ξ| ≥ |σt(x)ξ| − ‖π‖L∞t,x |ξ| ≥ δK
−1/2|ξ|

which shows uniform ellipticity.
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Combining Lemma 3.3 and Lemma 3.4 immediately implies the following

Corollary 3.5. Let b ∈ L∞t Lp1
x for some p1 ∈ (d,∞) and let (σ, π) satisfy the hypothesis

of Lemma 3.4; consider

Bt(Xt,L(Xt)) := (bt ∗ L(Xt))(Xt), Σt(Xt,L(Xt)) := σt(Xt)− (πt ∗ L(Xt))(Xt).

Then strong wellposedness holds for the associated McKean–Vlasov SDE (3.1).

Remark 3.6. It is clear that other variants of Theorem 3.2 are allowed; for instance
Assumption 3.1-i) can be modified by requiring the existence of parameters (q1, p1)

satisfying 4/q1 + d/p1 < 1 and a function ` ∈ Lq1t such that

‖Bt(·, µ)‖Lp1
x
≤ `t, ‖Bt(·, µ)−Bt(·, ν)‖

W
−1,p1
x

≤ `tWm(µ, ν).

In the style of Remark 2.14, one could also formulate a condition on B involving W−ν,p1
x -

norms for other values ν ∈ [0, 1], although the choice ν = 1 is natural in view of
Lemma 3.3.

Remark 3.7. Unfortunately, our result in general does not cover the choice Σt(x, µ) :=

(σt ∗ µ)(x); the problem is that, even if σ is uniformly elliptic, the same doesn’t need
to hold for σ ∗ µ, as cancellations might happen inside the convolution. This difficulty
can be overcome under more information on σ; for instance if σt(x) = γt(x)A, where
γ : [0, T ]×Rd → R and A is a fixed, uniformly elliptic Rd×d matrix, then the continuity
and uniform ellipticity requirements on σ imply that γt(x) ≥ δ > 0 (or γt(x) ≤ −δ < 0,
which doesn’t change the analysis). Due to the positivity of µ, we then find

|(σt ∗ µ)∗(x)ξ| = |γt ∗ µ(x)||A∗ξ| ≥ δ|A∗ξ|,

showing again uniform ellipticity of Σt(x, µ) = (σt ∗ µ)(x).

Remark 3.8. Other examples of B and Σ, satisfying conditions similar to Assumption 3.1,
are discussed in [11, Section 2.1]. Among them let us mention the case of dependence
on statistics of µ, e.g. Bt(x, µ) = bt(x − 〈φ, µ〉) where 〈φ, µ〉 :=

∫
CT

φ(ω)µ(δω) and

φ : CT → Rd is a uniformly Lipschitz map. Indeed, by properties of translations in
Sobolev spaces and Kantorovich-Rubinstein duality, it holds

‖bt(· − 〈φ, µ〉)− bt(· − 〈φ, ν〉)‖W−1,p
x

. ‖bt‖Lpx |〈φ, µ− ν〉| . ‖bt‖Lpx‖φ‖LipW1(µ, ν).

3.2 Strong compactness of solutions to singular SDEs

We show here that, under quite minimal assumptions, the solutions to SDEs of the
form (1.1), driven by the same reference Brownian motion W , form a compact set in
the strong topology of Lmω CT . This is much stronger than standard tightness results for
L(X).

Throughout this section we will assume for simplicity X0 = x ∈ Rd to be deterministic
and fixed, so the dependence of the solution on it will not appear in the sequel. Given
a pair (b, σ) satisfying Assumption 1.1, we denote by Xb,σ the associated solution to
the Itô SDE (1.1) with initial condition x; similarly, X̃b,σ denotes the solution to the
corresponding Stratonovich SDE.

We start by dealing with autonomous drift and diffusion; thus we fix some parameters
p1, p2 ∈ (d,∞) corresponding to b ∈ Lp1

x , ∇σ ∈ Lp2
x . 4

Theorem 3.9. Consider a family of coefficients A ⊂ {(b, σ) : b ∈ Lp1
x , σ ∈ L∞x , ∇σ ∈ Lp2

x }
satisfying Assumption 1.1 in a uniform way; namely, there exist constants M, K > 0 such

4As in Section 3.1, ∇σ ∈ Lp2
x imples σ being globally Hölder, so that we can drop assumption (Hσ2 ) and the

dependence on a modulus of continuity h.
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that for all (b, σ) ∈ A it holds ‖b‖Lp1
x

+ ‖σ‖L∞x + ‖∇σ‖Lp2
x
≤M and |σ∗ξ| ≥ K−1|ξ|2 for all

ξ ∈ Rd. Then the families {Xb,σ : (b, σ) ∈ A} and {X̃b,σ : (b, σ) ∈ A} are precompact in
Lmω CT , for all m ∈ [1,∞).

Proof. We focus on the Itô case, the Stratonovich one being almost identical up to
applying Corollary 2.13 instead of Theorem 1.2. By well-known results concerning the
SDE (1.1) and our assumptions, the solutions Xb,σ satisfy uniform moment estimates,
namely for all m ∈ [1,∞) it holds sup(b,σ)∈A ‖Xb,σ‖LmΩ CT < ∞; thus it suffices to show
precompactness w.r.t. convergence in probability.

Given any sequence (bn, σn)n ⊂ A, by the assumptions and weak compactness we can
extract a (not relabelled) subsequence such that bn converge weakly in Lp1

x to some b and
σn converge weakly-∗ in L∞x to some σ, with the additional property that ∇σn converge
weakly to ∇σ in Lp2

x . We claim that Xbn,σn converge in probability to Xb,σ, which yields
the conclusion in the Itô case.

From now on we will adopt the shorter notation Xn = Xbn,σn , X = Xb,σ. To show the
claim, let us fix some δ > 0 and choose R > 0 large enough so that P(‖Xn‖CT > R) < δ,
P(‖X‖CT > R) < δ, which is possible by the uniform moment estimates; next, let us
choose ψ ∈ C∞c such that ψ ≡ 1 on BR and ψ ≡ 0 on the complement of BR+1, where
BR := {x ∈ Rd : |x| ≤ R}. Denote by X̄n the solutions associated to (ψbn, ψσn), similarly
X̄. Clearly ψbn converge weakly to ψb, which together with the compact embedding
Lp1
x ↪→W−1,p1

x,loc and the presence of the cutoff ψ implies ‖ψbn − ψb‖
W
−1,p1
x

→ 0 as n→∞;
similarly ‖ψσn − ψσ‖Lp2

x
→ 0, as the sequence {ψσn}n is compact in Lp2

x by Rellich–
Kondrachov theorem and it is weakly converging to ψσ. By Theorem 1.2 we then deduce
that X̄n → X̄ in Lmω CT . On the other hand, by construction X̄n and Xn coincide as long
as Xn do not get outside BR, similarly for X, thus we obtain

lim
n→∞

P(‖Xn −X‖ > ε) ≤ lim
n→∞

P(‖Xn‖ > R) + P(‖X‖ > R) + P(‖X̄n − X̄‖ > ε)

≤ 2δ + lim
n→∞

P(‖X̄n − X̄‖ > ε) = 2δ.

By the arbitrariness of δ > 0, the conclusion follows.

In the case of time-dependent coefficients, we cannot go through the same proof,
since local compactness in weak topologies is not obvious anymore; however, under mild
additional time regularity assumptions, we can invoke the partial compactness results
from [32, Section 9]. In the next statement, we fix (p1, q1) ∈ J1 and consider q2 = ∞,
p2 ∈ (d,∞).

Corollary 3.10. Consider a family A ⊂ {(b, σ) : b ∈ Lq1t L
p1
x , σ ∈ L∞t,x, ∇σ ∈ L∞t L

p2
x }

with the following property: there exist some parameters s > 0 and N ∈ N, as well as
constants M, K > 0 such that for all (b, σ) ∈ A it holds 5

‖b‖Lq1t Lp1
x

+ ‖b‖
W s,1
t W

−N,p1
x

+ ‖σ‖L∞t,x + ‖∇σ‖L∞t Lp2
x

+ ‖σ‖
W s,1
t W

−N,p2
x

≤M

and |σ∗ξ| ≥ K−1|ξ|2 for all ξ ∈ Rd. Then the families {Xb,σ : (b, σ) ∈ A} and {X̃b,σ :

(b, σ) ∈ A} are precompact in Lmω CT , for all m ∈ [1,∞).

Proof. Introducing the cutoff ψ as in the proof of Theorem 3.9, we can always assume
(b, σ) to be compactly supported on BR; thus the only relevant issue is to show the

5Here we follow the notation from [32]; for a Banach space E, the space W s,1
t E =W s,1(0, T ;E) is defined

as the set of integrable functions f : [0, T ]→ E such that

‖f‖
W
s,1
t E

:= ‖f‖L1
tE

+ JfK
W
s,1
t E

<∞, where JfK
W
s,1
t E

:=

∫
[0,T ]2

‖fr − fu‖E
|r − u|1+s

dr du.
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existence of a subsequence (bn, σn) converging to (b, σ) in a suitable weak topology,
which still has to be strong enough in order for our stability estimates to apply. For
any β > 0, we can apply [32, Corollary 7] for the choice X = Lp1

x , B = W−β,p2
x and

Y = W−β−N,p2
x to deduce the existence of a subsequence such that bn → b in Lq̃1t W

−β,p1
x

for any q̃1 < q1, where b ∈ Lq1t Lp1
x ; similarly σn → σ in Lq̃2t L

p2
x for any q̃2 < ∞, where σ

still satisfies the same bounds as the elements from A. In particular, the SDE associated
to (b, σ) is well defined, with solution Xb,σ. Since (p1, q1) ∈ J1 and p2 > d, we can always
find q̃1, q̃2 and β satisfying the above and such that additionally β < 1−2/q1, (q̃1, p1) ∈ Jβ
and (q̃2, p2) ∈ J1, which by the stability estimate (2.22) implies Xbn,σn → Xb,σ and thus
the conclusion in the Itô case.

The reasoning for Stratonovich SDEs is almost identical, but we give some additional
details since we haven’t precisely stated a version of (2.22) in this case. By rewriting
the SDE in the corresponding Itô form, it suffices to verify that σn · ∇σn converge
strongly to σ · ∇σ in suitable topologies; by [32, Corollary 7], we can show σn → σ in
Lq̃2t W

β,p2
x for any β < 1, thus ∇σn → ∇σ in Lq̃2t W

β−1,p2
x and by (2.17) we can deduce

that σn · ∇σn → σ · ∇σ in Lq̃2/2t W β−1,p2
x . As the argument holds for any q̃2 <∞ and any

β < 1 and by assumption p2 > d, we can always choose such parameters in a way that
(q̃2/2, p2) ∈ J1−β , yielding the conclusion again by an application of (2.22).

Remark 3.11. We conjecture that the time regularity condition, in the form of a uniform
bound in W s,1

t W−N,px , is not needed in order to derive the strong compactness result
of Corollary 3.10. In order to avoid it, one would need a stability estimate where the
difference of the drifts is measured in a negative norm of both time and space, e.g.
‖b1 − b2‖

W
−s,q1
t W−β,p1

. In this direction, let us mention that it is possible to obtain

estimates for integrals of the form
∫
t
fr(Xr) dr, by means of nonlinear Young integrals (cf.

[5, 14]), for instance when f ∈ C−γt C1
x for γ < 1/2; combining this result with Lemma 2.5,

giving instead estimates when f has positive regulartiy in time but negative in space,
and interpolation techniques, there is some hope to achieve estimates for f enjoying
(possibly very small) negative regularity in both variables. We leave this problem for
future investigations.

3.3 Improved Wong-Zakai theorem

In this section we apply our stability results in the context of Wong–Zakai approxi-
mation of singular SDEs. The main difficulty lies in the fact that, due to the singularity
of the drift b, the SDE associated to a smooth approximation Wn in place of W does
not need to be wellposed, making even the correct formulation of the result unclear. To
overcome this difficulty, we follow the strategy introduced in [27], based on first replac-
ing the coefficients (b, σ) by some smooth approximations of them and then applying
the Wong–Zakai result therein; one thus needs to control the overall error committed in
this two-step approximation. Compared to [27], we improve the result from by not only
allowing b to be singular, but also considering σ only Sobolev differentiable and not C2

x.
We start by introduction some basic notations and conventions for this section.
For simplicity, here we will only consider autonomous coefficients (b, σ) satisfying

Assumption 1.1, as well as deterministic initial data x0 ∈ Rd. We always work on the
Wiener space (Ω,P,F , (Ft)t≥0), that is to say, Ω := {ω ∈ C([0,∞),Rd) : ω(0) = 0}, P is
the Wiener measure defined on the Borel σ-algebra F of Ω, Wt(ω) := ω(t), t ≥ 0 is a
Wiener process and (Ft)t≥0 is the filtration generated by (Wt)t≥0.

We shall consider the following class of approximations:

Definition 3.12. [18, VI. Definition 7.1] By an approximation of the Wiener process
(Wt)t∈[0,T ], we mean a family {Wn}n≥0 of d-dimensional continuous processes defined
on the Wiener space (Ω,P,F , (Ft)t≥0) such that
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(1) for every ω ∈ Ω, t 7→Wn
t (ω) is continuous and piecewise continuously differentiable;

(2) Wn
0 (ω) is F1/n-measurable and EWn

0 = 0;

(3) Wn
t+k/n(ω) = Wn

t (θk/nω) +ω(k/n), for every k ∈ N, t ≥ 0 and ω ∈ Ω, where θt is the
shift operator defined by (θtω)(s) = ω(t+ s)− ω(t);

(4) there exists a positive constant C such that

E
[
|Wn

0 |6
]
≤ Cn−3, E

(∫ 1/n

0

|Ẇn
s

6|ds
)6

≤ Cn−3.

From [18, VI. Section 7] we know that for such a approximation sequence Wn we
have

lim
n→∞

E

[
sup

0≤t≤T
|Wt −Wn

t |2
]

= 0

for every T > 0. We further introduce the following notations for t > 0 and i, j ∈
{1, . . . , d}:

snij(t) := sij(t, n) :=
1

2t
E
[ ∫ t

0

(
Wn
s,iẆ

n
s,j −Wn

s,iẆ
n
s,i

)
ds
]

(3.3)

and

cnij(t) := cij(t, n) :=
1

t
E
[ ∫ t

0

Ẇn
s,i(W

n
t,j −Wn

s,j) ds
]
. (3.4)

Notice that s(t, n) is a skew-symmetric d × d-matrix for each t and n, i.e. sij(t, n) =

−sji(t, n). In order to control the convergence rate of the solutions Xn driven by Wn to
X driven by W , we will impose the following:

Assumption 3.13. There exists a skew-symmetric d× d-matrix s and a rate function fn
such that ∣∣snij(n−1)− sij

∣∣ ≤ fn, lim
n→∞

fn = 0, i, j = 1, . . . , d.

Under Assumption 3.13, we define

cij := sij +
1

2
δij , i, j = 1, · · · , d. (3.5)

Correspondingly, for any pair of functions ϕ,ψ : Rd → Rd×d sufficiently regular, we
define a vector field c : ϕ · ∇ψ : Rd → Rd componentwise by

(
c : ϕ · ∇ψ

)
k
(x) :=

d∑
i,j,l=1

cij ϕil(x)∂lψjk(x) ∀ k = 1, . . . , d.

The next result gives us the dependence between the convergence rate of Xn to X
and the coefficients b, σ; it is just a useful rewriting of [18, VI. Theorem 7.2], making
explicitly the dependence on the coefficients (b, σ) and the rate of convergence. For
more details on its derivation, we refer the interested reader to Appendix A.

6Ẇn
s :=

dWn
s

ds
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Theorem 3.14 (Wong–Zakai). Let b ∈ C1
x, σ ∈ C2

x and (Wn)n≥1 be an approximation of
W , in the sense of Definition 3.12, satisfying Assumption 3.13. Consider the SDEs

Xt = x0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dWs +

∫ t

0

(c : σ · ∇σ)(Xs) ds,

and

Xn
t = x0 +

∫ t

0

b(Xn
s ) ds+

∫ t

0

σ(Xn
s ) dWn

s .

Then for each T > 0 there exists a constant C such that

E
[

sup
t∈[0,T ]

|Xt −Xn
t |2
]
≤ exp

(
C
(
1 + ‖b‖2C1

x
+ ‖σ‖4C1

x
+ ‖σ‖2C0

x
‖σ‖2C2

x

))
(f2
n + n−

1
5 ), (3.6)

where fn is from Assumption 3.13 and C depends on T and maxi,j |cij |, but not on b, σ
and n. 7

In order to control the error we commit by applying Theorem 3.14 at the level of
smooth approximations of our coefficients, we introduce the following classes for b and
σ.

Definition 3.15. Let b ∈ Lp1
x for some p1 ∈ (d,∞), p1 ≥ 2, and r ∈ [0,∞)→ [0,∞) be an

increasing function. For a sequence (bn)n≥1 of continuous functions bn : Rd → Rd, we
write (bn)n≥1 ∈ A(b, p1, r) if:

(i) bn ∈ C1
x,

(ii) ‖b− bn‖Lp1
x
→ 0 as n→∞,

(iii) ‖bn‖C1
x
≤ r(n)‖b‖Lp1

x
.

Definition 3.16. Let p2 ∈ (d,∞), p2 ≥ 2, and let σ satisfy condition (Hσ1 ) from Assump-
tion 1.1 with constant K, ∇σ ∈ Lp2

x ; let r ∈ [0,∞)→ [0,∞) be an increasing function. For
a sequence (σn)n≥1 of regular functions σn : Rd×d → Rd, we write (σn)n≥1 ∈ A(σ, p2, r)

if:

(i) σn satisfy condition (Hσ1 ) with the same constant K, uniformly in n,

(ii) σn ∈ C2
x,

(iii) ‖σ − σn‖Lp2
x
→ 0 as n→∞,

(iv) supn∈N ‖∇σn‖Lp2
x
<∞ and ‖σn‖2C1

x
+K‖σn‖C2

x
≤ r(n)‖σ‖Lp2

x
.

We are now ready to state our result.

Theorem 3.17. Let (p1, p2) ∈ (d,∞)2, pi ≥ 2, and let b ∈ Lp1
x , σ satisfy condition (Hσ1 ) in

Assumption 1.1 and ∇σ ∈ Lp2
x . Assume further that (Wn)n≥1 is an approximation of W ,

in the sense of Definition 3.12, satisfying Assumption 3.13. Let X be the solution to

Xt = x0 +

∫ t

0

b(Xs) ds+

∫ t

0

σ(Xs) dWs +

∫ t

0

(c : σ · ∇σ)(Xs) ds (3.7)

for c as defined in (3.5). Let (bn)n≥1 ∈ A(b, p1, r), (σn)n≥1 ∈ A(σ, p2, r) be approximation
sequences for b and σ such that

lim
n→∞

exp
(
Cr(n)2(‖b‖2Lpx + ‖σ‖2Lpx)

)
(f2
n + n−1/5) = 0, (3.8)

7It is claimed in [27, Theorem 3.9] that the resulting error in (3.6) is f2n + n−1+ε, where ε can be chosen
arbitrarily small; unfortunately this is not the case, as there are other error terms of the form n−ε which
become too slow if ε is chosen too small. For more details, see Appendix A.
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where C is the constant appearing in (3.6) and fn is given in Assumption 3.13. Then we
have

lim
n→∞

E
[

sup
0≤t≤T

|Xt −Xn
t |2
]

= 0, (3.9)

where (Xn
t )t≥0 is the solution to the equation

Xn
t = x0 +

∫ t

0

bn(Xn
s ) ds+

∫ t

0

σn(Xn
s )Ẇn

s ds.

Proof. Observe that, under our assumptions, c : σ · ∇σ ∈ Lp2
x , therefore the SDE (3.7) is

well-posed (either by [37] or the facts recalled in Section 2.1). Let Xm,t be the solution
to

Xm,t = x0 +

∫ t

0

bm(Xm,s) ds+

∫ t

0

σm(Xm,s) dWs +

∫ t

0

(c : σm · ∇σm)(Xm,s) ds.

By Theorem 3.14, we know that for any m ≥ 1 it holds

E
[

sup
0≤t≤T

|Xm,t −Xn
m,t|2

]
. exp

(
C(‖bm‖2C1

x
+ ‖σ‖4C1

x
+ ‖σ‖2C0

x
‖σm‖2C2

x
)
)

(f2
n + n−1/5)

. exp
(
C r(m)2(‖b‖2Lpx + ‖σ‖2Lpx)

)
(f2
n + n−1/5),

where C is independent of m and n and Xn
m,t is the solution to

Xn
m,t = x0 +

∫ t

0

bm(Xn
m,s) ds+

∫ t

0

σm(Xn
m,s)Ẇ

n
s ds.

By choosing m = n and using the condition (3.8), we obtain

lim
n→∞

E
[

sup
0≤t≤T

|Xn,t −Xn
n,t|2

]
= 0.

On the other hand, arguing similarly to the proof of Corollary 2.13, using the estimates

‖c : (σm − σ) · ∇σm‖
L
p2/2
x

. ‖σm − σ‖Lp2
x
‖σm‖Lp2

x
. ‖σm − σ‖Lp2

x
,

‖c : σ · ∇(σm − σ)‖
W
−1,p2
x

. ‖∇(σm − σ)‖
W
−1,p2
x

(‖σ‖L∞x + ‖∇σ‖Lp2
x

) . ‖σm − σ‖Lp2
x
,

it is not difficult to show that

E
[

sup
0≤t≤T

|Xt −Xn,t|2
]
. ‖b− bn‖2

L
p1
x

+ ‖σ − σn‖2
L
p2
x
.

Overall we obtain

E
[

sup
0≤t≤T

|Xt −Xn
t |2
]
. ‖b− bn‖2

L
p1
x

+ ‖σ − σn‖2
L
p2
x

+ E
[

sup
0≤t≤T

|Xn,t −Xn
n,t|2

]
which implies (3.9) by letting n→∞.

3.4 Other applications of stability estimates in the literature

We briefly discuss here two further examples of implicit applications of the stability
estimates from Proposition 2.12 in the literature. In this case we do not provide any new
results, yet we believe that highlighting this step makes the arguments from the papers
[25] and [13] clearer.
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3.4.1 Euler-Maruyama schemes for singular SDEs

Similarly to Section 3.3, when dealing with singular drifts one cannot try to simulate
the solution to the SDE directly, as the unboundedness of b can be a major source of
errors. Again, one can circumvent this problem by introducing a two step approximation,
based on first mollifying b, and then applying an Euler–Maruyama scheme to the SDE
with approximate drift bn. This idea has seen precursors in [20], in the study of weak
error rates for integrable drifts, and in [6], in the one-dimensional setting with b only
enjoying some negative Hölder regularity. Here we follow the recent work [25], which
studied the strong error in the general multidimensional setting, with (b, σ) satisfying
Assumption 1.1; therein this two-step approximation was directly unified in a unique way
and thus stability estimates were only used in a very implicit way.

Let (b, σ) satisfy Assumption 1.1 and X be the solution to (1.1); there are two different
(yet similar) ways one can proceed.

On one hand, given a sequence of smooth bounded approximations (bn)n of b, one
can introduce the solution X̃n associated to (bn, σ) and then apply the Euler–Maruyama
scheme of step n to (bn, σ), yielding a numerical approximation X̃n,n; the overall error
splits into e = e1 + e2, associated respectively to Xn − X̃n and X̃n − X̃n,n. The first
error e1 can be estimated by means of either Theorem 1.2 or the more refined estimates
from Section 2.3 and yields a quantity in the style of $n as defined in [25]. The error e2

instead is the purely numerical one, which has to be treated by different techniques and
will result in a polynomial decay rate n−α. Alternatively, one can proceed more directly
as in [25] and, given the approximations (bn)n, compare X to the solutions Xn to

dXn
t = bnt (Xn

kn(t)) dt+ σt(X
n
kn(t)) dWt, Xn|t=0 = Xn

0 , (3.10)

where kn(t) = btnc/n, b·c denoting the integer part. For fixed n ∈ N, we are in the setting
of Proposition 2.12 by considering Yt := Xn

t , corresponding to (2.9) for the choice

R1
t := bnt (Xn

kn(t))− bt(X
n
t ), R2

t := σt(X
n
kn(t))− σt(X

n
t ).

Assuming for the moment that (Y,R1, R2) satisfy Assumption 2.10, an application of
Proposition 2.12 then yields∥∥∥ sup

t∈[0,T ]

|Xt −Xn
t |
∥∥∥
Lmω

. ‖X0 −Xn
0 ‖Lmω +

∥∥∥ sup
t∈[0,T ]

|Vt|
∥∥∥
Lmγω

,

for V as defined in (2.10). By our assumptions, the properties of u and martingale
inequalities, it is easy to deduce that∥∥∥ sup

t∈[0,T ]

|Vt|
∥∥∥
Lmω

.
∥∥∥∫ T

0

|(bn − b)t(Xn
t )|dt

∥∥∥
Lmγω

+
∥∥∥ ∫ T

0

|(bnt (Xn
t )− bnt (Xn

kn(t))|dt
∥∥∥
Lmγω

+
∥∥∥ ∫ T

0

|(σt(Xn
t )− σt(Xn

kn(t))||D
2ut(X

n
t )|dt

∥∥∥
Lmγω

+
∥∥∥(∫ T

0

|(σt(Xn
t )− σt(Xn

kn(t))|
2 dt
)1/2∥∥∥

Lmγω
.

(3.11)

Again, the first term gives rise to the approximation error e1 related to $n, while all
the others are numerical errors producing a decay n−α. This is the point where the fine
analysis on the properties of the process Xn conducted in [25, Section 5], also based
on novel tools like stochastic sewing techniques, must kick in. The same kind of results
in fact verify that (Y,R1, R2) verify Assumption 2.10, see for instance Theorem 5.1 and
Lemma 5.14 from [25].
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Nonetheless, we find it important to stress how reaching an estimate of the form (3.11)
can be performed in the framework of well established SDE tools and do not need any
substantially new techniques.

3.4.2 Interacting particle systems

We now set ourselves in the setting of [13], which studied the propagation of chaos for
interacting particle systems with singular kernel of Krylov-Röckner type. Therein again
Proposition 2.12 was applied, although implicitly; we make this point clear as follows.

For any N ∈ N, consider the interacting particle system

dXN,i
t = Bt(X

N,i
t , µNt ) dt+ σt(X

N,i
t ) dW i

t , µNt :=
1

N

N∑
i=1

δXN,it
∀ i = 1, · · · , N, (3.12)

where XN,i
0 = ξi for some i.i.d. {ξi}i∈N, {W i}i∈N are independent Brownian motions, σ

satisfies properties (Hσ1 )− (Hσ3 ) from Assumption 1.1 and B is of the form considered
in [13]. As N → ∞, each particle Xi,N of system (3.12) is expected to converge to an
independent copy of the associated McKean–Vlasov SDE

dXi
t = Bt(X

i, µt) dt+ σt(X
i
t) dW i

t , µt = L(Xi
t), (3.13)

a property which is usually referred to as propagation of chaos; in [13] the authors show
that such convergence holds in a strong sense, for suitable singular B, see Assumption
(H)b therein.

To explain how their techniques are related to ours, let us first recall some basic
facts. Under (H)b, equation (3.13) is wellposed and the associated drift bµt (x) := Bt(x, µt)

satisfies an Lq1t L
p1
x integrability condition 8. Moreover by exchangeability of (3.12), it

suffices to show convergence for i = 1. Finally, by setting XN,1 = Y and

R1
t := Bt(X

N,1
t , µNt )− bµt (XN,1

t ), R2
t := 0,

we are in the setting of Proposition 2.12. The triple (Y,R1, R2) satisfies Assumption 2.10
thanks to an application of the partial Girsanov transform, cf. [13, Lemma 5.3 (ii)];
observe that X1,N is measurable w.r.t. to the filtration generated by {ξi,W i}Ni=1, which
is covered by Assumption 2.10-iii) by taking W̃ = (ξi,W i)Ni=2. 9 Therefore by Proposi-
tion 2.12 and the usual properties of u we deduce that∥∥∥ sup

t∈[0,T ]

|XN,1
t −X1

t |
∥∥∥
Lmω

.
∥∥∥∫ T

0

|Bt(XN,1
t , µNt )− bµt (XN,1

t )|dt
∥∥∥
Lmγω

.

The convergence of the quantity on the r.h.s. to 0 as N → ∞ is established in [13,
Lemma 6.1] for mγ = 2 (but the other cases follow similarly), which yields the desired
propagation of chaos property.

Let us point out two interesting facts coming from our analysis:

i) In order to apply our stability results, although some key information on the
processes XN,i is needed, the main requirement is the regularity of bµ. This can be
better than the one of the original B, especially in the case of convolutional drifts
Bt(x, µ) = (φt ∗ µ)(x), thus there is hope to establish such results also in cases
where φ does not satisfy the Krylov–Röckner condition, but bµ does.

8Actually, the authors in [13] use the local spaces Lq1t L̃
p1
x , but at the level of exposition this doesn’t change

much.
9This is indeed the only point in this paper where we need to use Assumption 2.10-iii) in its full generality,

and the main reason for its abstract formulation.
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ii) We took σ measure independent as in [13], but this doesn’t really play a role in
our analysis; thus it might be possible to extend several result to the µ-dependent
diffusion as well. The key problem would then be to establish some analogue of
[13, Lemma 6.1] in this setting.

A More details on the proof of Theorem 3.14

In this appendix, we follow carefully the proof of [18, VI. Theorem 7.2] in order
to indicate the precise dependence on the regularity of the coefficients (b, σ) and the
resulting convergence as stated it Theorem 3.14.

It will be convenient in several passages to keep the same notations as in [18], based
on the use of a parameter δ � 1 and a function N(δ) : (0, 1]→ N satisfying the hypothesis
of [18, VI. Lemma 7.1], so let us explain shortly how it translates into our framework.
The parameter δ corresponds to n−1, while the function N(δ) is given by N(δ) := bδ−ε/4c
for a suitable parameter ε ∈ (0, 1) to be chosen later on. Observe that by construction,
for any ε ∈ (0, 1) it holds

lim
δ→0+

N(δ)4δ = 0, lim
δ→0

N(δ) = +∞. (A.1)

For such choice of N(δ), we set δ̃ := N(δ)δ and

[s]+(δ̃) = (k + 1)δ, [s]−(δ̃) = kδ̃ if kδ̃ ≤ s < (k + 1)δ̃.

Several terms, previously indexed over n in Section 3.3, will now be indexed over
δ, e.g. we will write Xδ, W δ, fδ and s(t, δ) in place of Xn, Wn, fn and s(t, n) Finally,
throughout this appendix we will adopt the convention that, whenever the symbol .
appears in the estimates, the hidden constant may depend on T , maxij |cij | or d, but no
other parameters.

Before going to the actual proof of Theorem 3.14, we need to collect a few basic
observations coming from that of [18, VI. Lemma 7.1]. Therein it is shown that, for any
k ∈ N, it holds

kδsij(kδ, δ) = kδsij(δ, δ)

and moreover that

sij(δ, δ)− cij(kδ, δ) +
1

2
δij =

1

kδ
E
[
W δ

0,i(0)Wkδ,j −W δ,
0,iW

δ
0,j

]
; (A.2)

for the choice k = N(δ), this readily implies the estimate∣∣sij(δ, δ)− cij(δ̃, δ) +
1

2
δij
∣∣ . δ̃−1[δ̃

1
2 δ

1
2 + δ] . N(δ)−

1
2 ,

which combined with Assumption 3.13 implies

|cij(δ̃, δ)− cij |2 . f2
δ +N(δ)−1. (A.3)

We can now proceed with the

Proof of Theorem 3.14. First by [18, VI. 7 (7.47)], for every s ≤ t we have

|Xδ
t −Xδ

s | ≤ ‖b‖∞(t− s) + ‖σ‖∞
∫ t

s

|Ẇ δ
s |ds. (A.4)

As in [18, VI. 7 (7.48)], we decompose Xn −X into the following four terms:

Xδ
t −Xt := H1(t) +H2(t) +H3(t) +H4(t), (A.5)
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where

H1(t) =

∫ t

[t]−(δ̃)

σ(Xδ
s ) dW δ

s −
∫ t

[t]−(δ̃)

σ(Xs) dWs −
∫ t

[t]−(δ̃)

(c : σ · ∇σ)(Xs) ds,

H2(t) =

∫ [t]−(δ̃)

δ̃

σ(Xδ
s ) dW δ

s −
∫ [t]−(δ̃)

δ̃

σ(Xs) dWs −
∫ [t]−(δ̃)

δ̃

(c : σ · ∇σ)(Xs) ds,

H3(t) =

∫ δ̃

0

σ(Xδ
s ) dW δ

s −
∫ δ̃

0

σ(Xs) dWs −
∫ δ̃

0

(c : σ · ∇σ)(Xs) ds

and

H4(t) =

∫ t

0

b(Xδ
s ) ds−

∫ t

0

b(Xs) ds.

Easily observe that

E
[

sup
0≤t≤T

|H4(t)|2
]
≤ ‖∇b‖2∞

∫ T

0

E[|Xδ
s −Xs|2] ds. (A.6)

We rewrite
H1(t) = H11(t)−H12(t)−H13(t).

Following from [18, VI. 7 (7.54)] we get

E
[

sup
0≤t≤T

|H13(t)|2
]
≤ ‖σ · ∇σ‖2∞N(δ)2δ2,

and [18, VI. 7 (7.55)] gives us

E
[

sup
0≤t≤T

|H11(t)|2
]
. ‖σ‖2∞N(δ)

3
2 δ

1
2 .

Note that

H12 = σ(X[t]−(δ̃))(Wt −W[t]−(δ̃)) +

∫ t

[t]−(δ̃)

[σ(Xs)− σ(X[t]−(δ̃))] dWs =: H121(t) +H122(t).

Then [18, VI. 7 (7.56)] yields

E
[

sup
0≤t≤T

|H121(t)|2
]
. ‖σ‖2∞N(δ)

1
2 δ

1
2

and [18, VI. 7 (7.57)] implies

E
[

sup
0≤t≤T

|H122(t)|2
]
. ‖∇σ‖2∞(‖σ‖2∞ + ‖b‖2∞) δ̃,

where inside these passages we used the inequality

E
[
|Xs(x)− x|2

]
. ‖σ‖2∞ s+ ‖b‖2∞ s2.

Putting all these estimates together we get

E
[

sup
0≤t≤T

|H1(t)|2
]
.
(
1 + ‖σ‖4C1

x
+ ‖b‖4∞

)
N(δ)

3
2 δ

1
2 . (A.7)

Since |H3| ≤ sup0≤t≤T |H1(t)|,

E
[

sup
0≤t≤T

|H3(t)|2
]
≤ E

[
sup

0≤t≤T
|H1(t)|2

]
.
(
1 + ‖σ‖4C1

x
+ ‖b‖4∞

)
N(δ)

3
2 δ

1
2 . (A.8)
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We are only left with estimating H2. By integration by parts, we have∫ (k+1)δ̃

kδ̃

σ(Xδ
s ) dW δ

s =σ(Xδ
kδ̃

)[W δ
(k+1)δ̃

−W δ
kδ̃

]

+

∫ (k+1)δ̃

kδ̃

∇σ(Xδ
s )[σ(Xδ

s )Ẇ δ
s + b(Xδ

s )] · [W δ
(k+1)δ̃

−W δ
kδ̃

] ds

=:J1(k) + J2(k).

Also

J1(k) =σ(Xδ
kδ̃−δ)(W(k+1)δ̃ −Wkδ̃) + [σ(Xδ

kδ̃
)− σ(Xδ

kδ̃−δ)](W
δ
(k+1)δ̃

−W δ
kδ̃

)

+ σ(Xδ
kδ̃−δ)(W

δ
(k+1)δ̃

−W(k+1)δ̃) + σ(Xδ
kδ̃−δ)(Wkδ̃ −W

δ
kδ̃

)

= : J11(k) + J12(k) + J13(k) + J14(k).

Write
H2(t) = I1(t) + I2(t) + I3(t) + I4(t) + I5(t)

where

I1(t) =

m(t)−1∑
k=1

J11(k) +

∫ [t]−(δ̃)

δ̃

σ(Xs) dWs,

with m(t) defined by m(t) := bt/δ̃c, and

Ii(t) =

m(t)−1∑
k=1

J1i(k), i = 2, 3, 4,

I5(t) =

m(t)−1∑
k=1

J2(k)−
∫ [t]−(δ̃)

δ̃

(c : σ · ∇σ)(Xs) ds.

From [18, VI. 7 (7.63)] we have

E
[

sup
0≤t≤T

|I1(t)|2
]
. ‖∇σ‖2∞

∫ T

0

E[|Xδ
s −Xs|2] ds+ (‖σ‖2∞ + ‖b‖2∞)N(δ)2δ

and [18, VI. 7 (7.64)] shows

E
[

sup
0≤t≤T

|I2(t)|2
]
. ‖∇σ‖2∞N(δ)−1.

[18, VI. 7 (7.65), (7.66)] give us

E
[

sup
0≤t≤T

|I3(t)|2
]

+ E
[

sup
0≤t≤T

|I4(t)|2
]
. ‖σ‖2∞N(δ)−1.

For I5 we rewrite

I5(t) = I51(t) + I52(t) + I53(t) + I54(t) + I55(t)

with

I
(h)
51 (t) =

m(t)−1∑
k=1

∫ (k+1)δ̃

kδ̃

d∑
i,l,j=1

[(σil∂lσjh)(Xδ
s )− (σil∂lσjh)(Xδ

kδ̃
)]Ẇ δ

s,i[W
δ
(k+1)δ̃,j

−W δ
s,j ] ds,
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I
(h)
52 (t) =

m(t)−1∑
k=1

∫ (k+1)δ̃

kδ̃

d∑
j,l=1

(bl∂lσjh)(Xδ
s )[W δ

(k+1)δ̃,j
−W δ

s,i] ds,

I
(h)
53 (t) =

m(t)−1∑
k=1

∫ (k+1)δ̃

kδ̃

d∑
i,l,j=1

[(σil∂lσjh)(Xδ
kδ̃

)[Ẇ δ
s,i(W

δ
(k+1)δ̃,j

−W δ
s,j)− cij(δ̃, δ)] ds,

I
(h)
54 (t) =

m(t)−1∑
k=1

∫ (k+1)δ̃

kδ̃

d∑
i,l,j=1

cij [(σil∂lσjh)(Xδ
kδ̃

)− (σil∂lσjh)(Xs)] ds,

I
(h)
55 (t) =

m(t)−1∑
k=1

d∑
i,l,j=1

[δ̃(σil∂lσjh))(Xδ
kδ̃

)− cij ].

First we get from [18, VI. 7 (7.67)]

E
[

sup
0≤t≤T

|I55(t)|2
]
.

d∑
i,j=1

‖σ · ∇σ‖2∞(cij(δ̃, δ)− cij)2

and by [18, VI. 7 (7.68)]

E
[

sup
0≤t≤T

|I54(t)|2
]
. ‖∇(σ · ∇σ)‖2∞

[ ∫ T

0

E[|Xδ
s −Xs|2] ds+ (‖σ‖2∞ + ‖b‖2∞)N(δ)2δ

]
.

Furthermore by [18, VI. 7 (7.69)]

E
[

sup
0≤t≤T

|I52(t)|2
]
. ‖b · ∇σ‖2∞N(δ)2δ

and for I51 [18, VI. 7 (7.70)] yields

E
[

sup
0≤t≤T

|I51(t)|2
]
. (‖σ‖2∞ + ‖b‖2∞)N(δ)4δ.

[18, VI. 7 (7.71)] shows that

E
[

sup
0≤t≤T

|I53(t)|2
]
. ‖σ‖2∞

(
N(δ)3δ + (

d∑
i,j=1

N(δ)−1c∗ij(δ̃, δ))
2 +N(δ)−1

)
,

for c∗ij defined by

c∗ij(δ̃, δ) := N(δ) cij(N(δ)δ, δ)− (N(δ)− 1)cij((N(δ)− 1)δ, δ);

Applying identity (A.2) for the choices k = N(δ), k = N(δ)− 1, one can see that

|N(δ)−1c∗ij(δ̃, δ)| =
∣∣∣N(δ)−1

[
sij(δ, δ) +

1

2
δij

]
− (δ̃)−1E

[
W δ

0,i

(
WN(δ)δ,j −W(N(δ)−1)δ,j

)]∣∣∣
. N(δ)−1 + (δ̃)−1δ

1
2 δ

1
2 = N(δ)−1.

Therefore

E
[

sup
0≤t≤T

|I53(t)|2
]
. ‖σ‖2∞

(
N(δ)3δ +N(δ)−1

)
.

Collecting all the terms related to I5 and applying (A.3), we get the following:

E
[

sup
0≤t≤T

|I5(t)|2
]
.‖∇(σ · ∇σ)‖2∞

∫ T

0

E[|Xδ
s −Xs|2] ds
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+
(

1 + ‖σ‖8C2
x

+ ‖b‖4∞
)(
f2
δ +N(δ)4δ +N(δ)−1

)
.

Therefore

E
[

sup
0≤t≤T

|H2(t)|2
]
.
(
‖∇σ‖2∞ + ‖∇(σ · ∇σ)‖2∞

)∫ T

0

E[|Xδ
s −Xs|2] ds

+
(

1 + ‖σ‖8C2
x

+ ‖b‖4∞
)(
f2
δ +N(δ)4δ +N(δ)−1

)
. (A.9)

By combining (A.5), (A.6), (A.7), (A.8) and (A.9) we can conclude that

E
[

sup
0≤t≤T

|Xt −Xδ
t |2
]
.(1 + ‖b‖2C1

x
+ ‖σ‖4C1

x
+ ‖σ‖∞‖σ‖2C2

x
)

∫ T

0

E[|Xδ
s −Xs|2] ds

+
(

1 + ‖σ‖8C2
x

+ ‖b‖4∞
)(
f2
δ +N(δ)

3
2 δ

1
2 +N(δ)4δ +N(δ)−1

)
.

Grönwall’s inequality then implies the estimate

E
[

sup
0≤t≤T

|Xt −Xδ
t |2
]
≤ exp

(
C ′(1 + ‖b‖2C1

x
+ ‖σ‖4C1

x
+ ‖σ‖∞‖σ‖2C2

x
)
)
×

×
(

1 + ‖σ‖8C2
x

+ ‖b‖4∞
)(
f2
δ +N(δ)

3
2 δ

1
2 +N(δ)4δ +N(δ)−1

)
.

(A.10)

Observe that, up to relabelling the constant C ′, the polynomial term 1 + ‖σ‖8C2
x

+ ‖b‖4∞
in (A.10) can be reabsorbed in the exponential. Moreover recall that δ = n−1 and
N(δ) ∼ nε/4, so that

N(δ)
3
2 δ

1
2 +N(δ)4δ +N(δ)−1 ∼ n 3ε

8 −
1
2 + nε−1 + n−

ε
4 ;

optimizing it w.r.t. ε yields the choice ε = 4/5 and a corresponding decay rate n−1/5.
Combining these two last observations with (A.10) yields the desired estimate (3.6).
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