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EXPANSION AND ATTRACTION OF RDS: LONG TIME BEHAVIOR OF THE SOLUTION
TO SINGULAR SDE

CHENGCHENG LING AND MICHAEL SCHEUTZOW

ABSTRACT. We provide a framework for studying the expansion rate of the image of a bounded set
under a flow in Euclidean space and apply it to stochastic differential equations (SDEs for short) with
singular coefficients. If the singular drift of the SDE can be split into two terms, one of which is singular
and the radial component of the other term has a radial component of sufficient strength in the direction
of the origin, then the random dynamical system generated by the SDE admits a pullback attractor.
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1. INTRODUCTION

Regularization by noise, i.e. existence and uniqueness of solutions under the assumption of non-
degenerate noise, has been established for a large class of singular stochastic differential equations
(SDEs). It was shown recently that these equations also generate a random dynamical system (RDS),
see [18], and like in the classical (non-singular) case it therefore seems natural to establish asymptotic
properties of these RDS for large times, like expansion rates of bounded sets and the existence of
attractors or even synchronization (meaning that the attractor is a single random point).

We consider an SDE on R with time homogeneous coefficients
dX; =b(X,) dt +o(X;)dW,, X,=x€eR% t>s>0, (1.1)

whered > 1,b: R? - R? and ¢ = (0ij)1<ij<d R? — L(RY) (:= d x d real valued matrices) are
measurable, and (W;);s¢ is a standard d-dimensional Brownian motion defined on some filtered
probability space (Q, F, (F1)i>0, P). We assume that b € ip (R?) (defined in Section 2.1), so b does not
have to be continuous nor bounded, and oo™ (¢* denotes the matrix transpose of o) is bounded and
uniformly elliptic and Vo € f,p (R%) with p > d (time homogeneous Krylov-Rickner condition). These
are sufficient conditions for the well-posedness of the equation (1.1), see [14] and [24]. They also im-
ply the existence of a flow and random dynamical system (RDS) generated by the solution to (1.1) [18].
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First we analyse the linear expansion rate of the flow generated by a singular SDE. In classical
results, see e.g. [21],[7], Lipschitz continuity or one-sided Lipschitz continuity of the coefficients of
the SDE is assumed to obtain bounds on the expansion rate. Obviously we lack these properties in
our current setting. Instead, we assume the noise to be non-degenerate, so we can apply the Zvonkin
transformation to get an SDE which has Lipschitz-like coefficients and this SDE is (in an appropriate
sense) equivalent to the original one (1.1). The Zvonkin transformation was invented by A. K. Zvonkin
in [32] for d = 1 and then generalized by A. Yu. Veretennikov in [23] to d > 1. It has become a rather
standard tool to study well-posedness of singular SDEs, see e.g. [27], [25] and [24]. This tool heavily
relies on regularity estimates of the solution to Kolmogorov’s equation corresponding to (1.1) which
can be found for instance in [13] in the classical setting. In this paper we adapt the method to the
study of the RDS induced by singular SDEs. We show that the flow expands linearly (see Theorem 5.4),
a property which was established for non-singular SDEs with not necessarily non-degenerate noise
in [3, 4, 19, 20, 21]. Our proof mainly depends on stability estimates (see Theorem 5.2). These kind of
estimates were studied before, see for instance [12], [27] and [28], but the dependence of the constants
on the coefficients was not specified. We give a formula in Theorem 5.2 which states this dependence
explicitly. It also yields the expansion rate constant in Theorem 5.4.

Secondly, we aim at conditions which guarantee the existence of an attractor for the RDS generated
by a singular SDE. Clearly, one can not expect that an attractor exists without further conditions (an
example without attractor is the case in which the drift is zero and the diffusion is constant). Since
[6], numerous papers appeared in which the existence of attractors for various finite and infinite
dimensional RDS was shown, e.g. [2], [8], [9], [10], [11], [7], [15] and [31]. A common way to prove
the existence of an attractor is to show the existence of a random compact absorbing set and then to
apply the criterion from [6, Theorem 3.11]. Just like [7], we will use a different and more probabilistic
criterion from [5] (Proposition 2.8). Roughly speaking, all one has to show is that the image of a
very large ball will be contained inside a fixed large ball after a (deterministic) long time with high
probability. In [7] this was shown under the assumption that the diffusion is bounded and Lipschitz
and the drift b(x) has a component of sufficient strength (compared to the diffusion) in the direction
of the origin for large |x|. In our set-up, this condition is too restrictive. Instead, we assume that
the drift can be written in the form b = b; + b,, in which b; is singular and b, has a component of
sufficient strength (compared to the diffusion and the localized L,-norm of b;) in the direction of the
origin for large |x|.

Structure of the paper. We introduce notation and the main results in Section 2. In Section 3 we
study the expansion rate of the diameter of the image of a bounded set under a flow under rather
general conditions. These results are minor modifications of results contained in [21] which are
proved by chaining techniques. Section 4 contains estimates on functionals of the solution to the
singular SDE, namely quantitative versions of Krylov’s estimates and Khasminskii’s lemma. The
first part of the main results of this paper is presented in Section 5, i.e. the linear expansion rate of
the diameter of the image of a bounded set under the flow generated by the solution to a singular
SDE. In Section 6 we show the existence of an attractor of the RDS generated by the singular SDE. In
Appendix A we study regularity estimates of elliptic partial differential equations with emphasis on

the dependence on the coefficients. We believe that these estimates are of independent interest.
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2. NOTATION AND MAIN RESULTS

2.1. Notation. We denote the Euclidean norm on R? by |.| and the induced norm on L(]Rd) or on

L(L(R%)) by ||.]|. Recall that the trace of a := (aij)i<ij<d = oo” satisfies tr(a) = Z O'U, where

o* denotes the transpose of o € L(R?). For p € [1, ), let Lp(]Rd) denote the space of all real Borel
measurable functions on R equipped with the norm

» 1/p
11, = ([ o ax)" < ves
R4
and L., denotes the space of all bounded and measurable functions equipped with the norm

1flleo := [Ifll, := sup |f (x)].

x€R4

We introduce the notion of a localized L,-space for p € [1, oo]: for fixed § > 0,
Ly(RY) = {f : Ifll;, := sup &£z, < oo}, (2.1)
z

where &5(x) = £(5) and £ (x) = §s(x — 2) forx,z € R?, & € C°(R% [0,1]) is a smooth function
with &(x) = 1 for |x| < 1/2, and £(x) = 0 for |x| > 1. For (a, p) € R x [1, ), let H*?(IR?) be the
usual Bessel potential space with norm

1 fllger = 1T = A)*/2f]ly,,
where (I — A)*/2f is defined via Fourier’s transform
(T-M)f=F @+ TFL).
The localized H*-space is defined as

H = {f : || fll ap = sup |5 fllsrar < 00}

From [24, Section 2] and [30, Proposition 4.1] we know that the space H%? does not depend on
the choice of £ and &, but the norm does, of course. More precisely, by [30, Proposition 4.1], for the
Lp norms with different §, say é; and §; and §; < 2, if we use the notation (Lp)(s to denote the Lp
space with support radius ¢ for localization, then

5
Nill gy, <11 Ny, < N5 )|| i, (2.2)

where Nj, N, are constants independent of 8y, §;. For convenience we take § = 1 in the following.
For further properties of these spaces we refer to [24]. In the following, all derivatives should be
interpreted in the weak sense. Occasionally we will use Einstein’s summation convention (omitting
the summation sign for indices appearing twice). We will often use the notation r, = max{r, 0} for
the positive part of r € R, a V b := max{a, b} and a A b := min{a, b}.
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2.2. Preliminaries. In the following, all random processes will be defined on a given probability
space (Q, 7, P).

Definition 2.1. A flow ¢ on a Polish (i.e. separable and completely metrizable) space X equipped with
its Borel-o-algebra X = 8(X) is a measurable map
¢ : {(s,t,x,a)) € [O,OO)ZXXXQ 1s<t < oo} — X

such that, for each w € Q,

(1) ¢ss(x) =xforallx € X and s > 0,

(2) (s,t,x) — ¢s(x) is continuous,

(3) for each s, t, the map x — ¢;;(x) is one-to-one,

(4) for all 0 < s <t <u and x € X, the following identity holds

¢s,u (x) = ¢t,u (¢s,t (x)) .

Next, we define the concepts of a metric dynamical system and a random dynamical system.

Definition 2.2. A metric dynamical system (MDS for short) 6 = (Q, 7, P, {6;}:cr) is a probability
space (Q, 7, P) with a family of measure preserving transformations {6; : Q — Q,t € R} such that
(1) 6p =1id, 0, 0 65 = Oy45 for all t,s € R;
(2) the map (t,w) — 60,0 is measurable and 6;P = P for all t € R.

Definition 2.3 (RDS, [1]). A (global) random dynamical system (RDS) (6, ¢) on a Polish space (X, d)
over an MDS 6 is a mapping

o :{(s,x,0) € [0,00) XX X Q} > X
such that, for each v € Q,
(1) measurability: ¢ is (B([0,)) ® X ® ¥, X)-measurable,

(2) (t,x) ¥ ¢;(x) is continuous,
(3) ¢ satisfies the following (perfect) cocycle property: for all t,s > 0, x € X,

Qo( @) =id,  @res(x, ©) = @1(95(X, @), Os) (2.3)
Clearly, an RDS ¢ induces a flow via ¢s;(x) := ¢;(x, 6s.). We say that an SDE generates a flow
resp. an RDS if its solution map has a modification which is a flow resp. an RDS. The following study
is based on the flow generated by the solution to the SDE with singular drift. Therefore we state the
result from [18, Theorem 4.5, Corollary 4.10] on the existence of a global semi-flow and a global RDS
for singular SDEs under the following condition.

Assumption 2.4. For p, p € (2d, o0) assume
(i) b e Ly(RY), o : RY — L(R?) is measurable, || Vo|| € L,(R?).
(ii) There exist Ki, K; > 0 such that for a := oo™ we have
Kil)? < (@), 0) < KalZ’, V¢ x e RY.

Remark 2.5. Note that ip C ip/ whenever p > p’. Therefore, if Assumption 2.4 holds with different
values of p and p, then it also holds with the larger of the two numbers replaced by the smaller one.

In particular, the following result which was formulated for p = p can still be applied.
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Theorem 2.6. [18, Theorem 4.5, Corollary 4.10] If Assumption 2.4 holds, then the SDE (1.1) admits a
flow ¢ and a corresponding RDS ¢.

We will often write ¢;(x) instead of ¢ ;(x). Abusing notation we will sometimes say "Let ¢/;(x)
(or just 1) be a flow .." instead of "Let ¢, (x),x € R%,0 < s < t < co be a flow and ¢;(x) := ¢ (x),
t>0,xeRe."

Definition 2.7 (Attractor, [6]). Let ¢ be an RDS over the MDS 0 = (Q, 7, P, {6;};cr). The random set
A(w) is a (pullback) attractor if

(1) measurability: A(w) is a random element in the metric space of nonempty compact subsets of
X equipped with the Hausdorff distance,
(2) invariance property: for t > 0 there exists a set Q; with full measure such that

o(t, w)(A(w)) = A(Giw), Yo € Qy,
(3) pull-back limit: almost surely, for all bounded closed sets B C X,
tlim sup dist(¢(t, 0-;0)(x), A(w)) = 0.

X€B

One way to verify the existence of an attractor is the following criterion.

Proposition 2.8. ([5], [7, Proposition 2.3]) Let ¢ be an RDS over the MDS 0 = (Q, F, P, {6; }1er). Then
the following are equivalent:

(i) ¢ has an attractor,
(i) ¥ r > 0, limp oo P € Q1 B € Uy Ness 07 (1, Br, 0,0) ) = 1

2.3. Main results. Based on general estimates on the speed of dispersion of random sets in Section 3
(cf. Theorem 3.3) and on quantitative estimates of the solution to singular SDE in Section 4, we will
show the following result in Section 5.

Theorem 2.9. If Assumption 2.4 holds, then there exists a constant k > 0 such that for the flow
generated by the solution to (1.1) we have, for any compact X € R,

limsup( sup supl|¢t(x)|) <K as.

T—o00 te[0,T] xeX T

The precise statement including a formula for k will be given in Theorem 5.4. There, we can see that
k — oo as K; — 0 (when all other parameters remain unchanged). The following example explains
this fact: as the noise becomes more and more degenerate, the linear bound on the dispersion of a
bounded set under the flow approaches infinity, so our non-degeneracy assumption on the noise
cannot be avoided.

Example 2.10. In R?, for € > 0, we consider the system
dXt :B(Yt) dt+6dW1, X() € ]R,
dy, =[((-Y) VvV (-1)) Al]dt+edW? Yo €eR
5
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_ | lylm® ify#0, 1
B(y) = { 0 else. q € (0, 4)-

and W', W? are two independent 1-dimensional Brownian motions. Notice that for b(x,y) :=
(B(y), ((=y) Vv (1)) A 1)*, we have b € L,(R?) for p € (4, é). Clearly there exists a unique so-
lution (X, Y) to (2.4) and

t
Xt:X0+/ B(Y)ds+ W}, t>o0.
0

By the ergodic theorem, almost surely,

1 [t *
in 3 [ B0as= [ Bwm,
—00 0 —0o
where 7. is the invariant probability measure of Y. Since 7. converges to the point measure §, weakly
as € | 0, we see that the linear expansion rate of (X, Y) converges to co when € | 0. In particular, we
can not expect to have a linear expansion rate for the solution to a singular SDE with degenerate

noise in general.

We will now assume that the singular drift b in (1.1) is of the form b = by + b, with b; € ip(]Rd)
and b, satisfies one of the following conditions.

Assumption 2.11. For a given 8 € R, by(x) : R — R satisfies

(U¥) lim supy,| e, 137 - b2(x) < B
or
(Ug) liminf e |§—| - by(x) = .

Theo~rem 2.12. Let Assumption 2.4 hold. If there exist vector fields by and b, such that b = by + b, with
b, € LP(le). There exist positive constants 1 (see Theorem 6.2) and f, (see Theorem 6.3) such that for
the flow (1 (x)):>0 generated by the solution to (1.1)

1. if by satisfies Assumption 2.11 (Ug) for B > By, then for anyy € [0, f — B1) we have
lim ]P(Byt CUiB) YV t> o) —1. (2.5)
2. if by satisfies Assumption 2.11 (UP) for B < —Ps, then for anyy € [0,—f — o) we have
lim ]P(Byt CyTy(B) Vot o) - 1. (2.6)
In particular, ¥ has a random attractor.

Correspondingly the detailed results are presented in Theorem 6.2 and Theorem 6.3.

In the end we give the following example on the special case that the drift is bounded (i.e. p = o)

to conclude the results on the expansion rate and attractors.
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Example 2.13 (A case study: bounded coefficients). We consider the flow (;(x));>o generated by
the solution to (1.1) when b, Vo are simply bounded, i.e., Assumption 2.4 holds with arbitrary
p=pe€(l00).
1. Expansion rate of the flow: Theorem 5.4 shows that for each € > 0 there exist constants C;
(depending on d and €) such that for each compact subset X ¢ R?

. 1 K
timsup( sup sup Z I (1)) < oK+ DI, + 190112
T—oo “te[0,T] xeX T Kl

[(&)md%e . (||VU||§O)3zd3+e+ (”b”]:p)32d2+e]. o

K; K; K;
2. Existence of the attractor: if b = by + b, with b; bounded and b, satisfying (Uﬁ ) in Assump-
tion 2.11 and
b2 + K |Ib o K, \ 4d*+e Voll2 \4d%+e by ||oo \ 4d+e
[3<—Cz(” 1l5 + Kallba| )[(_2) +(II Cflloo) +(|I 2| ) ]
VKK, K K; K

where € > 0 and C, > 0 is an appropriate function depending on d and € only, then from
Theorem 6.3 we know that ¢ has an attractor.

3. EXPANSION OF SETS UNDER A FLOW

In this section, we assume that 1/ : [0, 00) X R? x Q — R? is measurable such that t — 1;(x, ) is
continuous for every x € R? and w € Q (we do not require that i has any kind of flow property).

Lemma 3.1. Assume that there exists & > 0 and a constant c; > 0 such that for each r > d, there exists
¢ =c(r) > 0 such that forallx,y € RY and T > 0, we have

1/r o
(E sup (19: () - )] < el = yles ™. (31)

0<t<T
Then ¢ has a modification (which we denote by the same symbol) which is jointly continuous in (t, x)
and for eachy > 0 andu > 0,

lim sup 1 sup log ]P( sup sup | (x) — ¥ (y)| = u) < -I(y), (3.2)

T—oo XTy XYexry 0<t<T

where sup xr, means that we take the supremum over all cubes yt,, in R? with side length YT, and
I:[0,00) — R is defined as

ye(1+ a)_l_l/acl_l/a if Yy = ci(a+1)d*
I(y) = d(y — ¢1d%) if cd* <y <ci(a+1)d” (3.3)
0 lf Y < C1da.

Proof. We follow the argument in [21, Proof of Theorem 3.1]. Without loss of generality we take
x = xry = [0, e 714 and define Z;(x) := ¢, (e "Tx), x € RY. From (3.1) we get

1/r .
(E sup (1Z:0) - Z@)]")) < ce e - yletr™™.
0<t<T
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By Kolmogorov’s Theorem (see, e.g. [21, Lemma 2.1]), ¢ admits a jointly continuous modification
and for any p € (0, r%d):
P( sup sup [yu(x) - u(y)l > u) < G Ty, (3.4)
XYExTy 0<t<T
where ¢ depends on 7, d, p only. Taking logarithms, dividing by T, then letting T — oo and optimizing
over r > d we get the desired result (3.2). O

Remark 3.2. Since I(y) = sup,., {r(y —cir*)} is the supremum of affine functions, the map y — I(y)
is convex. Further, I grows faster than linearly.

The following theorem is a reformulation of [21, Theorem 2.3].

Theorem 3.3. Let i/ : [0,00) Xx R x Q — R? be jointly continuous and satisfy the assumptions of
Lemma 3.1 and (3.1) hold with constants ¢; and a. Assume further, that there exist c; and cs > 0 such
that, for each k > 0 and each bounded set S C RY, the following holds

1
lim sup — log sup ]P( sup | (x)| > kT) < —cok? + cs. (3.5)
Toeo I 7 xes \No<t<T
Let X be a compact subset of R with box (or upper entropy) dimension A > 0. Then
1
lim sup( sup sup—Itﬁt(x)|) <k as., (3.6)
Toeo te[0T] xeX |
where
1
(%tﬂ)z if %5 <a+l c1d™!
K = 27y with ylzd I
(M) ’ otherwise, B

Vo = (@' A)* (1 + a)'*e,

Remark 3.4. In addition to the assumptions of the previous theorem, let us assume that 4 (x) = @o+(x)
where ¢ is a flow (later, we will only consider this case). Let X ¢ R? be any compact set and let B be
a ball in RY containing X. Clearly, the boundary B of B has box dimension d — 1. The flow property
of ¢ implies that for each t > 0, the boundary of ¢ ;(B) is contained in ¢,;(dB) and therefore any
almost sure upper bound « for the linear expansion rate of the set 9B is at the same time an upper
bound for the linear expansion rate of the set B and hence of X. This means that in the case of a flow,
the formula for « in the theorem always holds with A replaced by d — 1 (or the minimum of A and

d—-1).
4. QUANTITATIVE VERSION OF KRYLOV ESTIMATES

We will show a quantitative version of Krylov estimates (4.1). One can find similar results in the
literature with implicit constants, for instance [14], [27] and [24], which however do not fit our needs
since some proofs in later sections rely on the explicit dependence of the constants on the coefficients
of the SDE. In the following lemma, a constant Ck,y appears which depends on g, p, p, d only. While
we will regard p, p, d as fixed throughout, we will apply the formula with different values of ¢ and

we will therefore write Cy,y(q) for clarity.
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Lemma 4.1. If Assumption 2.4 holds and (X;);>¢ solves (1.1), then, for f € iq(Rd) with q € (d, o],
there exists a constant Cx,y(q) > 0 depending on g, p, p,d only such that for0 < s < t,

E / FO6)1dr

& IVolld  aa2
— (K2 1:1/ Lp \ 1=a7
whereT = (Kl) P+( @ ) » +

Tl < Cray(@T (K, *(t = 5)2 + (1= ) 1. (4.1)

() .
1

Proof. 1t is sufficient to show the estimate for positive f. (4.1) clearly holds when q = oo, so we assume
q € (d,00). All positive constants C;, i = 0,---,7 appearing in the proof only depend on p, p, g, d.
We will regard p, p and d as fixed but we will vary q in the following proof and we will therefore
highlight the dependence of constants on q in some cases (for Cy and Cy). First we show that a := go*
is1- %-Hélder continuous using Sobolev’s embedding theorem and the condition that o € H* with
p > d.Indeed

lla(x) —a(@)ll

|x —y|t=d/p

[(00™)(x) — o)Wl |
Jx —y|t= /e
lo"(x) =" @Wllllollo  llo(x) = a(@)llllolle

<
iy EE T T

wi-d/p(a) = sup
xyeRY x#y,|x—y|<1

lo(x)a”(y) - (00*)(y)||)

<
e |x —y|t=4/p

xy€R? x#y,|x—y|<1

x,yeRY x#y,|x—y|<1

<CpaVK:| Vol . (4.2)

We follow the idea from [29, Theorem 3.4]. Applying Theorem A.3 with p” = oo, we see that there is
a unique solution u € H*? to

1
Au — Eaijaiju = f (4'3)

provided that A > Cy(q) ﬁ( X

_2-d/q
sup lu(x)| < C1(g)A” 2z Kj

xeRd

sup [Vu(x)| < Ci(q@)A" 2 K|

Kz Ko Ralvoli,

1-d/q _#(Kl‘*' VKZHVO'”jp d

= = Ao(q). Further, for A > Ay(q), we have

4 Ki+VKe||Vol; d
= )1— Iz ||f||L~q = Ul,q()t)”f”iq’
1

4

% )N fllz, = Uag DIz, (4.4)
1

xeR4

Fix t > s > 0 and define the stopping time
5
TR i= inf{§> s :/ |b(Xr)|dr >R}, 0 <R < 0.
N

By the generalized It6’s formula (see e.g. [24, Lemma 4.1 (iii)])
u(Xt/\TR) - u(Xs/\rR)



tATR

) 1/ a0 ar 4 / " (Ta() o %) dw,+ / b(X,) - Vu(X,)dr.

2 ATR SATR SATR
Using (4.3), the mean value theorem, (4.4) and BDG’s inequality, we get that

tATR

SATR
tATR LATR
=E[(u(Xsare) = u(Xinze)) | 5] +1E[A/ u(X,) dr|%] + E| b(X;) - Vu(X,) dr|F;]
SATR SATR
IATR EATR

< sup |Vu(x)|E|| b(X,) dr+/ o (X, )dW;||F5] + A(t —s) sup |u(x)|

xeR4 SATR SATR xeRd

tATR
+ sup |Vu(x)|]E[ |b(Xr)|dr 7"3]
xeR4 SATR
tATR

< sup |Vu(x)|CovKa(t = 5)7 + A(t — ) sup [u(x)| +2 sup |Vu(x)[E| |b(X;)|dr|7]

x€R4 xeR9 xeR4 SATR
<CoyKa(t - s)%Uz,q(A)llflliq +A(t = 9)Urg(DIIfIIz,

EATR
+ 20, WIAILE] [ ool (@5)
SATR

Here, the constant C, > 0 comes from BDG’s inequality. We apply this inequality to f = |b| with
q = p. Then, for A > A(p),

EATR L
E| 1b(X,)|dr|F;] <CoKs(t - $)2Up(DIIb]lz, + At = $)Urp(DII[,
SAT]
‘ tATR
+ 20, OB EL [ OO 7.
SATR
- _l+d/p K, \/ITZ Vol
If A > Ao(p) is so large that Uy, (D) 1bll;, = Ci (p)A~ o (%)ki/p Ibllz, <3 ie.
—1-d/p Kl + \/EHVO.HEP d 2
A> (4C1(p)K1_2 ( = )1—d/p||b||ip)1—d/}7’ (4.6)
1
then we get
EATR CZ .
E[ [ 1b0QIdr|T] < ZVK(t - 9 + 220 - U, QB
SATR

Plugging this into (4.5), observing that, by definition, Uy ;, (1) Us4(A) = Uy 4(A)Us,(4), and using (4.6)
yields, for A > Ao(p) V A¢(q) satisfying (4.6),
tATR

E| fOG)dr

SATR

7]
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Co(VRa(t = 5)1Ung (1) + At = ) (Usg (D) + Usp(DUzg W17 )11,
<2Cs (VK (t = )2 U (1) + A(t = 5)Up (1)) 1£1Iz,-
Let 2 = Cy (8 (VI 5 4 (4 (oK, 7
Co(q) V 1, which 1mphes

1d/p Ki+VK;||Vol|;
( P

d 2
- ) =dTp ||b||ip)m) with Cy > Go(p) Vv

, Ki+VE|Voll;,

-1 -1\ 35 _d_
\/I?ZUZ)CI(A) = CI(CI)\/EZ(AKl) 2(AK; 1)2q( z )l—d/p
1
L KVEIel;
< GsK, Z(AKl_l)Zq( =z ) =dlp
1
. IVl ol
C6K_%((K2)lgip+ i, Iggj” 12ll;, 174;1))
Kl Kl Kl
and
L, Ka+vElVoll;,
AUl,q(A) = Cl (q)(AKl )2‘1( K )1 d/p
1
2
Ky o MVONG g IO, 2) ),

<C7((E)l_d/p+ 5 ) g
1 1 1

In the above estimates we used the fact that p > 2d and q > d. Therefore,

tATR
E| [ )7
SATR
. Vall2 . el
K, 4 L, 4d L,
< Cke 2) a7 = H(t— )b 4 (- 4.
oy (@) ()77 + (=) P97+ () P97 )1, (£ = 9)F o+ (=), (47
Letting R — oo we therefore get (4.1). m|

The following corollary is a quantitative version of Khasminskii’s lemma. The constant Cy.y(q)
appearing in there is the same as in the previous lemma.

4d? Vol 4d?

oliz, | —ad_
Corollary 4.2. Let Assumption 2.4 hold, let T := ((%) =dlp + (TLP) =dlp + (K_le) 1_4d/p), Then, for

any f € I:q(]Rd) with q € (d, ], any0 < S < T, and any 0 < A < oo, the solution (X;);>o of (1.1)
satisfies

T -1/2
]Eexp(ﬂ/s |f(X)|dr) <2.2I- S)( N +1<) <2 o(T- S)( +2;<)’ (4.8)

where k = ZCKry(q)/H“Hflliq.
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Proof. The second inequality is an application of the general inequality (A + B)? < 2A% + 2B2,

Lemma 4.1 shows that there exists some positive integer n such that, for j =0,---,n -1,
(T=5) (j+1) .
/UE[ / . ) (X)) dr‘?‘—?r;sn] < (4.9)
and the proof of [26, Lemma 3.5] shows that for any such n we have
T
E exp (/1 / | f(Xr)|dr) < 2"
S
(see also [17, Lemma 3.5]). By Lemma 4.1, any n such that
T-S\: T-S7 1
oo (552 + 1] <
@I () + =] <3
satisfies (4.9). In particular, we can take
2 2
n= {(T —S)(%Kz"l/2 + \/KZKZ‘I +r<) J +1
Here, | x] is the largest integer that is smaller than or equal to x € R. Therefore (4.8) holds. ]

Remark 4.3. Note that the right hand side of our version of Krylov’s estimate contains the factor

(t — )2 + (t — s) instead of C(T)(t — s)l_% in [29, Theorem 3.4 (3.8)]), where C(T) depends on the
final time T. Further, we require the condition g > d instead of ¢ > d/2 in [29, Theorem 3.4 (3.8)]).
The reason for our restriction to g > d is that we use (4.4) which only holds for g > d. Since we will
later apply Krylov’s estimate to f := |b* - 6~ !|? which is in I:p /2 we will have to assume p > 2d.

Remark 4.4. More general versions of the quantitative Khasminskii’s Lemma (but with less explicit
constants) can be found in [16].

5. UPPER BOUNDS FOR THE DISPERSION OF SETS INDUCED BY THE FLOW GENERATED BY THE
SOLUTION TO SDE

Depending on the regularity of the SDE’s coefficients we show upper bounds for the dispersion of
sets under the flow generated by the solution in the following two cases.

5.1. Stability estimates of the SDE with weakly differentiable coefficients. Consider the equa-
tion

Ay} = b(Y)dt+5(Y))dw;, Y =y, € RY i=1,2. (5.1)
For b and & we assume:

Assumption 5.1. For p, p € (2d, o),
L|Bll g1p + 1Bl < 005
2. ||VO'||EP < 00;
12



3. for a := 60™, there exist some I%l, I%z > 0 such that for all x € R,
K2 < (@080 < Kolg’, Ve R

Theorem 5.2. Let Assumption 5.1 hold. There exist constants ko, k1 > 0 depending only on p,d, p, such
that foranyr > 1,T > 0,y; € R, i = 1,2, the solutions Y' := Y'(y;) to equations (5.1) satisfy

E[ sup Y} (y1) = Y2(y2)|"] < kolyr — y2|” exp(x1To), (5.2)
te[0,T]
where
= r*||1blle + 11611% + (TIIVBI|; )2K; ' +T||VB|; +T%|Va| K; ' +T|Va]|2 (5.3)
o:=r ~ Ollso i,) K2 i, O'Lpz O'Lp. .
. V&2 i
T ((&)1% . (u oM | . (||b~||Lp)%).
K K; K;

Proof. Again, all constants Cy, ... depend on p, p, d only. By It6’s formula we get for any r > 1,

t t
2 = P gy = el [ 1% VA A <l sl [ - VA b,
0 0
(5.4)

where M; is an (77)-local martingale defined as

t
M, = / 2r|Y) = Y22 [5(Y)) - 6(YH)I" (Y] - Y7) dw;
0

and
A .:/t 2r(Yy — Y2, b(Y}) = b(Y2)) +rllo(Y]) - &(Y32)||2ds
o Y- 2P
/t 2r(r = D|[6(Y]) — 6(YH)I* (Y] - YH)|?
+ ds
0 Y — Y24
and

t =

_ L2rlY) = Y2, b(Y])) = b(Y2)] +rlla(Y)) — 6(YA)1?
A ds
0

Y- ¥2P
([ DI SOOI P,
; Y= |

There exists C; > 0 such that for each x,y € R4
lo(x) = 5(y)| < Cilx = y|(MIVG|(x) + M|V5[(y) + [|5]|),
[b(x) = b(y)] < Culx = y|(M|VB|(x) + MIVB(y) + [blles),
where Mf is defined as Mf(x) := sup,¢(q ﬁ /Br f(x + y)dy, which satisfies
IMFll, < Crd)lifll, for y>1 5:5)

see [24, Lemma 2.1].
13



Using these estimates and the Cauchy-Schwarz inequality, we get

t ~ ~ ~
A, <c2(r(/ M|Vb|(Y;)+M|Vb|(Y3)ds+t||b||m)
0
t
er( [ MIVSP D + MITER ()5 + 511
0

+2r(r - 1)(/tM|V5|2(Y;) + MIVG2(Y2)ds + t||&||§o))
0

=tC (bl + (2% = r)[|G11%)
2 t . . )
+CZZ/ rMIVBI(YY) + (2r® — YMIVE[A (YY) ds.
i-1 70

Applying Corollary 4.2 and (5.5) we get, for @ > 0 and t > 0,

E[exp(aA;)] < 16 exp [ngat], (5.6)
where

oa =a(rllblles +r*1I511%) + (ral|[VBII; Ky + rafl | Vb7,

+ (ar2f||v&||§p)21%2—1 + (ar2f||V6||12:p). (5.7)

Choosing a = 1 and applying stochastic Gronwall’s inequality (see [22, Theorem 4] or [26, Lemma
3.7]) to (5.4) we get

E[tsg(l)% Y = Y7'] < Calyr - yzl’(lE[eXp (fir)])l/2 < 4Cyly1 — v exp (%CSQlT)-

Observing that p; is at most equal to o, defined in (5.3) and defining ky = 4C4 and x; = %Cg, (5.2)
follows. O

Remark 5.3. If ¢ is even globally Lipschitz continuous with Lipschitz constant L, then there is no
need to use Khasminskii’s Lemma for the integral over ¢ and we easily get (5.2) with

o = r*| bl + (FIVBIE, K5 + VBl + 17|

and

bll-
Fom (g (2 (it

K1 1%1 I%l
5.2. Linear expansion rate of the SDE with singular coefficients.
Theorem 5.4. Let Assumption 2.4 hold. Let ()0 denote the flow generated by the solution to (1.1).

Let X be a compact subset of R%. Then there exists a positive constant Cpp.d depending on p,d, p only
such that

1
lim sup( sup sup—|¢t(x)|) <k' as., (5.8)
T—o00 te[0,T] xeX T
14



where

K;
K* =C (K+ bl =2 4 va%)
a1 35+ 19l

d3 . 42 2
[(K:z ) —u—d/(pii:))(l—d/p) ( ”b”Lp ) 17—113/2<mp> ( ”VG”Lp
— + +
K1 Kl

Proof. The idea is to apply Theorem 3.3. All constants Cj, ... depend on p, p, d only.

32d3
) [=d/(prp))(1-d/p)
K ’

Step 1. We check the assumptions of Lemma 3.1.

Since, by (4.2), the map x +— a(x) = o(x)o"(x) is 1 — d/p-Holder continuous and wy_q/,(a) <
Cpd VK || Vol i Theorem A.3 and Corollary A.4 show that there exists a constant C| such that for

2 Ky +VK; ||Vl Ki + VK;||Vol|; bl|+
1 C;kKl(&( 1 2” HLp)l—tZi/p N ( 1 2“ ||LP)WM(” ||Lp)l—(21'/p),
K? K K K
the equation
Lo d2u®ab - va® —au® = p0  [=1... 4
2 13 ij > s s Uy
has a unique solution U := (u®); <4, u'Y € AP and
d(x) =x+U(x) forxeR? (5.9)

is a C!-diffeomorphism on R? (see also [29]). Let ¥ := (®)~!. Then, by the generalized Itd’s formula
([24]), Y; := (¢ (x)) satisfies the following equation
dY, =b(Y,) dt +6(Y,) dW,, Yo=yeR? (5.10)
with
b(x) =AU (¥(x)), o(x):=[VDP o]0 (¥(x)), y=o(x).
From [24, (4.5)] we know that

1 1
U]l < > VUl < 3 (5.11)

Furthermore, by (A.17) and (A.4) we have

d 1-d/,
VUl < 5(50% <5 0l < 5(5) 7 <5
VAU < Gl (1+ @)ﬁnbw (5.12)
I, S 2 K L, -
Hence, by (5.11) (see also e.g. [24, p. 15]),

1 3
S <IVel = [1+VU| <5, V¥ <2

15



which implies that for all x € RY,

1
FKalEl < (66" (05 8) < —K2|§|2 VEEeRY, (5.13)
and
~ 1 ~ 1
IBlleo < AllUNleo < 54, MBIl < AUz, < 24,
IVbll;, < Alldet(VR)ILIVUIl;, < 2. (5.14)

Moreover for p’ = min(p, p) we have by embedding
~n. 2 . 3
Iv6l;, = | ((V O o+ V@VU)V‘I’) o ¥ll;,
< ||((v2c1> - G)V‘I’) o¥|; + ||((VCI>V0)V\P) o ¥l

< 2||det(Vq>)||é’?(\/ITzlled>llip +||VD - V‘I’IIOOIIchIIip)
\/— VK;||Vol;
C2 K (1+ K

If (¢ (x))s>0 is the flow generated by the solution to (5.10), then by definition of ®(¢/;(x)) from (5.9)
and the fact that U is uniformly bounded from (5.11), we get that

d
2) T |[b]l; +91IVall; . (5.15)

lim sup ( sup sup —|¢t(x)|) = lim sup ( sup sup —|¢t(x)|)
T—oo te[0,T] xeX T—oo t€[0,T] xEX

Usmg the estimates (5.13), (5.14) and (5.15) we will establish (5.2) for Y. Indeed, let K; := —K1 and
K, = —K2 in Assumption 5.1. Then we define

2
Ry VOl Bl
r;:(( )=l 4 (———) +(_ 1d/p)
K K K
2
° K, % K, b ” \/KZHVO'”L d/ d?‘(iz ) j) ]
< 1-d/(pAp) 4 1+ 1-d/p ) 1= P/\P+—P)
oo () K0+ —x ™) &)
K, s 11, a2 Va2 16
<C (_ =a/ A -d7p) 4 =2 4 (L0 (1*d/(p/\p))(l—d/p)). 516
poa( () () ™+ (5 516

Using Theorem 5.2 and the fact that |V¥| < 2 together with (5.13), (5.14) and (5.15), for the flows
correspondingly ¥/ (x;), ¥?(x2) generated by the solutions X/ (x1), X} (x2) to (1.1) we get

E[ sup ¢/ (x1) = 97 (x2)|"] = B[ sup (Y (y1)) — ¥(¥(y2)|']
te[0,T] te[0,T]

2"E[ s[up] 1Y (y1) = Y2 (y2)|'] < 2"Cjlys — y2l" exp(C3To)
tel0, T
(5.17)

16



with
e K +TA+(TA)K, IKlzbi,, ;OEPKZ IKlzkip ;Oi,,'
(5.18)

Step 2. Verification of estimate (3.5) in Theorem 3.3.
Let

' * - k 1 ! * k\ —
po=exp( [ 50 (o nan, -5 [ 500 bign ).
0 0
where ¢;(x) is the flow generated by the solution to
dg; = o(@)dW,,  @o(x) = x € R
It follows from (4.8) that, for any f > 0,

T
IE exp (ﬁ/o b*(UU*)_lb(q)r(x))dr) < 2exp (TC;“((Ksz)‘l(r’ﬁ)2||b||%p +r/ﬂK1—1||b||§P))
(5.19)

where

Va2
L, 4d?

) TdTe. (5.20)

= () +

Ki Ki

Therefore (p;)i>0 is a martingale. Let P := prP. By Girsanov’s theorem and Holder’s inequality,
]P( sup |¢(x) — x| > kT) =1Pp( sup |p:(x) — x| > kT)

0<t<T 0<t<T

=E [pT]I{supoéKT |(pt(x)—x|>kT}]
<[Ep?]2P[ sup |p:(x) — x| > kT]2.

0<t<T

[T

Applying Markov’s inequality we obtain, for each x € R? and { > 0,

]P( sup |oe(x) — x| > kT)l/z < e—%§kT[]Eexp (g sup /to(q)r(x))dW, )] (5.21)
0

0<t<T 0<t<T

(5.19) shows

[Ep2] " = [Eexp (2 /0 b (oY (g ()W, — 2 /0 b (00) (o (x))dr

+ /T b*(ao*)_lb(rpr(x))dr)] e
0

) (]E[exp (2'/0Tb*(0_1)*(¢r(x))dm _ 2'/OTb*(o-o-*)_lb((l’r(x))dr]2)1/4

[]Eexp(/t2b*(0'0*)_1b((pr(x))dr)]1/4
0

17



T 1/4
< [JEexp (z / b*(aa*)_lb((pr(x))dr)]
0
< 2exp (C;‘T((Klng)‘ll“’2||b||4ip +K1‘1F’||b||%P)) =: 2exp(Tk;)

and by time change f o(er(r)dW, = W/ we also have

/0 t o(er

Inserting these estimate into (5.21) and optimizing over { > 0 yields, for any k > 0,

]P( sup |i(x) — x| > kT) < 2exp (C;"T(Kl + il — §k))

0<t<T

o (or (x))|*dr’

r )]1/2 < V2exp(Cal®llol|AT) = V2 exp(T{ k).

[IE exp (2{ sup

0<t<T

1
< 2exp (C;T( - —k*+ Kl)). (5.22)
4K2
With estimates (5.17) and (5.22) at hand we are ready to apply Theorem 3.3 by taking
¢ :=A+K +TA+ (TAK; ! + f‘z(&llbﬂ2 + Vo2 )?K; ! + f(ﬁllbll2 +||Val?)
b 2 2 Kiz L, L, 2 K12 Ly L,”

1

Cy = ———
4ol

¢s = Gy (K{Ko) " TPIIbII; + K'TIIBIE =3, (5.23)
with T from (5.16) and I” from (5.20). Note that we can take A = d — 1 by Remark 3.4. The linear
expansion rate k can now be estimated as follows (no matter which of the two cases in the definition
of k in Theorem 3.3 applies):

c1 +c3\1/2
kK < Cpq
€2

cp,p,dnanw(x/h Ky + VA + TAK; 2 + T (K K; 2||b||2 +||ch||2) K12

+ VE(VEKT Bl + IValy,) + (KEK) T IBIE + (K5T) 2 el

< CppaVKa(VKi + JE+—+||b||2 ) Yy e,

1(2 I(i V](é I(i
Vol|? .
+ I ”Lp ) [(&) (1—d/(1716pd))(1—d/p) (” ”L )1 d3/2(dp2/\p + (”b”LP)ﬁ
VK> K; K; K;
IVol2 Ivol2 Vol
+ (_P) (=d/Gprp) (i=d7p) 4 ( L ) (=d/p)(1=d]p) 4 ( L ) 1—d/p]
K; K K;

K,
< Cppalf-+ IBIZ 5+ IVoll? )
1

18



\vj 2
Va2

1643 bll+ 32d% 3243
[(&)(1—d/<pm))(1—d/p) +(H ”Lp)l—d/(P/\P) +( )(1—d/<mp>><1—d/p>

(5.24)
K1 Kl K1
. . 2 2 3
In the last inequality we used that max(l_;/z(‘;Ap), I—Z/p) < 1—d3/2(0117/\p)’ and max((l_d/(pi%)(l_d/p),
8d 8 324d°
a7p) (- alp Tdfp) < Tafpronii-dlp) 10 the end we get (5.8). o

As a by-product from the proof of Theorem 5.4 we also have

Proposition 5.5. Let (;(x));>0 denote the flow generated by the solution to (1.1). Let yr be cubes of
R with side length exp(—yT), y > 0. If Assumption 2.4 holds then for any k > 0

1
lim Sup - sup log lP( sup sup |Y(x) — ¢ (y)| > k) < -I(y)

T—oo XT x,y€xr 0<t<T
where
y (1 + a)_l_l/“cl_l/a if Yy = ci(a+1)d”
I(y) = d(y — c1d”) if ad’<y<cala+1)d” (5.25)
0 lf Y < Clda.

with a and ¢y as in (5.23).

Proof. This follows easily from (5.18) and Lemma 3.1. O

6. EXISTENCE OF RANDOM ATTRACTORS TO SDES WITH SINGULAR DRIFT

Inspired by the work [7], we are interested in the question whether there exists a random attractor
of the RDS generated by the solution to the singular SDE. We start with estimates of the one-point
motion (items 1-5 of the following lemma) and then move to estimates for the dispersion of sets
(items 6 and 7).

Lemma 6.1. Let Assumption 2.4 hold. Further assume that there exist vector fields by and b, such
that b = by + by with b, € LP(]Rd). Let (4(x))t>0 be the flow generated by the solution to (1.1). Let

a2 Vol l1b2llz,  _sd
I:= CKry(l_z))((%) 7 + (—LP 2lp ) 1—4d/p) where CKry(‘g) is from (4.1) withq = g depending

on p, p and d only.

1. Let1 < r,andry,ry > r. If by satisfies Assumption 2.11 (UP) for some B € R, then, for each
|x| = r2,

P(Iyr(x)] > r, inf [9i(x)] > 7)
2 4 2 2
C2 ! + KT b2

_4d?
)7+ (o

1 ro —r \/Tﬁ*(r) 2
S 2exp (T K K2 _Z(_ VT VK )+)
with
P o= sup 7 2|(x) Fd-DiE 61)
|x|=r r
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2. If b, satisfies Assumption 2.11 (UP) for some B < 0 and ry > 1 is such that p*(ry) < 0 where
B*(ro) is from (6.1), then for every R > r > ry and every x € R%, we have

2 4 2 2
r ”bl”ip +K2r”b1”1:p ~ (R_r)z)
KiK? 16K,T /-

P(lyr(x)] > R, inf [¢:(x)] <) < 4exp (T

0<t<T

3. Ifb, satisfies Assumption 2.11 (UP) for some p < 0 andry > 1 such that f*(ry) < 0 where *(ro)
is from (6.1) and if R > ry, then for every |x| = R, 8,5, > 0, we have

P2 bl + KET b2

52
]P( sup | (x >R+5)<6ex (T - )
0<s<p(51 |¢ ( )l P K1K22 16K251

4. Let1 < r, and ry,r; > r. If by satisfies Assumption 2.11 (Ug) for some f € R, then for each
x| =r1,

P(Igr(x)] < ra, inf [91(x)] > 7)
D! KB g

<2exp(T ——( _rg—rl)z)
KiK? 4\ K, VKT /+

with

B.(r) = inf 2722 ba(x). (6.2)
|x|>r |x|

5. If by satisfies Assumption 2.11 (Ug) for some f € R, then for each |x| = ry, for1 <r <r

2||b,||* + K2T||bq]|?
I 1||Lp STl 1||L ﬁ*(r))

3 == (r-r)
KiK? K»

i Sr) <
P(inf |y (x)] <7) < 2exp (T
with B.(ry) defined as (6.2).
6. Assume that b, satisfies Assumption 2.11 (Ug) for
161112 T + Kellb1 ]|z, VT
P
VKiK;
Leth : [1,00) — [1,00) be strictly increasing such that limy_,« @ =0 and limy_, lg)(gg =0.

Letn € (0,1) andy > 0 withn+y < B — Bo. For R > 2, define T := h(R),r = (1 - n)R and
ri =R+ yh(R) Then

B> po:=4

lim su log Pp := lim su
R—)oop h( ) g R R—)oop h( )

7. Assume that by satisfies Assumption 2.11 (UP) for
1B1112 T + Ko l1b |7, VT
P

VKK,

—logP[ (B, € ¥r(Bw)) U Uscton (B £ i (Bw))| <0

p<—Po:=-
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Let h(R) = R for some 1 € (0, %) Letn € (0, %) andy > 0 withn+y < —f — By. ForR > 2,
define T := h(R),r = (1 —n)R andry := R+ yh(R). Then

lim suph(R) log Pr
R—o0
= timsup s log [ | (51 > Ry 0 inf il > )] <0

|x|=r

Proof. Let us explain the idea of the proof of parts 1 to 5: we express the probabilities on the left
side by the corresponding ones for the flow 1/ generated by the SDE with drift b replaced by b,
by applying Girsanov’s theorem. This is possible since b, € Lp The required estimates for y/* can
then be obtained from results in [7]. Notice that strictly speaking the SDE generating y* cannot be
applied since the assumptions in [7] require the coefficients to be one-sided Lipschitz continuous
which is not necessarily true in our set-up. It is easy to check however that the estimates of the
one-point motion in Propositions 4.2 to 4.6 in [7] hold without additional Lipschitz-type assumptions.
Therefore, we divide the proof into two steps: a Girsanov argument and then estimates for the flow /2.

Let
pri= e [ 60" @Renan~ 1 [ oo e,
where /Z(x) is the flow generated by the solution to
dyf = b(yf)dt + o (yf)dW;, Y5 =x € R
From (4.8) and (5.19) we get for T > 1 and any A > 0

T
Eexp (2 / (b1)" (o0") br (Y (0))dr ) < 2exp (T((KP) A b1l12 + K7 'ATlbi12 ).
(6.3)

Therefore, (p;);>0 is a martingale. Fix T > 0 and let P? := prP. Girsanov’s theorem and Holder’s
inequality show for each measurable set A € C([0, T],RY)

P(Yljo1) € A) = PP (VP01 € A)
=E[pr: ¥*lon € A] < [EPT]l/ZP(¢2|[O,T] € A)

T T
< [Eexp (2 /0 ()" (0™ (Y2 (x))dW; — 2 /0 (b1)" (00") by (Y2 (x)) dr

1/2

+ /OT(b1)*(ag*)—1b1(lhz(x))dr)]1/2 []P(l//2|[o,T] c A)]I/Z

_ (E[exp (Z/OT(bl)*(6_1)*(¢3(x))dm _ 2/0T(bl)*(gg*)ﬂbl(lﬁrz(x))dr]2)1/4

[]Eexp(/Ot2(b1)*(ag*)—1b1(l//,z(x))dr)]1/4[P(¢2|[0)T] eA)]l/Z
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/2

T /
<[Bexp (2 [ (b0 (oo buiconar) | [Pl < 4)]
/
< 2exp (T((KlzKZ)_lrz”l’l”%p +K1_1r”b1”%,,)) []P(‘//2|[0,T] € A)]l : 6

If A; denotes the set inside IP on the left side of item i in the Lemma (i= 1, ..., 5), then

T2y + KET byl

< ) []P(‘//2|[0,T] € Ai)] v

P €A) < 2ex @
(Yo i) p KiK2

1/2
finishing the first step in cases 1-5. It remains to estimate []P(l//2| [07] € Ai)] . Inserting the estimate

in [7, Proposition 4.2 a)] under (U#), we obtain statement 1. Inserting the estimate in [7, Proposition
4.5] under (U”), we obtain statement 2. Inserting the estimate in [7, Proposition 4.6] under (U?), we
obtain statement 3. Inserting the estimate in [7, Proposition 4.2 b)] under (Ug), we obtain statement
4. and inserting the estimate in [7, Proposition 4.3] under (Ugp), we obtain statement 5.

Finally we show items 6 and 7. Without loss of generality we assume % < R. For a ball Bg with
radius R we can cover its boundary dBg by N = N, < Cd(lg)"l_1 balls centered on 9By for any
€ € (0,R]. Here we take € = exp(—«xh(R)) for some x > 0 which will be chosen later and we label
the balls by Ly, - - - , Ly with corresponding centers x, - - - , xn. Note that

N < CR ™ exp ((d - 1)Kh(R)).
Then

]PR <N max [P(ll//]‘(xl)l < r+ 1, inf |¢t(xi)| >r+ 1)
i<N te[0,T]

SIS

+]P( inf |y (x;)| <7+ 1) +]P( sup diam t;(L;) > 1)]
te[0,T] te[0,T]

=:N(P1(R) + P2(R) + P3(R)).
Case 4 gives us the following upper bound (note T = h(R))

20p 114 + K2 2
rllbl”ip-"Kin”bl”ip l(ﬁﬁ*(r+l) r1+1—R)2)
4

P1(R) < 2exp (T

KiK2 V5 VT /-
= 2exp h(R)rZHblHE” +K222r||b1”§” MO e -y - ).
KK 4K, h(R) )+
So
T2|[by[|2 + KZT[|by |2
lim sup —— log(NP; (R)) < (d — 1) + Ly b L g2 (6.5)
PR K.K2 iK,
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Case 5 shows for r = (1 - n)R

TballZ + K516 112
L 2 L Bi(r+1)
P;(R) <2 T z L _(R-r-1 —)
2(R) < 2exp e (R-r-)=
T2IballZ + KGT 161112
L 2 L B(r+1)
=2 h(R ? L —(yR-1 —)
exp (W ——"20 (R~ 1=
Hence
T2ballZ + KGT 16112
L 2 L —1B.(r+ 1)
— log(NP,(R d—1)k+ = 2 1 6.6
7 OEVPL(R) < (d = 1 R e (6:5)
Furthermore, by Proposition 5.5,
lim sup —— log P3(R) < — 301_1/3 with x > 4c;d° (6.7)
R—sco h(R)

where c; is taken from (5.23) with b replaced by b,. Therefore, by (6.5), (6.6) and (6.7), it follows that,
for k > 4c,1d>,

lim sup

R—o0 h( )

< limsu
R—)oop ( )

lOg ]PR

log(NP;(R) + NPP,(R) + NPP5(R))

P! + K3Tball

1 _
<2(d - 1)k +2 - — )P+ (d = D)k — 3] 6.8
(-1 R (B (d= D= ©9)
) ||b1||%PF+K2||b1||ip\/f S
Notice that f—y > fo+1n > 4 KK . If we choose k > 3c;(d — 1)° initially, then get
lim su log Pr < 0.
msup s g P

Therefore case 6 holds.

We show case 7 in a similar way. We again cover B, by N < Cyr;%"1e*(@=DT balls centered on 9B,
for any with radius e 7 for some k > 0 chosen later. Label the balls by Ly, - - - , Ly with corresponding

centers x1, - -+ ,xn. Then

Pr <N max []P(Wr(xi)l >R+1, i[nfT] Y (xi)| > r + 1)
i telo,

+]P(|¢T(xi)| >R+1, 1nf |1//t(x,)| r+ 1) ]P(tesg(l),pﬂ diam ¢, (L;) > 1)]

=:N(P1(R) + P;(R) + Ps (R))-
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From case 1 we then get (note T = h(R))
2 4 2 2
Pl + Kb

h(R) (R+1-r 2
Pi(R) <2 h(R P - — B 1
(B <zexp (R —— < Trm o Fee))
2 4 2 2
e (h(R)r||b1||ip+K2F||b1||ip_h(R)( 1 _ﬁ)z)
Seexp KiK? ik, ‘h(@®R) '
Therefore,
L2)|b1 |12+ KZT||by ||
1 L 2 L 1 1
—log Py(R) < ? L (— —y-B)% 6.9

Analogously, case 2 implies for R such that r = (1 — )R > ro where *(rg) < 0,

2. 114 2 2
L ®) < r ”bl”ip +K2F||b1||ip (R—r)2 610
1o < B ‘ |
h(R) 87 KiK2 16K,h(R)
By (6.9), (6.10) and (6.7) we obtain
1
——log P
h(R) og IFr
T2|[by[|2 + KZT[|by |2 2
L ’ L 1 1 (R-r) -1/3
<3(d-1Dk+2 ? P _ L (LS _B_2_ _ B3 611
(@-1x K,K? 1% h(R) W tekay F a0 @10
and
T2([by |2 + K5T[|by |2
1 L 2 L 1
li loglPr < 3(d -1 2 d P (LB )2 AR
HR}I_)S;IP h(R) Og R ( )K+ Klez 4K2( ﬁ Y) K C1
Under (U?),
T2([by[|2 + K5T[|by |2
(—y=B)* > (o —n)* > 16K, b L
K, K?
Hence, choosing > 3¢;(d — 1)* above, we conclude that lim supp_,., 5z log Pr < 0. m

Now we are ready to state the first main theorem of this section.

Theorem 6.2. Let Assumption 2.4 hold. Further assume that there exist vector fields b; and b, such
that b = by + by with by € Lp(]Rd). Let (Y;(x))¢>0 denote the flow generated by the solution to (1.1). Let

o (g VOl a2 gl s o ' » _
r:= CKry(E)((I?l) Tl 4 (——L) TP + (K—l) lfd/P) where Cxry (%) is from (4.1) with q = % depending

on p, p and d only. If by satisfies Assumption 2.11 (Ug) for

1B1112 T + Kol |7, VT

B> Py=4 P ,
VKK,
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then for anyy € [0, — By) we have
lim ]P(Byt Cy(B) YV t> o) -1 (6.12)

Proof. Fory € [0, — By), let n € (0, %) such that y +n < f— fo. Let Ry > 2, Riy; = R; + yh(R;) by

iteration, where h : [1,00) — [1, 00) is strictly increasing and lim,_, @ = 0 and lim,_,c lho(ixj)c =0.

Fori=0,1,---,take r; = (1 — n)R;, 7; = R+ yh(R;). Define
Pg, = P[(Bf,- g IPT(BRi)) U UseloT] (Bri 0 lﬁt(BRi))]-

Then Lemma 6.1 case 6 shows that

Z Py, < oo, if Z exp(—xh(R;)) < 00, K > 0.

i=0 i=0
If we take h(R;) = R{ for some a € (0, 1), then Borel-Cantelli Lemma and time-homogeneity of flow
¥ yield the result (6.12). ]

Finally, we state the following theorem on the existence of random attractors.

Theorem 6.3. Let Assumgtion 2.4 hold. Further assume that there exist vector fields b; and b, such
that b = by + by with by € Lp(]Rd). Let (4(x))¢>0 denote the flow generated by the solution to (1.1). Let

oo (koL VOl aa by ad o , » _
= CKrY(E)((I?f) Fdlp o (—2) TP (K_IP) 1—d/P) where Cxry () is from (4.1) with q = & depending
on p, p and d only. If b, satisfies Assumption 2.11 (UP) for
1B112 T + Kalballz, VT

P

VKK, ’

p<—Po:=—4
then, for anyy € [0,—f — Bo), we have
lim ]P(Byt cylB) ¥t o) -1, (6.13)
In particular,  has a random attractor.

Proof. The existence of an attractor is an easy observation from Proposition 2.8 if we have (6.13). So
we only need to show (6.13). The argument is essentially the same as [7, Proof of Theorem 3.1 a)].
We give the outline of the proof emphasising those arguments which are different.

Fory € [0,—f — o), let n € (0, %) such that y + n < —f — fo. Let h(y) = y* for some a € (0, %)
Notice that such h is strictly increasing and limy % = 0 and limy lho(% =0.ForT € (1, ),

take R := TY% r; = R+yT and r = (1—p)R. Let (¢s1(x))s<T denote the flow starting from x at initial
time s. We define

Py = P| (B, £ 97" (Br)) U Urepor (B € 97 (Bw)|
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Once we show that

lim

log P 0, 6.14
Jim h(R) ogPr < (6.14)

then, by the same argument as in the proof of Theorem 6.2, we can finish the proof by the Borel-Cantelli
Lemma and time-homogeneity of the flow /.
To show (6.14), notice that

Pr < P| Upior, ((197G01 > B) 0 inf 1)1 > 1)) |+ P sup sup Iyr(x)] > R)

|x|=r te[0,T]
= Pl(R) + PZ(R)

For P;(R), we get from Lemma 6.1, case 7 that (note T = R* = h(R))

hm log P;(R) < 0.

h()

In the following we show

hm

1 P,(R) = 6.15
which is sufficient to get (6.14).

Let & = (sup|yj=, [Ys7(X)| = )4, & = (sup|x|=r+R,]/2 |57 (x)| — r)s. Then, as shown in [7, p.1205-
1206], we have

lim su log P,(R)
R—)ooph( ) &2
1 n
<limsu log max [ ( s R)+]P( sup sup |[Yps(x)| = r+ R)]
R—>c>op h(R) & el G20 rels I;s] |x|p Ve
:= lim sup log max (Pz 1(s,R) + P55(s,R)).
R— oo h( )
To estimate P, (s, R), for fixed 0 < s < T, denote rg = r + 1R, we cover dB,, by N < Cyrd~tex(d-1T

—xT

balls of radius e™" centered on 8Br0 with k < 3( d 1) (the same choice as in the proof of Lemma 6.1

case 7. Label the balls by Ly, - -, Ly and their centers correspondingly by xi,- - -, xn. Then for a
number r, such that f*(r;) < 0 where f*(r;) is from (6.1), we have

Py1(s,R) < le_ax [ (ltﬁsT(x,)| r+nR-— 1) + ]P(dlam Us(Li) > )]
<le_ax[ (|¢3T(x,)| renR= 1, inf |ys(x) >r2)

+]P(|¢ST(x,)| Fe IR =1, inf (o3| < )+1P(diam¢s,T(L,~)>1)].
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By the same argument from Lemma 6.1 case 7 (6.11) with h(R) = R* = T, and Lemma 6.1 case 2, and
Proposition 5.5 we get

lim sup

R0 h(R)
Up to here, in order to get (6.15), we only need to show

log max] Py1(s,R) =

1
lim sup — log n%ax] Py, (s, TV = —co. (6.16)
1T

T— o

In [7, Proof of Theorem 3.1 a)], this is shown by using three statements: [7, (4.7)], [7, Proposition
4.5] and [7, Proposition 4.6]. In our setting, we already showed the second and the third statements:
these are Lemma 6.1 case 2 and case 3 correspondingly. Therefore it is sufficient to show the estimate
corresponding to [7, (4.7)] in our setting. In order to do so we first apply Girsanov Theorem as we
did in Lemma 6.1. Let

pr=exp /0 B (0™ ()W - : /0 t b*(00) " b(y(x))dr),
where ¢;(x) is the flow generated by the solution to
dg: = o(p)dW;,  ¢o(x) = x € R,
Following from (4.8) we get for T > 1 and any A > 0
11} (A% + KE{b]]2 AT

E exp (A/OT b*(oa*)_lb(¢r(x))dr) < exp (T KK
2

IVall? &
where I" = Ciry (5 )(( )1 d/ﬂ + (TL)l d/ﬁ) and CKry(p) is from (4.1) with p = £ 5and b =

Therefore (p;)i>o is a martmgale. Let IP? := p;P. As we already did in (6.4), by Girsanov theorem and
Holder’s inequality, for € > 0, for any x, z € RY,

P(|¢t+zln,l(x) - l//”zln’l(z)l > g)

:]Pp(|¢t+%n,l(x) a ¢t+2%’1(z)| g g)

:]E[pﬂ[ ]
{I%Z;n,l<x)—¢t+2;n,l<z>|>§}

112 T+ KZb] T s
J[P(19ea0 = duga@ = 5)| 7 617

<2exp ( KK
2

Let B;(x) := then by time change and the fact that for k;,k; € R

ft lof?(¢r (x))dr’
14 9
IP(Wt > rcl) <-e 2, P(supW;>kp) <e 2,
2 s<t
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we know for x,z € R? and |x — z| < S with d > 0

[]P(|¢t+2ln,1(x) - ¢t+2l,,,1(z)| > g)]lm

<|P(IBuag, (x) = By ()] > - 5)]1/2

<[exp(_ (e —25)? 1 )]1/2
ba(f loP(grdr = [y 12 (r(x)dr)
(e—=28)?2 1
<o (- )

Accordingly by (6.17) for any €, § > 0 and for any x, z € R? with |x — z| < § we have
4 T2 L 12NBlI2 T
I %+ KE2 T

]P(WHZ%,I(X) - l//t+2in,1(z)| > g) < 2exp( _(e- 282 1 )

K/K? 16 K-k
(e—25)? 1
<o |
16 K;—-K;
corresponding to [7, (4.7)]. Applying the argument from [7, Proof of Theorem 3.1 a)] we get that
Py5(s, TY/%) decays super exponentially in T, therefore (6.16) holds. The proof is complete. m]

APPENDIX A. BOUNDS FOR SOLUTIONS OF ELLIPTIC PDEs
Consider the following elliptic equation on R? (recall the summation convention):
Au—a;j0;ju+b-Vu=f, (A1)

where A > 0, a(-) : R? - R @ R? is a symmetric matrix-valued Borel measurable function, and
b(-) : R = R%and f : R — R are Borel measurable functions such that f € L, (R%) with p € (1, ).
The definition of the solution to equation (A.1) is as follows:

Definition A.1. Let A > 0. We call u € H>? a strong solution to (A.1) if for a.e. x € RY,
Au(x) = a;j(x)9;u(x) + b(x) - Vu(x) = f(x).
We assume
Assumption A.2.  (H?) there exist 0 < K; < K; such that for all x € R?,
Kilfl® < (a(0)¢.0) < KallP VG e R, (A.2)
and a(-) is a-Holder continuous with

wg(a) = sup M < 00

. (A3)
xyeR? x#y,|x—y|<1 lx -yl

for some « € (0, 1].
(H®) b e Ly, (R%) for some p; € (d, o0].
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In this section we will show estimates of the solution of the elliptic PDE above. Such estimates
were obtained in [29, Theorem 3.3] in the case where a is uniformly elliptic and uniformly continuous
and b € L, for some p; > d. These estimates were, however, not explicit in terms of the coefficients
a, b and f. We prove the following theorem which shows this dependence since we need it in the
main text but it may also be of independent interest.

Theorem A.3. Suppose Assumption A.2 holds. There exists a constant Cy > 0 depending on p, p1, @ and

2 d_2_ |bl; 2 .
d only, such that for A > COKl(%(K“““(“))% + (Kl“?la(“))a a7 ( Kfl’l )1—d/p1) and for any f € Lp(]Rd)
1

Ki
withp € (d/2V 1,p1], there is a unique solution u € H2P to (A.1). Further, forp” € [1, 00] there exists a
constant C depending on a, p,d, p’ and p; only, such that

d/a
) A,

wq(a)
Ki

1
V2l < c-(1+
P Kl

d_d d_d_ dfa d d
e e R L A A Y
1 p P
d_d d_d d/a d d
2+ ”)/2||u||ip, < CKl(p/ p)/2(1 + M“T(a)) ||f||ip if 2+4—=-=>0. (A.4)
1 p P

Proof. Assume u € H?P is a solution to (A.1). We first show the a priori estimates (A.4). Then the
continuity method, as shown in [13], is a standard way to conclude the existence and uniqueness of
the solution to (A.1) for those A for which (A.4) holds. We divide the proof into three steps. Note that

all positive constants C;,i = 1, - - appearing in the proof only depend on d, p, p1, p’, @ (and not on A,
£, b, a, and w,(a)).

Step 1. Assume that a is a constant (positive definite) matrix, b = 0 and f € L,.

For A > 0, let v € H?P be the solution to the following equation
lw—»A=f, f(x):=f(ox), xeR?

where o is the unique positive definite matrix satisfying co* = a. Thenv = (A — A)™! f is the unique
solution in H>?. From [29, (3.3)] we know that, for each p’ € [1, o0], there are constants Cy, Cy, C3
such that

) .
IVollL, < CillfllL,,

4. d - d d
A0y P)/ZHVU”LP/ <Gllfllz,, i 1+—=-=>0,
p p
4 d . ) d d
e p)/zllz)”Lp, <Gsllfll, if 2+ P > 0. (A.5)

Let u(x) := v(07!x), i.e. v(x) = u(ox). Observe that

9;v(x) = dku(ox)oy;, 9;ju(x) = A u(ox)okioy;.
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Therefore
(A= D)o(x) = (A = aydy)u(ox)

and hence u solves (A.1). Uniqueness of a solution under the conditions of Step 1 holds since the map
v — u is a bijection between solutions of the corresponding PDEs. Considering

1wz P R
R > S
51V 0||Lp deto™" || V=u|| , K‘D 7
1 1
then (A.5) yields

-1 ’ ; -1
IIVUIIP > deto IIVullpp,, ||flljjp=det0 IIfII"p,

I92ll, < Cio- ||f||L,,,

d_d 1_1 1 d d
AT V)| < Co(deta™ )PP —|Ifllr,,  if 14— —=>0,
P VK, P PP
d_d 1_1 d d
212+ p)/2||u||Lp, < CS(deto'_l)fl’ ” Ifll, if 2+ i > 0. (A.6)

We know that deto = H ", VA where A; > 0,i = 1,-- -, d, are the eigenvalues of a. From (A.2) we
get A; € [Kj, Kz]. Therefore

—_d _d
deto™" € [K, *, K, *]. (A7)
Using (A.6) and (A.7) we finally get

IV2ullz, < Cier ||f||Lp,
d_d d_d_ d d
20 P)/2||Vu||Lp, <GKTIPfL, i 1+=-Z>0,
p P
d_d d_d d d
AE TP, < YT fIl, i 2+ e 0. (A.8)

Step 2. a satisfies Assumption A.2 (H*),b=0and f € ip.

Here we apply the freezing coefficient argument. For § > 0 which will be determined later, let
) =¢& (5) where £ is the same function which we used to define the localized spaces. For z € RR?
denote

FOx)=8(x-2), @ =a2), v(x) =@uk), fi(x)=x)f(x).
Observe that
Au® — afja,-juz =h,
where
hy =f*+ (aijaiju)fz’(S — a;;0u°

=f*+ (aij — aj;)dju - 5”5—61 (00,80 + 9jud; &0 + ud;;E9).
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From [13, p18, 2. Corollary], we know that there exists some Ny > 0 such that for any 2 € H 2P and
€ > 0 we have

IVallL, < ellV¥allL, + Noe ' llallz,-
Therefore
I1hzllz, <Ca(lf7IlL, + 0a(@)0% VP - E0|l1, + KollVu - VEP ||, + Kallu - V2E°)|L,)
<Ci(IIf7Ilz, + 200 (@)% V? (u - E0)|IL, + (K2 + 20q(a)8%) |V - VE2| 1,
+ (Kz + 204(a)8%) Ju - V2E°)|L,)
<Cs(IIf2Ilz, + 200 (a)8* V2|1, + (Kz + 204(a) %) | Vu - £y,
+ (K2 + 204(a)8) 5 ||u - £°||1,)
<Cs(1£7NlL, + 20a(@)8 V201, + (K + 204 (0)8%) 8 (Ve |Ig, + llu - VE2|I1,)
+ (Kz + 204(a)8) 5 |u - £°||1,)
<Cs(IIf7Ilz, + (2wa(a)d” + €(Ka + 204(a)8%) 5| V20|l

+ (Kz + 200(a)5) (€767 + 87 lu - £°]l1,), (A.9)
where w,(a) is from (A.3). Assuming (without loss of generality) that C¢ > 1/6, we define
K 1a K16
= ( 1 J <1 e 1 : (A.10)
6C6(K1 + Zma(a)) 6C6(K2 + 2wa(a)5"‘)
It is easy to see that C6K (20q(a)8% + e(Ky + 204 (a)8%)671) <5 1 and
K
(K + 204 (a)8%) (67171 +872) < & —(%“(a))%-
1
So we get from (A.8) and (A.9) that
K2
Ki+ wq(a) . 2
IV | < s—(IIfZII fz —) 1w llL,)- (A.11)
Plugging this into (A.9) ylelds
C +w (a) +w (a)
Iellr, < Co(IF7l, + z—gé(ufanp K K oul@y iy, ) +c7—< B, ).
Using the second inequality in (A.8) we get for 1 + 17 -2 > 0
d_d_ Kz Ki +wq(a
AF DTy <ol T (17, + D ) (a12)
1
L d _d
Similarly, for 2 + 7 p >0
d_d d_d K1 + wq(a
KED, <Ot F (1, e S ) (a13)
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Let p’ = p. Then

Ki+w (a)
Al < Cuo(IF s, + < LS el ). (A.14)
Taking A > 2C;o2* K Kl+”“(a))‘ =: Cyok We obtain
C10 Kl""w(x(a)
z 4 z 4
Il < — (Kﬁwa(a))_”f I, (—K Vel < 17,

Together with (A.11), (A.13), and (A.12), we have

1
V22| p <Crz—IIf* I,
K;

d_d d_d_ d d
A0t )/2||Vuz||u,» <CpK, 777 1)/lelelL,,, if 1+—-->0,
p P
d_d d d
AETDR A, <Cuk TR, it 24 =0 (A.15)

From definition (2.1) we know that, for each z € RY, lw*llz, < ”””ip <6 sup; ||u2||Lp1, so we get
from (A.15) that for any A > Cyok we have

d_d d_d d d
AP D2 < Ok PR Rs A p i 2+ S - s,
Ly & PP

d_d d_d
ARVl < 2 sup (196, + (w9 E )
z
d_d_ d_d
< Cio(Ky 7oV T2 s £
d_d_ d d
<k P TEVESIf i 14— = >0,
v p P
IV2ullzp < sup(l[V2u[lL, + [[uV2E |, + 2| VuVE|L,)
z
1
< Cig (o + 27+ A7) 57 £ )
K P
1 g
< o811, (A16)
Step 3. a is Holder continuous and Assumption A.2 (H*) holds, |b| € I:pl and f € f,p.

By (A.16) and Holder’s inequality, we have for A > Cyok and 1 + 1% - % >0

d d d _d
ARl <Cpky TS f bVl

IRecall that in Section 2 we assumed that the localized spaces are defined using the function &!
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d_d_q1y/2 .
<Cupa TS £ + bl IVallz, )

where p1, p2 € (p, ) and pil + piz = Ilf Let p’ = p,. Then we get

(1-30)/2 ) (pr=D/2g=d 121 i 3
20T Tully <Caoks TSI, + bl [Vl ).
Choosing A so large such that

/Pl

(1— /2 5~bll:
A > CyoK;y ”b“Lm’
we get
(—po=1)/2
CooKy' 71 .
19ullz,, <~ Z 5 Ifllz,.
AP = CyKy 5 d||b||LP
Moreover,

d
Caoky "o V2574 b -

L
b - Vul; < —— - - ANz, = ylIfllz,-
VST CZOKl(_P_l_l)/25_d||b”ip ' P

/Pl

d
Using (A.16) we see that for any A such that A > Cyok and A=)/ C20K d||b||ip , we have
1

1
—d
I9°ullz, < Car (14 5= I,

d_d e c-c
/1(1+P' p)/zllvu”ipl < sz(l + }/)Kl(p' ? 1)/25_d||f||f,p if 1+ ; - ; > 0,

d_d ) d d
/1(2+P' P)/ZHu”i , C23(1 + )/)Kl )/2 d”f”L if 2+ }7 - ; > 0.

d
Define Cys := (2C19) V Cyp. Then, for A > Coux and Cosd™ . Pl)/zK (_1’_1_1)/2 d||b|| 1 e
2

<
b1l
A > C24K1(5 d Lp)1 d/Pl)bytakmg)L C24K1( (KlLa(a)) +(K1La(a))a1 d/p1 ( Lp)1 d/pl) we get

that there exists finite positive constant Cys such that 1 + y < Cys, which finally shows the desired
result (A.4) after plugging in the value of § from (A.10). ]

Corollary A.4. Let Assumption A.2 hold and f = b',i = 1,---,d in (A.1), let p’ € [1,00]. There
exists some Cy > 0 depending on a, p; and d only, such that if we choose A > COKI( (M) +

llol]
(KIL“(“)) = (2 L” )1 d/m) then for the solution u' to equation (A.1) we have

: 1. _4d —, 1 d d
Vulll; <A %K" <= if 1+——-—=>0,
L 1
v 2 2 P P
wdfp’ 1’ ] d d
lullz,, < —f o <y i 2rl-Us0 (A.17)
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Proof. Notice that for such A we have CyA~ (=52 K (___l)/z(Kler”(a))' ||b||Lp 3. so by (A.4) for
f="0,

‘ Si=djp’+d/py  —1=d/pi+dfp’ Ky + wg(a)  d 1 241
Vul||; <CA— z K 2 —— || - ZPK < -.
Ivally, < : EEEEE AW, < <>
] o —2—d/p’+d/p d/p’—d/p iedyp! Ll
With the similar argument we get||u||ip, <CA—z K 1(Kl+w0‘(a))_||b||L < A 7 K,
O
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