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Abstract

To keep the climate change under control, 196 parties signed the legally binding, international
treaty on climate change, the Paris Agreement (2015), in which they committed themselves to
limit global warming. A crucial part on the way to CO2 neutrality is the decarbonization of the
energy sector, whereby renewable energy technologies like wind power and photovoltaic systems,
associated storage technologies as well as building renovations are key elements for the energy
transition. However, the built-up of these technologies requires huge amounts of raw materials,
see Valero et al. (2018), which is why the question arises whether enough resources are available.

While from a geological point of view, enough mineral raw materials seem to be available,
see Federal Ministry for Economic Affairs and Climate Action (2022a), the increased resource
requirements can lead to (short-term) shortages, and therefore to price peaks. Hereby, this thesis
analyzes the resource scarcity risks of four potential transformation pathways of the German
Energiewende. Therefore, we propose and apply a new framework to assess the resource scarcity
risk under the consideration of the substitutability of commodities, the actual future required
resource amounts of the project as well as the commodity market structure, using new commodity
market models, reflecting the impact of fundamentals on - as well as the spillover effects between
- commodity prices.

In the empirical application, we first apply the commodity market models on the industrial
metals markets. The results indicate the framework is able to showcase the strong co-movement
in commodity prices as well as the simultaneous impact of the economy on all commodity
markets. Moreover, various spillover effects of commodity-specific supply and demand, both
within and across commodity markets, as well as their impact on prices, underline the importance
to account for fundamentals, but also to jointly model commodity markets.

Subsequently, we incorporate the commodity market models in the scarcity risk assessment
framework to analyze the resource requirements of four transformation pathways for the Ger-
man Energiewende. Hereby, the results indicate on commodity level cobalt, indium and nickel,
followed by copper and lithium, mainly allocated to energy storage, solar photovoltaics (PV)
technologies and wind parks, bear the highest scarcity risks, and therefore, will be the key
commodities for the German Energiewende. The comparison of the four transformation paths,
suggests the path which models the transition of the German energy system with full support by
the society, shows the lowest scarcity risks, as an active support of the German population for
the energy transition significantly reduces the required amounts of raw materials and therefore
the scarcity risks. Various robustness analyses underline the main finding that a reduced energy
demand combined with a resource-optimal energy system decreases the resource scarcity.
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Ã Regime-dependent parameter matrix for the MS-GVAR model
a Intercept vector in the (MS)(G)VAR model
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(MS-)GVAR model, zi,t = (x′
i,t, x∗′

i,t)′

z Logit of the logistic regression model
Z Number of the scenarios of the input variables by the calculation of the

probability of scarcity
ζ Index of the scenarios of the input variables, ζ ∈ {1, 2, . . . , Z}
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1 Introduction

Sea levels are rising and oceans are becoming warmer. Longer, more intense
droughts threaten crops, wildlife and freshwater supplies. From polar bears in the
Arctic to marine turtles off the coast of Africa, our planet’s diversity of life is at
risk from the changing climate. Climate change poses a fundamental threat to the
places, species and people’s livelihoods[...]. To adequately address this crisis we must
urgently reduce carbon pollution and prepare for the consequences of global warming.

World Wildlife Fund (2023)

In December 2015, 196 parties signed a legally binding international agreement on climate
change, the Paris Agreement (2015), in which they committed to limit global warming to below
2, preferably 1.5 degrees Celsius compared to pre-industrial levels. In this context, the Euro-
pean Union has implemented the so-called "Green Deal" to achieve climate neutrality by 2050
according to the Paris Agreement (2015), see European Commission and Directorate-General
for Communication (2021). A key component of the Green Deal is the decarbonization of the
energy sector, since the production and use of energy is responsible for around 75% of the EU’s
greenhouse gas emissions, according to European Commission and Directorate-General for Com-
munication (2021). In addition, the renovation of buildings towards energy efficient buildings
with the use of renewable energy is promoted, as 40% of energy consumption is used for heating
buildings. On top of that, Germany committed itself to the nuclear phase-out, as stated by
Federal Ministry for Economic Affairs and Climate Action (2011), which constitutes a further
constraint of the German energy transition ("German Energiewende"). Hereby, the "transition
to climate neutrality could replace today’s reliance on fossil fuels with one on raw materials",
according to European Commission (2020).

On the way to CO2 neutrality, green technologies such as wind power and photovoltaic systems,
associated storage technologies, and building renovations are key elements. While around 40%
of electricity consumption in Germany comes from renewable energies in 2021, their share should
already be 80% by 2030, according to Federal Ministry for Economic Affairs and Climate Action
(2022b). This transition process will require large amounts of raw materials, see Valero et al.
(2018). For example, Marscheider-Weidemann et al. (2021) examine the resource requirements
of future technologies based on the global socio-economic scenarios of Kriegler et al. (2012).
Hereby, they detect the demand for cobalt and lithium in 2040 will be nearly four and six times,
respectively, as high as their global production volume in 2018 in the sustainability scenario,
due to the intensified use of the metals in (super-)alloys and storage technologies. Therefore, the
question arises whether sufficient resources are available. While sufficient mineral raw materials
seem to be available from a geological perspective, rising demand for raw materials can lead
to price peaks and delivery bottlenecks in their supply as production capacities are limited in
the short-term, see Federal Ministry for Economic Affairs and Climate Action (2022a). In addi-
tion, Valero et al. (2018) state the cumulative annual global demand for several metals related
to energy technologies is likely to exceed their reserves, indicating potential future shortages.
Moreover, the access to raw materials on global commodity markets is becoming more difficult
due to an amplified market concentration, according to Federal Ministry for Economic Affairs
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and Climate Action (2022a). In this context, this thesis aims to analyze the resource scarcity
risks of the German Energiewende.

As early as 1979, Skinner (1979) pointed out the "greatest challenge facing the U.S. Geological
Survey in its second century will be the problem of resource limitations", as industrial devel-
opment depends on reliable supplies of metals. Hereby, restrictions on trade relations between
individual countries can significantly affect the supply of raw materials in the United States
and Europe, since only a small portion is mined in these regions. In recent years, the delivery
difficulties during the onset of the Covid-19 pandemic as well as the Ukraine war have further
highlighted Europe’s, and especially Germany’s, dependence on importing raw materials and
underline the relevance of material supply security. Since Skinner (1979), various studies ana-
lyzed the supply risks, the vulnerability of a system to a potential supply disruption as well as
environmental and social impacts of materials, see Arendt et al. (2020), Graedel et al. (2012),
and Kolotzek et al. (2018) among others. However, most of these studies are "snapshots in
time", according to Graedel et al. (2012), reflecting the supply situation at a certain point in
time. Besides the extensive literature on the criticality of materials in general, only few studies
address the criticality of materials used in specific technologies. Hereby, this thesis contributes
to the literature, as the objective is the scarcity risk of materials in the context of the energy
transition, whereby we focus on the scarcity risk rather than specific security of supply issues.

The review study of Liang et al. (2022) analyzes studies in the context of material requirements
of renewable energy technologies. Hereby, they reveal most of the previous studies focus on
photovoltaic systems and wind power on a global scale. Among the few studies at the national
level, the article of Viebahn et al. (2015) analyzes relevant green technologies for the German En-
ergiewende with respect to the geological availability and supply of mineral resources. However,
the material requirements in their study are based on a meta-analysis. In contrast, this thesis
is a primary study, whereby we compare the scarcity risk of the actual resource requiremenents
for four potential transformation pathways of the German energy system. These pathways are
generated in order to optimally reduce Germany’s CO2 emissions by 95% in 2050 compared
to 1990 under different assumptions about the acceptance of the energy transition in the Ger-
man population. Thereby, we examine the annual material requirements from 2020 to 2050 of
28 representative technologies of renewable energy technologies, storage capacities, electricity
transports as well as building renovation.

From a geological perspective, sufficient mineral raw materials seem to be available for the
German Energiewende, see Federal Ministry for Economic Affairs and Climate Action (2022a).
In this context, most previous studies focus only on the required amounts of the commodities
and compare them with the available reserves, see for example the study of Valero et al. (2018)
on a global scale. However, commodities are industrial goods in real economies and their prices
are the result of the supply and demand equilibrium according to the classical fundamental
theory. Hereby, an additional demand for commodities causes supply and price reactions that
are often disregarded in the previous literature. On the one hand, the supply of resources only
reacts slowly to changes in demand, probably leading to (short-term) shortages. On the other
hand, the economic dimension is an important but mostly neglected aspect, since higher prices in
response to the increased demand can lead to substitution effects, as an alternative commodity
or even an alternative technology becomes more cost effective, which finally leads to reductions
in the global demand and therefore to a lower scarcity risk. Overall, a good’s price reflects all
available information, according to Tilton et al. (2018), therefore, we interpret the commodity
price as scarcity indicator in this thesis, which can be affected by supply and demand shocks.
Based on this assumption, we propose a new framework to assess the scarcity risk of resource-
demanding projects, taking into account the substitutability of commodities, the future resource
amounts required by the project as well as the commodity market structure. Subsequently, we
apply the proposed methodology to investigate and compare the scarcity risks of the material

2



CHAPTER 1. INTRODUCTION

requirements of several transformation pathways of the German Energiewende.

To assess the impact of the German Energiewende on commodity markets, in particular on the
demand and price of commodities, we initially examine the structure of commodity markets.
In general, a commodity’s price is the equilibrium price of its supply and demand and there-
fore naturally includes all available information, see Tilton et al. (2018). For this reason, we
interpret the price as scarcity indicator in this thesis. Hence, a comprehensive understanding
of commodity markets is essential. In general, the literature distinguishes two perspectives on
commodity markets: On the one hand, the classical fundamental theory states a good’s price is
the result of its supply and demand equilibrium, see Hotelling (1931) and Deaton and Laroque
(2003). In particular, commodity prices, especially industrial metals as industrial goods, are
influenced by their fundamentals supply and demand, see Cuddington and Zellou (2013) as well
as Stuermer (2018) and Chen et al. (2019). On the other hand, several empirical studies detect
similar patterns in commodity prices, characterized first as (excess) co-movement by Pindyck
and Rotemberg (1990).

This thesis aims to incorporate both perspectives, since the energy transition requires several
commodities, and therefore, the impact of the German Energiewende on a portfolio of com-
modities is investigated. In addition, co-production and co-consumption relations as well as
substitutions of commodities may affect the scarcity risk. Hereby, we aim to reflect the im-
pact of supply and demand, but also of global macroeconomic variables on commodity prices
simultaneously. Moreover, spillover effects between commodity markets should be also repre-
sented, to account for the co-movement between prices. In particular, we attempt to reflect
the relationships between the commodities by their common supply, demand or trading activ-
ity. Therefore, a new framework of commodity markets is necessary, as an extension of single
commodity market models for the interdependencies between commodities is not feasible due to
data limitations. In this context, we propose the global vector autoregression (GVAR) model for
commodity markets, originally developed by Pesaran et al. (2004) to analyze the world economy
from an individual country level, under the limitation of small sample data sets.

One drawback of the global vector autoregression model is its time-invariance. However, the co-
movement between commodity prices varied over time, as major changes like the financialization
and the growth in emerging markets caused significant shifts in the commodity markets, see for
example Helbling et al. (2008), Le Pen and Sévi (2017), and Ohashi and Okimoto (2016). To
illustrate the time-dependent behavior between commodities, we provide an initial bi-variate,
time-varying correlation analysis, displayed in Figure 1.1, based on the rolling 18-months1 cor-
relations of industrial metal prices. Hereby, the correlations between the metal prices fluctuate
around the time-invariant correlation based on the entire sample period from 1995 to 2020,
indicating the relations between commodities vary over time. While the correlation between
copper and zinc prices increases over time, the relations between most of the metal prices do
not follow a trend, but instead exhibit simultaneous periods of decreasing followed by increasing
correlations. In general, the correlations are higher around the years 2004 and 2009, reflecting
the stronger observed co-movement of metal prices due to the financialization as well as the fi-
nancial crisis, respectively. However, the sharp oil price drop in 2014, combined with a slowdown
in Chinese demand, caused decreasing prices of copper, nickel, lead, and tin, whereas supply
concerns lead to increasing prices of aluminum, and zinc. Ultimately, the commodity-specific
supply and demand shocks in 2014 lead to a reduction in the metals’ correlations. Based on this
brief, bi-variate co-movement analysis, we claim a time-independent analysis of the relationship
between commodity prices, or even a trend analysis, can not fully capture the interaction be-
tween commodity markets, especially, as the rolling 18-months variances of the prices observe

1To reduce the impact of potential influential points, we only include data of the previous 18 months, however,
the rolling window correlations based on 24 or 36 months reveal similar patterns. In particular, the time-varying
correlations fluctuate and do not follow a trend.
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similar patterns of increasing followed by decreasing volatility. Moreover, the substantial in-
crease in the demand of resources caused by the energy transition may also affect the structure
of commodity markets.

Figure 1.1: Correlation plot of industrial metal prices

(a) Al P - Cu P

(b) Al P - Ni P (c) Cu P - Ni P

(d) Al P - Pb P (e) Cu P - Pb P (f) Ni P - Pb P

(g) Al P - Sn P (h) Cu P - Sn P (i) Ni P - Sn P (j) Pb P - Sn P

(k) Al P - Zn P (l) Cu P - Zn P (m) Ni P - Zn P (n) Pb P - Zn P (o) Sn P - Zn P

These figures display the correlations of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn)
price to each other, whereby the Pearson correlation is calculated based on a rolling window capturing 18 months
and the red line indicates the corresponding correlation derived over the entire sample period from January 1995
to December 2020.

Therefore, the question arises how the constitution of commodity markets, especially the impact
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of supply and demand on prices as well as the co-movement between prices, changes over time.
For this reason, we extend the global vector autoregression (GVAR) framework, which reflects
the impact of supply and demand on commodity prices as well as the co-movement between
commodity prices, by a Markov-switching component, resulting in a Markov-switching global
vector autoregression (MS-GVAR) model, similar to Binder and Gross (2013), which allows for
regime-switches, enabling time-varying relations in commodity markets.

Hereby, we incorporate the commodity market model in the scarcity risk assessment framework
to analyze and compare the resource requirements of several transformation pathways for the
German Energiewende in regard to their availability, respectively their scarcity. In particular, we
generate the individual probability of scarcity for each commodity of the project using the mod-
eled prices from the (MS-)GVAR model. Subsequently, we combine the individual probability
of scarcity with a substitutability score and the required material amount for a specific project
to obtain our commodity-specific risk indicator. Finally, we aggregate the commodity-specific
risk scores on project level, to compare the scarcity risk of several project alternatives.

Empirically, we apply the framework to assess the resource scarcity risk of four transformation
pathways of the German energy system that differ in the acceptance of German societies for the
required actions. On commodity level, cobalt, indium and nickel, mainly allocated to energy
storage and solar PV technologies, bear the highest scarcity risks, while on path level the trans-
formation path, which models the transition of the German energy system with full support by
the society, exhibits the lowest scarcity risks. Overall, this thesis reveals the economic scarcity
risk of commodities strongly depends on the required amounts. Hereby, we detect an active
support of the German population for the energy transition significantly reduces the required
amounts of raw materials, resulting in a reduced scarcity risk.

1.1 Objectives and Structure of the Thesis

The objective of this thesis is the analysis and comparison of the resource requirements of four
transformation pathways for the German Energiewende in terms of their availability, respec-
tively their scarcity, within a commodity market framework. Hereby, we propose and apply a
new scarcity risk assessment framework based on commodity market models on the resource
requirements of four transformation pathways for the German Energiewende.

This thesis is divided into six chapters. Since a comprehensive understanding of commodity
markets is essential for the proposed risk assessment framework, we provide in Chapter 2 an
overview of the determinants of commodity prices and of studies that examine common patterns
in commodity prices. Hereby, we emphasize previous studies mostly focus either on the impact
of supply and demand on prices or on the co-movement between commodities. Moreover, we
reveal the literature on criticality in general regards indicators of supply risks, of the vulnerability
of a system to potential supply disruptions, as well as of economic, environmental and social
impacts, see for example Graedel et al. (2012), Kolotzek et al. (2018), as well as the review
study of Erdmann and Graedel (2011), neglecting the impact of demand on the criticality as
well as the time aspect. However, the built-up of renewable energies will increase the demand
for commodities, which is why the question arises whether the resources are available to achieve
the climate goals. Hereby, the studies in the context of the energy transition mostly consider
solar PV and wind power on technology level, whereas storage capacities are oftentimes omitted,
see Liang et al. (2022).

In Chapter 3, we propose the scarcity risk assessment framework by incorporating new commod-
ity market models, a substitutability score as well as the required resource amounts. Hereby,
each commodity market is modeled separately using (Markov-switching) vector autoregres-
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sion ((MS-)VAR) models with the commodity-specific microeconomic variables supply, demand
and price, as well as exogenous, macroeconomic attributes. Subsequently, the individual mar-
kets are linked to the (Markov-switching) global vector autoregression ((MS-)GVAR) model via
appropriate weight matrices and finally included in the risk assessment framework.

For the scarcity risk assessment of the German Energiewende, we first present the transformation
pathways of the German energy system with the associated material requirements in Chapter
4. Besides the actual resource demands, the commodity markets influence the scarcity risk.
Therefore, we illustrate the commodity-specific data as well as the price determinants. Finally,
possible interdependencies between the commodities are considered in order to combine the
individual commodity markets into a holistic commodity market model.

In the empirical part of this thesis in Chapter 5, we exemplary apply the (MS-)GVAR model on
the industrial metal markets and investigate the spillover effects between commodity markets.
Subsequently, we apply the (MS-)GVAR model on the key resources of the German Energiewende
and incorporate the results in the risk assessment framework. In this context, we evaluate the
resource scarcity risks of the four transformation pathways of the German Energiewende at
both the commodity and path levels and reveal the resource requirements strongly influence the
economic scarcity risk, whereby the actual commodity market model plays only a minor role.

Finally, Chapter 6 summarizes the key findings and discusses the limitations of the thesis.

6 1.1. OBJECTIVES AND STRUCTURE OF THE THESIS



2 Review of Literature

One important part on the way to climate neutrality, in accordance with the international treaty
on climate change, the Paris Agreement (2015), is the decarbonization of the energy sector.
However, this transition process will require large amounts of raw materials, according to Valero
et al. (2018), and "could replace today’s reliance on fossil fuels with one on raw materials", see
European Commission (2020), possibly leading to price peaks and delivery bottlenecks in the
supply of raw materials, according to Federal Ministry for Economic Affairs and Climate Action
(2022a). Therefore, the question arises whether enough resources are accessible.

In general, Skinner (1979) already pointed out the "greatest challenge facing the U.S. Geological
Survey in its second century will be the problem of resource limitations", as industrial develop-
ment depend on reliable supplies of metals. In this context, several studies assess the criticality
of various commodities, whereby they focus on the supply risks, the vulnerability of a system
to a potential supply disruption as well as environmental and social impacts of materials, see
Section 2.1. However, the limiting factor for the availability of a commodity is the extraction,
see Tilton et al. (2018). While from a geological point of view sufficient resources are available,
according to Federal Ministry for Economic Affairs and Climate Action (2022a), there may not
be enough reserves to meet the increased demand for raw materials. The resources may be re-
coverable in the future, but the development of new deposits is tedious, therefore, the production
volume of commodities only reacts slowly to changes in demand. In particular, the increased
resource requirements for the energy transition can lead to shortages, especially in the short-
term, resulting in price peaks due to the supply and demand equilibrium, according to Federal
Ministry for Economic Affairs and Climate Action (2022a). For this reason, commodity prices
may be interpreted as scarcity indicators. Hereby, a comprehensive understanding of commodity
markets and, in particular, of price determinants as well as their common pattern, the so-called
co-movement, in commodity prices, is essential, see Section 2.2 and Section 2.3.

2.1 Criticality of Commodities

Since Skinner (1979), several studies proposed frameworks for the assessment and investigation
of the criticality of various commodities. In general, the term criticality includes several aspects.
While some studies consider the sustainability of the commodities, most criticality assessments
examine the vulnerability to supply restrictions as well as supply risks. Hereby, supply risk
denotes the specific risk of disruptions in supply of a given commodity, see European Commission
(2020). As these analyses neglect the potential risk of (future) demand increases, we focus in this
thesis on the scarcity risk of metals which denotes the risk that the commodities are not available
in the required quantity at the required time. Tilton et al. (2018) even state commodities become
scarce if their price sharply jumps in the short-term or persistently increases over the long-term,
regardless of whether supply restrictions or demand increases cause these price changes. In the
following, we provide an overview of the literature in the area of criticality. We first regard
few important studies, analyzing the criticality of commodities in general, followed by studies,
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focusing on the criticality of commodities in the context of the energy transition.

The overall review study of Schrijvers et al. (2020) on general criticality assessment frameworks
on a product, technology, company, country, region and a global level reveals the main objectives
of the reviewed studies are to raise the government’s and industry’s awareness of supply issues,
to provide information to policy and consumers for the mitigation of criticality and to generate
a broad information basis for further, in-depth studies.

Moreover, Erdmann and Graedel (2011) highlight in their literature review most of the critical-
ity assessment frameworks identify critical commodities via an analysis of supply risks as well
as the vulnerability of a system to potential supply disruptions. However, by the definition of
the initial scope, the choice of metrics, the aggregation level of indicators as well as the material
group size, the results in the literature differ. For instance, Kolotzek et al. (2018) introduce
a new sustainability-oriented raw material assessment and decision support model, based on a
literature analysis, best practice in companies, expert questionnaires and interdisciplinary work-
shops. Due to increasing pressure from customers and competitors, manufacturers have to pay
more attention to their responsibility of the sustainability aspects in the selection of the mate-
rials used in their products. Therefore, Kolotzek et al. (2018) consider relevant and applicable
(semi-)quantitative indicators for the three sustainability dimensions, economic, environmental
as well as social, in their raw material assessment and decision support model. In a case study
of capacity selection, investigating the criticality of aluminum, niobium and tantalum, they con-
clude tantalum exhibits the highest total risk. A further general criticality study on 42 materials
for Europe is provided by Arendt et al. (2020), who apply the methodology SCARCE, originally
developed by Bach et al. (2017) for Germany using the bottom-up and top-down approach of
Bach et al. (2016) for identifying the relevant factors, to assess the criticality with regard to the
social as well as environmental impacts, considering various social risk and vulnerability indi-
cators. Hereby, Arendt et al. (2020) confirm the results of Kolotzek et al. (2018) that tantalum
bears high social risks. However, they identify also cobalt and tin as critical resources from
the social perspective, while gold, platinum and niobium perform worst in the environmental
perspective, indicating different perspectives draw different conclusions about the criticality. In
particular, the review study of Erdmann and Graedel (2011) identify only the platinum group
metals and the rare earth elements are found to be critical in various studies.

The more recent review study of Hayes and McCullough (2018) underlines the platinum group
metals, the rare earth elements as well as indium are most commonly regarded as critical. In
addition, they reveal wolfram, germanium, cobalt, niobium, tantalum, gallium and antimony
are determined as critical in several studies, whereby in general by-products are more often
identified as critical. While most of the studies analyze a broad set of commodities, the study of
Nassar et al. (2015) focuses on the supply risk of by-product metals. In general, by-products are
increasingly used in various applications and especially for renewable technologies. In particular,
by-products are important for electronic and solar energy applications (gallium, germanium,
selenium, indium, and tellurium), offshore wind, lighting, and medical imaging technologies
(several rare earth elements), or employed as alloying elements in high-temperature applications
(cobalt, hafnium, and rhenium). Hereby, the revenue contribution from a by-product is not
sufficient to cover the entire cost of sales from the mine and subsequent beneficiation and refining
processes. Therefore, the supply of a by-product is unable to respond to rapid changes in
demand, as the production of companion metals depends on their (few) hosts’ metals supplies.
For that reason, their prices can fluctuate widely, whereby Redlinger and Eggert (2016) confirm
a higher volatility in the annual average prices of by-products compared to main products. In
addition, the review study of Jordan (2017) reveals the assessment of certain important by-
products, such as lithium, is underrepresented in the literature so far. Overall, Nassar et al.
(2015) propose to increase recycling, as a possible reduction of the criticality, but Graedel et al.
(2015) state various metals see little or no recycling yet, which is why they investigate the
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substitutability, a further possibility to circumvent availability constraints. Nevertheless, the
analysis of Graedel et al. (2015) of 62 metals and metalloids in their major uses reveals several
metals have no substitute or the product performance will suffer from substitution.

While Hayes and McCullough (2018) aggregate the literature regarding the critical commodities
aside the applied methodology, the review study of Graedel and Reck (2016) highlights the
importance of a uniform criticality methodology. They reveal the criticality of elements vary
between the investigated studies, caused by different target groups, considered time horizons,
included factors and the aggregation of these factors. In this line, Gleich et al. (2013) focus on
the aggregation of the factors to a criticality measure and aim to provide accurate weights for
further studies. Interpreting the price as scarcity indicator, following Tilton (2010), they analyze
the impact of several indicators, inter alia primary as well as secondary production, stocks,
U.S. consumption, Herfindal-Hirschman indexes for country- and producer-concentration, U.S.
gross domestic product, world population, inflation and interest rates, on the criticality of 42
different raw materials. Their results indicate each commodity is influenced by different factors,
highlighting the importance of a commodity-specific indicator selection as well as commodity-
specific weights in the assessment of criticality.

Moreover, Graedel and Reck (2016) provide different aspects which further assessment models
should include, emphasizing the need for a uniform criticality framework, however, the models
proposed in the literature differ. Hereby, the authors emphasize to periodically update the
criticality assessment, since criticality is a dynamic state. In this context, Graedel et al. (2012)
highlight the importance of re-assessing the criticality with new data. Specifically, they suggest
a new robust, reliable methodology to quantify the degree of criticality of metals, whereby
they regard the three dimensions supply risk, environmental implications and vulnerability to
supply restrictions. First, they focus on the manufacturing and consider geological, technological,
economic, social, regulatory as well as geopolitical indicators to measure the supply risk of
commodities. Second, they quantify the environmental implications, using information about the
toxicity, the energy and water consumption in processing, as well as the emissions to air, water
and land. Finally, they consider the vulnerability to supply restrictions under the differentiation
on corporate, national and global level. Measuring the distance between the three dimensions,
Graedel et al. (2012) get an indicator for the overall criticality of the metals. However, they
claim their results are a snapshot in time and the criticality should be re-computed with new
data. In this line, Ioannidou et al. (2019) emphasize the importance of dynamic parameters in
the criticality assessment. Hereby, the authors propose dynamic indicators, derived from studies
outside of the field of criticality, and give specific examples how to include these indicators in
the criticality assessment.

To incorporate the time aspect, Rosenau-Tornow et al. (2009) investigate past as well as future
supply and demand trends in their proposed methodology for identifying and assessing long-
term supply risks for mineral raw materials, using time series data. Finally, they apply their
method in a case study on copper and underline the importance of monitoring the exploration
of copper as well as mining projects.

Overall, several studies in the literature examine the criticality of commodities. Hereby, the
sustainability, the vulnerability to supply disruptions as well as the supply risk of materials are
analyzed. As the investigated risk assessment frameworks, indicators and commodities differ
across the studies, the identified critical commodities differ, see for example the review study
of Erdmann and Graedel (2011). However, several studies emphasize the importance of a time-
varying analysis, see Graedel et al. (2012), Ioannidou et al. (2019), and Rosenau-Tornow et al.
(2009) among others.

While the previously mentioned studies examine the criticality of commodities in general, with-
out distinction of the various sectors in which the commodities are used, few studies focus on
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the commodities’ availability in the context of the energy transition. However, the built-up of
renewable energies will increase the demand for commodities. As the "access to resources is a
strategic security question for Europe’s ambition to deliver the Green Deal", see European Com-
mission (2020), the resource availability is a barrier to achieve the climate goals. In this context,
the European Commission (2020) identifies the most critical raw materials at EU level, whereby
the economic importance and supply risk determine the criticality. In particular, they define
30 out of 83 materials as critical in 2020. In addition, Arrobas et al. (2017) examine the future
worldwide needs for wind, solar, and energy storage batteries to limit global warming under the
target of avoiding global temperature increases of two, four, and six degrees. Hereby, they ex-
pect growing demands for aluminum, cobalt, copper, iron ore, lead, lithium, nickel, manganese,
the platinum group of metals, silver, steel, titanium and zinc as well as for the rare earth metals
including cadmium, molybdenum, neodymium, and indium. However, the actual requirements
will depend on the climate goal as well as the intra-technology choices. Moreover, Valero et al.
(2018) state the deployment of "green technologies" requires huge amounts of raw materials
and compare the future required resource amounts with the global reserves. In particular, they
identify the 13 metals, cadmium, chromium, cobalt, copper, gallium, indium, lithium, man-
ganese, nickel, silver, tellurium, tin, and zinc, as critical. Further, Song et al. (2022) detect the
clean energy market affects the connectedness between main and by-products in their analysis of
the dynamic dependencies between metal markets. In addition, Marscheider-Weidemann et al.
(2021) examine the global future resource requirements of 33 technologies within the clusters
"mobility and aerospace", "digitization and Industry 4.0", "energy technologies and decarboniza-
tion", "recycling and water management", and "power and data networks", based on the global
socio-economic scenarios of Kriegler et al. (2012). Hereby, they detect an elevated demand for
scandium, lithium, heavy and light rare earth metals, iridium, and cobalt in the sustainabil-
ity scenario, due to the intensified use of hydrogen technologies, lithium-ion high-performance
storage, solid-state batteries, electric traction motors, wind turbines and high-performance per-
manent magnets.

The review study of Liang et al. (2022), investigating the material requirements of different
energy technologies, reveals most of the previous studies focus on global level and only on solar
PV and wind power on technology level. One of the few studies on national level is the article of
Viebahn et al. (2015), which analyzes the German Energiewende with respect to the geological
availability and supply of mineral resources. In this context, Viebahn et al. (2015) assess the
cumulative material demand of the German energy transition by 2050 for relevant technologies,
requiring at least one critical commodity. Therefore, they combine the market shares of the
relevant technologies with their future needs derived from a meta-analysis of nine different long-
term energy scenarios for the energy supply system in Germany. In line with the results of
the review study of Lee et al. (2020), Viebahn et al. (2015) detect the shift towards an energy
system based on renewable sources is feasible. In addition, Roelich et al. (2014) provides a
new dynamic methodology based on the supply disruption potential and exposure to supply
disruption, to investigate material’s criticality during the energy transition and to allow for a
comparison between several future scenarios. Hereby, the authors apply their framework on
two potential pathways of the energy transition in the United Kingdom and exemplary examine
the criticality of neodymium in wind turbines from 2012 to 2050, whereby a step-change in the
criticality occurs in 2030.

In line with the findings of Liang et al. (2022), the literature review of Watari et al. (2020) of 88
studies, examining the long-term demand of various critical materials in the context of the energy
transition, underlines the emphasis on solar PV, wind power and electric vehicles, as well as the
global scale. Hereby, the authors state previous studies mostly neglect the linkages between
host and by-products. Further, they reveal the need for a criticality assessment framework
which integrates the long-term outlook information.
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Overall, several studies investigate the criticality of various metals since Skinner (1979), an-
alyzing inter alia the supply risk, the vulnerability to supply restrictions, the environmental
and social impacts, in general or in the context of the energy transition. However, most of the
reported results are snapshots in time, see Graedel et al. (2012), neglecting future (expected)
supply and demand trends. In addition, most of the criticality studies in the context of the
energy transition focus only on solar PV and wind power, neglecting further green technolo-
gies, according to Liang et al. (2022). Moreover, the availability of each commodity is analyzed
separately, mostly by comparing the future needs with the global reserves or investigating the
supply risks and supply disruption potential, and in particular, the joint material risk on path
level is neglected, see Watari et al. (2020). Due to the focus on the supply risk, the general
scarcity risk assessment is so far underrepresented in the literature. However, commodities be-
come scarce either due to supply restrictions or demand increases, causing price changes, see
Tilton et al. (2018), which is why a comprehensive understanding of commodity prices and their
determinants is essential.

2.2 Determinants of Commodity Prices

While an imbalance of supply and demand can lead to shortages in the short term, new technolo-
gies can prevent long-term shortages due to mineral depletion, see Tilton et al. (2018). In this
context, prices may be interpreted as scarcity indicator, where high prices reflect situations of
low supply and/or high demand, due to the market equilibrium model. Using this interpretation,
Gleich et al. (2013) underline the importance of a commodity-specific analysis of criticality, in
particular, a commodity-specific selection of different price influencing indicators, whereas most
of the studies apply the same indicators and aggregation for all materials. Hereby, a compre-
hensive understanding of commodity markets and, in particular, of price determinants as well
as the co-movement in commodity prices is essential.

In this section, we provide an overview of potential commodity price influential factors. Since the
classical fundamental theory states a price is the result of the supply and demand equilibrium,
we first analyze literature regarding the impact of supply and demand on commodity prices.
Subsequently, an overview of further determinants investigated in the literature is provided.
In particular, we demonstrate how macroeconomic indicators may influence commodity prices.
For a comprehensive understanding of commodity markets, important studies analyzing the
co-movement between commodity prices are presented in Section 2.3.

2.2.1 Impact of Supply and Demand on Commodity Prices

In general, commodities, especially industrial metals, are industrial goods in real economies and,
in particular, key elements of industrial and technological development. Therefore, an increase in
the demand should lead to elevated prices due to the classical fundamental theory, see Hotelling
(1931), Deaton and Laroque (2003) as well as Frankel and Rose (2010). Ultimately, the higher
demand might lead to scarcity (in the short-run), according to Tilton et al. (2018). In the
following, we briefly review studies that either focus on the supply and demand equilibrium or
empirically examine the effects of supply and demand on prices or the drivers of supply and
demand of commodities.

First of all, several studies on commodity markets base their analysis on the supply and demand
equilibrium. While Cuddington and Zellou (2013) use a supply and demand equilibrium model
to simulate super cycles under the assumption of inelastic supply in the short-run, Deaton and
Laroque (1992) extend the supply and demand equilibrium model for the behavior of competitive
speculators who hold inventories of commodities. They further introduce a time-series version of
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the Lewis1 model in their more recent study, see Deaton and Laroque (2003), whereby supply is
assumed to be infinitely elastic in the long-run, whereas demand is related to the level of world
income as well as to the price of the commodity. Overall, they detect an imbalance between
lagged demand and lagged supply leads to an increase in price, while prices are generally driven
by demand fluctuations in the short-run. Moreover, the extension of the "traditional struc-
tural approach", including a supply as well as a demand proxy, leads to signficantly improved
commodity price forecasts in the study of Borensztein and Reinhart (1994).

While the previously mentioned studies focus on the equilibrium model, several studies inves-
tigate the impact of supply and demand on prices empirically. Hereby, Ahumada and Cornejo
(2014) detect long-run price effects of supply fluctuations as well as a negative elasticity of real
commodity prices with respect to their production in their cointegrated time series-cross section
model of eight commodities in the period from 1960 to 2010, whereas Chen et al. (2019) under-
line the importance of both, supply and demand, for modeling copper price fluctuations in their
Markov-switching model based on monthly data from 2004 to 2016. Further, specific determi-
nants still play an important role in metal markets, besides financial characteristics, according
to Lutzenberger et al. (2017), analyzing the prices of 30 commodities in the period from 1990
to 2013.

With regard to the energy markets, Thomas et al. (2010) support these findings, as demand as
well as supply are significant long-run determinants of the oil price. In contrast, Kilian (2009)
reveal the historically observed fluctuations in the oil price are mainly associated with global
aggregate demand shocks as well as precautionary demand shocks, but they can not be attributed
to oil supply shocks, emphasizing the importance of the demand on commodity prices. Hereby,
the different conclusions might be caused by the sample period under consideration, as Thomas
et al. (2010) focus on more recent times from 1996 to 2009, whereas Kilian (2009) investigates a
longer period from 1968 to 2007, including the 1970s energy crisis. However, Nick and Thoenes
(2013) underline the stronger impact of the demand side compared to the supply side in recent
times, in their analysis of the German gas market in the period from 2008 to 2012.

Stuermer (2018) reveals similar results for metal markets. While supply factors only affect
copper and tin significantly, a long-run demand increase, caused by the technological progress,
triggers major increases in real metal prices. In contrast, demand influences in the short-term
and supply affects in the long-term commodity prices in the empirical analysis of Guzmán and
Silva (2018). These differences in the findings of Stuermer (2018) and Guzmán and Silva (2018)
are probably caused by the inhomogeneous definition of short- and long-term horizons. While
Guzmán and Silva (2018) refer to short-term as weekly up to monthly and long-term as "several
years", Stuermer (2018) evaluates a time span of 150 years, therefore, he defines short-term as
up to five years and long-term as up to fifteen years.

Besides the impact of supply and demand on prices, several studies examine the drivers of
supply and demand. Hereby, Carter et al. (2011) as well as Helbling et al. (2008) investigate the
reasons causing commodity price booms. Both studies highlight the importance of supply and
demand on commodity prices, since surprises to the supply and, especially, to the demand of
commodities, combined with slow supply responses, historically led to high price levels. In this
context, Helbling et al. (2008) mention, besides the increased demand of emerging economies,
the biofuels trend and the financialization of commodity markets as key drivers for the demand
growth, whereas Kilian and Zhou (2018) focus on the demand side and attribute the commodity
price cycles to unexpected fluctuations in the global real economic activity, a proxy for the global
demand of commodities. In addition, the stock-to-use-ratio, indirectly reflecting the increased

1In general, the article of Lewis (1954) investigates the growth under unlimited labor supplies. In particular,
he aimed for reasons explaining the declining West Indian sugar prices relative to the prices of manufactured
goods. As long as there was an infinitely elastic supply of labor at the subsistence wage, he argued the world
sugar prices could not increase, see Deaton and Laroque (2003).
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demand for biofuels, the income effects, as well as weather conditions, affecting the supply of
food commodities, is one of the most important drivers of commodity prices, according to Baffes
and Dennis (2013).

Overall, supply and demand are important determinants of commodity prices, and therefore also
for the scarcity risk, at least in the long-run, as production volumes are inelastic in the short-run.
However, due to slow supply responses, fluctuations in the demand influence commodity prices.
Hereby, increases in the demand caused by technological developments or growth in emerging
countries, among others, have historically led to high price levels.

2.2.2 Impact of Macroeconomic Variables on Commodity Prices

As the increased demand of emerging economies for commodities was one of the key drivers for
the demand growth and the corresponding commodity price boom at the beginning of the 2000s,
see Helbling et al. (2008), the economic state influences at least the demand of commodities, and
ultimately their prices. Therefore, we investigate how several macroeconomic variables affect
commodity markets, in the following.

2.2.2.1 Economic Activity

The commodity price boom shows the commodity-specific demand is affected by the global
demand. Since the availability of individual demand factors is also limited for many commodities,
empirical studies frequently use economic activity, measured by the industrial production or gross
domestic product, as a proxy to determine the impact of demand on commodity prices. Overall,
several studies underline the global demand is an important determinant of commodity prices
and also exhibits predictive power in forecasting commodity prices.

In this context, Issler et al. (2014) show, based on a derived-demand model for cost-minimizing
firms, metal price variation and industrial production variation should theoretically be positively
correlated. Hereby, they assume fixed supply, which is feasible in the short-run, and optimally
chosen demand, taking into account the optimal production for the industrial sector. Besides
the theoretical model, Issler et al. (2014) provide empirical evidence of their theory in a long-
term analysis from 1900 to 2012 and detect cycles in metal prices are synchronized to those in
industrial production. Further, Akram (2009) as well as Smiech et al. (2015) find a significant,
positive impact of economic activity on commodity prices in the period from 1989 to 2007
and 1997 to 2013, whereby they measure the global demand by the OECD and euro area
industrial production, respectively. Moreover, industrial production helps in explaining the
common factors of various commodities, which explain at least partly the common pattern in
(non-)energy commodity prices, in the studies of Kagraoka (2016) and Lombardi et al. (2012),
investigating the period from 1995 to 2015 and 1975 to 2008, respectively. In addition, Alquist
and Coibion (2013) underline the findings of Kagraoka (2016) and Lombardi et al. (2012) for
the sample period from 1957 to 2013, as they detect the indirect aggregate common factor,
accounting for up to 70% of the variance in forty commodity prices, is highly correlated with
their used measure of global industrial production, provided by Baumeister and Peersman (2013).

Regarding the predictive power of the industrial production, Buncic and Moretto (2015) fore-
cast copper price returns with this economic activity proxy, whereas Gargano and Timmermann
(2014) find evidence for predictive power in annual forecasts of commodity indices and Boren-
sztein and Reinhart (1994) improve their forecasts of the IMF non-oil all-commodity index by
including an aggregated world industrial production index.

While the industrial production covers the output of the industrial sector of the economy and
therefore reflects the economic sector which demands especially energy and metal commodities,
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the gross domestic product is a more general proxy of economic activity, as it includes the
output of all final goods and also the agricultural sector. Hence, the studies of Ahumada and
Cornejo (2014), Camacho and Perez-Quiros (2014), Dimitropoulos and Yatchew (2018), Frankel
and Rose (2010), Klotz et al. (2014) as well as Robinson (2019) consider the gross domestic
product as proxy for economic activity. Hereby, Dimitropoulos and Yatchew (2018) obtain a
modest better model fit including the growth rate of the gross domestic product of 20 OECD
countries in their long-term analysis of eleven energy and metal commodities from 1901 to 2014,
whereas Robinson (2019) detects a shock to the OECD’s gross domestic product increases the
price of gold in the period from 1980 to 2014. In addition, Baffes et al. (2020) reveal an increase
in per capita income leads to increasing demand for commodities in their analysis of energy and
metal markets in the period from 1965 to 2017.

In general, the results in the literature indicate the economic activity is an important deter-
minant of commodity prices, whereby the results are robust regarding the proxy, commodities
and time period considered. However, Kilian (2009) propose an alternative index of the world
economic activity, based on dry cargo single voyage ocean freight rates, since the trade with
commodities rely on a steady transport. Hence, the freight rates might reflect the actual de-
mand for commodities which is why Kilian and Zhou (2018) state the index of Kilian (2009) is an
advantageous proxy for economic activity in modeling industrial commodity markets compared
with alternative indicators of global real economic activity.

While most studies consider the economic activity of developed countries, the global demand
of emerging markets also affect commodity prices, especially in more recent times. Hereby,
Camacho and Perez-Quiros (2014) analyze the dynamic interactions between commodity prices
and output growth in Latin America in the period from 1971 to 2009, whereas Ahumada and
Cornejo (2014) and Klotz et al. (2014) detect a positive, significant impact of China’s gross
domestic product on commodity prices in the period from 1960 to 2010 and 1998 to 2012,
respectively. Chen (2010) even states the high prices of 21 international traded metals are
partially driven by the strong demand from emerging economies, e.g. China and India. In
particular, China was responsible for about 90% of the increase in the world consumption of
copper from 2000 to 2006, see Helbling et al. (2008).

Overall, the literature reveals economic activity is an important determinant of commodity
prices, and thus the associated scarcity risk, although the studies differ in terms of the focus of
the study, the methodology used, the commodities considered as well as the proxy included for
the economic activity.

2.2.2.2 Exchange Rate

Besides the economic activity, further macroeconomic variables like exchange rates and interest
rates affect all commodity prices simultaneously. While most commodities are traded in U.S.
dollars, only a small portion is mined in the United States. Hereby, Akram (2009) names the
law of one price as the reason for a negative relationship between the dollar and the dollar
price of commodities. A decline in the value of the dollar compared to other currencies leads to
either an increase in the dollar price of the commodities or to a decrease in the foreign currency
price to avoid arbitrage possibilities. Therefore, the returns of foreign commodity suppliers will
decrease, which may result in a reduced commodity supply, and ultimately higher prices. In
addition, a weaker dollar may raise the purchasing power and, consequently, will increase the
commodity demand by foreign consumers, whereas the demand of consumers holding the U.S.
dollar decreases.

Empirically, Akram (2009) detects a negative relation between the real dollar exchange rate
and commodity prices as well as a significant impact of a shock to the dollar exchange rate
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to the movement in commodity prices in the period from 1989 to 2007. This finding is also
supported by Ahumada and Cornejo (2014) for the period from 1960 to 2010, as they show a
dollar depreciation against other major currencies leads to a significant, long-run increase in
the dollar price of commodities. Further, Baffes and Dennis (2013), Baffes and Savescu (2014),
Gilbert (1989) as well as Zhu et al. (2015) detect a strong and highly significant impact of
exchange rates on food and metal prices as well as on commodity indices for the sample periods
1960 to 2012, 1991 to 2012, 1965 to 1986 and 2006 to 2013, respectively. However, Sari et al.
(2010), investigating the link between precious metals, oil and the U.S. dollar/Euro exchange
rate, do not find a long-run relation in the period from 1999 to 2007, whereas the commodity
prices significantly decrease in the short-run to positive exchange rate shocks. Furthermore, the
factor models of Lombardi et al. (2012) as well as Vansteenkiste (2009) reveal, for the sample
periods from 1975 to 2008 and 1957 to 2008, the exchange rate even partly explains the common
factor underlying in non-fuel commodity prices, underlining the relation between exchange rates
and prices.

While exchange rates are strongly forward-looking and already include market expectations
regarding future price dynamics of the country’s commodity exports, commodity price fluctu-
ations are typically more sensitive to short-term demand imbalances. In this context, Chen
et al. (2010) theoretically explain the structural link between exchange rates and future com-
modity prices. They further find in an empirical analysis commodity currency exchange rates,
reflecting the exchange rates of the commodity-exporting economies, have surprisingly robust
power in predicting global commodity prices, in-sample as well as out-of-sample. However, the
reverse relationship, commodity prices forecasting exchange rates, is less robust, highlighting
the forward-looking property of exchange rates.

The studies of Buncic and Moretto (2015), Chen et al. (2014) and Pincheira-Brown and Hardy
(2019) underline the predictive power of exchange rates, as their prediction models for com-
modity prices, including an exchange rate, outperform the random walk benchmark in an out-
of-sample analysis. Hereby, Chen et al. (2014) use a trade-weighted U.S. exchange rate index
against a subset of major currencies to forecast 51 commodity prices, whereas Pincheira-Brown
and Hardy (2019) (Buncic and Moretto (2015)) include the Chilean peso (as well as the Aus-
tralian Dollar) in the prediction of industrial metal prices (copper prices). In contrast, the results
in the study of Pierdzioch et al. (2016), focusing on one of the major gold-producing countries,
namely Australia, are mixed. In particular, they reveal the out-of-sample predictive power of
real interest rates and exchange rates, specifically the Australian dollar/U.S. dollar exchange
rate, depends on the shape of a forecaster’s loss function.

Overall, exchange rates are an important determinant of commodity prices and also significantly
improve commodity price forecasts, due to their forward looking properties. Hereby, the results
in the literature emphasize the importance of this factor, as the studies draw the same conclusions
regardless of the sample period, the methodology applied, as well as the commodities and/or
exchange rates considered.

2.2.2.3 Monetary Policy

A further important determinant of commodity prices is monetary policy. Under the assump-
tion of commodity prices behaving like regular, flexible asset prices traded in efficient markets,
expected returns from investing in commodities should equal returns on investing in financial
assets, to avoid arbitrage opportunities. Hereby, Akram (2009) and Frankel (2008) list several
possible supply- and demand-sided related reasons for an inverse relationship between interest
rates and commodity prices. First, investors will invest less in bonds and more in commodities
in case of lower nominal interest rates, which leads to a rise in demand and, ultimately, to price
increases. Second, lower interest rates reduce carrying costs, while simultaneously increasing
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inventory demand, which leads, again, to a rise in the overall demand and, ultimately, to price
increases. Third, the extraction of exhaustible commodities, such as oil and minerals, is less
profitable in low interest rate environments, which leads to a decrease in supply and, ultimately,
to price increases. In addition, Frankel (2014) introduces a new carry trade model, whereby, he
models the negative effect of interest rates on the demand for inventories and hence on commod-
ity prices, as well as the positive effects of expected future price gains on inventory demand and
hence on today’s commodity prices. Further, Frankel and Rose (2010) state the inflation rate
may approximate the impact of monetary policy on commodity prices, as storable commodities
may serve as a hedge against inflation.2

In contrast, Svensson (2008) doubts that the theoretical negative correlation between interest
rates and commodity prices can also be observed empirically, since the relationship depends
on the shock hitting the economy and its effect on all variables, as the interest rate and the
economic activity are interdependent themselves. Moreover, Baffes and Dennis (2013) takes
up the arguments of Newbery and Stiglitz (1981) that a contrarian monetary policy increases
the required rate of return on storage and therefore may increase the commodity prices. In
addition, Hammoudeh et al. (2015) argue central banks rise interest rates in response to a
"heating" economy, leading to synchronous patterns in prices and interest rates, see for example
Gubler and Hertweck (2013) for the empirical evidence of increasing rates in response to a shock
in the commodity markets.3

Empirically, the evidence in the literature is mixed. While Frankel (2008) confirms his theory of
an inverse effect in the analysis of commodity prices in the period from 1950 to 1979 and from
1950 to 2005, the observed relation between interest rates and commodity prices is positive in the
period from 1976 to 2005 and from 1980 to 2005. However, several studies support the inverse
relation. In particular, Akram (2009) as well as Anzuini et al. (2013) observe shocks to the
interest rate significantly affect commodity prices, reflected by commodity indices, in the period
from 1989 to 2007 and 1970 to 2008, but Akram (2009) also confirms the shock dependence of
Svensson (2008). In particular, a positive shock in the economic activity leads to synchronous
responses in the real interest rate, the oil price as well as the commodity price. Moreover, Smiech
et al. (2015) detect significant inverse responses of (non-)energy commodity prices to shocks in
the interest rates of the euro area economy in the period from 1997 to 2013. Further, interest
rates affect precious metal prices and non-fuel commodity prices significantly with a negative
sign in the factor models of Apergis et al. (2014) and Byrne et al. (2013), investigating the
sample periods from 1981 to 2010 and 1900 to 2008. In addition, interest rates explain, at least
partly, the common factor underlying in non-fuel commodity prices in the period from 1957 to
2008 in the study of Vansteenkiste (2009).

While Baffes and Savescu (2014) show a strong negative link between metal prices and interest
rates in their bi-variate regressions, the results of their multivariate model are mixed for the
sample period from 1991 to 2012. Further, Siami-Namini (2021) investigates the impact of
monetary policy, measured by short- and long-term interest rates as well as the M2 money
stock, an estimate for the total money supply of the U.S. Federal Reserve, on an aggregate
commodity index in the period from 1992 to 2017 and only detects long-term effects, but not
in the short-term, whereby the findings are independent of the monetary policy measure under
consideration. Moreover, Schischke and Rathgeber (2023) confirm the positive relation between
commodity indices and interest rates of Hammoudeh et al. (2015) at least for the period prior to
the financial crisis from 1995 to 2008. Hereby, shocks to the interest rate (commodity prices) lead

2Empirically, the factor models of Apergis et al. (2014) as well as Kagraoka (2016) reveal the inflation rate
helps explaining the common factors underlying in commodity prices.

3Gubler and Hertweck (2013) investigate the impact of commodity prices on the economy. Hereby, they reveal
a shock to the commodity prices cause a higher inflation rate, whereupon the Federal Reserve reacts with higher
interest rates.
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to significantly rising prices (interest rates) in the short-(long-)term, emphasizing the argument
of Hammoudeh et al. (2015) that central banks react to increasing prices. In addition, Frankel
and Rose (2010) find little support for an impact of easy monetary policy and low real interest
rates on individual commodity prices, besides any effect monetary policy actions might have via
real economic activity and inflation, in their analysis of the period from 1960 to 2008. While the
factor models of Lombardi et al. (2012) and Nicola et al. (2016) reveal interest rates do not affect
individual commodity prices in the period from 1975 to 2008 and 1970 to 2013, respectively,
interest rates are not even selected in the models of Ahumada and Cornejo (2014) and Kagraoka
(2016), investigating the sample period from 1960 to 2010 and 1995 to 2015.

However, the model of Ahumada and Cornejo (2014) includes the U.S. Monetary Base as mon-
etary policy variable. Moreover, Apergis et al. (2014) detect the monetary supply positively
affects the prices of precious metals, simultaneously to the negative impact of interest rates.
Further, commodity prices significantly react to unconventional monetary policy actions in the
period following the financial crisis, see Schischke and Rathgeber (2023). Hereby, Apergis et al.
(2020) reveal the impact of unconventional monetary policy on commodity prices as well as their
volatility is even more pronounced than of interest rates, in the period from 1990 to 2016.

One possible reason for the mixed empirical evidence of an inverse relation between interest rates
and commodity prices might be the zero interest rate environment as consequence of the financial
crisis. To further strengthen the U.S. economy, the Federal Reserve System (FED) increased
its unconventional monetary policy actions, see for example Keating et al. (2019), Eksi and Tas
(2017) as well as Peersman et al. (2021), which is why the effect of interest rates on commodity
prices might not fully display the impact of the entire monetary policy on commodity prices.

Overall, the evidence on the impact of interest rates on commodity markets is ambiguous in
the literature. Hereby, several studies detect an inverse relation of commodity prices to interest
rates, whereas especially more recent studies observe synchronous patterns or interest rates are
even unrelated to commodities, probably caused by the zero interest rate environment. Hereby,
the impact of unconventional monetary policy actions on commodity prices is more pronounced
than the effect of interest rates, see Apergis et al. (2020).

2.2.2.4 Further Determinants

Beyond the classical supply and demand, the global demand, the exchange rate and the monetary
policy, further determinants of commodity prices are examined in the literature. In particular,
the impact of the oil price, the stock market, as well as demographic factors on commodity
prices are analyzed.

For instance, the oil price directly influence the costs of the production process. Hereby, Ham-
moudeh et al. (2004) underline the price of crude oil influences national economies in general,
whereby the impact is more pronounced on the highly oil intensive manufacturing industries,
e.g. aluminum and steel. Moreover, the oil price also affects the transportation costs, overall
leading to changes in metal prices, see Zhang and Tu (2016).

However, the empirical evidence is heterogeneous. Although Baffes and Savescu (2014) inves-
tigate the impact of low interest rates on commodity prices, they account for energy costs, by
including the oil price as a proxy, but do not detect any significant effect of oil on the ana-
lyzed industrial metals prices. In contrast, Dutta (2018), Liberda (2017), Robinson (2019) and
Zhu et al. (2015) highlight the importance of oil prices on precious metal prices. Moreover,
Baffes and Dennis (2013) detect the food price increase post-2004 was mainly driven by crude
oil prices, probably due to the biofuels trend. While in the factor models of Kagraoka (2016)
and Vansteenkiste (2009) the oil price represents one of the identified common factors, Lom-
bardi et al. (2012) do not find strong spillovers from oil to non-energy prices, indicating mixed
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evidence for the effect of the oil price on commodity prices. In particular, the results in the lit-
erature depend on the examined commodities, the considered sample, as well as on the applied
methodology.

Due to the financialization of commodity markets, financial institutions such as hedge funds and
commodity index funds play an important role in commodity futures markets, as commodities
represent an alternative asset class for investors, see Büyüksahin and Robe (2014).4 Therefore,
Liberda (2017) expects and confirms spillover effects from the stock market to commodity mar-
kets in his comprehensive analysis of the determinants of precious metal prices. In addition, one
of the four identified common factors in the study of Kagraoka (2016) is described by the MSCI
world stock index (MSCI), which also may be interpreted as a demand indicator.

Further, the demographic structure influences the economy and therefore also commodity prices.
Hereby, Aksoy et al. (2019) detect the age profile of the population significantly affects output
growth, investment, savings, hours worked per capita, real interest rates, and inflation. More-
over, the expected increase in the share of the population aged 60 and over will lower labor force
participation as well as savings rates. Overall, a growing population and a higher employment
will lead to a rising demand for commodities. In addition, Apergis et al. (2014) identify the
unemployment rate as one common factor in their analysis of precious metal prices, while the
model fit is increased in the study of Dimitropoulos and Yatchew (2018), once the unemployment
rate is included.

To summarize, several commodity-specific, macroeconomic and demographic conditions might
affect commodity prices. First and foremost, commodity prices are determined by their supply
and demand, according to the classical fundamental theory, see Deaton and Laroque (2003),
whereby many studies approximate the commodity demand by the global economic activity,
see Ahumada and Cornejo (2014). Second, macroeconomic variables like the economic activity,
exchange rates, and interest rates affect all commodity prices simultaneously, see Akram (2009).
In this context, growing economies cause an increased demand, while a decline in the dollar
price would lead to an increase in the dollar price of commodities due to the law of one price,
since most commodities are traded in U.S. dollars but only a small portion is mined in the
United States. Moreover, monetary policy and commodity prices are strongly linked. While
the effects of interest rates on prices are ambiguous, several studies emphasize the importance
of monetary policy on commodity markets. Overall, the literature reveals supply and demand,
economic activity and exchange rates are further important determinants of commodity prices,
whereas the evidence of the oil price, stock market indices or demographic variables are mixed.
Hereby, the results depend on the considered commodities, included determinants as well as on
the applied methodology and sample period.

2.3 Co-movement and Financialization

This thesis aims to analyze the resource requirements of several transformation pathways for
the German Energiewende in regard to their availability, respectively their scarcity. Hereby,
we examine the impact of the German Energiewende on a portfolio of commodities. However,
since the macroeconomic determinants described above affect all commodities simultaneously,
commodity prices tend to move synchronously, which is referred to as co-movement. While some
studies analyze the common cycles in commodity prices, cointegration as well as correlation
analyses aim to empirically proof the observable common pattern in prices and attribute the
co-movement, at least partly, to a common factor. Hereby, various studies investigate the extent
to which a simple static factor model captures co-movements of commodity prices, as well as

4Please refer to Greer (2000) and Gorton and Rouwenhorst (2006) for stylized facts on commodities as an
asset class.
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the determinants and the time-varying properties of this common factor.

First, the studies of Cashin et al. (2002), Cuddington and Jerrett (2008), and Rossen (2015),
analyze the common cycles in commodity prices. Hereby, Cuddington and Jerrett (2008) identify
three super cycles, which are highly correlated, in the six London Metal Exchange (LME)
industrial metal prices within the past 150 years. However, Rossen (2015) confirms four super
cycles in 20 metal commodity prices during the last century on a monthly basis. Moreover,
she observes the short-run price cycles differ between metals. In addition, Cashin et al. (2002)
examine the properties of the price cycles of 36 commodities and detect an asymmetric behavior
of cycles, in particular, the duration of slumps is longer.

Second, Issler et al. (2014) underline the LME industrial metal prices share a common cycle
with the industrial production, using cointegration tests. Moreover, their bivariate cointegration
tests between the metals suggest common trends. Further, the cointegration results of Ding and
Zhang (2020) are commodity-specific. Oil and copper exhibit a long-run price equilibrium with
other individual commodity markets as well as the Refinitiv/CoreCommodity CRB index (CRB),
whereas the agricultural and the gold market are only cointegrated when controlling for liquidity.

Third, several studies aim to explain the underlying determinants of the co-movement between
commodity prices. Hereby, the common factor analyses draw different conclusions, dependent
on the commodities and period under consideration. In this context, Zhang et al. (2019), who
find evidence for co-movement in prices of crude oil, corn, gold, live cattle and silver in the
period from 2005 to 2013, are able to attribute the co-movement to a common liquidity factor.
Moreover, the empirical study of West and Wong (2014), analyzing the extent to which a simple
static factor model captures co-movements of 22 commodity prices in the period from 1986 to
2012, detects commodity prices tend to revert (slowly) towards the factor. However, Byrne et al.
(2013) identify one common factor which is related to interest rates and risk in their long-term
analysis of 24 commodities in the period from 1900 to 2008, whereas Chen et al. (2014) detect
two underlying common factors in 51 commodity prices in the period from 1980 to 2009, one
stationary and one non-stationary, captured by the exchange rate. Further, Lombardi et al.
(2012) observe the common trends in 15 individual commodity prices in the period from 1975 to
2008 can be explained by a food or metals factor. Moreover, Yin and Han (2015) decompose 24
commodity prices into global, sectoral and commodity-specific components over the period from
1991 to 2014 and highlight the impact of the global as well as the sectoral component increases
significantly around 2004, when commodity index investment started.

Besides the simultaneous influence of the economy on commodity markets, the commodities
are interrelated themselves via co-production and co-consumption links. On the one hand,
several metals are mined together. While some metals are co-produced, for example 70% of the
lead production is derived from mixed Lead-Zinc ores, others are only extracted as companion
metals and therefore, their supply depends on the production volume of their hosts’ metals, e.g.
cobalt and indium, according to Nassar et al. (2015). On the other hand, metals are consumed
together. For instance, aluminum and copper are both important metals for various automotive
applications, see Zapp et al. (2002).

However, the empirically observed co-movement of prices on exchanges is larger than what would
be explainable, see Pindyck and Rotemberg (1990), either by the common consumption and
production of commodities, see Shammugam et al. (2019), or by the common factor, reflecting
the common effects of macroeconomic determinants, see Section 2.2.2. Hereby, Pindyck and
Rotemberg (1990) were the first introducing the concept of excess co-movement, as they detect
even unrelated commodities co-move, but the evidence in the literature is ambiguous, depending
on the methodology applied, the included control variables as well as the considered time period.

Reconsidering the original study of Pindyck and Rotemberg (1990) using a new methodology,
accounting for heteroscedasticity and non-normality, Deb et al. (1996) only find weak to no
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evidence for the excess co-movement hypothesis. Moreover, while Lescaroux (2009) confirms
common patterns in 51 commodities, he rejects the excess co-movement hypothesis, as the ob-
served co-movement is mostly caused by common macroeconomic shocks on the supply and
demand of the commodities. In contrast, the results of Fernandez (2015a), testing for the
excess co-movement in twelve commodities using data from 1900 to 2013, confirm the excess
co-movement, but Fernandez (2015a) states the extent of the excess co-movement varies over
time. Moreover, Nicola et al. (2016) conclude energy and agricultural commodities are highly
correlated with an increasing co-movement in their analysis of the extent of co-movement in
eleven energy, agricultural, and food commodities. Using a new measure of global co-movement,
representing the average influence of commodities based on nominal prices and cyclical compo-
nents of real prices, Fernandez (2015b) detects a strong co-movement between industrial and
precious metal prices since 2003. However, besides an increasing long-run trend, starting at the
beginning of the 21st century, Ohashi and Okimoto (2016) only find little short-run fluctuations.
Further, the reinvestigation study of Le Pen and Sévi (2017) reveals the excess co-movement
is time-varying and larger in magnitude after 2007. Hereby, a measure of speculative intensity
mainly determines the excess co-movement which is why Le Pen and Sévi (2017) attribute their
results to the financialization in commodity prices.

In general, the financialization describes the rapidly growing index investment in commodity
markets, starting in the early 2000s, when non-commercials enter commodity futures markets.
Hereby, Büyüksahin and Robe (2014) investigate the effects of the financialization by an analysis
of the cross-market co-movement between commodity and equity futures markets using unique
daily Commodity Futures Trading Commission (CFTC) data from 2000 to 2010. In addition,
the correlation analysis between stocks, bonds and commodity futures returns of Silvennoinen
and Thorp (2013) indicates a closer integration of markets in the recent years.

Moreover, Basak and Pavlova (2016) investigate, theoretically, how the financialization affects
commodity prices. While all commodity futures prices, their volatilities as well as correlations
increase with the financialization, this effect is stronger for index futures than for non-indexed
commodities. In this context, Tang and Xiong (2012) detect the correlations of oil prices with
non-energy commodity futures prices, especially with indexed commodities, grew due to the
financialization starting 2004, which is why they conclude the individual commodity prices are
not only determined solely by their supply and demand, but also by the investment behavior.
Additionally, Pradhananga (2016) state the financialization partly caused the increase in the co-
movement between 40 commodity prices. Hereby, Poncela et al. (2014) aim to determine whether
the increase in co-movement is long-lasting. Therefore, they consider the extent of co-movement
in 44 monthly non-energy commodity prices and detect an increased synchronization among raw
materials since December 2003, indicating the financialization changed the relationship between
commodity markets.

In this context, Bilgin et al. (2018) and Song et al. (2022) detect the connectedness between
commodity markets is time-varying, while the studies of Aepli et al. (2017), Irwin and Sanders
(2012), and Zhang and Broadstock (2020) even reveal structural changes in commodity mar-
kets. In particular, Zhang and Broadstock (2020) suggest the commodity market structure has
changed fundamentally, as the co-dependence among seven major commodity classes tripled after
the global financial crisis. Lübbers and Posch (2016) confirm the increased co-movement in 31
commodity futures returns in their generalized dynamic factor model. While Zhang and Broad-
stock (2020) observe one structural break in the connectedness of commodity markets, Irwin
and Sanders (2012) even state three structural changes occurred in agricultural futures markets.
By accounting for the time-varying properties in commodity markets, Aepli et al. (2017) also
observe a change in the correlation structure in times of the financial crisis, compared to normal
regimes. Moreover, the cointegration analysis of Bilgin et al. (2018) indicates most cointegration
relations are time-varying and Song et al. (2022) detect time-varying spillovers between main
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and by-products.

In addition to the demand increase through the financialization, Peersman et al. (2021) name,
inter alia, the demand increase from emerging countries, as well as spillovers due to substitutions
as possible reasons for the stronger co-movement in commodity prices. In particular, they under-
line the importance of time-varying analyses of commodity markets. This is further emphasized
by Zaremba et al. (2021). They doubt the financialization caused an unprecedented surge in
the co-movement, as they identify similar peaks in earlier periods in their long-term analysis of
the past 150 years, suggesting the commodity prices observe periods of strong similar patterns,
followed by periods of more divergent price behavior. In this line, Ciner et al. (2020) also detect
time periods of increasing and decreasing co-movement between the LME non-ferrous industrial
metal prices during 1994 to 2016, whereby the spillover effects were stronger after the financial
crisis. Moreover, Byrne et al. (2020) investigate responses of commodity markets to demand and
real interest shocks, where they reveal heterogeneous results between commodity groups, as well
as between different time periods. Hereby, they attribute the time-varying properties to the vari-
ation in commodity market participants. In particular, the speculation and therefore the inflow
of capital in commodity markets increased in the 2000s, with classical commercial hedgers and
non-commercial traders, such as financial institutions, being active in markets simultaneously.

Overall, various studies detect commodity prices tend to move in a synchronized way. While
several studies aim to explain the co-movement, at least partly, by a common factor, which is
attributed to economic variables like global demand, exchange rates and interest rates, Pindyck
and Rotemberg (1990) reveal the empirically observed co-movement of prices on exchanges is
larger than what would be explainable by the joint consumption, production as well as by the
common factor. Therefore, shocks in one commodity market would probably transmit to the
other markets, underlining the importance of jointly modeling commodity markets, especially
in risk assessment frameworks. Moreover, due to the rapidly growing index investments in
commodity markets, starting in the early 2000s, as well as the demand growth in emerging mar-
kets, the co-movement in commodity prices as well as the connectedness with the stock markets
increased, see Büyüksahin and Robe (2014) and Tang and Xiong (2012). In particular, the finan-
cialization significantly changed the commodity market structure, highlighting the importance
of time-varying analyses of commodity markets.

2.4 Summary

Various studies investigate the criticality of commodities, as well as the determinants of and the
co-movement between commodity prices, see Table 2.1 (Table A.1) for a (detailed) overview.
In particular, several studies investigate the criticality of various metals, analyzing inter alia
the supply risk, the vulnerability to supply restrictions, the environmental and social impacts,
in general or in the context of the energy transition. However, the increase in the demand for
commodities, caused by the energy transition, can lead to price peaks and delivery bottlenecks
in their supply, which is oftentimes neglected in previous studies. Therefore, a comprehensive
understanding of commodity markets is essential. On the one hand, several studies examine
the determinants of commodity prices, starting with the commodity-specific factors, since the
classical fundamental theory states that supply and demand determine prices, to macroeconomic
factors. On the other hand, the empirical observation of common patterns, the so-called co-
movement, in commodity prices is analyzed. Hereby, several studies examine the extent and the
determinants of the co-movement. Moreover, the time-varying properties indicate the common
pattern in prices changed over time, and especially increased due to the financialization as well as
the growth in emerging markets and the corresponding increased interest in commodity markets.
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Table 2.1: Literature overview

Subject Studies
Criticality Arendt et al. (2020), Bach et al. (2016), Bach et al. (2017), Erdmann and Graedel (2011),

Gleich et al. (2013), Graedel et al. (2012), Graedel et al. (2015), Graedel and Reck (2016),
Hayes and McCullough (2018), Ioannidou et al. (2019), Jordan (2017), Kolotzek et al.
(2018), Nassar et al. (2015), Redlinger and Eggert (2016), Rosenau-Tornow et al. (2009),
Schrijvers et al. (2020), Skinner (1979), Tilton (2010), Tilton et al. (2018)

Criticality in the
context of the energy
transition

Arrobas et al. (2017), European Commission (2020), Lee et al. (2020), Liang et al. (2022),
Marscheider-Weidemann et al. (2021), Roelich et al. (2014), Song et al. (2022), Valero et al.
(2018), Viebahn et al. (2015), Watari et al. (2020)

Supply and demand Ahumada and Cornejo (2014), Baffes and Dennis (2013), Borensztein and Reinhart (1994),
Carter et al. (2011), Chen et al. (2019), Cuddington and Zellou (2013), Deaton and Laroque
(1992), Deaton and Laroque (2003), Frankel and Rose (2010), Guzmán and Silva (2018),
Helbling et al. (2008), Hotelling (1931), Kilian (2009), Kilian and Zhou (2018), Lutzenberger
et al. (2017), Nick and Thoenes (2013), Stuermer (2018), Thomas et al. (2010)

Economic activity Ahumada and Cornejo (2014), Akram (2009), Alquist and Coibion (2013), Baffes et al.
(2020), Borensztein and Reinhart (1994), Buncic and Moretto (2015), Camacho and
Perez-Quiros (2014), Chen (2010), Dimitropoulos and Yatchew (2018), Gargano and
Timmermann (2014), Issler et al. (2014), Kagraoka (2016), Kilian (2009), Kilian and Zhou
(2018), Klotz et al. (2014), Lombardi et al. (2012), Robinson (2019), Smiech et al. (2015)

Exchange rate Ahumada and Cornejo (2014), Akram (2009), Baffes and Dennis (2013), Baffes and Savescu
(2014), Buncic and Moretto (2015), Chen et al. (2010), Chen et al. (2014), Gilbert (1989),
Lombardi et al. (2012), Pierdzioch et al. (2016), Pincheira-Brown and Hardy (2019), Sari
et al. (2010), Vansteenkiste (2009), Zhu et al. (2015)

Monetary policy Ahumada and Cornejo (2014), Akram (2009), Anzuini et al. (2013), Apergis et al. (2014),
Apergis et al. (2020), Baffes and Dennis (2013), Baffes and Savescu (2014), Byrne et al.
(2013), Eksi and Tas (2017), Frankel (1986), Frankel (2008), Frankel (2014), Frankel and
Rose (2010), Gubler and Hertweck (2013), Guzmán and Silva (2018), Hammoudeh et al.
(2015), Kagraoka (2016), Keating et al. (2019), Lombardi et al. (2012), Nicola et al. (2016),
Peersman et al. (2021), Schischke and Rathgeber (2023), Siami-Namini (2021), Smiech et al.
(2015), Svensson (2008), Vansteenkiste (2009)

Inflation rate Apergis et al. (2014), Frankel and Rose (2010), Kagraoka (2016)
Oil Baffes and Dennis (2013), Baffes and Savescu (2014), Dutta (2018), Hammoudeh et al.

(2004), Kagraoka (2016), Liberda (2017), Lombardi et al. (2012), Robinson (2019),
Vansteenkiste (2009), Zhang and Tu (2016), Zhu et al. (2015)

Stock indices Büyüksahin and Robe (2014), Kagraoka (2016), Liberda (2017)
Demographic
attributes

Aksoy et al. (2019), Apergis et al. (2014), Dimitropoulos and Yatchew (2018)

Super-cycles &
Cointegration

Cashin et al. (2002), Cuddington and Jerrett (2008), Ding and Zhang (2020), Issler et al.
(2014), Rossen (2015)

Common Factor Byrne et al. (2013), Chen et al. (2014), Lombardi et al. (2012), West and Wong (2014), Yin
and Han (2015), Zhang et al. (2019)

Financialization Basak and Pavlova (2016), Büyüksahin and Robe (2014), Poncela et al. (2014), Pradhananga
(2016), Silvennoinen and Thorp (2013), Tang and Xiong (2012)

(Excess) Co-Movement Deb et al. (1996), Fernandez (2015a), Fernandez (2015b), Le Pen and Sévi (2017), Lescaroux
(2009), Nassar et al. (2015), Nicola et al. (2016), Ohashi and Okimoto (2016), Pindyck and
Rotemberg (1990), Shammugam et al. (2019), Zapp et al. (2002)

Time-varying
co-Movement

Aepli et al. (2017), Bilgin et al. (2018), Byrne et al. (2020), Ciner et al. (2020), Fernandez
(2015a), Irwin and Sanders (2012), Le Pen and Sévi (2017), Lübbers and Posch (2016),
Ohashi and Okimoto (2016), Peersman et al. (2021), Poncela et al. (2014), Song et al.
(2022), Zaremba et al. (2021), Zhang and Broadstock (2020)

This table provides an overview over the above mentioned studies investigating the criticality of commodities (in the context
of the energy transition), analyzing potential, commodity price influential factors and focusing on the common behavior in
commodity prices.
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3 Methodology

The objective of this study is the analysis and comparison of resource-demanding projects, such
as the transformation of the energy system towards renewable technologies for the German En-
ergiewende, in terms of their resource scarcity risk. Therefore, we develop a new risk assessment
framework in which we explicitly account for the additional resource demand caused by the
investigated project. In this context, we initially propose a new model for commodity markets
incorporating the impact of fundamentals on - as well as the co-movement between - commodity
prices. Subsequently, we extend it to account for time-varying spillover effects. By interpreting
the price of a commodity as a scarcity indicator, we are able to quantify the resource scarcity
risk, while taking into account the entire commodity market behavior, in particular, the interre-
lationship between the commodity-specific supply, demand and price, the co-movement between
multiple commodity prices as well as the impact of macroeconomic circumstances.

First, we propose a new framework for commodity markets in Section 3.1, combining two per-
spectives in the commodity market literature: the classical fundamental theory, which examines
the micro- and macroeconomic drivers of commodity prices, and the empirical market per-
spective, which observes common movements of commodity prices on exchanges. While this
framework is based on the global vector autoregression (GVAR) model, originally developed by
Pesaran et al. (2004) to analyze the world economy from an individual country level, under the
limitation of small sample data sets, we are the first adopting this idea to commodity markets.
Hereby, we model each commodity market separately using vector autoregression (VAR) mod-
els with the commodity-specific, microeconomic variables supply, demand and price as well as
exogenous, macroeconomic attributes. Finally, the individual VAR models are linked by appro-
priate weight matrices based on information on co-production, co-consumption, and co-trading
of the commodities to form a global commodity market model, which allows the analysis of
spillover effects within and between the commodity markets via generalized impulse response
functions (GIRFs).

Second, we extend the global vector autoregression (GVAR) model to a Markov-switching global
vector autoregression (MS-GVAR) model in Section 3.2, based on the idea of Binder and Gross
(2013) for economies, to account for time-varying relations in commodity markets and to dis-
entangle the differences in the spillover effects at different points in time, since the relation
between commodity markets, especially the co-movement between commodity prices, increased
during the financialization starting in 2004, see Tang and Xiong (2012). While Binder and Gross
(2013) propose their MS-GVAR model with time-varying intercepts, we adopt the idea for com-
modity markets, but generalize their framework using various Markov-switching specifications.
Hereby, we explicitly consider time-varying intercepts, time-varying autoregressive parameters,
time-varying parameters associated with the exogenous variables as well as time-varying covari-
ance matrices. Subsequently, we analyze the dynamic properties of the commodity markets via
regime-dependent GIRFs.

Third, we propose a framework to analyze resource-demanding projects in terms of their resource
scarcity risk by interpreting a commodity’s price as a scarcity indicator. In this scarcity frame-
work, we explicitly account for the additional resource demand from large-scale projects such
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as the German Energiewende, which leads to significant demand increases, due to the build-up
of renewable energy technologies. Using the prices derived from the commodity market models,
see Section 3.1 and the extended version in Section 3.2, we obtain the individual probability of
scarcity (PS) for each commodity of the project. Subsequently, we get our commodity-specific
risk indicator by combining the individual probability of scarcity with a substitutability score
and the scaled demand of the commodity for a specific project. Finally, we aggregate the com-
modity risk scores at the project level to compare the scarcity risk of several project alternatives.

3.1 Global Vector Autoregression (GVAR) Model1

In the following, we introduce the global vector autoregression (GVAR) model for commod-
ity markets which combines the classical fundamental theory with the empirical observed co-
movement between prices. Hereby, we first focus on the fundamental theory and model each
individual commodity market separately, reflecting the impact of supply and demand on prices.
Second, we aggregate these individual models to the global commodity market model, which
allows for interdependencies between the commodities. Subsequently, we propose generalized
impulse response functions (GIRFs) to investigate the spillover effects within and between com-
modity markets as well as generalized forecast error variance decompositions (GFEVDs) to
provide further insights into the markets.

3.1.1 The Initial GVAR Model

According to the classical fundamental theory, the price of a commodity is the result of its
supply and demand equilibrium and hence, determined by its fundamentals, supply and demand.
Therefore, we apply individual vector autoregression (VAR) models on all commodities i =
1, 2, . . . , N of the analysis, to simultaneously model the dependencies between the commodity-
specific supply (supplyi), demand (demandi) and price (pricei)2 variables, which form the
vector xi,t = (supplyi,t, demandi,t, pricei,t)′, for all time periods t = 1, 2, . . . , T :

xi,t = ai,0 +
P∑

p=1
Φi,pxi,t−p +

Pexog∑
p=0

Ψi,pet−p + εi,t, (3.1)

where ai,0 denotes the Ki × 1 intercept vector and Φi,p are the Ki × Ki matrices of lagged
coefficients for lag p = 1, 2, . . . , P , with Kendog = Ki = 3, for i = 1, 2, . . . , N , denoting the
number of endogenous variables3 summarized in the vector xi,t and the maximum lag length
P . As the economy affects all commodity markets, we aim to represent the common impact
by including Kexog macroeconomic factors as exogenous variables4 in the vector et with Ψi,p

as Ki × Kexog matrices of the corresponding coefficients for lags p = 1, 2, . . . , Pexog. Further,
we assume that the Ki × 1 vectors of idiosyncratic commodity-specific shocks εi,t are serially

1Parts of this section are included in the paper "Three Co’s to Jointly Model Commodity Markets: Co-
Production, Co-Consumption and Co-Trading", accepted for publication in Empirical Economics, 2023, co-
authored by Patric Papenfuß, and Andreas Rathgeber.

2The original price variables are non-stationary, according to the augmented Dickey-Fuller (ADF) test, initially
proposed in Dickey and Fuller (1979), see Section 4.2.1. Moreover, the Johansen test reveals the variables are
not cointegrated, which is why vector error correction (VECM) models would not be feasible from the statistical
point of view. Therefore, we estimate VAR models on the logarithmic returns of the variables.

3In general, the number of endogenous variables Ki can differ across the commodity markets, see Pesaran et al.
(2004). In our case, each commodity market contains the same attributes, commodity-specific supply, demand
and price, therefore, the number of endogenous variables equals, Kendog = Ki = 3.

4Since metal markets are comparably small, we assume exogeneity of all macroeconomic fundamentals and
include them as exogenous variables in our models.
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uncorrelated, independent and identically distributed, with mean zero and covariance matrix
Σii. Therefore, εi,t ∼ iid (0, Σii).

While these individual VARs simultaneously model the interdependencies between commodity-
specific supply, demand and price, taking into account the common effect of macroeconomic
factors, they are unable to holistically represent the relationships between commodity markets,
inter alia the entire co-movement observed on exchanges, as the only connection considered be-
tween the commodities is via macroeconomic information. However, beyond the macroeconomic
factors, the commodity markets are interconnected through co-production, co-consumption, as
well as co-trading, which is why individual VAR models are insufficient to represent the com-
plexity of commodity markets.

One solution would be the estimation of a single VAR model, including all commodity-specific
variables as well as the macroeconomic determinants. In general, each equation of such a model
consists of P · (Kendog · N) + (Pexog + 1) · Kexog parameters,5 where P denotes the order of the
VAR model, N the number of commodities in the analysis, Kendog the number of variables
per commodity, Pexog the number of lags of the exogenous variables and Kexog the number of
macroeconomic determinants, see Pesaran et al. (2004). In case of three commodities (N = 3),
three variables per commodity (Kendog = 3), one lag for the endogenous as well as exogenous
variables (P = 1 and Pexog = 1) and three exogenous variables (Kexog = 3), this leads to
15 parameters per equation. However, once we analyze 10 or 20 commodities, the number of
parameters already increases to 36 or 66 respectively.

For a long-term analysis of the relation between commodity markets, commodity-specific supply
and demand variables are only available at annual frequency which is why the estimation of these
models is infeasible from a statistical point of view. In general, low data frequency in conjunction
with many potentially influential variables is a key problem in econometrics. Pesaran et al. (2004)
propose a way to overcome these data limitation issues by combining several individual vector
autoregression (VAR) models into one global vector autoregression (GVAR) model.

While the GVAR model was initially constructed for the world economy, we are the first adopting
the idea to commodity markets.6 Therefore, we simultaneously estimate several individual,
commodity-specific VAR models consisting of commodity-specific supply, demand and price
variables, as well as the macroeconomic determinants. To connect these individual models, we
present the methodology of the GVAR model based on the original paper of Pesaran et al. (2004)
as well as on Dées, di Mauro, Pesaran, and Smith (2007) and Dées, Holly, Pesaran, and Smith
(2007) in the following.

So far, the individual commodity market models only account for the impact of the commodity-
specific variables as well as the common impact of the economy on commodity markets. To
reflect the impact of the other commodity markets on the market of a specific commodity
i, we extend the commodity-specific VAR models from Equation 3.1 with the K∗

i × 1 vector
x∗

i,t =
(
supply∗

i,t, demand∗
i,t, price∗

i,t

)′
of weighted external variables specific to commodity i:

xi,t = ai,0 +
P∑

p=1
Φi,pxi,t−p +

P∑
p=0

Λi,px∗
i,t−p +

Pexog∑
p=0

Ψi,pet−p + εi,t, (3.2)

where Λi,p are Ki × K∗
i matrices of coefficients associated with the weakly exogenous, external

specific variables, for p = 0, 1, . . . , P ,7 and in our case K∗
i = Ki = 3. These external commodity

5In line with Pesaran et al. (2004), we neglect the parameters of the intercept vector.
6The idea to adopt the GVAR model from economies to commodity markets has culminated in the paper

"Three Co’s to Jointly Model Commodity Markets: Co-Production, Co-Consumption and Co-Trading", accepted
for publication in Empirical Economics, 2023, co-authored by Patric Papenfuß, and Andreas Rathgeber.

7For a simpler notation, we assume that the lag length of the external variables equals to the lag length of the
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variables represent the weighted, aggregated information of the other commodity markets and
are defined as:

supply∗
i,t =

N∑
ι̃=1

wi,ι̃ · supplyι̃,t,

demand∗
i,t =

N∑
ι̃=1

wi,ι̃ · demandι̃,t,

price∗
i,t =

N∑
ι̃=1

wi,ι̃ · priceι̃,t,

(3.3)

with weights wi,i = 0 and ∑N
ι̃=1 wi,ι̃ = 1, for i = 1, 2, . . . , N . The corresponding individual

weights wi,ι̃ may be combined to a weight matrix (wi,ι̃)i,ι̃=1,2,...,N . While the initial GVAR
model of Pesaran et al. (2004) uses import and export data, the so called trade weights, to link
the individual economies into one model, our framework incorporates information from common
supply, demand and trading activity to link the individual commodity markets, see Section 4.4.

In order to set up the final global commodity market model, we define the (Ki + K∗
i ) × 1 vector

zi,t =
(
x′

i,t, x∗
i,t

′
)′

and rewrite Equation 3.2 for i = 1, 2, . . . , N :

Ai,0zi,t = ai,0 +
P∑

p=1
Ai,pzi,t−p +

Pexog∑
p=0

Ψi,pet−p + εi,t, (3.4)

where Ai,0 = (IKi , −Λi,0) is a Ki × (Ki + K∗
i ) dimensional matrix, with IKi denoting the

Ki ×Ki dimensional identity matrix, and Ai,p = (Φi,p, Λi,p) are also Ki ×(Ki + K∗
i ) dimensional

matrices, for p = 1, 2, . . . , P . Moreover, we require Ai,0 to have full row rank for i = 1, 2, . . . , N .

Further, we denote by xt =
(
x′

1,t, x′
2,t, . . . , x′

N,t

)′
the K × 1 global vector of all commodity-

specific variables, where K = ∑N
i=1 Ki. With the (Ki + K∗

i )×K dimensional link matrices Zi of
fixed constants defined in terms of the commodity-specific weights wi,ι̃, we can write zi,t = Zixt.
Hence, we use this in Equation 3.4:

Ai,0Zixt = ai,0 +
P∑

p=1
Ai,pZixt−p +

Pexog∑
p=0

Ψi,pet−p + εi,t. (3.5)

Stacking Equation 3.5 together for i = 1, 2, . . . , N , we obtain:

G0xt = a0 +
P∑

p=1
Gpxt−p +

Pexog∑
p=0

Ψpet−p + εt, (3.6)

with the K×1 intercept vector a0 =
(
a′

1,0, a′
2,0, . . . , a′

N,0

)′
, the K×K dimensional matrices G0 =(

(A1,0Z1)′ , (A2,0Z2)′ , . . . , (AN,0ZN )′
)′

, and Gp =
(
(A1,pZ1)′ , (A2,pZ2)′ , . . . , (AN,pZN )′

)′
, for

p = 1, . . . , P , the K × Kexog dimensional matrices Ψp =
(
Ψ′

1,p, Ψ′
2,p, . . . , Ψ′

N,p

)′
, for p =

0, 1, . . . , Pexog and the K × 1 vector εt =
(
ε′

1,t, ε
′
2,t, . . . , ε′

N,t

)′
. In case of a non-singular matrix

G0, we define the K × 1 vector b = G−1
0 a0, the K × K dimensional matrices Hp = G−1

0 Gp for
p = 1, 2, . . . , P , the K × Kexog dimensional matrices Υp = G−1

0 Ψp, for p = 0, 1, . . . , Pexog, and

commodity-specific variables and coincides for all commodities. However, an extension to differences in the lag
length of commodity-specific and external variables as well as between commodities would be possible.
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the K × 1 dimensional vector υt = G−1
0 εt. Rewriting Equation 3.6, we get the GVAR model in

its final form:

xt = G−1
0 a0 +

P∑
p=1

G−1
0 Gpxt−p +

Pexog∑
p=0

G−1
0 Ψpet−p + G−1

0 εt

= b +
P∑

p=1
Hpxt−p +

Pexog∑
p=0

Υpet−p + υt.

(3.7)

Hereby, we model the vector xt, including all commodity-specific microeconomic variables, while
accounting for the dependencies in the cross-commodity dimension as well as for the influence
of exogenous macroeconomic variables. This enables us to model all commodity markets simul-
taneously, under the consideration of cross-commodity dependencies within the markets, as well
as the impact of common macroeconomic factors.

In this context, we can predict the commodity markets ahead. For given observations of the
commodity markets over the period t = 1, 2, . . . , T , as well as for known exogenous variables
et,8 for t = 1, 2, . . . , T + 1, the one-step ahead predictor for xT +1 is given by:

xT +1 = b +
P∑

p=1
HpxT +1−p +

Pexog∑
p=0

ΥpeT +1−p + υT +1. (3.8)

While the first component measures the impact of the intercept as well as of the lagged endoge-
nous variables, the second component measures the impact of the exogenous variables, et and
the last component reflects the stochastic part. Subsequently, we derive the point forecasts of
the endogenous variables:

x̂T +1 = b +
P∑

p=1
HpxT +1−p +

Pexog∑
p=0

ΥpeT +1−p. (3.9)

In general, the dynamic properties of the commodity market model depend on the eigenvalues
of the matrix H1. If the roots of H1 lie inside the unit circle, representing the stationary case,
xT +1 will have a stable distribution. Further, the point forecasts, x̂T +1, will have the same
linear properties as in the underlying individual VAR models, see Pesaran et al. (2004) for more
detailed information.

3.1.2 Analysis of GVAR Models

Similar to VAR models, impulse response functions as well as forecast error variance decomposi-
tions are useful tools for a detailed analysis of global VAR models. Frequently, "orthogonalized"
impulse responses are calculated, where shocks to the VAR model are orthogonalized using the
Cholesky decomposition, see Pesaran and Shin (1998). However, this approach is not invariant
to the ordering of the variables in the model. As it is difficult to order the commodity-specific
variables supply, demand, and price, as well as the commodities in a meaningful way, we fol-
low Pesaran et al. (2004) and Dées, Holly, Pesaran, and Smith (2007) and apply generalized
impulse response functions (GIRFs) as well as generalized forecast error variance decompo-
sitions (GFEVDs) for the analysis of the GVAR model, which are robust to different variable
orderings. Hereby, the GIRF methodology allows to examine spillover effects within and between
commodity markets as well as to investigate the impact of shocks to the exogenous variables,
e.g. a global demand shock, on commodity markets. Moreover, the GFEVD analysis aims to
explain the variance of the forecast errors by shocks in the commodity variables.

8Following Pesaran et al. (2004), we assume known exogenous variables for a simpler notation. However, it is
possible to extend the analysis for uncertainty. Please refer to Pesaran et al. (2004) for more details.
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3.1.2.1 Generalized Impulse Response Functions

We propose to analyze the dynamic properties of the GVAR model by generalized impulse
response functions (GIRFs), first proposed by Koop et al. (1996) and further developed in
Pesaran and Shin (1998), since the GIRF analysis needs no ordering of the commodities, due to
its invariance property, see Dées, di Mauro, Pesaran, and Smith (2007). Hereby, we first focus
on shocks in the commodity markets, subsequently, we investigate how shocks in the global
economy transmit to the commodity markets.

3.1.2.1.1 Impulse Response Analysis of Shocks to endogenous, commodity-specific
Variables In general, the transmitted effects of a shock to an endogenous variable to the other
variables can be reflected by a generalized impulse response function, for n = 0, 1, . . . , NIRF

periods ahead, defined as:

GI (n, δ, Ωt−1) = E [xt+n|εt = δ, Ωt−1] − E [xt+n|Ωt−1] , (3.10)

where δ denotes the shock hitting the system at time t and Ωt−1 = {xt−1, xt−2, . . .} is the
information set at time t − 1, including all necessary information about the exogenous variables.
In our study, we consider the generalized impulse response functions measuring the effect of a
shock to the element k of xt, corresponding to the ki-th variable in the i-th commodity, by one
standard deviation, √

σkk, therefore, δ =
(
0, . . . , 0,

√
σkk, 0, . . . , 0

)′:
GIx:xk

(n,
√

σkk, Ωt−1) = E [xt+n|εk,t = √
σkk, Ωt−1] − E [xt+n|Ωt−1] . (3.11)

Under the assumption of multivariate normal distributed residuals εt, we can calculate the
GIRFs for n = 0 as follows:

GIx:xk
(0,

√
σkk, Ωt−1) = 1

√
σkk

G−1
0 Σsk, (3.12)

where Σ is the K × K variance-covariance matrix of shocks εt, σkk represents the kk-th element
of Σ, sk denotes the K × 1 selection vector, with sk = 1 for the k-th element and sk = 0 else.
Using Equation 3.7 and Equation 3.11, we derive:

GIx:xk
(n,

√
σkk, Ωt−1) =

P∑
p=1

HpGIx:xk
(n − p,

√
σkk, Ωt−1) , (3.13)

where GIx:xk

(
n,

√
σkk, Ωt−1

)
= 0 for n < 0. Subsequently, we calculate the GIRFs recursively

for n = 1, 2, . . . , NIRF . This measures the effect of a one standard error shock to the k-th
equation (corresponding to the ki-th variable in the i-th commodity) at time t on expected
values of x at time t + n. In addition to analyzing commodity-specific effects within a market,
the GIRF analysis also reveals spillover effects of a shock on the variables of the other commodity
markets.

In order to analyze the significance of the GIRFs, we employ the sieve bootstrap technique
proposed in Dées, di Mauro, Pesaran, and Smith (2007), which, in general, can be used to derive
measures of accuracy, such as confidence intervals, without knowing the underlying distribution,9
using random sampling with replacement. Our analysis is based on the 68% confidence bounds
obtained by a sieve bootstrap procedure with Nboot = 1000 replications, which we briefly explain
in the following.

9While we assume the residuals εt of the GVAR model to be multivariate normal distributed, see Section
5, and calculate the GIRFs recursively with help of Equation 3.12, the parameters of the multivariate normal
distribution are not known in advance and have to be estimated. Therefore, we propose to use the bootstrap
technique, also applicable if the underlying distribution is unknown, instead of Monte Carlo approaches, based
on estimated parameters.
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1. Calculate the residuals ε̂t, t = 1, 2, . . . , T , of the fitted GVAR model, using the estimated
parameters of Equation 3.6.

2. Randomly draw Nboot times with replacement Tboot ≤ T residuals to get Nboot sets of
residuals εnboot =

(
εnboot

T −Tboot
, εnboot

T −Tboot+1, . . . , εnboot
T

)
, for nboot = 1, 2, . . . , Nboot.

3. Generate Nboot bootstrap samples xnboot , according to Equation 3.7, using the resampled,
recentered10 residuals εnboot as well as the estimated parameters of the fitted GVAR model
and calculate for each commodity i = 1, 2, . . . , N the corresponding external variables
x∗,nboot

i according to Equation 3.3, using the weight matrix (wi,ι̃)i,ι̃=1,2,...,N .

4. Estimate the individual, commodity-specific VAR models in Equation 3.2, using the boot-
strap sample xnboot as endogenous variables with corresponding external variables x∗,nboot

i

to get new parameters of the VAR models and solve for the GVAR model.11

5. Calculate the GIRFs recursively, according to Equation 3.12 and Equation 3.13, based on
the new estimated parameters corresponding to the bootstrap sample.

6. Repeat steps 3 to 5 Nboot times.

7. Sort the GIRFs into an ascending order for all time periods n = 0, 1, . . . , NIRF , and calcu-
late the (1 − 0.32) · 100% = 68% confidence interval by using the 0.32/2 and (1 − 0.32/2)
quantiles of the bootstrap distribution of the GIRFs, in line with Anzuini et al. (2013) and
Hammoudeh et al. (2015) among others.

3.1.2.1.2 Impulse Response Analysis of Shocks to exogenous, global Variables Be-
sides the spillover effects within and between commodity markets, we examine how shocks to
the global economy, reflected by shocks to the exogenous variables, affect the commodity mar-
kets. Therefore, we analyze the effects of a shock to the kexog-th exogenous variable ekexog ,t, for
kexog = 1, 2, . . . , Kexog, on the commodity markets via GIRFs.

Initially, a dynamic process for the exogenous variables has to be specified, see Pesaran et al.
(2004). Therefore, we assume the vector of exogenous variables follows a vector autoregression
process with P̃exog lags:

et = aexog +
P̃exog∑

p̃exog=1
Φexog,p̃exog et−p̃exog + εexog,t, (3.14)

where aexog is the Kexog ×1 intercept vector, Φexog,p̃exog is the Kexog ×Kexog matrix of coefficients
for lag p̃exog = 1, 2, . . . , P̃exog, and εexog,t is the Kexog × 1 vector of shocks. Hereby, we assume
εexog,t to be serially uncorrelated, independent and identically distributed, with mean zero and
covariance matrix Σexog, therefore, εexog,t ∼ iid(0,Σexog).

Similar to the GIRFs of a shock to a commodity-specific variable, the generalized impulse
response function of the effect of a shock δexog to the exogenous variables et on the vector of
endogenous variables xt is defined for n = 0, 1, . . . , NIRF periods ahead by:

GIx:ekexog
(n, δexog, Ωt−1) = E [xt+n|εexog,t = δexog, Ωt−1] − E [xt+n|Ωt−1] . (3.15)

10To ensure the bootstrap population mean is zero, we follow Dées, di Mauro, Pesaran, and Smith (2007) and
recenter the residuals.

11As our original GVAR model is stable, we exclude all bootstrap samples where the corresponding GVAR
model does not exhibit the stability property, to guarantee representative bootstrap models.
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In particular, we investigate the GIRFs of a shock by one standard deviation to the kexog-th
exogenous variable ekexog ,t, therefore, δexog = (0, . . . , 0,

√
σexog,kexogkexog , 0, . . . , 0)′, on the vector

of endogenous variables xt, which is defined as:

GIx:ekexog

(
n,

√
σexog,kexogkexog , Ωt−1

)
= E

[
xt+n|εexog,kexog ,t = √

σexog,kexogkexog , Ωt−1
]

− E [xt+n|Ωt−1] .
(3.16)

Using the GVAR model in its final form in Equation 3.7, we derive:

GIx:ekexog

(
n,

√
σexog,kexogkexog , Ωt−1

)
=

=
P∑

p=1
HpGIx:ekexog

(
n − p,

√
σexog,kexogkexog , Ωt−1

)

+
Pexog∑
p=0

ΥpGIe:ekexog

(
n − p,

√
σexog,kexogkexog , Ωt−1

)
,

(3.17)

where GIe:ekexog

(
n,

√
σexog,kexogkexog , Ωt−1

)
denotes the impulse response of the exogenous vari-

ables to a shock in the kexog-th exogenous variable ekexog :

GIe:ekexog

(
n,

√
σexog,kexogkexog , Ωt−1

)
= E

[
et+n|εexog,kexog ,t = √

σexog,kexogkexog , Ωt−1
]

− E [et+n|Ωt−1] .
(3.18)

For n < 1, the impulse responses vanish, therefore, GIx:ekexog

(
n,

√
σexog,kexogkexog , Ωt−1

)
=

GIe:ekexog

(
n,

√
σexog,kexogkexog , Ωt−1

)
= 0. Using this fact and Equation 3.17, we derive for

n = 0:

GIx:ekexog

(
0,

√
σexog,kexogkexog , Ωt−1

)
= Υ0GIe:ekexog

(
0,

√
σexog,kexogkexog , Ωt−1

)
. (3.19)

Under the assumption of multivariate normal distributed errors εexog, we can calculate the
impulse responses for the exogenous variables for n = 0:

GIe:ekexog

(
0,

√
σexog,kexogkexog , Ωt−1

)
= 1

√
σexog,kexogkexog

Σexogskexog , (3.20)

where Σexog denotes the Kexog × Kexog variance-covariance matrix of shocks εexog,t. Moreover,
σexog,kexogkexog is the kexogkexog-th element of Σexog and skexog denotes the Kexog × 1 selection
vector, with skexog = 1 for the kexog-th element and skexog = 0 else. Overall, the GIRFs of
the commodity-specific variables to a shock in the exogenous variable ekexog are then calculated
recursively, using Equation 3.17, Equation 3.19, and Equation 3.20.

Similar to the GIRF analysis of shocks to commodity-specific variables, we analyze the signifi-
cance of the GIRFs of shocks to the global exogenous variables, by the sieve bootstrap technique,
with Nboot = 1000 replications. Hereby, we adjust the first five steps of the bootstrap technique
described in Section 3.1.2.1 as follows:

1. Calculate the residuals ε̂exog,t, t = 1, 2, . . . , T , of the fitted VAR model of the exogenous
variables, using the estimated parameters of Equation 3.14.

2. Randomly draw Nboot times with replacement Tboot ≤ T residuals to get Nboot sets of
residuals εnboot

exog =
(
εnboot

exog,T −Tboot
, εnboot

exog,T −Tboot+1, . . . , εnboot
exog,T

)
, for nboot = 1, 2, . . . , Nboot.
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3. Generate Nboot bootstrap samples enboot , according to Equation 3.14, using the resampled,
recentered12 residuals εnboot

exog as well as the estimated parameters of the fitted VAR model.

4. Estimate the VAR model in Equation 3.14, using the bootstrap sample enboot to get new
parameters of the VAR model.

5. Calculate the GIRFs of shocks to the exogenous variables recursively, using Equation 3.17,
Equation 3.19, and Equation 3.20, based on the new estimated parameters corresponding
to the bootstrap sample.

3.1.2.2 Generalized Forecast Error Variance Decomposition

Forecast error variance decomposition is a further analysis tool to provide insights into general
VAR models. Due to the correlated shocks between commodities in our GVAR model, we
apply the alternative approach of generalized forecast error variance decomposition (GFEVD),
proposed in Dées, Holly, Pesaran, and Smith (2007), which does not depend on the ordering of
the variables. Hereby, the GFEVD represents the proportion of the variance of the n-step ahead
forecast errors explained by the shocks of variable k = 1, 2, . . . , K. In particular, the GFEVD
represents the proportion of the n-step ahead forecast error variance of the k̃-th element of xt,
accounted for by the innovations in the k-th element of xt, for n = 1, 2, . . . , NF EV D. In case of
one lag, hence P = 1, the closed form of the GFEVD is defined as:

GFEVDxk̃,t,εk,t
(n) =

σ−1
kk

∑n
ñ=0

(
s′

k̃
Hñ

1 G−1
0 Σsk

)2

∑n
ñ=0 s

′
k̃
Hñ

1 G−1
0 ΣG−1′

0 Hñ′
1 sk̃

, (3.21)

where Σ is the K × K variance-covariance matrix of shocks εt, σkk represents the kk-th element
of Σ, sk denotes the K × 1 selection vector, with sk = 1 for the k-th element and sk = 0 else,
and H1 is defined in Equation 3.7. Since the shocks are correlated, leading to a non-diagonal
variance-covariance matrix Σ, the elements of GFEVDxk̃,t,εk,t

(n) across k do not sum to unity,
which is why we scale them to guarantee comparability.

3.2 Markov-switching Global Vector Autoregression (MS(M) -
GVAR(P )) Model

While the GVAR methodology allows the consideration of cross-commodity dependencies within
markets, incorporating commodity-specific microeconomic and exogenous macroeconomic vari-
ables, the dependencies between commodities are, so far, time-invariant and do not account for
changes in the market over time. However, we aim to examine how the dependencies within
and between commodity markets change over time. Therefore, we extend the GVAR model to a
Markov-switching global vector autoregression (MS-GVAR) model, based on the idea of Binder
and Gross (2013), enabling for time-varying relations.

Similar to the structure in Section 3.1, we first introduce the individual, commodity-specific
Markov-switching vector autoregression (MS-VAR) models. Therefore, we briefly discuss the
state space representation of MS-VAR models, the filtering algorithm and the likelihood function
to derive the expectation-maximization (EM) algorithm, used for the estimation of the models,
as well as the model selection procedure. Subsequently, we solve the MS-GVAR model and
describe the prediction as well as appropriate analysis methods.

12To ensure the bootstrap population mean is zero, we follow Dées, di Mauro, Pesaran, and Smith (2007) and
recenter the residuals.
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3.2.1 Commodity-specific MS(M)-VAR(P ) Models

3.2.1.1 Individual Market Models

Instead of individual VAR models, we apply individual M -state Markov-switching vector autore-
gression (MS-VAR) models of order P (MS(M13)-VAR14(P )) on all commodities i = 1, 2, . . . , N
of the analysis. While Binder and Gross (2013) propose the MS-GVAR model for economies
based on MS-VAR models with time-varying intercept, we generally introduce the MS-GVAR
model based on several specifications of the MS-VAR model, explicitly allowing for time-varying
autoregressive parameters, time-varying parameters corresponding to the exogenous variables
or a time-varying covariance matrix, see Table 3.1 for an overview over the specifications.

First of all, we follow the idea proposed in Section 3.1 as well as in Schischke et al. (2023) and
model the dependencies between the commodity-specific supply (supplyi), demand (demandi)
and price (pricei) variables, which form the Ki × 1 vector xi,t = (supplyi,t, demandi,t, pricei,t)′,
extended by the K∗

i × 1 vector x∗
i,t =

(
supply∗

i,t, demand∗
i,t, price∗

i,t

)′
of weighted external vari-

ables specific to commodity i, for all time periods t = 1, 2, . . . , T :

xi,t = ai,0,si,t +
P∑

p=1
Φi,p,si,txi,t−p +

P∑
p=0

Λi,p,si,tx∗
i,t−p +

Pexog∑
p=0

Ψi,p,si,tet−p + εi,t, (3.22)

where ai,0,si,t denotes the regime-dependent intercept vector and Φi,p,si,t are the regime-dependent
Ki × Ki matrices of lagged coefficients for lag p = 1, 2, . . . , P , with Kendog = Ki = 3, i =
1, 2, . . . , N , denoting the length of vector xi,t. Further, Λi,p,si,t are regime-dependent Ki × K∗

i

matrices of coefficients associated with the lagged exogenous, external specific variables for
p = 0, 1, . . . , P ,15 and in our case Ki = K∗

i = 3 for all i = 1, 2, . . . , N .

In accordance to Equation 3.3 for the GVAR model, the external commodity variables x∗
i,t

represent the information of the other commodity markets and are defined as:

supply∗
i,t =

N∑
ι̃=1

wi,ι̃ · supplyι̃,t,

demand∗
i,t =

N∑
ι̃=1

wi,ι̃ · demandι̃,t,

price∗
i,t =

N∑
ι̃=1

wi,ι̃ · priceι̃,t,

(3.23)

with weights wi,i = 0 and ∑N
ι̃=1 wi,ι̃ = 1, for i = 1, 2, . . . , N . The corresponding individual

weights wi,ι̃ may be aggregated to a weight matrix (wi,ι̃)i,ι̃=1,2,...,N .

To represent the common factor in our framework, we include Kexog macroeconomic factors as
exogenous variables in the vector et with Ψi,p,si,t as regime-dependent Ki ×Kexog matrices of the
corresponding coefficients for lags p = 0, 1, . . . , Pexog. Further, we assume that the Ki ×1 vectors
of idiosyncratic commodity-specific shocks εi,t are, in general, serially uncorrelated, independent
and identically distributed, with mean zero and regime-dependent covariance matrix Σii,si,t .
Therefore, εi,t ∼ iid

(
0, Σii,si,t

)
.

13We assume M different states in each commodity market, however, an extension to individual number of
states Mi would be possible. In this thesis , Mi = M holds, for i = 1, 2, . . . , N .

14In the terminology of Krolzig (1997), we focus on MS-VAR models with switching intercept and not on mean
adjusted VAR (MSM-VAR) models. Please refer to Krolzig (1997) for more details on MSM-VAR models.

15For a simpler notation, we assume that the lag length of the external variables equals to the lag length of the
commodity-specific variable and coincides for all commodities. However, an extension to differences in the lag
length of commodity-specific and external variables as well as between commodities is possible.
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The difference between the commodity-specific VAR models of the original GVAR model dis-
played in Equation 3.2 in Section 3.1 and the MS-VAR models described in Equation 3.22 lies
in the index si,t attached to the parameters denoting that the parameters depend on the regime
si,t = 1, 2, . . . , M , prevailing in commodity i at time t and, in particular, the parameters are not
constant. We assume that this unobserved regime, also called state, is generated by a discrete
time, irreducible, ergodic, discrete M -state Markov chain with transition matrix Pi. The corre-
sponding transition probabilities pi,lm, denoting the probability of a commodity to switch from
regime l to regime m from time t to t + 1, are defined as:

pi,lm = Pr (si,t+1 = m|si,t = l) ,
M∑

m=1
pi,lm = 1, for l, m = 1, 2, . . . , M, 16 (3.24)

and summarized in the transition matrix

Pi =


pi,11 pi,12 · · · pi,1M

pi,21 pi,22 · · · pi,2M
...

... . . . ...
pi,M1 pi,M2 · · · pi,MM

 . (3.25)

Further, we can define ξi,t denoting the unobserved state of the system:

ξi,t =


I (si,t = 1)
I (si,t = 2)

...
I (si,t = M)

 , (3.26)

where

I (si,t = m) =
{

1, if si,t = m

0, else
(3.27)

is the indicator function for m = 1, 2, . . . , M . As ξi,t consists only of binary variables, the
expected value also represents the probability distribution of si,t:

E [ξi,t] =


Pr (si,t = 1)
Pr (si,t = 2)

...
Pr (si,t = M)

 =


Pr (ξi,t = ι1)
Pr (ξi,t = ι2)

...
Pr (ξi,t = ιM )

 , (3.28)

where ιM represents the m-th column of the identity matrix.

3.2.1.2 State Space Representation

For further analysis, it is useful to rewrite the MS(M)-VAR(P ) model in Equation 3.22 in its
state space representation, consisting of a measurement and a transition equation. Hereby, the
measurement equation is generally given by:

xi,t = Xi,tBiξi,t + ui,t, (3.29)

with system input matrix Xi,t = x̄′
i,t ⊗ IKi , where

x̄′
i,t =

(
1, e′

t, e′
t−1, . . . , e′

t−Pexog
, x∗′

i,t−1, x∗′
i,t−2, . . . , x∗′

i,t−P , x′
i,t−1, x′

i,t−2, . . . , x′
i,t−P

)
,

16In line with Krolzig (1997), we denote by P r (·) a discrete probability measure and by p (·) a probability
density function.
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and IKi is the Ki × Ki dimensional identity matrix, ⊗ denotes the Kronecker product, and Bi

includes the regression parameters.17 The corresponding state or transition equation can be
written as:

ξi,t+1 = Fiξi,t + vi,t+1, (3.30)
where Fi = P′

i represents the transpose of the transition probability matrix. We define the
mean innovation process {vi,t} by vi,t+1 = ξi,t+1 − E [ξi,t+1|ξi,t] which is uncorrelated with ui,t

as well as past values of ξi, ui, xi,Xi, due to the Markov property. Additionally, we assume the
innovation process {ui,t} follows a normal distribution:

ui,t ∼ N (0, Σii (ξi,t ⊗ IKi)) . (3.31)

In general, there are many specifications of MS-VAR models. In each specification, some or all
parameters are regime-dependent, while the remaining parameters are regime-invariant. Krolzig
(1997) distinguishes between seven different MS-VAR models corresponding to the intercept
form.18 As Krolzig (1997) does not consider exogenous variables explicitly, we extend the spec-
ifications by allowing the parameters corresponding to the exogenous variables to be either
regime-dependent or regime-invariant, resulting in 16 different specifications, see Table 3.1.19

Table 3.1: Specifications of MS-VAR models

ψ dependent ψ invariant
ν dependent ν invariant ν dependent ν invariant

α invariant Σ invariant MSIX VAR MSX VAR MSI VAR linear VAR
Σ dependent MSIHX VAR MSHX VAR MSIH VAR MSH VAR

α dependent Σ invariant MSIAX VAR MSAX VAR MSIA VAR MSA VAR
Σ dependent MSIAHX VAR MSAHX VAR MSIAH VAR MSAH VAR

This table shows the specifications of general MS-VAR models. The intercept (ν), the autoregressive
parameters (α), the parameters corresponding to the exogenous variables (ψ) as well as the covariance
matrix (Σ) can be either regime-dependent or regime-invariant. In case of the MS-VAR model corre-
sponding to commodity i = 1, 2, . . . , N in state m = 1, 2, . . . , M , it holds: νi,m = ai,0,m,αi,m =(

Φi,1,m, Φi,2,m, . . . , Φi,P,m

)′
and ψi,m =

(
Ψi,0,m, Ψi,1,m, . . . , Ψi,Pexog,m, Λi,0,m, Λi,1,m, . . . , Λi,P,m

)′
,

where ai,0,m, Φi,1,m, Φi,2,m, . . . , Φi,P,m and Ψi,0,m, Ψi,1,m, . . . , Ψi,Pexog,m, Λi,0,m, Λi,1,m, . . . , Λi,P,m are
the parameters of Equation 3.22. If the parameter is regime-invariant, it holds for all m = 1, 2, . . . , M ,
νi,m = νi,αi,m = αi,ψi,m = ψi or Σii,m = Σii.

In particular, the intercept (ν), the autoregressive parameters (α), the parameters corresponding
to the exogenous variables (ψ) as well as the covariance matrix (Σ) can be regime-dependent or
regime-invariant, resulting in 16 different MS-VAR models. Hereby, the linear VAR model rep-
resents the special case when all parameters are regime-invariant. In case of the MS-VAR model
corresponding to commodity i = 1, 2, . . . , N in state m = 1, 2, . . . , M , the intercept is νi,m =
ai,0,m, the autoregressive parameters are represented by αi,m = (Φi,1,m, Φi,2,m, . . . , Φi,P,m)′ and
ψi,m =

(
Ψi,0,m, Ψi,1,m, . . . , Ψi,Pexog ,m, Λi,0,m, Λi,1,m, . . . , Λi,P,m

)′ denote the parameters corre-
sponding to the exogenous variables, where ai,0,m, Φi,1,m, Φi,2,m, . . . , Φi,P,m and Ψi,0,m, Ψi,1,m,
. . . , Ψi,Pexog ,m, Λi,0,m, Λi,1,m, . . . , Λi,P,m are the parameters of Equation 3.22. If the parame-
ter is regime-invariant, it holds for all m = 1, 2, . . . , M , νi,m = νi,αi,m = αi,ψi,m = ψi or
Σii,m = Σii.

For each specification, a regression equation can be derived from the measurement equation,20

using the definition of Ξi,m = diag (ξi,m) as the T × T diagonal matrix including the regime
17Please refer to Appendix B.1.1 for more details, in particular, the definition of matrix Bi, including the

regression parameters.
18There are also several specifications in the mean-adjusted form, which are not considered within this study.

For further information, please refer to Krolzig (1997).
19In this study, we are interested in disentangling the change in the behavior of commodity markets between

low and high price environments, which is why we do not consider the case, where only the exogenous variables
are allowed to switch.

20For further information, please refer to the Appendix B.1.1.
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probabilities ξi,m =
(
ξ′

i,m,1, ξ′
i,m,2, . . . , ξ′

i,m,T

)
as diagonal elements and

Xi,t = x̄′
i,t ⊗ IKi =

(
1, e′

t, e′
t−1, . . . , e′

t−Pexog
, x∗′

i,t, x∗′
i,t−1, . . . , x∗′

i,t−P , x′
i,t−1, x′

i,t−2, . . . , x′
i,t−P

)
⊗ IKi

:=
(
1, ex′

i,t, en′
i,t−1

)
,

with ex′
i,t :=

(
e′

t, e′
t−1, . . . , e′

t−Pexog
, x∗′

i,t, x∗′
i,t−1, . . . , x∗′

i,t−P

)
denoting the exogenous variables,

en′
i,t−1 :=

(
x′

i,t−1, x′
i,t−2, . . . , x′

i,t−P

)
the endogenous variables of the model and IKi a Ki ×

Ki identity matrix. Further, we define Exi =
(
ex′

i,−0, ex′
i,−1, . . . , ex′

i,−Pexog

)
with exi,−p =

(exi,0−p, exi,1−p, . . . , exi,T −p), for p = 0, 1, . . . , Pexog, and Eni =
(
en′

i,−1, en′
i,−2, . . . , en′

i,−P

)
with eni,−p = (eni,1−p, eni,2−p, . . . , eni,T −p), for p = 1, 2, . . . , P and xi =

(
x′

i,1, x′
i,2, . . . , x′

i,T

)′
.

In the following, we explicitly describe the regression equations as well as the corresponding in-
novation process ui =

(
u′

i,1, u′
i,2, . . . , u′

i,T

)′
for each specification separately, whereby 1T denotes

a T × 1 vector of ones.

• MSI-VAR Model with regime-dependent intercept:

– Regression equation in case of regime-dependent parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

M∑
m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
(
En′

i ⊗ IKi

)
αi + ui.

(3.32)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

(
Ex′

i ⊗ IKi

)
ψi +

(
En′

i ⊗ IKi

)
αi + ui. (3.33)

– Innovation process:
ui ∼ N (0,Ωi) with Ωi = IT ⊗ Σii. (3.34)

• MSIH-VAR Model with regime-dependent intercept and covariance matrix:

– Regression equation in case of regime-dependent parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

M∑
m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
(
En′

i ⊗ IKi

)
αi + ui.

(3.35)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

(
Ex′

i ⊗ IKi

)
ψi +

(
En′

i ⊗ IKi

)
αi + ui. (3.36)

– Innovation process:

ui ∼ N (0,Ωi) with Ωi =
M∑

m=1
Ξi,m ⊗ Σii,m. (3.37)

• MSIA-VAR Model with regime-dependent intercept, autoregressive parameters and regime-
invariant covariance matrix:
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– Regression equation in case of regime-dependent parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

M∑
m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui.

(3.38)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

(
Ex′

i ⊗ IKi

)
ψi

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui.

(3.39)

– Innovation process:
ui ∼ N (0,Ωi) with Ωi = IT ⊗ Σii. (3.40)

• MSIAH-VAR Model with regime-dependent intercept, autoregressive parameters, as well
as covariance matrix:

– Regression equation in case of regime-dependent parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

M∑
m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui.

(3.41)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

(
Ex′

i ⊗ IKi

)
ψi

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui.

(3.42)

– Innovation process:

ui ∼ N (0,Ωi) with Ωi =
M∑

m=1
Ξi,m ⊗ Σii,m. (3.43)

• MSH-VAR Model with regime-dependent covariance matrix:

– Regression equation in case of regime-dependent parameters of exogenous variables:

xi = (1T ⊗ IKi)νi +
M∑

m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m +

(
En′

i ⊗ IKi

)
αi + ui. (3.44)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi = (1T ⊗ IKi)νi +
(
Ex′

i ⊗ IKi

)
ψi +

(
En′

i ⊗ IKi

)
αi + ui. (3.45)
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– Innovation process:

ui ∼ N (0,Ωi) with Ωi =
M∑

m=1
Ξi,m ⊗ Σii,m. (3.46)

• MSA-VAR Model with regime-dependent autoregressive parameters:

– Regression equation in case of regime-dependent parameters of exogenous variables:

xi = (1T ⊗ IKi)νi +
M∑

m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui.

(3.47)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi = (1T ⊗ IKi)νi +
(
Ex′

i ⊗ IKi

)
ψi +

M∑
m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui. (3.48)

– Innovation process:
ui ∼ N (0,Ωi) with Ωi = IT ⊗ Σii. (3.49)

• MSAH-VAR Model with regime-dependent autoregressive parameters and covariance ma-
trix:

– Regression equation in case of regime-dependent parameters of exogenous variables:

xi = (1T ⊗ IKi)νi +
M∑

m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui.

(3.50)

– Regression equation in case of regime-invariant parameters of exogenous variables:

xi = (1T ⊗ IKi)νi +
(
Ex′

i ⊗ IKi

)
ψi +

M∑
m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui. (3.51)

– Innovation process:

ui ∼ N (0,Ωi) with Ωi =
M∑

m=1
Ξi,m ⊗ Σii,m. (3.52)

3.2.1.3 Filtering Algorithm

In the following, we present the filter algorithm of Hamilton (1989), to calculate the optimal
inference of the unobservable regime probabilities ξi,t+1, which provide insights in the state of
commodity markets and which are used for the calculation of the maximum likelihood function.
In the case of Markov-switching models with exogenous variables, we compute the inference of
ξi,t+1 on basis of the information set Xi,t, consisting of the observed values of xi,t and also of
the exogenous information:

Xi,t =
(
x′

i,t, x′
i,t−1, . . . , x′

i,1−P , e′
i,t, e′

i,t−1, . . . , e′
i,1−Pexog

, x∗′
i,t, x∗′

i,t−1, . . . , x∗′
i,1−P

)′
.
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The iterative algorithm described in Krolzig (1997) is a discrete version of the Kalman filter
for the state space model in Equation 3.29 and Equation 3.30. First, we define the probability
distribution of the state vector ξi,t conditional on the information available at time τ as:

ξi,t|τ = E [ξi,t|Xi,τ ] =


Pr (ξi,t = ι1|Xi,τ )
Pr (ξi,t = ι2|Xi,τ )

...
Pr (ξi,t = ιM |Xi,τ )

 . (3.53)

For this study, we differentiate between the filtered, the predicted as well as the smoothed
probabilities. While the filtered (predicted) probabilities depend on information available at time
t (t − 1), the smoothed probabilities are computed conditional on the full-sample information
until time T . Starting with the filtered probabilities ξi,t|t, we use the law of Bayes to get the
posterior probabilities Pr (ξi,t|xi,t, Xi,t−1):

Pr (ξi,t|Xi,t) ≡ Pr (ξi,t|xi,t, Xi,t−1) = p (xi,t|ξi,t, Xi,t−1) Pr (ξi,t|Xi,t−1)
p (xi,t|Xi,t−1) , (3.54)

with the prior probability:

Pr (ξi,t|Xi,t−1) =
∑
ξi,t−1

Pr (ξi,t|ξi,t−1) Pr (ξi,t−1|Xi,t−1) (3.55)

and density

p (xi,t|Xi,t−1) =
∑
ξi,t

p (xi,t, ξi,t|Xi,t−1) =
∑
ξi,t

Pr (ξi,t|Xi,t−1) p (xi,t|ξi,t, Xi,t−1) , (3.56)

where the summation is over all possible values of ξi,t and ξi,t−1, respectively.

Further, we define the vector of densities of xi,t, conditional on ξi,t and Xi,t−1, as ηi,t:

ηi,t =


p (xi,t|θi,1, Xi,t−1)
p (xi,t|θi,2, Xi,t−1)

...
p (xi,t|θi,M , Xi,t−1)

 =


p (xi,t|ξi,t = ι1, Xi,t−1)
p (xi,t|ξi,t = ι2, Xi,t−1)

...
p (xi,t|ξi,t = ιM , Xi,t−1)

 , (3.57)

where we neglect the parameter vector θi,m, including the intercept (νi,m), the autoregressive
parameters (αi,m,) the parameters corresponding to the exogenous variables (ψi,m) as well as
the covariance matrix (Σi,m), at the right hand side for a more convenient notation. Using this
definition, it follows:

p (xi,t|Xi,t−1) = η′
i,tξ̂i,t|t−1 = 1′

M

(
ηi,t ⊙ ξ̂i,t|t−1

)
, (3.58)

where ξ̂i,t|t−1 denotes the estimate of ξi,t|t−1, 1M is the M × 1 vector of ones and ⊙ denotes the
element-wise matrix multiplication. Finally, we calculate the filtered and predicted probabilities
recursively for t = 1, 2, . . . , T based on the initial values ξi,0. Hereby, we estimate the filtered
probabilities:

ξ̂i,t|t =
ηi,t ⊙ ξ̂i,t|t−1

1′
M

(
ηi,t ⊙ ξ̂i,t|t−1

) , (3.59)

as well as the predicted probabilities, using the transition equation in Equation 3.30:

ξ̂i,t+1|t = Fiξ̂i,t|t =
Fi

(
ηi,t ⊙ ξ̂i,t|t−1

)
1′

M

(
ηi,t ⊙ ξ̂i,t|t−1

) . (3.60)
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While the estimate of ξi,t is based on information up to time t so far, we now use the full-sample
information until time T for the inference about the unobserved regime, by incorporating the
previously neglected sample information Xi,t+1.T . The derived smoothing gives therefore the
best estimate of the unobservable state at any point in time within the sample.

To obtain the smoothed probabilities, we use the smoothing algorithm, which is the backward
filter of Kim (1994), starting at time t = T with the filtered probability ξ̂i,T |T . Then, the full-
sample smoothed inferences ξ̂i,t|T can be derived by iterating backwards, from t = T − 1, T −
2, . . . , 0, using the following identity:

Pr (ξi,t|Xi,T ) =
∑
ξi,t+1

Pr (ξi,t, ξi,t+1|Xi,T ) =
∑
ξi,t+1

Pr (ξi,t|ξi,t+1, Xi,T ) Pr (ξi,t+1|Xi,T ) . (3.61)

For pure VAR models with Markovian parameter shifts, the probability laws for xi,t and ξi,t+1
depend only on the current state ξi,t and not on the former history of states. Therefore, using the
law of Bayes twice as well as the independence to derive the equality p (Xi,t+1.T |ξi,t, ξi,t+1, Xi,t) =
p (Xi,t+1.T |ξi,t, Xi,t), we get:

Pr (ξi,t|ξi,t+1, Xi,T ) ≡Pr (ξi,t|ξi,t+1, Xi,t, Xi,t+1.T )
Bayes= p (Xi,t+1.T |ξi,t, ξi,t+1, Xi,t) Pr (ξi,t|ξi,t+1, Xi,t)

p (Xi,t+1.T |ξi,t+1, Xi,t)
=Pr (ξi,t|ξi,t+1, Xi,t)

Bayes= Pr (ξi,t+1|ξi,t, Xi,t) Pr (ξi,t|Xi,t)
Pr (ξi,t+1|Xi,t)

=Pr (ξi,t+1|ξi,t) Pr (ξi,t|Xi,t)
Pr (ξi,t+1|Xi,t)

,

(3.62)

where the last equality follows from the independence of the former history of states. Finally,
we calculate the smoothed probabilities, with ⊘ denoting the element-wise matrix division:

ξ̂i,t|T =
∑
ξi,t+1

Pr (ξi,t|ξi,t+1, Xi,T ) Pr (ξi,t+1|Xi,T )

=
∑
ξi,t+1

Pr (ξi,t+1|ξi,t) Pr (ξi,t|Xi,t)
Pr (ξi,t+1|Xi,t)

ξ̂i,t+1|T

=
(
F′

i

(
ξ̂i,t+1|T ⊘ ξ̂i,t+1|t

))
⊙ ξ̂i,t|t.

(3.63)

3.2.1.4 Maximum Likelihood (ML) Estimation

So far, we determine the state vector ξi,t, given observations of Xi,21 and known parameters λi =(
θ′

i,ρ
′
i, ξ

′
i,0

)′
, including the parameter vector θi of the VAR model, the transition probabilities

ρi = vec (Pi) as well as the initial values ξi,0 for the filtered probabilities. In this subsection, we
aim to obtain the maximum likelihood estimator for the parameter vector λi. First, we observe

21In the case of Markov-switching models with exogenous variables, this information set also contains the
exogenous information, as stated in the previous subsection.
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the likelihood function as a byproduct of the filter:

L (λi|Xi) :=p (Xi,T |Xi,0;λi) =
T∏

t=1
p (Xi,t|Xi,t−1;λi)

=
T∏

t=1

∑
ξi,t

p (xi,t|ξi,t, Xi,t−1;θi) Pr (ξi,t|Xi,t−1;λi)

=
T∏

t=1
η′

i,tξ̂i,t|t−1
Transition Equation 3.30=

T∏
t=1
η′

i,tFiξ̂i,t−1|t−1.

(3.64)

Since the conditional densities p (xi,t|ξi,t−1 = ιm, Xi,t−1) are mixtures of normals, the likelihood
function is non-normal:

L (λi|Xi) =
T∏

t=1

M∑
l=1

M∑
m=1

pi,lmPr (ξi,t−1 = ιl|Xi,t−1,λi) p (xi,t|ξi,t = ιm, Xi,t−1,θi)

=
T∏

t=1

M∑
l=1

M∑
m=1

pi,lmξ̂i,l.t−1|t−1

{
(2π)− Ki

2 |Σii,m|−
1
2 exp

(
−1

2u′
i,m,tΣ

−1
ii,mui,m,t

)}
,

(3.65)

where we assume the conditional densities p (xi,t|ξi,t = ιm, Xi,t−1,θi) to be normal densities
and ui,m,t = xi,t − E [xi,t|ξi,t = ιm, Xi,t−1]. Then, the maximum likelihood (ML) estimates
can be derived by maximization of the likelihood function L (λi|Xi), subject to the adding-up
restrictions on the matrix of transition probabilities ρi = vec (Pi) and the initial state ξi,0:

Pi1M = 1M

1′
Mξi,0 = 1,

(3.66)

as well as the non-negativity restrictions for the transition probabilities ρi, the covariances σi

as well as the initial values ξi,0 for the filtered probabilities:

ρi ≥ 0,σi ≥ 0, ξi,0 ≥ 0. (3.67)

If the non-negativity can be ensured, the maximum likelihood estimator λ̂i can be derived by
the first order conditions of the constrained log-likelihood function:

ln L∗ (λi) = ln L (λi|Xi,T ) − κ′
i,1 (Pi1M − 1M ) − κi,2

(
1′

Mξi,0 − 1
)

, (3.68)

with κi,1, κi,2 denoting the Lagrange multipliers associated with the adding-up restrictions on
the matrix of transition probabilities ρi and the initial state ξi,0. Then, the first order conditions
are given by a set of simultaneous equations:

∂ ln L (λi|Xi)
∂θ′

i

= 0,

∂ ln L (λi|Xi)
∂ρ′

i

− κ′
i,1
(
1′

M ⊗ IM

)
= 0,

∂ ln L (λi|Xi)
∂ξ′

i,0
− κi,21′

M = 0,

(3.69)

where it is assumed that the interior solution of these conditions exists and is well-behaved, such
that the non-negativity restrictions are not binding.
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3.2.1.5 Expected Maximum Likelihood Estimation

As shown in Hamilton (1990), the expectation-maximization (EM) algorithm introduced by
Dempster et al. (1977) can be used in conjunction with the filter to obtain the maximum like-
lihood estimates of the model’s parameters. The EM algorithm is an iterative ML estimation
technique designed for a general class of models where the observed time series depends on
unobservable stochastic variables. Each iteration of the EM algorithm consists of two steps, the
expectation step (E-Step) and the maximization step (M-Step), see Table 3.2.

First, the filtered as well as the smoothed probabilities are calculated within the expectation
step, to determine the expectations (of the states). Therefore, the residuals ui,m,t for each
commodity i, state m and time t of the MS-VAR models are calculated using the predicted
values x̂i,m,t gained by the parameters given by the previous iteration: ui,m,t = xi,t − x̂i,m,t.
Therewith, we calculate ηi,t under the assumption of normally distributed residuals as well as
the estimated parameters from the previous iteration, using Equation 3.57.

Subsequently, starting with the initial value ξ̂i,0|0, the filtered ξ̂i,t|t as well as predicted proba-
bilities ξ̂i,t+1|t are estimated iteratively given the parameters of the previous maximization step,
according to Equation 3.59 and Equation 3.60 respectively. Within a backward iteration for
t = T −1, T −2, . . . , 0, the smoothed probabilities ξ̂i,t|T are derived, according to Equation 3.63,
conditional on the previous calculated parameters.

Second, in the maximization step, the parameters λi =
(
θ′

i,ρ
′
i, ξ

′
i,0

)′
, including the parameter

vector θi of the VAR model, the transition probabilities ρi = vec (Pi) as well as the initial
values ξi,0 for the filtered probabilities, are estimated given the predetermined regimes. In the
following, we describe the estimation of the transition probabilities ρi. Subsequently, we derive
the estimator of the parameter vector θi of the VAR model and finally, we explain, how the
initial values ξi,0 for the filtered probabilities are calculated.

Starting with the hidden Markov chain step, the transition probabilities ρi = vec (Pi) are
calculated. According to Krolzig (2002), the transition probabilities are derived under given
data Xi,T and parameters λi as follows:

p̂i,lm =
∑T

t=1 Pr (si,t = m, si,t−1 = l|Xi,T ,λi)∑T
t=1 Pr (si,t−1 = l|Xi,T ,λi)

. (3.70)

Using the definitions of the filtered, predicted as well as smoothed probabilities and the previous
transition probabilities, we get:

Pr (si,t = m, si,t−1 = l|Xi,T ,λi)

= Pr (si,t = m|si,t−1 = l) Pr (si,t = m|Xi,T ,λi) Pr (si,t−1 = l|Xi,t−1,λi)
Pr (si,t = m|Xi,t−1,λi)

=
p̂i,lmξ̂i,m,t|T ξ̂i,l,t−1|t−1

ξ̂i,m,t|t−1
,

(3.71)

Therewith, we derive the transition probabilities by inserting Equation 3.71 in Equation 3.70:

p̂i,lm =
∑T

t=1 Pr (si,t = m, si,t−1 = l|Xi,T ,λi)∑T
t=1 Pr (si,t−1 = l|Xi,T ,λi)

=
∑T

t=1
P r(si,t=m|si,t−1=l)P r(si,t=m|Xi,T )P r(si,t−1=l|Xi,t−1)

P r(si,t=m|Xi,t−1)∑T
t=1 Pr (si,t−1 = l|Xi,T ,λi)

=

∑T
t=1

p̂i,lmξ̂i,m,t|T ξ̂i,l,t−1|t−1
ξ̂i,m,t|t−1∑T

t=1 ξ̂i,l,t−1|T
.

(3.72)
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Table 3.2: Overview of the Expectation-Maximization algorithm

1. Initialization

(a) Initialize the parameters, for i = 1, 2, . . . , N :

θ
(0)
i

,ρ
0
i , ξi,1|0.

2. Expectation step

(a) Calculate the residuals ui,m,t, for i = 1, 2, . . . , N, m = 1, 2, . . . , M, t = 1, 2, . . . , T :

ui,m,t = xi,t − x̂i,m,t,

using the predicted values x̂i,m,t gained by the parameters given by the previous iteration.

(b) Calculate ηi,t, for i = 1, 2, . . . , N, t = 1, 2, . . . , T , under the assumption of normally distributed residuals, according to
Equation 3.57:

ηi,t =


p
(

xi,t|θi,1, Xi,t−1
)

p
(

xi,t|θi,2, Xi,t−1
)

...
p
(

xi,t|θi,M , Xi,t−1
)
 .

(c) Filtering (forward recursion t = 1, 2, . . . , T ): Calculate iteratively the filtered ξ̂i,t|t and predicted probabilities ξ̂i,t+1|t,
for i = 1, 2, . . . , N , according to Equation 3.59 and Equation 3.60 respectively:

ξ̂i,t|t =
ηi,t ⊙ ξ̂i,t|t−1

1′
M

(
ηi,t ⊙ ξ̂i,t|t−1

) ,

ξ̂i,t+1|t = Fiξ̂i,t|t =
Fi

(
ηi,t ⊙ ξ̂i,t|t−1

)
1′

M

(
ηi,t ⊙ ξ̂i,t|t−1

) .

(d) Smoothing (backward recursion t = T − 1, T − 2, . . . , 1): Calculate the smoothed probabilities ξ̂i,t|T , for i = 1, 2, . . . , N ,
according to Equation 3.63:

ξ̂i,t|T =
(

F′
i

(
ξ̂i,t+1|T ⊘ ξ̂i,t+1|t

))
⊙ ξ̂i,t|t.

3. Maximization step

(a) Hidden Markov Chain Step: Calculate the transition probabilities ρi = vec (Pi), for i = 1, 2, . . . , N , according to Equation
3.72:

p̂i,lm =

∑T

t=1

p̂i,lmξ̂i,m,t|T ξ̂i,l,t−1|t−1
ξ̂i,m,t|t−1∑T

t=1
ξ̂i,l,t−1|T

.

(b) Regression Step: Estimate the VAR parameter vector θi, for i = 1, 2, . . . , N :

• Estimate γi denoting the structural parameters, including the intercept (νi), the autoregressive parameters (αi)
as well as the parameters corresponding to the exogenous variables(ψi), according to Equation 3.83:

γ̂i =

(
M∑

m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ

−1
ii,m

)−1(
M∑

m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ

−1
ii,m

)
xi.

• Estimate the covariance matrix, according to Equation 3.109 under homoscedasticity and Equation 3.112 under
heteroscedasticity:

Σ̂i =
1
T

û∗
i (λi)′ û∗

i (λi) =
1
T

M∑
m=1

ûi,m (λi)′
Ξ̂i,mûi,m (λi) ,

Σ̂i,m =
1

T̂i,m

û∗
i,m (λi)′ û∗

i,m (λi) =
1

T̂i,m

ûi,m (λi)′
Ξ̂i,mûi,m (λi) .

(c) Initial state: Update the initial state ξ̂i,0, for i = 1, 2, . . . , N , according to Equation 3.113:

ξ̂i,0 = ξ̂i,0|T .

4. Iterate the expectation step and maximization step until convergence.

This table provides an overview of the expectation-maximization (EM) algorithm for MS-VAR models.

Besides the calculation of the transition probabilities, the parameters of the VAR models have
to be estimated within the M-Step of the EM algorithm. In the following, we focus on the
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estimation of the VAR parameter vector θi. Therefore, we first rewrite the objective function,
according to Hamilton (1990), to simplify the expected log-likelihood function. Using the re-
gression equation, we derive the maximum likelihood estimator for the MS-VAR parameters as
generalized least squares estimator. Subsequently, we derive the estimator for the covariance
matrix under homoscedasticity as well as under heteroscedasticity.

Within the M-Step, the estimation of the parameter vector λi is not simultaneous with the
estimation of the smoothed regime probabilities Pr (ξi|Xi,λi), which is already estimated within
the E-Step, using the predetermined parameter vector λ(j−1)

i of the previous iteration j − 1.
Hamilton (1990) shows that, under these circumstances, the first order conditions are equivalent
to the following objective function:

ℓ
(
λi|Xi,T ,λ

(j−1)
i

)
=
∫

ln p (Xi, ξi|λi) p
(
Xi, ξi|λ(j−1)

i

)
dξi

=
∫

ln (p (Xi|ξi,λi) Pr (ξi|λi)) Pr
(
ξi|Xi,λ

(j−1)
i

)
p
(
Xi|λ(j−1)

i

)
dξi

= p
(
Xi|λ(j−1)

i

) ∫
ln p (Xi|ξi,λi) Pr

(
ξi|Xi,λ

(j−1)
i

)
dξi

+ p
(
Xi|λ(j−1)

i

) ∫
ln Pr (ξi|λi) Pr

(
ξi|Xi,λ

(j−1)
i

)
dξi.

(3.73)

Hence, we derive from Equation 3.73:

ℓ
(
λi|Xi,T ,λ

(j−1)
i

)
∝

T∑
t=1

∑
ξi,t

ln p (xi,t|ξi,t, Xi,t−1,θi) Pr
(
ξi,t|Xi,T ,λ

(j−1)
i

)

+
T∑

t=1

∑
ξi,t−1

ln Pr (ξi,t|ξi,t−1,ρi) Pr
(
ξi,t, ξi,t−1|Xi,T ,λ

(j−1)
i

)
.

(3.74)

Within each maximization step, the objective function in Equation 3.73 is maximized. Once the
algorithm has converged, we get the ML estimator λ̂i:

λ̂i := λ
(j)
i = λ

(j−1)
i . (3.75)

For a simpler notation, we drop λ(j−1)
i in the following.

At this point, we focus on the estimation of the VAR parameter vector θi. Therefore, we consider
the first part of Equation 3.74. With the normality of the conditional densities and γi denoting
the structural parameters, including the intercept (νi), the autoregressive parameters (αi) as
well as the parameters corresponding to the exogenous variables(ψi), as well as the following
equality,

p (xi,t|si,t = m, Xi,t−1,θi) = (2π)− −Ki
2 |Σii,m|−

1
2 exp

{
−1

2ui,m,t (γi)′ Σ−1
ii,mui,m,t (γi)

}
, (3.76)

the expected log-likelihood function simplifies to:

ℓ (θi|Xi,T ) ∝

∝ const. − 1
2

T∑
t=1

M∑
m=1

ξ̂i,m,t|T
{

Ki ln (2π) + ln |Σii,m| + ui,m,t (γi)′ Σ−1
ii,mui,m,t (γi)

}

∝ const. − 1
2

M∑
m=1

{
T̂i,m ln |Σii,m| +

T∑
t=1

ui,m,t (γi)′
(
ξ̂i,m,t|T Σ−1

ii,m

)
ui,m,t (γi)

}
,

(3.77)
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with T̂i,m = ∑T
t=1 ξ̂i,m,t|T , where the term T̂i,mKi ln (2π) is added to the constant (const.) term.

This log-likelihood function can be rewritten in matrix notation:

ℓ (θi|Xi,T ) ∝ const. − 1
2

M∑
m=1

{
T̂i,m ln |Σii,m| + ui,m (γi)′

(
Ξ̂i,m ⊗ Σ−1

ii,m

)
ui,m (γi)

}

∝ const. − 1
2

M∑
m=1

T̂i,m ln |Σii,m| − 1
2ui (γi)′ W−1

i ui (γi) ,

(3.78)

where W−1
i =


Ξ̂i,1 ⊗ Σ−1

ii,1 0
. . .

0 Ξ̂i,M ⊗ Σ−1
ii,M

,

Ξ̂i,m = diag
(
ξ̂i,m

)
=


ξ̂i,m,1|T

. . .
ξ̂i,m,T |T

, ui (γi) =


ui,1 (γi)
ui,2 (γi)

...
ui,M (γi)

 = 1M ⊗ xi − Xiγi, with

ui,m (γi) = xi − Xi,mγi, and Xi =


Xi,1
Xi,2

...
Xi,M

, with Xi,m =


Xi,m,1
Xi,m,2

...
Xi,m,T

.

The considered MS-VAR models in the intercept form are linear in the vector γi of structural
parameters, i.e. the regression equation can be written as:

xi,t =
M∑

m=1
ξi,m,tXi,m,tγi + ui,t. (3.79)

Therefore, the residuals associated with regime m at time t are given by:

ui,m,t (γi) = xi,t − Xi,m,tγi. (3.80)

We can show that the maximum likelihood estimator equals to the generalized least squares
estimator of the corresponding linear regression model, with many observations per cell, where
the pseudo observations (xi,t, Xi,m,t, ξi,t = ιm) are weighted with the smoothed probabilities
ξ̂i,m,t|T

(
λj−1

i

)
= Pr

(
ξi,t = ιm|Xi,T ,λj−1

i

)
:

∂ℓ (θi|Xi,T )
∂γi

= −1
2

∂ui (γi)′ W−1
i ui (γi)

∂γi
= −ui (γi)′ W−1

i

∂ui (γi)
∂γi

. (3.81)

Using the definition of the residuals ui and setting the Equation 3.81 equal to zero, see Appendix
B.1.2, we get the estimator:

γ̂i =
(
X′

iW−1
i Xi

)−1
X′

iW−1
i (1M ⊗ xi) . (3.82)

To reduce the computational effort, we rewrite22 the maximum likelihood estimator for identical
regressors in each equation xi,ki

, ki = 1, 2, . . . , Ki, where it holds Xi,m = X̄i,m ⊗ IKi to:

γ̂i =
(

M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ−1

ii,m

)−1( M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ−1

ii,m

)
xi. (3.83)

22For more information, please refer to the Appendix B.1.2, Equation B.9.
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Hence, we derive the particular estimator for the different MS-VAR model specifications, using
the definition of Exi and Eni in Section 3.2.1.2. Note the estimator for the MSIAX- as well as
MSIAHX-VAR models can be calculated for each regime separately. As each regime separately
is homogeneous, the estimators of both models coincide. The estimators for the homogeneous
models can be simplified using the calculations in Equation B.6.

• MSI-VAR model

– ML estimator of the maximization step:

γ̂i =

( M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

))−1 M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ IKi

xi (3.84)

– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m =
(
1T ⊗ ι′m, ι′m ⊗ Exi, Eni

)
(3.85)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m =
(
1T ⊗ ι′m, Exi, Eni

)
(3.86)

• MSIH-VAR model

– ML estimator of the maximization step:

γ̂i =
(

M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ−1

ii,m

)−1( M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ−1

ii,m

)
xi (3.87)

– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m =
(
1T ⊗ ι′m, ι′m ⊗ Exi, Eni

)
(3.88)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m =
(
1T ⊗ ι′m, Exi, Eni

)
(3.89)

• MSIA-VAR model

– ML estimator of the maximization step in case of regime-dependent exogenous vari-
ables:

γ̂i,m =
(((

X̄′
i,mΞ̂i,mX̄i,m

)−1 (
X̄′

i,mΞ̂i,m

))
⊗ IKi

)
xi (3.90)

– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m = (1T , Exi, Eni) (3.91)

– ML estimator of the maximization step in case of regime-invariant exogenous vari-
ables:

γ̂i =

( M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

))−1 M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ IKi

xi (3.92)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m =
(
1T ⊗ ι′m, Exi, ι

′
m ⊗ Eni

)
(3.93)
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• MSIAH-VAR model

– ML estimator of the maximization step in case of regime-dependent exogenous vari-
ables:

γ̂i,m =
(((

X̄′
i,mΞ̂i,mX̄i,m

)−1 (
X̄′

i,mΞ̂i,m

))
⊗ IKi

)
xi (3.94)

– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m = (1T , Exi, Eni) (3.95)

– ML estimator of the maximization step in case of regime-invariant exogenous vari-
ables:

γ̂i =
(

M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ−1

ii,m

)−1( M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ−1

ii,m

)
xi (3.96)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m =
(
1T ⊗ ι′m, Exi, ι

′
m ⊗ Eni

)
(3.97)

• MSH-VAR model

– ML estimator of the maximization step:

γ̂i =
(

M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ−1

ii,m

)−1( M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ−1

ii,m

)
xi (3.98)

– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m =
(
1T , ι′m ⊗ Exi, Eni

)
(3.99)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m = (1T , Exi, Eni) (3.100)

• MSA-VAR model

– ML estimator of the maximization step:

γ̂i =

( M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

))−1 M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ IKi

xi (3.101)

– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m =
(
1T , ι′m ⊗ Exi, ι

′
m ⊗ Eni

)
(3.102)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m =
(
1T , Exi, ι

′
m ⊗ Eni

)
(3.103)

• MSAH-VAR model

– ML estimator of the maximization step:

γ̂i =
(

M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ−1

ii,m

)−1( M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ−1

ii,m

)
xi (3.104)
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– Definition of X̄i,m in case of regime-dependent exogenous variables:

X̄i,m =
(
1T , ι′m ⊗ Exi, ι

′
m ⊗ Eni

)
(3.105)

– Definition of X̄i,m in case of regime-invariant exogenous variables:

X̄i,m =
(
1T , Exi, ι

′
m ⊗ Eni

)
(3.106)

Besides the VAR parameters, the covariance matrix Σii,m has to be estimated within the M-Step
of the algorithm. Therefore, we differentiate between the homoscedastic and heteroscedastic
case. Under homoscedasticity, it holds: Σii,m = Σii, for all states m = 1, 2, . . . , M . Hence, we
rewrite the expected log-likelihood function with W−1

i = diag
(
ξ̂′

i,1|t, ξ̂
′
i,2|t, . . . , ξ̂′

i,T |t

)
⊗ Σ−1

ii :

ℓ (λi|Xi,T ) ∝ const. − KiT

2 ln (2π) − T

2 ln |Σii| − 1
2u∗

i (λi)′ W∗−1
i u∗

i (λi) , (3.107)

where u∗
i (λi) = (diag(

√
ξi,11|t,

√
ξi,21|t, . . . ,

√
ξi,M1|t,

√
ξi,12|t,

√
ξi,22|t, . . . ,

√
ξi,M2|t, . . . ,

√
ξi,1T |t,√

ξi,2T |t, . . . ,
√
ξi,MT |t) ⊗ IKi)ui (λi) and W∗−1

i =
(
IT ⊗ Σ−1

ii

)
. Then, the partial derivatives of

the expected log-likelihood function, with respect to Σii, are given by:

∂ℓ (λi|Xi,T )
∂Σii

= −T

2 Σ−1
ii − 1

2Σ
−1
ii u∗

i (λi)′ u∗
i (λi)Σ−1

ii . (3.108)

If we set the partial derivatives to zero and solve Equation 3.108 for the covariance matrix Σii,
using the estimator û∗

i (λi) for u∗
i (λi), we get:

Σ̂ii = 1
T

û∗
i (λi)′ û∗

i (λi) = 1
T

M∑
m=1

ûi,m (λi)′ Ξ̂i,mûi,m (λi) . (3.109)

Under heteroscedasticity, we rewrite the expected log-likelihood function:

ℓ (λi|Xi,T ) ∝ const. −
M∑

m=1

{
+ T̂i,m

2 ln |Σii,m| + 1
2u∗

i,m (λi)′ W∗−1
i,m u∗

i,m (λi)
}

, (3.110)

where u∗
i,m (λi) =

(
diag

(√
ξ̂i,m,1|T ,

√
ξ̂i,m,2|T , . . . ,

√
ξ̂i,m,T |T

)
⊗ IKi

)
(xi − Xi,mλi), and T̂i,m =∑T

t=1 ξ̂i,m,t|T , as well as W∗−1
i,m = (IT ⊗ Σii,m)−1. Then, the partial derivatives of the expected

log-likelihood function, with respect to Σii,m, are given by:

∂ℓ (λi|Xi,T )
∂Σii,m

= − T̂i,m

2 Σ−1
ii,m − 1

2Σ
−1
ii,mu∗

i,m (λi)′ u∗
i,m (λi)Σ−1

ii,m. (3.111)

If we set the partial derivatives to zero and solve Equation 3.111 for the covariance matrix Σii,m,
we get:

Σ̂ii,m = 1
T̂i,m

û∗
i,m (λi)′ û∗

i,m (λi) = 1
T̂i,m

ûi,m (λi)′ Ξ̂i,mûi,m (λi) . (3.112)

Although the estimates for λi and Σii are interdependent, Krolzig (1997) states it is sufficient
to calculate one single generalized least squares estimation within each maximization step, to
ensure the convergence of the EM algorithm.

As the last step of the algorithm, the initial state is updated by the smoothed probability:

ξ̂i,0 = ξ̂i,0|T . (3.113)
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Given initial values and applying recursively the EM algorithm, we derive estimates for the
regime probabilities as well as the parameters. As the EM algorithm is repeated iteratively until
convergence is guaranteed, several convergence criteria are used. First, the relative change of
the log-likelihood:

∆1 =
ln L

(
λ

(j+1)
i |Xi,T

)
− ln L

(
λ

(j)
i |Xi,T

)
ln L

(
λ

(j)
i |Xi,T

) (3.114)

has to be smaller than a predefined value, 0.0001 in our case.

Second, we control for the parameter variation, using the maximum norm,

∆2 = ∥λ(j+1)
i − λ(j)

i ∥ = max
o∈{1,2,...,O}

{|λ(j+1)
i,o − λ(j)

i,o |}, (3.115)

where the changes in the parameters have to be smaller than the predefined value,23 again 0.0001
in our case, with O denoting the number of parameters.

3.2.1.6 Model Specification

To determine the optimal number of states, lag length as well as the specification of the MS-VAR
models, we extend the model selection process based on the Hannan and Quinn (1979) (HQCMS)
and Schwarz (1978) (SICMS) criteria, presented in Li and Kwok (2021). While Li and Kwok
(2021) propose to estimate the number of states as well as the lag length of MSI-VAR models
with the information criteria, hence, only for models where the intercept is regime-dependent, we
generalize their idea for all of our considered specifications of the MS-VAR models. Subsequently,
we use the criteria to simultaneously decide for the optimal number of states, the lag length
as well as the specification of the MS-VAR models. As we require our individual, commodity-
specific models to have the same model characteristics, we further adjust the procedure of Li
and Kwok (2021) slightly. In this study, we follow mostly the notation of Li and Kwok (2021),
but add the index spec to highlight the dependency on the specification. Hereby, spec can attain
all possible considered specifications Spec presented in Table 3.1.

In general, we estimate the optimal number of states, up to the predefined maximum number of
states Mmax, the optimal lag length, up to the predefined number of lags Pmax, as well as the
specification out of all considered specifications spec ∈ Spec, by minimizing a criterion function
of the form:

IC (M, P, spec) = −2ℓ
(
λ̂M,P,spec|Xi,T

)
+ cT,M,P,spec, (3.116)

where the second term cT,M,P,spec is a sequence indexed by the sample size and penalizes the
inclusion of redundant states and lags. As we require our individual, commodity-specific models
to have the same model characteristics, we adjust the procedure of Li and Kwok (2021) for our
final MS-GVAR model slightly and denote by ℓ

(
λ̂M,P,spec|Xi,T

)
the mean of all commodity-

specific maximized log-likelihood values, corresponding to the MS-VAR models with M states,
P lags and specification spec. The selection strategy proposed by Li and Kwok (2021) jointly
selects the optimal model parameters

(
M̂, P̂ , ˆspec

)
by satisfying:(

M̂, P̂ , ˆspec
)

= arg min
0≤P ≤Pmax,1≤M≤Mmax,spec∈Spec

IC (M, P, spec) . (3.117)

We consider the two criteria HQCMS , according to Hannan and Quinn (1979), or SICMS ,
according to Schwarz (1978), for the penalty term cT,M,P,spec, defined as:

cT,M,P,spec = 2 · d · dim (λM,P,spec) log log T

cT,M,P,spec = dim (λM,P,spec) log T,
(3.118)

23We do not consider parameter-specific values, as all parameters are located in a similar range.
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where we use d = 1 for the HQCMS criterion, according to Li and Kwok (2021). Hereby, the
term dim (λM,P,spec)24 denotes the number of parameters estimated in the MS-VAR models and
is defined conditional on the number of states M , on the number of endogenous variables K,
on the number of lags P , associated with the endogenous variables, as well as on the number of
exogenous variables K ′ and the number of lags P ′, associated with the exogenous variables. In
our case, the external variables x∗

i , included in the model with P lags, as well as the macroeco-
nomic variables e, included in the model with Pexog lags, form the vector of exogenous variables,
therefore, K ′ = K∗ + Kexog. For simplicity, we only consider the case where the number of
lags P of the external variables coincides with the number of lags Pexog of the macroeconomic
variables, so P ′ = P = Pexog. However, an extension for different number of lags is possible.

The overall number of the estimated parameters is hereby dependent on the specification of
the MS-VAR model. It is composed by the number of parameters estimated for the transition
probability matrix, the intercept vector and the covariance matrix. Further, it relates to the
parameters associated with the exogenous as well as to the endogenous variables. While the
number of parameters for the transition probability matrix equals M (M − 1) for all specifi-
cations of the MS-VAR models, the number of parameters of the MS-VAR model depends on
whether the intercept, the autoregressive parameters as well as the parameters associated with
the exogenous variables and the covariance matrix are regime-invariant or regime-dependent. In
case of regime-dependent parameters, there are M times as many parameters to estimate.

In particular, the number of parameters for the intercept vector equals either K in the regime-
invariant case, or MK, if the intercept switches between the regimes. Further, either K2P
or MK2P parameters associated with the endogenous variables and KK ′P ′ or MKK ′P ′ pa-
rameters associated with the exogenous variables have to be estimated for the regime-invariant
or regime-dependent case, respectively. In addition, the number of parameters estimated for
the covariance matrix is either 1

2K (K + 1) in the regime-invariant case or 1
2MK (K + 1) in

the regime-dependent case. In the following, we provide the resulting number of parameters
estimated for the different specifications of the MS-VAR models:

• MSI-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + MKK ′P ′ + K2P + 1
2K (K + 1) (3.119)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + KK ′P ′ + K2P + 1
2K (K + 1) (3.120)

• MSIH-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + MKK ′P ′ + K2P + 1
2MK (K + 1) (3.121)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + KK ′P ′ + K2P + 1
2MK (K + 1) (3.122)

24The term dim (λM,P,spec) represents the dimension of estimated parameters in the MS-VAR model, and
therefore, it is not interpreted as a matrix function. In our case, the dimension of estimated parameters in the
MS-VAR model equals for all commodity-specific models which is why we can neglect the commodity-specific
index.
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• MSIA-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + MKK ′P ′ + MK2P + 1
2K (K + 1) (3.123)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + KK ′P ′ + MK2P + 1
2K (K + 1) (3.124)

• MSIAH-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + MKK ′P ′ + MK2P + 1
2MK (K + 1) (3.125)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + MK + KK ′P ′ + MK2P + 1
2MK (K + 1) (3.126)

• MSH-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + K + MKK ′P ′ + K2P + 1
2MK (K + 1) (3.127)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + K + KK ′P ′ + K2P + 1
2MK (K + 1) (3.128)

• MSA-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + K + MKK ′P ′ + MK2P + 1
2K (K + 1) (3.129)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + K + KK ′P ′ + MK2P + 1
2K (K + 1) (3.130)

• MSAH-VAR model:

– Dimension in case of regime-dependent parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + K + MKK ′P ′ + MK2P + 1
2MK (K + 1) (3.131)

– Dimension in case of regime-invariant parameters of exogenous variables:

dim (λM,P,spec) = M (M − 1) + K + KK ′P ′ + MK2P + 1
2MK (K + 1) (3.132)
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3.2.2 Solution of the MS-GVAR Model

To derive the final MS-GVAR model, allowing for interdependencies between the commodities,
we link the commodity-specific MS-VAR models, described above, in a similar manner to the
individual VAR models in Section 3.1.25 Therefore, we define the (Ki + K∗

i ) × 1 vector zi,t =(
x′

i,t, x∗′
i,t

)′
and rewrite Equation 3.22 for i = 1, 2, . . . , N :

Ai,0,si,tzi,t = ai,0,si,t +
P∑

p=1
Ai,p,si,tzi,t−p +

Pexog∑
p=0

Ψi,p,si,tet−p + εi,t, (3.133)

where

Ai,0,si,t =
(
IKi , −Λi,0,si,t

)
Ai,p,si,t =

(
Φi,p,si,t , Λi,p,si,t

)
, for p = 1, 2, . . . , P

(3.134)

are Ki×(Ki + K∗
i ) dimensional matrices, with IKi denoting the Ki×Ki dimensional unit matrix.

Moreover, we require Ai,0,si,t to have full row rank for i = 1, 2, . . . , N .

We denote by xt =
(
x′

1,t, x′
2,t, . . . , x′

N,t

)′
the K × 1 global vector of all commodity-specific

variables, where K = ∑N
i=1 Ki. With the link matrices Zi of fixed constants defined in terms of

the commodity-specific weights wi,ι̃, we can write zi,t = Zixt. Using this in Equation 3.133, we
obtain:

Ai,0,si,tZixt = ai,0,si,t +
P∑

p=1
Ai,p,si,tZixt−p +

Pexog∑
p=0

Ψi,p,si,tet−p + εi,t. (3.135)

Stacking Equation 3.135 together for i = 1, 2, . . . , N , we get:

G0,Stxt = a0,St +
P∑

p=1
Gp,Stxt−p +

Pexog∑
p=0

Ψp,Stet−p + εt, (3.136)

where St = {s1,t, s2,t, . . . , sN,t} denotes the regime-constellation across all commodities that
is assumed while forming the matrices G0,St , and with the K × 1 intercept vector a0,St =(
a′

1,0,s1,t
, a′

2,0,s2,t
, . . . , a′

N,0,sN,t

)′
, the K × K dimensional matrices

Gp,St =
((

A1,p,s1,tZ1
)′

,
(
A2,p,s2,tZ2

)′
, . . . ,

(
AN,p,sN,t

ZN

)′
)′

, for p = 0, 1, . . . , P , the K × Kexog

dimensional matrices Ψp,St =
(
Ψ′

1,p,s1,t
, Ψ′

2,p,s2,t
, . . . , Ψ′

N,p,sN,t

)′
, for p = 0, 1, . . . , P , and the

K × 1 vector εt =
(
ε′

1,t, ε
′
2,t, . . . , ε′

N,t

)′
.

In case of a non-singular matrix G0,St for a given regime-constellation St, we get the reduced
form:

xt = G−1
0,St

a0,St +
P∑

p=1
G−1

0,St
Gp,Stxt−p +

Pexog∑
p=0

G−1
0,St

Ψp,Stet−p + G−1
0,St
εt

= bSt +
P∑

p=1
Hp,Stxt−p +

Pexog∑
p=0

Υp,Stet−p + υt,St ,

(3.137)

25Please note, the only difference between the aggregation of the individual VAR models to the GVAR model
and the aggregation of the individual MS-VAR models to the MS-GVAR model lies in the regime-dependence of
the parameters.
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with bSt = G−1
0,St

a0,St , Hp,St = G−1
0,St

Gp,St , for p = 1, 2, . . . , P , Υp,St = G−1
0,St

Ψp,St , for
p = 0, 1, . . . , P and υt,St = G−1

0,St
εt. This enables us to model markets of all commodities

simultaneously, while accounting for the (time-varying) dependencies in the cross-commodity
dimension.

3.2.2.1 Regime-constellation-dependent Solution

The global model can only be solved by assuming a regime-constellation S, as inferred throughout
the sample period. We define a M × N matrix Ξ̃ indicating the desired regimes for the N
commodities. There are two possible ways for setting the desired regimes to solve the global
model:

1. Choose an arbitrary regime-constellation, such that each commodity i is set to the desired
regime mi with weight 1.

2. Set the regimes according to the estimated constellation at a selected point in time τ .
Then, Ξ̃i = ξ̂i,τ |T . Hereby, the columns, denoted by Ξ̃i, each sum to one.

With the definition of Ξ̃, the weighted average of the local models’ parameter space can be
calculated for p = 0, 1, . . . , P :

Ãi,p =
M∑

m=1
Ai,p,si=m · Ξ̃m,i, (3.138)

where Ξ̃m,i denotes the m-th row of Ξ̃i. This weighting is also used to get the intercept:

ãi,0 =
M∑

m=1
ai,0,si=m · Ξ̃m,i, (3.139)

as well as the parameter matrices for the exogenous variables, for p = 0, 1, . . . , Pexog:

Ψ̃i,p =
M∑

m=1
Ψi,p,si=m · Ξ̃m,i. (3.140)

Subsequently, the solution of the global model is calculated according to Equation 3.136, using
the parameters Ãi,p, ãi,0, Ψ̃i,p, corresponding to the predefined regime-constellation S.

3.2.3 Prediction of the MS-GVAR Model

According to Krolzig (1997), an advantage of the MS-VAR models is the simplicity in forecasting
if the optimal predictor is given by the conditional mean for a given information set ΩT , including
the observations of commodity markets over the period t = 1, 2, . . . , T , as well as the exogenous
variables et for t = T + 1, T + 2, . . . , T + Npred:

x̂T +Npred|T = E
[
xT +Npred|T |ΩT

]
. (3.141)

In case of regime-dependent autoregressive parameters, the linearity property of the multi-step
predictor does not hold. Therefore, Krolzig (1997) proposes to approximate the Npred-step ahead
predictor by iterative pseudo one-step ahead predictions, which is why we focus on them in the
following. Given the regime probabilities ξ̂T |T at time T , the predicted probabilities for T + 1
can be derived by Equation 3.60. Subsequently, using the inferred predicted probabilities for the
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regime-constellation ST +1 and the MS-GVAR model in its reduced form, presented in Equation
3.137, we get the one-step ahead predictor x̂T +1|T :

x̂T +1|T = bST +1 +
P∑

p=1
Hp,ST +1xT −p +

Pexog∑
p=0

Υp,ST +1eT −p. (3.142)

3.2.3.1 Evaluation of the Predictability

To underline the importance of a time-varying analysis, we compare the predictability of the
MS-GVAR model with the time-invariant GVAR model. Therefore, we simultaneously forecast
all commodity-specific variables included in the global commodity vector xt one-step ahead,
using a rolling window approach, and assess the goodness of fit of the predictions via the test
of Clark and West (2007). Hereby we base our evaluation only on out-of-sample data, since
in-sample predictability may occur spuriously.

Consequently, we split the data set with observations t = 1, 2, . . . , T in an in-sample set with
observations t = 1, 2, . . . , I and an out-of-sample set with observations t = I+1, I+2, . . . , I+J =
I + 1, I + 2, . . . , T . Subsequently, we forecast the variables one-step ahead, by a rolling window
procedure. In particular, for each time in the out-of-sample set tpred = 1, 2, . . . , J , we estimate
the (MS-)GVAR model based on observations in the period {tpred, 1 + tpred, . . . , I + tpred − 1}
and predict the commodity markets one-step ahead, x̂I+tpred

, using Equation 3.9 or Equation
3.142, respectively.

Subsequently, we examine whether the time-varying MS-GVAR model outperforms the time-
invariant GVAR model in terms of out-of-sample predictability. Therefore, we compare the
performance of the models via the test of Clark and West (2007) for nested models, as the GVAR
model equals the MS-GVAR model with one state. The null hypothesis of Clark and West (2007)
assumes the unrestricted model, in our case the MS-GVAR model, includes excess parameters,
whereas in the alternative hypothesis the restricted model, the GVAR model, underperforms in
terms of the mean squared prediction error (MSPE). In general, the mean squared prediction
error measures the average squared deviation of the predicted (x̂k,tpred

) to the true (xk,tpred
)

value of variable xk,tpred
, for k = 1, 2, . . . , K:

MSPEk = 1
J

J∑
tpred=1

(
xk,tpred

− x̂k,tpred

)2
. (3.143)

The test of Clark and West (2007) corrects for the excess noise in the mean squared prediction
error of the unrestricted model, caused by the additional parameters, whose population values are
zero, under the null hypothesis, which is why the MSPE of the restricted model is expected to be
smaller. Therefore, the MSPE of the restricted GVAR model (MSPEGVAR

k ) is compared for each
variable k to the adjusted MSPE value for the unrestricted MS-GVAR model (MSPEMS-GVAR

k,adj ):

MSPEMS-GVAR
k,adj = MSPEMS-GVAR

k − adjMS-GVAR
k

= 1
J

J∑
tpred=1

(
xk,tpred

− x̂MS-GVAR
k,tpred

)2

− 1
J

J∑
tpred=1

(
x̂GVAR

k,tpred
− x̂MS-GVAR

k,tpred

)2
,

(3.144)

where adjMS-GVAR
k denotes the adjustment term, and x̂GVAR

k,tpred
(x̂MS-GVAR

k,tpred
) denotes the predicted

value of the GVAR (MS-GVAR) model. Hereby, Clark and West (2007) state the difference
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between the MSPE values of the restricted and unrestricted model, whereby the adjusted version
is used in the latter case, MSPEGVAR

k −MSPEMS-GVAR
k,adj , equals zero under the null hypothesis.

In particular, Clark and West (2007) propose to test the null with a t-test using 1.282 as critical
value for the 10% significance level, since they show standard normal critical values are close to
the actual values.

3.2.4 Analysis of the MS-GVAR Model via Generalized Impulse Response
Functions

Similar to the GVAR framework, we analyze the dynamic properties of the MS-GVAR model
by generalized impulse response functions (GIRFs). However, in case of the MS-GVAR model,
we require an estimate for the global covariance matrix to calculate appropriate GIRFs, which
we describe first, before the calculation of GIRFs is presented.

3.2.4.1 Estimation of the Global Covariance Matrix

To estimate the global covariance matrix ΣS for a given regime-constellation S = {s1, s2, . . . , sN }
with corresponding matrix Ξ̃, required in the GIRF analysis, we partition the matrix into blocks,
according to Binder and Gross (2013) and Andersson (2014):

ΣS =


Σ11,s1,s1 Σ12,s1,s2 . . . Σ1N,s1,sN

Σ21,s2,s1 Σ22,s2,s2 . . . Σ2N,s2,sN

...
... . . . ...

ΣN1,sN ,s1 ΣN2,sN ,s2 . . . ΣNN,sN ,sN



=


Σ11,Ξ̃1Ξ̃1

Σ12,Ξ̃1,Ξ̃2
. . . Σ1N,Ξ̃1,Ξ̃N

Σ21,Ξ̃2,Ξ̃1
Σ22,Ξ̃2Ξ̃2

. . . Σ2N,Ξ̃2,Ξ̃N...
... . . . ...

ΣN1,Ξ̃N ,Ξ̃1
ΣN2,Ξ̃N ,Ξ̃2

. . . ΣNN,Ξ̃N Ξ̃N

 .

(3.145)

Each diagonal block is calculated as:

Σ̂ii,Ξ̃i
=
∑T

t=1 εit,Ξ̃i
ε′

it,Ξ̃i

(
ξ̂′

i,t|T Ξ̃i

)
∑T

t=1 ξ̂
′
i,t|T Ξ̃i

. (3.146)

The off-diagonal blocks Σiι̃ of the global matrix Σ, denoting the covariances between the com-
modities i and ι̃ can be estimated analogously:

Σ̂iι̃,Ξ̃iΞ̃ι̃
=

∑T
t=1 εit,Ξ̃i

ε′
ι̃t,Ξ̃ι̃

√(
ξ̂′

i,t|T Ξ̃i

) (
ξ̂′

ι̃,t|T Ξ̃ι̃

)
∑T

t=1

√(
ξ̂′

i,t|T Ξ̃i

) (
ξ̂′

ι̃,t|T Ξ̃ι̃

) . (3.147)

The global matrix ΣS is symmetric by construction, with non-zero variances on the diagonal.
However, we can not ensure the positive semi-definiteness. Therefore, we follow Binder and
Gross (2013) and implement the iterative algorithm proposed by Higham (2002), such that the
global matrix will be positive semi-definite.

3.2.4.2 Generalized Impulse Response Functions

In line with the GVAR model, we analyze the dynamic properties of the MS-GVAR model by
generalized impulse response functions (GIRFs), as the GIRF analysis needs no ordering of the
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commodities, see Dées, di Mauro, Pesaran, and Smith (2007) and Section 3.1.2.1. However,
due to the time-varying properties of the MS-GVAR model, we calculate the regime-dependent
GIRFs of Markov-switching models proposed by Ehrmann et al. (2001) and Ehrmann et al.
(2003). Hereby, we first focus on shocks in the commodity markets, subsequently, we investigate
how shocks in the global economy transmit to the commodity markets.

3.2.4.2.1 Impulse Response Analysis of Shocks to endogenous, commodity-specific
Variables For a given regime-constellation St, the generalized impulse response function, re-
flecting the impact of a shock to the endogenous variables, for n = 0, 1, . . . , NIRF periods ahead,
is defined as:

GI (n, δ, Ωt−1) = E [xt+n|εt,St = δ, Ωt−1] − E [xt+n|Ωt−1] , (3.148)

where δ denotes the shock and Ωt−1 is the history, consisting of all known information until
time t − 1, including all necessary information about the exogenous variables. As we consider
regime-dependent GIRFs, the predictions xt+n are calculated under the assumption the system
is in the predefined state St. In our study, we consider the GIRFs of the effect of a shock of the
k-th variable of xt, corresponding to the ki-th variable in the i-th commodity, by one standard
deviation, √

σkk,St , therefore, δ =
(
0, . . . , 0,

√
σkk,St , 0, . . . , 0

)′
, whereby σkk,St represents the

kk-th element of ΣSt .

In general, we do not assume the innovations of the MS-GVAR model are multivariate normal
distributed for each considered regime-constellation. Therefore, we calculate the GIRFs via
Monte Carlo integration, according to the algorithms presented in Gonçalves et al. (2021),
Karamé (2012), Koop et al. (1996) as well as Weise (1999). In the following, we describe the
algorithm used to compute the GIRFs, hereby ignoring sampling variability.

1. Draw with replacement a block of P consecutive observations from the observed data to
get Nhist randomly drawn histories ωnhist

t−1 , nhist = 1, 2, . . . , Nhist.

2. Randomly sample with replacement (NIRF + 1) × Nshock values of the K-dimensional
estimated residuals of the model to get a sequence {εnshock

t+n }NIRF
n=0 of K-dimensional shocks

εnshock
t+n , n = 0, 1, . . . , NIRF , nshock = 1, 2, . . . , Nshock. Under the assumption of jointly

distributed shocks, if date t’ s shock is drawn, all K residuals for date t are collected.

3. For a specific nshock as well as nhist, use the NIRF +1 random shocks {εnshock
t+n } to compute

the realization xnhist,nshock
t+n

(
εnshock

t+n , ωnhist
t−1

)
for n = 0, 1, . . . , NIRF , using Equation 3.142

and iterating on the estimated, nonlinear time series model under consideration from the
given initial conditions εnshock

t+n , ωnhist
t−1 .

4. Use the same draw of NIRF +1 random shocks {εnshock
t+n }, but replace the first shock εnshock

t+0
by εnshock,δ

t+0 = εnshock
t+0 + δ to produce a realization, xnhist,nshock,δ

t+n

(
εnshock,δ

t+n , ωnhist
t−1

)
, of the

time series for n = 0, 1, . . . , NIRF , based on the initial conditions εnshock,δ
t+n , ωnhist

t−1 .

5. Repeat steps 3 and 4 Nshock times and form the averages for each individual component:

x̃nhist,δ
t+n

(
εδt+n, ωnhist

t−1

)
= 1

Nshock

Nshock∑
nshock=1

xnhist,nshock,δ
t+n

(
εnshock,δ

t+n , ωnhist
t−1

)
,

x̃nhist
t+n

(
εt+n, ωnhist

t−1
)

= 1
Nshock

Nshock∑
nshock=1

xnhist,nshock
t+n

(
εnshock

t+n , ωnhist
t−1

)
.

(3.149)

According to Koop et al. (1996), these averages will converge by the law of large numbers
to the conditional expectations E

[
xt+n|εt,St = δ, ωnhist

t−1
]

and E
[
xt+n|ωnhist

t−1
]
.
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6. The Monte Carlo estimate of the history dependent GIRF is calculated by taking the
difference:

GIx:xk

(
εt+n, ωnhist

t−1
)

= x̃nhist,δ
t+n

(
εδt+n, ωnhist

t−1

)
− x̃nhist

t+n

(
εt+n, ωnhist

t−1
)

. (3.150)

7. Repeat steps 2 to 6 Nhist times and take the average over GIx:xk

(
εt+n, ωnhist

t−1
)

to get the
history independent estimate of the GIRF GIx:xk

(εt+n, ωt−1). With an increasing number
of repetitions the pointwise convergence will be guaranteed by the law of large numbers,
according to Koop et al. (1996).

3.2.4.2.2 Significance of the Spillover Effects via Bootstrapping In order to ana-
lyze the significance of the GIRFs, we employ an adjusted version of the bootstrap techniques
proposed in Ehrmann et al. (2001). In general, the bootstrapping, using random sampling
with replacement, has the advantage to assign measures of accuracy, such as confidence inter-
vals, without knowing the underlying distribution. However, two major problems arise within
Markov-switching models: Due to the presence of the hidden Markov-chain, there are two pro-
cesses underlying a Markov-switching model, one for the regimes and one for the endogenous
variables, which is why standard bootstrapping techniques, as described in Section 3.1.2.1 for
the GVAR model, can not be applied straightforward.

In our case, we create a history for the regimes as well as for the endogenous variables within
the bootstrapping. As we apply the bootstrapping to generate confidence bounds for our GIRF
analysis, the bootstrapping is also regime-dependent, just like the GIRF, which is why the
bootstrapping is calculated for one predetermined regime-constellation S.

In the following, we describe the algorithm for the bootstrapping procedure:

1. Create a history for the regimes St, t = 1, 2, . . . , T . As the regimes are not observable, but
the smoothed probabilities represent their best estimate, we assume the history of regimes
to correspond to the estimated smoothed probabilities ξ̂i,t|T .

2. Calculate the residuals ε̂t,St , t = 1, 2, . . . , T of the fitted MS-GVAR model in Equation
3.136, with the estimated parameters for the prevailing regime-constellations.

3. Draw randomly with replacement Tboot ≤ T residuals to get Nboot sets of residuals εnboot =(
εnboot

T −Tboot
, εnboot

T −Tboot+1, . . . , εnboot
T

)
, nboot = 1, 2, . . . , Nboot.

4. Generate Nboot bootstrap samples xnboot =
(
xnboot

T −Tboot
, xnboot

T −Tboot+1, . . . , xnboot
T

)
, according to

Equation 3.137, using the resampled, recentered26 residuals εnboot as well as with the esti-
mated parameters of the fitted MS-GVAR model for the prevailing regime-constellations
and calculate the corresponding external variables x∗,nboot

i , according to Equation 3.23,
using the weight matrix (wi,ι̃)i,ι̃=1,2,...,N , for i = 1, 2, . . . , N .

5. Estimate the MS-GVAR model for a specific bootstrap sample, xnboot , with correspond-
ing external variables x∗,nboot

i , for i = 1, 2, . . . , N , by estimating the commodity-specific
MS-VAR models in Equation 3.22 via the EM algorithm, described in Section 3.2.1.5,
and aggregating them to the global model, according to Equation 3.137, using xnboot as
endogenous variables.27

26In line with the bootstrapping procedure for the GVAR model, described in Section 3.1.2.1, we follow Dées,
di Mauro, Pesaran, and Smith (2007) and recenter the residuals to ensure the bootstrap population mean is zero.

27In line with the bootstrapping procedure for the GVAR model, described in Section 3.1.2.1, we exclude all
bootstrap samples, where the corresponding MS-GVAR model does not exhibit the stability property, to guarantee
representative bootstrap models.
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6. Calculate the GIRFs for the predefined regime-constellation S for the specific bootstrap
sample, xnboot , based on the new estimated parameters corresponding to the bootstrap
sample.

7. Repeat steps 4 to 6 Nboot times.

8. Sort the GIRFs into an ascending order for all time periods n = 0, 1, . . . , NIRF , and
calculate the 68% confidence interval by using the 0.16 and 0.84 quantiles of the bootstrap
distribution of the GIRFs, in line with the GVAR model.

We apply the bootstrap technique for Nboot = 500 runs, which is sufficiently large to be a good
numerical approximation of the distribution of the underlying estimates. Subsequently, the
confidence intervals of the GIRF analysis are based on this distribution.

3.2.4.2.3 Magnitude of the Spillover Effects The GIRF analysis and the corresponding
confidence bounds, obtained via the bootstrapping procedure in Section 3.2.4.2.2, indicates
whether a shock leads to significant changes in the commodity markets. In case of the MS-GVAR
model, we investigate the spillover effects under different predetermined regime-constellations
and compare the results. In particular, we evaluate the differences in the significance of the
spillover effects, indicating whether shocks only affect the commodity markets under a certain
regime. Moreover, we also compare the magnitude of the GIRFs between the states. Hereby,
we apply the one-sided Wilcoxon signed rank test (Wilcoxon)28 test on the GIRFs to examine
whether the response of a shock to a variable is stronger under one regime-constellation compared
to another one.

In addition, we examine the implied risks of the spillover effects under the different regime-
constellations. Hereby, we compare the conditional value at risk (CoVaR) of the variables under
the regime-constellations. Therefore, we first define the value at risk (VaR), which generally
measures the risk of a loss. In particular, the value at risk at the q% level of a variable v is
defined as the maximum value V aRq which satisfies:

Pv (]−∞, V aRq]) ≤ 1 − q, (3.151)

representing the maximum loss, excluding the worst q% possible losses, whereby Pv denotes the
probability distribution of v. The corresponding conditional value at risk is then defined as the
expected return in the worst q% cases and thus corresponds to the average loss in a loss event
that was triggered by the VaR being exceeded:

CoV aRq = E [v|v > V aRq] . (3.152)

Subsequently, a comparison of the CoVaR29 values under different regimes provide more insights
into the spillover risks under the different regimes.

3.2.4.2.4 Impulse Response Analysis of Shocks to exogenous, global Variables
Similar to the GVAR model, we also examine how shocks to the global economy, reflected
by shocks to the exogenous variables, affect the commodity markets. Therefore, we analyze
the effects of a shock to the kexog-th exogenous variable ekexog ,t on the commodity markets via
GIRFs.

28In contrast to a t-test, the Wilcoxon signed rank test test do not require the normal distribution.
29In particular, we calculate the CoVaR as the average upper q% spillover effects, whereby we use the bootstraps

derived in Section 3.2.4.2.2.
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In line with the time-invariant case, a dynamic process for the exogenous variables has to be
specified. Hereby, we also allow for regime-switches in the exogenous variables and model them
by a Markov-switching vector autoregression (MS-VAR) model with Mexog states and P̃exog lags:

et = aexog,sexog,t +
P̃exog∑

p̃exog=1
Φexog,p̃exog ,sexog,tet−p̃exog + εexog,t, (3.153)

where aexog,sexog,t denotes the regime-dependent intercept, Φexog,p̃exog ,sexog,t is the regime-dependent
Kexog × Kexog matrix of coefficients for lag p̃exog = 1, 2, . . . , P̃exog, and εexog,t is the Kexog × 1
vector of shocks. Hereby, we assume εexog,t to be serially uncorrelated, independent and iden-
tically distributed, with mean zero and covariance matrix Σexog,sexog,t , therefore, εexog,t ∼
iid(0,Σexog,sexog,t). Moreover, sexog,t = 1, 2, . . . , Mexog denotes the regime prevailing in the
system at time t.

Similar to the GIRFs of a shock to a commodity-specific variable, the generalized impulse
response function of the effect of a shock to the kexog-th exogenous variable ekexog ,t on the vector
of endogenous variables xt is defined for n = 0, 1, . . . , NIRF periods ahead by:

GIx:ekexog
(n, δexog, Ωt−1) = E

[
xt+n|εexog,t,sexog,t = δexog, Ωt−1

]
− E [xt+n|Ωt−1] , (3.154)

where δexog denotes the shock. In line with the regime-dependent GIRFs for shocks in the
endogenous variables, the predictions xt+n are calculated under the assumption the system of
the endogenous variables is in a predefined state St and the system of the exogenous vari-
ables is in a predefined state sexog,t. In this study, we consider the GIRFs of the effect
of a shock of the kexog-th exogenous variable by one standard deviation, therefore, δexog =(
0, . . . , 0,

√
σexog,kexogkexog ,sexog,t , 0, . . . , 0

)′
, whereby σexog,kexogkexog ,sexog,t is the kexogkexog-th ele-

ment of Σexog,sexog,t . Similar to the GIRFs of the GVAR model, we use the MS-GVAR model
in its final form in Equation 3.137 and derive:

GIx:ekexog
(n, δexog, Ωt−1) =

P∑
p=1

Hp,StGIx:ekexog
(n − p, δexog, Ωt−1)

+
Pexog∑
p=0

Υp,StGIe:ekexog
(n − p, δexog, Ωt−1) ,

(3.155)

where GIe:ekexog
(n, δexog, Ωt−1) denotes the impulse response of the exogenous variables to a

shock in the kexog-th exogenous variable ekexog :

GIe:ekexog
(n, δexog, Ωt−1) = E

[
et+n|εexog,t,sexog,t = δexog, Ωt−1

]
− E [et+n|Ωt−1] . (3.156)

Using the fact that generalized impulse responses vanish for n < 1, GIx:ekexog
(n, δexog, Ωt−1) =

GIe:ekexog
(n, δexog, Ωt−1) = 0, and Equation 3.155, we derive for n = 0:

GIx:ekexog
(0, δexog, Ωt−1) = Υ0,StGIe:ekexog

(0, δexog, Ωt−1) . (3.157)

In general, we do not assume neither the innovations of the MS-GVAR model nor the innovations
of the MS-VAR model of the exogenous variables are multivariate normal distributed for the
considered regime-constellation. Therefore, we also calculate the responses of the exogenous
variables to shocks to the exogenous variables, GIe:ekexog

(n, δexog, Ωt−1), via a Monte Carlo
integration, similar to the procedure described in Section 3.2.4.2.1. However, we slightly adjust
the integration, see Appendix B.1.3. Overall, the GIRFs of the commodity-specific variables
to a shock in the exogenous variable ekexog are then derived recursively, using Equation 3.155,
Equation 3.157, and GIe:ekexog

(n, δexog, Ωt−1) obtained from the Monte Carlo integration.
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Similar to the GIRFs above, which measure the impact of shocks to endogenous variables, we
also analyze the significance of the GIRFs for shocks to the exogenous variables, by an adjusted
version of the bootstrap techniques proposed in Ehrmann et al. (2001), where we adjust the
procedure in Section 3.2.4.2.2 slightly, see Appendix B.1.4.

3.3 Risk Assessment Framework30

While the (MS-)GVAR model reflects the impact of fundamentals on - as well as the co-movement
between - commodity prices, the objective of this thesis is the scarcity risk assessment of resource-
demanding projects, which require large amounts of commodities in their realization, leading to
a significant demand increase. Therefore, we develop a general framework, which includes the
future required resource amounts of the project, the substitutability of commodities, as well as
the commodity market structure, to determine the scarcity risk of the projects.

As the scarcity risk of a commodity is generally not observable, a commodity’s price is inter-
preted as scarcity indicator, in accordance to Gleich et al. (2013) and Tilton (2010), since high
prices are the result of high demand and/or low supply situations. With this interpretation, we
initially calculate the individual probability of scarcity (PS) for each commodity of the project in
Section 3.3.1, using the (MS-)GVAR framework proposed in Section 3.1 and Section 3.2, which
considers the impact of fundamentals as well as the spillover effects between commodity markets.
Subsequently, we aggregate the individual resource-specific risk measures at the project level to
the risk indicator expected loss due to scarcity (ES), taking into account the actual required
quantities and the substitutability of the commodities, which allows us to compare multiple
project alternatives in terms of their resource scarcity risk. Hereby, a high value indicates a high
risk of scarcity for the resource-demanding project.

3.3.1 Probability of Scarcity

The first stage of our framework estimates the probability of scarcity per commodity. Hereby,
we use the (MS-)GVAR framework proposed in Section 3.1 as well as Section 3.2, to account for
the commodity market structure. In addition, we propose in Section 3.3.1.2 logistic regression
models, enabling for commodity-specific price determinants, as an alternative way to obtain the
probabilities of scarcity.

In general, extremely high prices indicate either high demand and/or low supply situations,
which is why we interpret the commodity’s price as scarcity indicator. Therefore, we specify
an appropriate price threshold θi for each commodity i = 1, 2, . . . , N , which, once exceeded,
determines the commodity to be scarce, and consequently, allows for a classification of the
commodities into scarce or non-scarce. Hereby, we define the commodity-specific, binary latent
variable scarcei,t, for all commodities i and times t = 1, 2, . . . , T , with value 1 if the price
(pricei,t) exceeds the threshold (θi) at a certain point in time (t), indicating scarcity of the
commodity, and value 0 else:

scarcei,t =
{

1, pricei,t > θi

0, pricei,t ≤ θi.
(3.158)

In general, we propose two approaches for setting an appropriate price threshold. First, the
threshold can be derived based on expert knowledge of the respective commodity markets. As

30Parts of this section are published in the paper "Sustainable energy transition and its demand for scarce
resources: Insights into the German Energiewende through a new risk assessment framework", Renewable and
Sustainable Energy Reviews 176, 2023, co-authored by Patric Papenfuß, Max Brem, Paul Kurz, and Andreas
Rathgeber.
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the commodities under consideration are included in the profitability calculation of a project,
experts determine the price above which the utilization of a commodity becomes uneconomic,
leading to infeasible projects.

Second, the threshold price can be derived statistically based on historical data. In our case, we
suggest to use the one-sigma approach, as, for normally distributed random variables, this leads
to approximately 100% − 68% = 32% observations being classified as scarce, see Foster et al.
(1997), which in turn enables a statistically valid analysis:

θi = µpricei + σ̃pricei , (3.159)

with µpricei denoting the historical mean of the price of commodity i = 1, 2, . . . , N and σ̃pricei

being the corresponding standard deviation.31

These threshold prices enable a classification into scarce and non-scarce commodities. However,
we are interested in the probability of scarcity, i.e. the probability that the price of a commodity
will exceed its threshold, in the context of a resource-demanding project. Therefore, we either
use the (MS-)GVAR models, which take into account the commodity market structure, to esti-
mate the probability distribution of the commodity price under several predefined scenarios and
indirectly derive the probability of scarcity by determining quantiles, or we use logistic regression
models, considering individual price determinants, to derive the probability of scarcity directly.

3.3.1.1 Calculation of the Probability of Scarcity using the (MS-)GVAR Model

For the calculation of the probability of scarcity, taking into account the commodity mar-
ket structure, we forecast the commodity prices one-step ahead,32 with help of the estimated
(MS-)GVAR model in Equation 3.7 and Equation 3.137, respectively. Subsequently, we are
able to derive the probability distribution of the price forecasts by a bootstrapping procedure,
in analogy to Section 3.1.2.1 and Section 3.2.4.2.2, respectively. Finally, we use the definition
of quantiles and get the probability of a commodity’s price exceeding its threshold under the
predefined scenarios.

While the (MS-)GVAR model accounts for the interdependencies between - as well as for the
impact of the economy on - the commodity markets, the price forecasts are derived under pre-
defined scenarios for the (historical) endogenous as well as exogenous variables. In this thesis,
we focus on a mean scenario, a shock scenario, an extreme value scenario, focus and extreme
focus scenarios as well as quantile scenarios, for the endogenous as well as exogenous variables,
indicated by ζ = 1, 2, . . . , Z, which are briefly described in the following. The mean scenario
considers the probability of scarcity under normal circumstances, whereas we also analyze how
the probability of scarcity increases in stressed periods.33 In addition, we provide the (extreme)
focus scenarios which allow to investigate the sensitivity of the probability of scarcity to one spe-
cific variable. Moreover, the quantile scenarios analyze how the probability of scarcity increases
if the variables are at different states of their distributions.

• In the mean scenario ζ = 1, the Kendog endogenous variables xkendog ,i for commodity
i as well as the Kexog variables ekexog follow their sample average, µkendog ,i, and µkexog ,

31Instead of the historical mean and standard deviation over a predefined time period, a rolling window approach
can be used to determine a time-varying price threshold. However, this approach is only feasible for the logistic
regression model and therefore not considered in this thesis.

32Due to data limitations, we only forecast the prices one-step ahead, although we consider the resource require-
ments of the following decades. However, we also include the accumulated resource amounts in the calculation of
the scarcity risk such that the final risk score reflects the risk of the considered time period.

33We use the absolute values of the estimated coefficient matrices of the (MS-)GVAR model, to ensure an
increase in the input value will lead to a higher probability of scarcity, hereby, penalizing for any disturbances.
This approach might overestimate the scarcity risk, however, an overestimation is preferable to an underestimation.
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respectively:

xkendog ,i,1 = µkendog ,i, kendog = 1, 2, . . . , Kendog,

ekexog ,1 = µkexog , kexog = 1, 2, . . . , Kexog.
(3.160)

• In the shock scenario ζ = 2, each variable follows the one-sigma approach:

xkendog ,i,2 = µkendog ,i + σ̃kendog ,i, kendog = 1, 2, . . . , Kendog,

ekexog ,2 = µkexog + σ̃kexog , kexog = 1, 2, . . . , Kexog,
(3.161)

in which µkendog ,i, and µkexog denote the sample means, and σ̃kendog ,i, and σ̃kexog are the
standard deviations of the sample.

• In the extreme scenario ζ = 3, each covariate follows the two-sigma approach:

xkendog ,i,3 = µkendog ,i + 2σ̃kendog ,i, kendog = 1, 2, . . . , Kendog,

ekexog ,3 = µkexog + 2σ̃kexog , kexog = 1, 2, . . . , Kexog.
(3.162)

• In the focus scenario ζ = 4k̃exog
, the k̃exog-th exogenous variable follows the shock scenario,

whereas the remaining variables follow the mean scenario:34

xkendog ,i,4k̃exog
= µkendog ,i, kendog = 1, 2, . . . , Kendog,

ekexog ,4k̃exog
= µkexog , kexog = 1, 2, . . . , Kexog, with kexog ̸= k̃exog,

ek̃exog ,i,4k̃exog
= µk̃exog ,i + σ̃k̃exog ,i.

(3.163)

• In the extreme focus scenario ζ = 5k̃exog
, the k̃exog-th exogenous variable follows the

extreme scenario, instead of the shock scenario, whereas the remaining variables follow the
mean scenario:35

xkendog ,i,5k̃exog
= µkendog ,i, kendog = 1, 2, . . . , Kendog,

ekexog ,5k̃exog
= µkexog , kexog = 1, 2, . . . , Kexog, with kexog ̸= k̃exog,

ek̃exog ,i,5k̃exog
= µk̃exog ,i + 2σ̃k̃exog ,i.

(3.164)

• In the quantile scenarios ζ = 6q, each variable takes on the value of its q% quantile:

xkendog ,i,6q = xkendog ,i,q, kendog = 1, 2, . . . , Kendog,

ekexog ,6q = ekexog ,q, kexog = 1, 2, . . . , Kexog,
(3.165)

in which xkendog ,i,q, ekexog ,q denote the q% quantiles of the sample.

Overall, these scenarios enable a scenario-based risk assessment. On the one hand, the scenario-
specific comparison between multiple commodities may be used to choose between possible
substitute materials from a risk perspective, while on the other hand, the commodity-specific
comparison between the scenarios may be used as a sensitivity analysis.

34For a simpler notation, we introduce the focus scenario only for the exogenous variables. However, instead of
an exogenous variable, an endogenous variable can follow the shock scenario, while the remaining variables follow
the mean scenario.

35In line with the focus scenario, we also introduce the extreme focus scenario only for the exogenous variables,
for a simpler notation. However, instead of an exogenous variable, an endogenous variable can follow the extreme
scenario, while the remaining variables follow the mean scenario.
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Using the estimated (MS-)GVAR model of Equation 3.7 and Equation 3.137, respectively, we
forecast the commodity prices one-step ahead, according to Equation 3.9 and 3.142, respectively,
whereby we assume the variables as well as their lags are equal to the predefined scenario values
xkendog ,i,ζ , for kendog = 1, 2, . . . , Kendog as well as ekexog ,ζ , for kexog = 1, 2, . . . , Kexog, for scenario
ζ = 1, 2, . . . , Z.36 Subsequently, we calculate the probability distribution of the prices per
scenario by a bootstrapping procedure.

In this context, we slightly adjust the bootstrapping methodologies of the (MS-)GVAR models
for the significance of the generalized impulse response functions, described in Section 3.1.2.1
and Section 3.2.4.2.2, respectively, since we use the bootstrapping procedure to obtain a prob-
ability distribution of the commodity prices instead of calculating generalized impulse response
functions. In case of the GVAR framework, we adapt step five and seven of the bootstrap tech-
nique proposed in Dées, di Mauro, Pesaran, and Smith (2007) and described in Section 3.1.2.1
as follows:

5. For each scenario ζ, we use the scenario values of the variables xkendog ,i,ζ , for kendog =
1, 2, . . . , Kendog as well as ekexog ,i,ζ , for kexog = 1, 2, . . . , Kexog and the new estimated
parameters of the GVAR model corresponding to the bootstrap sample to forecast the
commodity prices one-step ahead.

7. Sort the predicted prices for each commodity and each scenario into an ascending order.
Comparing the predefined threshold with the quantiles of the bootstrap distribution of
the predicted prices, we can derive the probability of scarcity, using the definition of
quantiles.37

In case of the MS-GVAR framework, we adapt step six and eight of the regime-dependent
bootstrap technique proposed in Ehrmann et al. (2001) and described in Section 3.2.4.2.2 as
follows:

6. For each scenario ζ, we use the scenario values of the variables xkendog ,i,ζ , for kendog =
1, 2, . . . , Kendog as well as ekexog ,i,ζ , for kexog = 1, 2, . . . , Kexog and the new estimated
parameters of the MS-GVAR model corresponding to the bootstrap sample to forecast the
commodity prices one-step ahead.

8. Sort the predicted prices for each commodity and each scenario into an ascending order.
Comparing the predefined threshold with the quantiles of the bootstrap distribution of the
predicted prices, we can derive the probability of scarcity, using the definition of quantiles.

3.3.1.2 An Alternative Model for the Calculation of the Probability of Scarcity:
Logistic Regression Model

The (MS-)GVAR framework jointly models commodity markets, considering the impact of fun-
damentals on - as well as spillover effects between - prices. Hereby, the prices are influenced
by the other commodity markets as well as by common exogenous variables. As Gleich et al.
(2013) state the determinants of prices are heterogeneous between different metals, we alter-
natively propose to estimate the probability of scarcity directly via commodity-specific logistic

36In case of the MS-GVAR framework, the forecasts of the commodity prices are regime-dependent, which is
why a regime-constellation has to be predefined. As we apply our risk framework on the resource requirements
of the German Energiewende in the period 2020 to 2050, we use the estimated regime probabilities at the end of
our sample period, December 2019.

37The q% quantile of a variable v is generally defined as the maximum value vq which satisfies Pv (]−∞, vq]) ≤ q,
whereby Pv denotes the probability distribution of v.
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regression models, allowing for individual selected price influential factors. However, the co-
movement between prices is only covered by common price determinants, in contrast to the
(MS-)GVAR framework, which allows for spillover effects between commodity markets.

Overall, we derive the probability of scarcity directly by estimating logistic regression models on
the predefined price threshold. In particular, we model the dependencies between various price
determinants on the variable scarcei,t, defined via the threshold in Equation 3.158. Hereby, we
consider different, possible price influential factors of five dimensions: Macroeconomic, demo-
graphic, capital market driven as well as supply and demand variables.

Since the inclusion of all, potential price determinants is unfeasible from the statistical point
of view, due to data limitations, we perform a two-step model selection for each commodity to
identify the commodity-specific price determining factors, which will be included in the calcu-
lation of the probability of scarcity. In the first step, we extract all factors which do have a
significant impact on the commodity price from a broad list of variables. Hereby, we implement
univariate linear regression models for all potential variables, with the commodity price as depen-
dent variable and preselect the influential variables, using a t-test based on the 5% significance
level. In the second step, we determine the final set of covariates per commodity by applying
a bi-directional stepwise model selection, using the Bayesian information criterion (BIC) on the
preselected set of factors. With help of the variance inflation factor, we ensure none of our
final models suffers from multicollinearity, as we exclude one of the highly correlated variables
from the analysis, based on an economic justification, in case of an initial model with variance
inflation factor above five.

Using the identified price influential factors, we calculate the probability of scarcity per com-
modity. Therefore, we first estimate a logistic regression model. Hereby, we regress the Ki price
determinants xi,t = (x1,i,t, x2,i,t, . . . , xKi,i,t), derived from the previous, commodity-specific model
selection, on the dependent variable scarcei,t, defined in Equation 3.158 by the threshold θi:

P (scarcei,t = 1|X = xi,t) = 1
1 + exp (−zi,t)

, (3.166)

with the logit zi,t:
zi,t = β0 + β1x1,i,t + β2x2,i,t + . . . + βKi

xKi,i,t + εi,t, (3.167)

in which β0 denotes the intercept, β1, β2, . . . , βKi
are the coefficients corresponding to the Ki

covariates x1,i,t, x2,i,t, . . . , xKi,i,t for commodity i = 1, 2, . . . , N at time t = 1, 2, . . . , T and εi,t

represents the error term. Hereby, we obtain the estimated parameters β̂0, β̂1, . . . , β̂Ki
of Equa-

tion 3.166 via the Maximum-Likelihood approach. In particular, the estimated logistic regression
model per commodity enables us to directly calculate the probability of scarcity, which is the
probability of a commodity becoming scarce.

In this context, we examine several predefined conditions for the covariates to investigate how
stressed situations affect the probability of scarcity, similar to the scenarios for the endogenous
as well as exogenous variables in the (MS-)GVAR model in Section 3.3.1. Hereby, we consider
the scenarios ζ = 1, 2, . . . , Z for the covariates, namely a mean scenario, a shock scenario, an
extreme value scenario, focus and extreme focus scenarios as well as quantile scenarios.

• In the mean scenario ζ = 1, the covariates xki,i,1 for commodity i follow their sample
average µki,i:

xki,i,1 = µki,i, ki = 1, 2, . . . , Ki. (3.168)

• In the shock scenario ζ = 2, each covariate follows the one-sigma approach:

xki,i,2 = µki,i + sgn (βki
) σ̃ki,i, ki = 1, 2, . . . , Ki, (3.169)
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in which µki,i denotes the sample mean, σ̃ki,i is the standard deviation of the sample and
sgn (βki

) is the signum function38 of the estimated coefficient in Equation 3.167.

• In the extreme scenario ζ = 3, each covariate follows the two-sigma approach:

xki,i,3 = µki,i + 2sgn (βki
) σ̃ki,i, ki = 1, 2, . . . , Ki. (3.170)

• In the focus scenario ζ = 4k̃, the k̃-th covariate follows the shock scenario, whereas the
remaining variables follow the mean scenario:

xki,i,4k̃
= µki,i, ki = 1, 2, . . . , Ki, with ki ̸= k̃,

xk̃,i,4k̃
= µk̃,i + sgn

(
βk̃
)

σ̃k̃,i.
(3.171)

• In the extreme focus scenario ζ = 5k̃, the k̃-th covariate follows the extreme scenario,
instead of the shock scenario, whereas the remaining variables follow the mean scenario:

xki,i,5k̃
= µki,i, ki = 1, 2, . . . , Ki, with ki ̸= k̃,

xk̃,i,5k̃
= µk̃,i + 2sgn

(
βk̃
)

σ̃k̃,i.
(3.172)

• In the quantile scenarios ζ = 6q, each covariate takes on the value of its q% quantile:

xki,i,6q = xki,i,q, ki = 1, 2, . . . , Ki, (3.173)

in which xki,i,q denotes the q% quantile of the sample.

Using the scenario values of the covariates x1,i,ζ , x2,i,ζ , . . . , xKi,i,ζ and the corresponding esti-
mated logistic regression of Equation 3.166, we directly calculate the probability of scarcity per
commodity i and scenario ζ.

3.3.2 Expected Loss due to Scarcity on Commodity and Project Level

The main objective of the framework is the comparison of resource-demanding projects in respect
to the economic scarcity risk of the commodities they require. Hereby, these projects may differ
in the selection and quantity of the commodities included. In particular, we know the required
amount of each commodity as well as the probability of scarcity for a certain scenario and project,
derived from the (MS-)GVAR model, taking into account the commodity market structure, or
from the logistic regression model, enabling for commodity-specific price determinants. The
general idea of the framework is to aggregate this commodity-specific information to a risk
measure on project level, similar to the combination of multiple credit contracts into a portfolio-
based risk measure.

Within credit risk modeling, the risk of portfolios is compared by the expected loss (EL), defined
as:

ELpf =
∑

cred∈pf

ELcred,pf =
∑

cred∈pf

EADcred,pf · LGDcred,pf · PDcred,pf , (3.174)

in which ELcred,pf denotes the expected loss of a loan cred in the portfolio pf , EADcred,pf

the corresponding exposure at default, LGDcred,pf the loss given default and PDcred,pf the
respective probability of default, see Basel Committee on Banking Supervision (2005). While
the probability of default (PD) and the probability of scarcity (PS) may be regarded equivalently,

38Similar to the scenarios based on the (MS-)GVAR model, we use the signum function on the estimated
coefficients to ensure the addition of the standard deviation will lead to a higher probability of scarcity.
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the adoption of the expected loss (EL) to a scarcity risk measure of resource-demanding projects
requires adjustments on the loss given default (LGD) and the exposure at default (EAD).

In general, the loss given default represents the loss a bank realizes in case a borrower defaults. In
contrast, the respective measure in our framework, the loss given scarcity (LGS), should reflect
whether the commodity is substitutable, since the risk of scarcity is negligible if one commodity
can be substituted for another. Therefore, the loss given scarcity is linked to the substitutability
rate (SR), representing a normalized indicator for the substitutability of commodity i, by:

LGSi = 1 − SRi ∈ [0, 1] . (3.175)

Hereby, a LGSi of 0 indicates the commodity i is perfectly substitutable by other commodities,
hence, its scarcity is irrelevant in a project context, whereas a LGSi of 1 indicates no substitute
for the commodity i is available and the project is infeasible in case of scarcity.

While the exposure at default represents the amount of loss a bank is exposed to in case of
a defaulted loan, the respective measure in our framework, the exposure at scarcity (EAS),
should reflect the required resource amount of the project. Thereby, we assume, the entire
amount of the specific commodity required in project proj is not accessible in case of scarcity,
independent of the project’s state at which the scarcity occurs. For a comparison of several
commodities and projects, we scale the required resource amount of the project (quantproj,i) by
the average world production (supplyi) of the respective commodity i, resulting in the project
and commodity-specific exposure at scarcity:

EASproj,i = quantproj,i

supplyi

. (3.176)

Hereby, commodities are considered to be more risky if the absolute required quantities are
comparatively small, but which are only mined in small quantities, since the world supply is
relatively small in contrast to the additional demand required for the project.

Using the adjusted parameters, we are able to calculate the expected loss due to scarcity for
project proj, commodity i and scenario ζ:

ESproj,i,ζ = 100 · EASproj,i · LGSi · PSproj,i,ζ . (3.177)

Subsequently, we aggregate the commodity-specific expected loss due to scarcity values, in anal-
ogy to credit risk modeling, on project level:

ESproj,ζ =
N∑

i=1
ESproj,i,ζ =

N∑
i=1

100 · EASproj,i · LGSi · PSproj,i,ζ . (3.178)

Hereby, the assumption of independence between the commodities allows for the additivity of
the expected loss due to scarcity values, as potential dependencies between commodities are
directly reflected in the probability of scarcity39 via the (MS-)GVAR framework or indirectly
reflected by common macroeconomic determinants in case of the logistic regression model.

The resulting expected loss due to scarcity enables the comparison of various projects from a
commodity scarcity risk perspective. Hereby, the framework takes advantage of the commod-
ity market models included, as the impact of supply and demand, macroeconomic conditions
as well as spillover effects between commodities are reflected. Further, the determination of
the commodity-specific threshold θi, which is required for the definition of the binary variable
scarcei, is adjustable to the project of interest and economic background. Additionally, depend-
ing on the use-case, multiple of the proposed scenarios, as well as combinations and extensions
of them, allow for a detailed sensitivity analysis.

39In case of the (MS-)GVAR model, we combine the individual commodity market models via information on
the transformation paths, see Section 4.4.4, therefore, the probability of scarcity also depends on the considered
project. In contrast, the probability of scarcity derived from the logistic regression model is independent of the
underlying project.
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The objective of the empirical part of this thesis is the analysis and comparison of the resource
requirements of several transformation pathways for the German Energiewende in regard to
their availability, respectively their scarcity. Therefore, we analyze the resource demands of four
expansion pathways of the German energy system, see Section 4.1, within a commodity market
framework, based on commodity-specific data as well as data from several potential influencing
factors on commodity prices, which are described in Section 4.2 and Section 4.3, respectively.
Hereby, the individual commodity market models are linked via information on co-production,
co-consumption and co-trading, reflecting the relations between commodities, see Section 4.4.

4.1 Transformation Pathways of the German Energiewende

In this thesis, we consider the resource requirements of four expansion pathways of the German
energy system, called expansion path of the German energy system (REMod) paths, which are
all generated under the restriction of a 95% CO2 reduction in 2050, compared to Germany’s
emissions in 1990, see Sterchele et al. (2020). These pathways differentiate by the underlying
assumptions of the German society’s acceptance for actions to fulfill these reduction goals. While
the initial energy expansion pathways of the energy system are modeled according to Sterchele
et al. (2020), a translation of these pathways into resource demands from 2020 to 2050, on an
annual basis, is performed via a life-cycle assessment as well as a system dynamics model,1 see
Betten et al. (2020). A general overview of the pathways is displayed in Table 4.1.

Within the reference path (REMod − REF ), which marks the baseline scenario, the energy
system is calculated at optimal costs, without further boundary conditions that promote or
aggravate the achievement of the 95% CO2 reduction goal. In contrast, the sufficiency path
(REMod − SUF ) models a substantial change in the behavior of the German population to-
wards a reduction in its energy consumption, e.g., by tripling the maximum renovation rate for
buildings, resulting in a reduction in heated building area, which overall results in the lowest
energy demand of all the REMod pathways. However, mental reservations of the population for
new technologies in the private sector could lead to a substantial time delay for the implemen-
tation of renewable energy technologies, as well as a continuous high demand of conventional
energy technologies, represented in the persistence path (REMod − PER). In addition, strong
resistance to the expansion of large infrastructures, such as wind energy parks or power grid
expansions, are modeled in the unacceptance path (REMod − UNA). In order to achieve the
German climate targets under these boundary conditions, the demand for photovoltaic and
storage technologies will increase drastically, as will the corresponding demand for commodities.

1These calculations are generated within the project InteRessE, Grant-Nr: 03ET4065B, supported by the
German Federal Ministry for Economic Affairs and Energy, which aims to analyze the resource demand of the
German Energiewende from various perspectives. Hereby, the specific data for the technologies considered as well
as the resource requirement are not yet published.
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Table 4.1: Energy system pathways - demand and installed capacities

Abbreviation REMod − REF REMod − SUF REMod − P ER REMod − UNA
Name Reference Sufficiency Persistence Unacceptance
Energy demand in 2050 [in TWh] 1447 1068 1464 1282
Limits for installed capacity in GW:
Photovoltaic 530 530 530 800
Wind Onshore 230 230 230 80
Wind Offshore 80 80 80 40
Electricity import 40 40 40 20
Consumption development:
Classic power applications constant decreasing constant constant
Traffic performance increasing decreasing increasing increasing
Heated building area increasing decreasing increasing increasing
Process heat slightly decreasing slightly slightly

This table displays an overview of central boundary conditions of the transformation pathways, reference path
(REMod − REF ), sufficiency path (REMod − SUF ), persistence path (REMod − P ER), and unacceptance path
(REMod − UNA), according to Sterchele et al. (2020). In particular, the total energy demand in 2050 in terrawatt-
hour (TWh), the limits for installed capacity in gigawatt (GW) for photovoltaic, wind on- and offshore, and the electricity
import per path as well as the assumed consumption development per path are displayed.

The annual resource requirements of 28 metals are calculated from 2020 to 2050 based on
28 representative technologies2 and evaluated from an ecological, an economic, and a social
perspective for each of these pathways within the project InteRessE, Grant-Nr: 03ET4065B,
supported by the German Federal Ministry for Economic Affairs and Energy. In this thesis,
we utilize these resource requirements to assess the potential scarcity risk of the transformation
pathways. Hereby, we focus on the requirements of the nine commodities silver (Ag), cobalt (Co),
copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), and
platinum (Pt), which are key resources for the German Energiewende, according to Bastian
et al. (2019).

For the analysis of the resource demands within the risk assessment framework, we introduce
new models for commodity markets, incorporating the (time-varying) impact of fundamentals,
especially of demand, on prices, as well as the (time-varying) co-movement between prices, which
we exemplary apply on the industrial metal markets. Subsequently, we use the methodology to
assess the resource risk of the German Energiewende. Therefore, we enlarge the set of crucial
commodities defined by Bastian et al. (2019) with the remaining industrial metals aluminum
(Al), lead (Pb), tin (Sn) as well as zinc (Zn), which significantly contribute to the co-movement
in metal markets. While these metals are also part of energy technologies, Bastian et al. (2019)
does not classify them as key resources.

The main uses and the largest mining countries of these resources are summarized in Table
C.1, while the main uses in the context of the energy transition of the metals are described
in Table 4.2, according to Rohstoffagentur (2016). Hereby, silver, indium and platinum are
utilized for the installation of photovoltaic systems, while copper, tin as well as the rare earth
metals dysprosium and neodymium are used for wind turbines. Moreover, the metals silver,
aluminum, cobalt, indium, lithium, nickel, lead, platinum and zinc, are required for energy
storage within lithium-ion batteries, redox flow storage, aluminum based electrolytic capacitors
or general batteries.

2The representative technologies can be classified into the following sectors with associated overarching cate-
gories:

• electricity and heat generation: PV, wind on- and offshore, combined heat and power (CHP), fuel cell,
heat pump, condensing boiler, solar thermal energy

• storage and mobility: power-to-X, batteries, central thermal energy storage
• electricity transport: transmission network, trade
• reduction of energy demand: building renovation
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Table 4.2: Main uses of the metals in the context of the energy transition

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Photovoltaic systems x x x
Wind turbines x x x x
Lithium-ion batteries x x x x
Redox flow storage x
Solar thermal power plant x
Aluminum based electrolytic capacitors x
Fuel cell x
Chassis electric car x
Magnets x x x
Alloys x
Catalysts x x
Electric traction motors x
Batteries x x x x x x
Smart Grid (display) x
Micro Energy Harvesting x x

This table displays the main uses in the context of energy technologies of the metals silver (Ag), aluminum (Al), cobalt (Co),
copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn), according to Bastian et al. (2019).

4.1.1 Path-specific Commodity Requirements

For a better understanding of the resource requirements of the four REMod transformation
pathways for the German Energiewende in the period from 2020 to 2050, we graphically display
them in Figure C.1. The corresponding descriptive statistics, the total amount over time as well
as the average annual world production from 2010 to 2019 are given in Table 4.3. Overall, the
demand for the commodities will increase over time, except for silver, indicating more renewable
energy technologies will be built up at the end of the considered time period. In addition, the
total demand of the German Energiewende for cobalt is outstandingly high, compared to the
average annual world production of the previous decade, whereas the requirements for platinum
are neglectable.

Comparing the commodity demands for the four different expansion pathways, the sufficiency
path requires the least metals, except for the rare earth elements dysprosium and neodymium,
as well as for lead and zinc. In particular, the least demand for dysprosium and neodymium
in the unacceptance path can be attributed to the modeled resistance with respect to large
infrastructural projects. In this context, less wind energy parks will be installed, resulting in
a reduced demand for the rare earth metals. However, in order to achieve the energy targets
despite the few wind parks, more photovoltaic systems and storage technologies need to be set
up, which is why the required amounts of silver, cobalt, indium, lithium as well as nickel are
comparably high in the unacceptance path.

Table 4.3: Descriptive statistics of the path-specific commodity requirements
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A
g

[t
] REMod − REF 55 62 125 172 171 196 294 348 25440 5302 71 0.54 -0.02

REMod − SUF 37 39 91 131 115 145 149 150 25440 3579 36 -0.94 -0.44
REMod − P ER 53 61 101 204 195 267 343 362 25440 6039 97 0.10 -1.37
REMod − UNA 45 55 165 263 273 363 492 550 25440 8453 137 0.21 -0.91

A
l[

tm
t] REMod − REF 47 50 332 374 335 413 431 450 54630 10381 118 -1.45 0.80

REMod − SUF 30 33 218 265 227 285 298 303 54630 7038 88 -1.28 0.10
REMod − P ER 46 53 281 302 294 375 405 413 54630 9113 102 -1.17 0.57
REMod − UNA 42 48 340 371 375 494 551 559 54630 11626 147 -0.87 0.07

C
o

[t
m

t] REMod − REF 1 1 31 35 31 39 43 43 173 974 13 -1.40 0.71
REMod − SUF 0 1 20 26 21 27 28 29 173 655 10 -1.29 -0.02
REMod − P ER 1 1 21 26 23 28 31 31 173 702 9 -1.42 0.80
REMod − UNA 1 2 33 37 32 38 43 45 173 997 12 -1.61 1.32

C
u

[t
m

t] REMod − REF 31 40 218 262 233 294 324 335 18580 7238 91 -1.14 -0.08
REMod − SUF 22 28 112 203 169 229 255 266 18580 5231 79 -0.66 -1.10
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Descriptive statistics of the path-specific commodity requirement
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REMod − P ER 36 50 187 229 198 241 254 260 18580 6147 66 -1.33 0.41
REMod − UNA 26 36 207 255 221 271 286 289 18580 6849 82 -1.35 0.32

D
y

[t
] REMod − REF 6 8 39 52 59 88 102 108 1280 1814 32 -0.12 -1.33

REMod − SUF 5 7 13 27 42 78 88 89 1280 1297 33 0.33 -1.79
REMod − P ER 6 8 40 62 56 78 91 93 1280 1747 28 -0.45 -1.09
REMod − UNA 5 7 17 28 28 41 44 44 1280 865 13 -0.26 -1.43

In
[t

] REMod − REF 16 19 34 50 55 79 94 106 774 1700 26 0.21 -1.24
REMod − SUF 10 12 20 32 40 65 76 80 774 1245 23 0.34 -1.53
REMod − P ER 16 19 46 62 56 70 75 85 774 1742 18 -0.76 -0.52
REMod − UNA 15 16 62 91 84 113 131 147 774 2597 37 -0.43 -0.92

Li
[t

m
t] REMod − REF 1 1 19 23 20 25 27 27 998 614 8 -1.37 0.63

REMod − SUF 0 0 12 16 13 17 18 19 998 413 6 -1.26 -0.07
REMod − P ER 1 1 13 16 14 18 20 20 998 443 6 -1.35 0.68
REMod − UNA 1 1 20 23 20 24 27 28 998 629 8 -1.57 1.26

N
d

[t
] REMod − REF 38 49 273 445 457 722 829 839 31400 14168 278 -0.13 -1.44

REMod − SUF 31 42 81 159 325 642 742 756 31400 10077 287 0.42 -1.71
REMod − P ER 38 49 277 441 423 637 712 743 31400 13115 236 -0.37 -1.34
REMod − UNA 29 40 83 191 196 305 340 341 31400 6070 110 -0.07 -1.59

N
i[

tm
t] REMod − REF 4 5 97 120 106 135 150 152 2330 3283 44 -1.20 0.26

REMod − SUF 2 2 62 87 72 94 101 104 2330 2219 34 -1.15 -0.28
REMod − P ER 4 6 72 97 84 105 117 120 2330 2597 34 -1.21 0.22
REMod − UNA 5 6 101 123 106 133 139 142 2330 3286 41 -1.51 0.99

P
b

[t
] REMod − REF 514 682 2011 2347 2157 2691 2892 2969 4838000 66874 698 -1.02 -0.03

REMod − SUF 408 447 760 1012 1467 2468 2596 2597 4838000 45481 850 0.29 -1.75
REMod − P ER 491 736 1998 2389 2121 2478 2559 2621 4838000 65763 599 -1.54 1.15
REMod − UNA 444 653 1120 1276 1213 1372 1400 1573 4838000 37597 249 -1.73 2.87

P
t

[k
g] REMod − REF 14 16 90 124 114 161 180 183 435500 3525 58 -0.61 -1.08

REMod − SUF 11 13 26 47 75 141 161 172 435500 2329 58 0.42 -1.61
REMod − P ER 14 16 90 125 142 148 354 382 435500 4414 108 0.84 -0.39
REMod − UNA 10 12 42 83 81 104 197 236 435500 2523 56 0.93 0.73

Sn
[t

] REMod − REF 402 422 2058 2503 2307 3152 3320 3381 282500 71531 1000 -0.85 -0.78
REMod − SUF 281 317 750 1119 1572 2714 3008 3035 282500 48732 1023 0.32 -1.66
REMod − P ER 380 444 2030 2589 2219 2780 2999 3060 282500 68786 868 -1.11 -0.41
REMod − UNA 313 345 1517 1971 1702 2128 2212 2224 282500 52767 623 -1.20 -0.08

Zn
[t

m
t] REMod − REF 7 43 71 83 78 95 1034 106 12720 2413 22 -1.15 1.21

REMod − SUF 7 30 66 82 79 102 120 122 12720 2454 33 -0.51 -0.88
REMod − P ER 40 40 70 71 64 71 72 72 12720 1979 13 -1.24 -0.46
REMod − UNA 12 43 70 93 83 102 104 104 12720 2563 24 -1.18 0.61

This table displays the descriptive statistics (minimum (Min.), 5% quantile (5% Q.), 25% quantile (25% Q.), 75% quantile
(75% Q.), 95% quantile (95% Q.), median (Med.), mean (Mean), maximum (Max.), standard deviation (SD), skewness
(Skew.) and excess kurtosis (Kurt.)) of the annual requirements in kilogram (kg), metric ton (t), and thousand metric
tons (tmt), from 2020 to 2050 for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), dysprosium
(Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn) of the
REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transformation pathways. Hereby, we also report
the average annual world production (av. S.) of 2010 to 2019 as well as the total required amount (Total) of the considered
time period 2020 to 2050.

4.2 Commodity Markets

The objective of this thesis is the analysis and comparison of the scarcity risk of the resource
requirements of the transformation pathways of the German energy system from 2020 until
2050. In this context, we intend to analyze the commodity scarcity risk under consideration
of the long-term relation between commodity markets. Therefore, we base our risk assessment
framework as well as the time-invariant commodity market model, the GVAR model, on annual
data in the period from 1970 to 2019, excluding the time span of the COVID-19 pandemic to
ensure the observed relationships are not biased by this extreme event. Moreover, the additional
resource demands for the German Energiewende are calculated from 2020 to 2050, which is why
we analyze the commodity markets based on data until 2019 and investigate the scarcity risk of
the future additional commodity demand from 2020 until 2050.
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However, due to the large number of parameters estimated in the time-varying commodity mar-
ket model, the MS-GVAR model, implied by the time-varying component, we base this analysis
on monthly data. In contrast to the GVAR model, the Markov-switching methodology allows
the distinct analysis of volatile as well as calm periods, which is why we explicitly include the
start of the COVID-19 pandemic in our dataset for the exemplary application of this framework
on commodity markets. Therefore, our data spans from January 1995 to December 2020 in this
part, see Section 5.2.

Since the (MS-)GVAR methodology models the individual commodity markets, considering the
interactions between supply, demand and price, we consider the worldwide primary production
per commodity per metric ton, reported by U.S. Geological Survey (2020b), as our commodity-
specific supply variable, instead of a global supply proxy. Following the idea of Fernandez
(2015a), we approximate the global commodity-specific demand by the global apparent con-
sumption. Therefore, we adjust the commodity-specific U.S. apparent consumption per metric
ton,3 as provided by U.S. Geological Survey (2020a), by the ratio of reported U.S. gross domes-
tic product (U.S. GDP) and world gross domestic product (GDP),4 drawn from U.S. Bureau
of Economic Analysis (2022) and The World Bank (2022a). In case of the monthly supply and
demand data of the industrial metals for the MS-GVAR model, we use the world production and
consumption data per metric ton, provided by The World Bureau of Metal Statistics (2021). In
addition, the sources of the commodity price5 data are displayed in Table 4.4. As U.S. Geolog-
ical Survey (2013a) only provide the averaged annual prices until 2010, we extend these series
by the annual mean of daily prices, see Table 4.4 for the corresponding sources. In contrast,
we base our monthly analysis on end of month prices, provided by Thomson Reuters Eikon, see
Table 4.4. In general, all metal prices are standardized to U.S. dollar per metric ton, following
Chen (2010).

Table 4.4: Sources of the commodity prices

Source until 2010 Source from 2010 to 2020
Ag U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022l)
Al Thomson Reuters Eikon (2022d) Thomson Reuters Eikon (2022d)
Co U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022a)
Cu Thomson Reuters Eikon (2022e) Thomson Reuters Eikon (2022e)
Dy Asian Metal (2022a)
In U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022b)
Li U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022c)
Nd Asian Metal (2022b)
Ni U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022g)
Pb U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022f)
Pt U.S. Geological Survey (2013a) Thomson Reuters Eikon (2022k)
Sn Thomson Reuters Eikon (2022i) Thomson Reuters Eikon (2022i)
Zn Thomson Reuters Eikon (2022h) Thomson Reuters Eikon (2022h)

This table displays the sources of the prices for the commodities silver (Ag), alu-
minum (Al), cobalt (Co), copper (Cu), dysprosium (Dy), indium (In), lithium (Li),
neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn).
While U.S. Geological Survey (2013a) only provides prices until 2010, we extend
them with prices provided by Thomson Reuters Eikon (2022l), Thomson Reuters
Eikon (2022d), Thomson Reuters Eikon (2022a), Thomson Reuters Eikon (2022e),
Thomson Reuters Eikon (2022b), Thomson Reuters Eikon (2022c), Thomson
Reuters Eikon (2022g), Thomson Reuters Eikon (2022f), Thomson Reuters Eikon
(2022k), Thomson Reuters Eikon (2022i) and Thomson Reuters Eikon (2022h) for
2011 to 2020.

3In this thesis, we intend to analyze the long-term interdependencies between commodity markets in the period
from 1970 to 2019. For this period, only the apparent consumption data of the U.S. is available, provided by U.S.
Geological Survey (2020a). Therefore, we approximate the world metal consumption by the U.S. apparent con-
sumption, applying the ratio of reported U.S. GDP and World GDP. However, this approach may underestimate
the metal-intense rise of emerging markets in the previous 20 years, as the increased demand for commodities of
the emerging markets is hereby not reflected.

4Please refer to Section 4.3 for the descriptive statistics of the U.S. GDP and GDP.
5In particular, we consider nominal prices in this thesis, as we are interested in the probability distribution of

the actual price forecasts to derive the probability of scarcity per commodity.
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Within the risk assessment framework, the probability of scarcity, i.e. the probability that
a commodity’s price exceeds a certain threshold, is estimated. Therefore, we propose, as an
alternative to the (MS-)GVAR methodology, the application of logistic regression models, to
consider the effect of commodity-specific price determinants, identified by a two-step model
selection. Arendt et al. (2020) and Graedel et al. (2012) regard the Herfindal-Hirschman index
(HHI), see Rhoades (1993), capturing the global supply concentration of raw materials, as
scarcity indicator. Therefore, we consider this index as a further potential, commodity-specific
price determinant.6 It is defined for commodity i = 1, 2, . . . , N at time t = 1, 2, . . . , T as:

HHIi,t = 10000 ·
R∑

r=1

(
prodi,t,r∑R

r=1 prodi,t,r

)2

, (4.1)

in which prodi,t = ∑R
r=1 prodi,t,r represents the production for commodity i at time t, for all

production countries r = 1, 2, . . . , R, whereby the production data is the per country breakdown
of the commodity-specific worldwide production (supplyi), provided by U.S. Geological Survey
(2020b).

To avoid spurious regressions, we apply the augmented Dickey-Fuller (ADF) test, initially pro-
posed in Dickey and Fuller (1979), to each of the commodity-specific variables and calculate
logarithmic returns in case of non-stationary data, based on the five percent significance level.
All time series were non-stationary at first, which yields in a final dataset of stationary, logarith-
mic return variables. Moreover, we adjust the monthly variables in the time-varying MS-GVAR
framework for seasonality by demeaning.

4.2.1 Descriptive Statistics

Descriptive statistics of the commodity-specific, stationary variables as well as the results of
the test statistics of the augmented Dickey-Fuller test for stationarity, according to Dickey and
Fuller (1979), and the Shapiro-Wilk (SW) test7 for normality, according to Shapiro and Wilk
(1965), are given in Table 4.5,8 with corresponding plots displayed in Appendix C.2.3, whereby
we also report the results of the monthly data for the industrial metals in the shorter time period
of 1995 to 2020. Moreover, we subsequently standardize these logarithmic returns to have mean
of zero and standard deviation of one.9

Overall, most of the logarithmic return variables are non-normal, caused by leptokurtic or
platykurtic data as well as by skewed data. In particular, apart from some supply and de-
mand variables, the annual prices of aluminum, cobalt, copper, dysprosium, neodymium,10 lead
as well as tin are normal. In case of the industrial metals, the monthly prices of aluminum
and nickel are also normal, whereas the Shapiro-Wilk test does not confirm normality for the
remaining metal prices with data starting in 1995. These mixed findings are in line with the
literature. While Chen (2010) detects the copper and lead prices are normally distributed, the
commodity indices analyzed in the study of Zhang and Broadstock (2020) as well as most of
the considered metal prices in the studies of Aepli et al. (2017), Chen (2010), Le Pen and Sévi

6Due to data limitations, we exclude this variable from the analysis of the rare earth metals, dysprosium and
neodymium.

7We also applied the Jarque-Bera (JB) test for normality, based on the skewness as well as the kurtosis,
according to Jarque and Bera (1980), and obtain similar results.

8The descriptive statistics of the original, unadjusted variables as well as the corresponding results of the test
statistics of the augmented Dickey-Fuller test and the Shapiro-Wilk test are displayed in Table C.2.

9For notation reasons, we always refer to the variables with their original names, i.e. supply, demand and
price, also for adjusted data.

10The prices of the two rare earth metals are available in the period from 2012 to 2019. The Shapiro-Wilk test
do not reject the null hypothesis of normality for these prices, however, it is doubtful whether these prices are
normally distributed. For an accurate statement, more data for a longer time period have to be analyzed.

4.2. COMMODITY MARKETS 71



CHAPTER 4. DATA

(2017), Rossen (2015), Yin and Han (2015), Zhang and Tu (2016) and Zhu et al. (2015) show a
non-normal behavior.

Table 4.5: Descriptive statistics of the commodity-specific variables
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HHI a -0.14 -0.07 -0.02 0.00 0.00 0.02 0.06 0.20 0.05 0.53 4.54 -6.16** 0.89***
supply a -0.07 -0.05 0.00 0.03 0.02 0.04 0.08 0.10 0.04 -0.40 -0.18 -4.31** 0.97
demand a -0.31 -0.25 -0.08 0.02 0.02 0.10 0.31 0.44 0.17 0.31 -0.08 -7.40** 0.98
price a -0.67 -0.28 -0.13 -0.01 0.05 0.15 0.59 0.72 0.27 0.42 0.50 -5.32** 0.96.

A
l

HHI a -0.20 -0.12 -0.03 -0.00 0.01 0.07 0.18 0.23 0.09 0.20 0.25 -5.37** 0.97
supply a -0.12 -0.05 0.02 0.04 0.04 0.07 0.11 0.12 0.05 -0.79 1.01 -4.43** 0.95*
supply m -0.10 -0.04 -0.01 0.00 0.00 0.01 0.03 0.13 0.02 0.45 4.51 -23.96** 0.94***
demand a -0.31 -0.20 -0.04 0.02 0.02 0.11 0.22 0.27 0.12 -0.29 0.00 -5.93** 0.98
demand m -0.11 -0.06 -0.02 -0.00 -0.00 0.02 0.07 0.13 0.04 0.29 0.51 -25.88** 0.99*
price a -0.43 -0.25 -0.10 0.01 0.02 0.17 0.29 0.52 0.19 0.03 -0.28 -6.24** 0.99
price m -0.18 -0.08 -0.03 -0.00 -0.00 0.03 0.09 0.14 0.05 -0.08 0.35 -17.24** 0.99

C
o

HHI a -0.42 -0.27 -0.07 0.00 0.01 0.08 0.27 0.57 0.17 0.41 1.81 -8.07** 0.95*
supply a -0.70 -0.25 -0.01 0.05 0.02 0.11 0.22 0.28 0.16 -1.89 6.05 -6.16** 0.85***
demand a -0.50 -0.28 -0.09 0.01 0.02 0.12 0.34 0.75 0.21 0.51 1.99 -7.92** 0.96.
price a -0.78 -0.57 -0.20 0.08 0.04 0.24 0.71 1.47 0.42 0.64 1.24 -5.79** 0.96

C
u

HHI a -0.10 -0.06 -0.04 -0.00 0.01 0.04 0.17 0.23 0.07 1.32 1.50 -5.71** 0.87***
supply a -0.05 -0.02 0.00 0.02 0.02 0.05 0.08 0.10 0.03 0.28 -0.09 -4.43** 0.98
supply m -0.09 -0.04 -0.01 -0.00 0.00 0.02 0.04 0.09 0.03 0.17 0.93 -23.11** 0.99*
demand a -0.36 -0.26 -0.03 0.01 0.01 0.08 0.18 0.25 0.12 -0.96 1.81 -7.10** 0.90***
demand m -0.18 -0.07 -0.03 -0.00 -0.00 0.03 0.07 0.16 0.05 -0.02 0.83 -25.01** 0.99
price a -0.53 -0.30 -0.12 -0.01 0.03 0.15 0.44 0.60 0.23 0.27 -0.05 -6.01 ** 0.98
price m -0.43 -0.11 -0.04 0.00 -0.00 0.04 0.11 0.25 0.07 -0.68 4.59 -15.59** 0.95***

D
y11

supply a -0.29 -0.15 -0.01 0.05 0.05 0.14 0.28 0.36 0.13 -0.21 0.05 -5.75** 0.98
demand a -0.95 -0.55 -0.22 0.02 0.02 0.16 0.63 0.85 0.36 0.06 0.35 -8.79** 0.98
price a -0.49 -0.41 -0.14 0.07 0.02 0.22 0.36 0.40 0.32 -0.36 -1.54 -6.43** 0.97

In

HHI a -0.18 -0.13 -0.07 -0.02 0.02 0.04 0.26 0.59 0.15 2.12 5.23 -5.65** 0.76***
supply a -0.76 -0.18 -0.01 0.04 0.06 0.11 0.44 0.68 0.22 -0.25 3.71 -6.62** 0.89***
demand a -1.43 -0.28 -0.06 0.02 0.05 0.14 0.49 1.27 0.35 -0.41 8.10 -8.23** 0.76***
price a -0.81 -0.55 -0.25 -0.06 0.02 0.23 0.97 1.31 0.45 0.86 0.62 -5.11** 0.94**

Li

HHI a -0.25 -0.23 -0.08 0.00 0.01 0.11 0.21 0.36 0.14 0.19 -0.44 -6.54** 0.98
supply a -1.32 -0.21 -0.01 0.05 0.07 0.13 0.34 1.39 0.34 0.29 8.66 -8.49** 0.71***
demand a -0.73 -0.48 -0.06 0.00 0.01 0.09 0.38 0.67 0.25 -0.47 1.64 -6.66** 0.92***
price a -0.24 -0.13 0.00 0.03 0.04 0.07 0.18 0.42 0.10 0.63 3.56 -4.07** 0.89***

N
d supply a -0.29 -0.15 -0.01 0.05 0.05 0.14 0.28 0.36 0.13 -0.21 0.05 -5.75** 0.98

demand a -0.95 -0.55 -0.22 0.02 0.02 0.16 0.63 0.85 0.36 0.06 0.35 -8.79** 0.98
price a -0.27 -0.23 -0.09 0.00 0.02 0.09 0.33 0.40 0.22 0.46 -1.08 -3.02** 0.95

N
i

HHI a -0.24 -0.16 -0.05 -0.02 -0.01 0.04 0.15 0.32 0.10 0.75 1.68 -5.54** 0.95*
supply a -0.23 -0.15 -0.01 0.04 0.03 0.08 0.14 0.31 0.09 -0.19 1.38 -5.44** 0.96.
supply m -0.24 -0.10 -0.03 0.00 0.00 0.03 0.10 0.19 0.06 -0.33 1.46 -19.94** 0.97***
demand a -0.23 -0.20 -0.06 0.01 0.02 0.10 0.18 0.59 0.14 1.02 3.46 -6.46** 0.92***
demand m -0.25 -0.13 -0.05 0.00 0.00 0.05 0.13 0.27 0.08 0.03 0.43 -22.05** 1.00
price a -0.57 -0.38 -0.15 0.05 0.03 0.18 0.42 1.05 0.28 0.64 1.66 -6.10** 0.96.
price m -0.33 -0.14 -0.07 -0.00 -0.00 0.06 0.15 0.29 0.10 -0.06 0.33 -16.98** 0.99

P
b

HHI a -0.40 -0.08 0.00 0.04 0.03 0.06 0.16 0.27 0.11 -1.70 6.56 -5.28** 0.80***
supply a -0.10 -0.09 -0.03 0.00 0.01 0.04 0.10 0.13 0.05 0.22 -0.32 -6.23** 0.98
supply m -0.25 -0.08 -0.03 -0.00 0.00 0.02 0.08 0.32 0.06 0.74 6.55 -23.53** 0.91***
demand a -0.30 -0.10 -0.04 0.02 0.02 0.08 0.16 0.28 0.10 -0.26 0.94 -7.32** 0.98
demand m -0.19 -0.07 -0.02 -0.00 0.00 0.02 0.08 0.19 0.05 0.31 2.05 -26.35** 0.97***
price a -0.36 -0.31 -0.12 0.04 0.04 0.15 0.47 0.70 0.23 0.62 0.39 -6.08** 0.96
price m -0.31 -0.12 -0.05 -0.00 -0.00 0.05 0.14 0.22 0.08 -0.27 1.38 -17.87** 0.98***

P
t

HHI a -0.20 -0.07 -0.02 0.01 0.01 0.03 0.13 0.20 0.07 0.21 1.56 -7.91** 0.94*
supply a -0.17 -0.12 -0.01 0.03 0.02 0.05 0.17 0.20 0.08 -0.01 0.90 -7.92** 0.94*
demand a -0.91 -0.31 -0.17 0.06 0.02 0.17 0.37 0.50 0.25 -0.98 2.49 -8.46** 0.92***
price a -0.41 -0.27 -0.07 -0.01 0.04 0.19 0.44 0.53 0.21 0.47 -0.07 -5.55** 0.96.

Sn

HHI a -0.18 -0.12 -0.03 0.01 0.00 0.05 0.11 0.15 0.07 -0.36 -0.28 -5.79** 0.98
supply a -0.15 -0.10 -0.05 -0.01 0.00 0.05 0.13 0.15 0.07 0.25 -0.75 -5.52** 0.97
supply m -0.27 -0.12 -0.03 -0.00 0.00 0.04 0.11 0.26 0.07 -0.34 1.97 -22.79** 0.97***
demand a -0.48 -0.22 -0.06 0.01 0.00 0.10 0.22 0.27 0.14 -0.85 1.49 -8.05** 0.95*
demand m -0.27 -0.14 -0.04 -0.00 -0.00 0.05 0.12 0.34 0.08 -0.01 1.72 -27.41** 0.97***
price a -0.57 -0.31 -0.09 0.00 0.03 0.16 0.47 0.57 0.22 0.23 0.61 -6.38** 0.97
price m -0.24 -0.10 -0.04 -0.01 -0.00 0.03 0.11 0.21 0.06 0.05 1.06 -15.85** 0.98***

11 Due to data limitations, we exclude the HHI from the analysis of the rare earth metals, dysprosium and
neodymium.
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Descriptive statistics of the commodity-specific variables
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HHI a -0.12 -0.09 -0.00 0.02 0.03 0.06 0.14 0.20 0.07 0.09 0.24 -6.89** 0.98
supply a -0.06 -0.03 0.00 0.02 0.02 0.04 0.07 0.10 0.03 0.03 0.22 -5.38** 0.99
supply m -0.24 -0.07 -0.02 -0.00 0.00 0.02 0.07 0.17 0.04 -0.43 4.21 -20.83** 0.95***
demand a -0.31 -0.17 -0.05 0.02 0.01 0.09 0.16 0.34 0.11 -0.10 0.65 -5.94** 0.98
demand m -0.27 -0.08 -0.03 0.00 0.00 0.03 0.08 0.23 0.05 -0.28 3.35 -25.53** 0.97***
price a -0.55 -0.29 -0.12 0.03 0.04 0.19 0.40 0.86 0.26 0.77 1.62 -5.46** 0.95*
price m -0.41 -0.11 -0.05 0.00 -0.00 0.05 0.11 0.24 0.07 -0.53 2.83 -17.13** 0.97***

This table displays the descriptive statistics (minimum (Min.), 5% quantile (5% Q.), 25% quantile (25% Q.), 75% quan-
tile (75% Q.), 95% quantile (95% Q.), median (Med.), mean (Mean), maximum (Max.), standard deviation (SD), skew-
ness (Skew.) and excess kurtosis (Kurt.)) of the stationary, commodity-specific variables HHI, supply (supply), demand
(demand) and price (price) for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), dysprosium (Dy),
indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), as well as the
results of the test statistics of the augmented Dickey-Fuller (ADF) test and the Shapiro-Wilk (SW) test with corresponding
significance level (0.1% (***), 1% (**), 5% (*) and 10% (.)). Hereby, we report the descriptive statistics for the considered
time period from 1970 to 2019 for the annual (a) analysis or from 1995 to 2020 in case of the monthly (m) analysis.

The non-normality can be partly explained by the excess kurtosis. In particular, the prices of
silver, cobalt, indium, lithium, nickel, zinc as well as the monthly prices of all industrial metals
are leptokurtic, indicating fat tails, whereas the excess kurtosis of the annual prices of aluminum,
copper, and platinum is slightly negative. Deaton and Laroque (1992), Le Pen and Sévi (2017),
Rossen (2015) as well as Yin and Han (2015) confirm the leptokurtic behavior of individual
metal prices, inter alia for silver, aluminum, cobalt, copper, nickel, platinum, tin and zinc. In
addition, Dutta (2018), Gargano and Timmermann (2014) as well as Zhang and Broadstock
(2020) detect fat tails in their considered commodity price indices, indicating commodity prices
are generally leptokurtic.

Further, our results regarding the skewness are ambiguous, which is in line with the mixed
evidence in the literature. In general, the metal prices are right skewed in our annual dataset
from 1970 to 2019. However, the monthly prices of copper, lead and zinc follow a left skewed
distribution in the time period from 1995 to 2020. While the long-term analyses of Deaton and
Laroque (1992) and Rossen (2015), considering data from the beginning of the 20th century,
confirm metal prices are right skewed, inter alia for copper and tin, as well as for silver, aluminum,
cobalt, nickel, lead, platinum and zinc, the aluminum, copper and platinum prices follow a
negatively skewed distribution in the studies of Le Pen and Sévi (2017), Yin and Han (2015)
and Zhang and Tu (2016), investigating monthly data from the end of the 20th century until
2015, emphasizing the price structure changed over time, which underlines our mixed findings.

Moreover, we detect the highest standard deviation for the logarithmic returns of prices, com-
pared to the logarithmic returns of the remaining commodity-specific variables. Hereby, the
annual prices show more fluctuations than the monthly prices, similar to Pincheira-Brown and
Hardy (2019). In particular, the minor as well as rare earth metals, cobalt, dysprosium and
indium show the highest volatility, underlining the evidence of Redlinger and Eggert (2016),
who reveal the annual prices of by-products fluctuate more than prices of main products. The
few fluctuations in the commodity-specific supply and demand variables are rather intuitive,
since demand and, in particular, supply as well as the concentration of producing countries are
more inelastic variables in the short-term, even at an annual frequency.

Further, we observe a moderate positive mean and median for most of the logarithmic returns of
the commodity prices, indicating the rise in commodity prices,12 over the entire period starting
in 1970, in accordance with the studies of Chen (2010), Gargano and Timmermann (2014),
Pincheira-Brown and Hardy (2019), Yin and Han (2015) and Zhang and Tu (2016). In contrast,

12Please also refer to the level plots of the commodity prices, displayed in Figures C.2, C.3, C.4, C.5, C.6, C.7,
C.8, C.9, C.10, C.11, C.12, C.13 and C.14.
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the mean of the logarithmic returns of the monthly prices since 1995 is slightly negative.

In general, the metal prices increased rapidly in the early 2000s, caused by the growing demand
of emerging markets, especially of China, as well as the entrance of institutional investors into
commodity futures markets. Hereby, Akram (2009), Carter et al. (2011) and Gargano and
Timmermann (2014) as well as Frankel and Rose (2010), Liberda (2017) and Lombardi et al.
(2012) confirm the commodity price boom around 2008 for commodity indices as well as for
individual commodity prices, respectively. In case of copper, Buncic and Moretto (2015) observe
the price increased since 2003 with a peak not only in the year 2008 but also in 2011, followed
by gradually declining copper prices thereafter, see also Figure C.5. While the copper, lead,
platinum and tin (nickel) prices quadruple (increases sevenfold) from the beginning of 2000 to
2010, the aluminum price rose the least, according to Lombardi et al. (2012) as well as Figure C.3,
where only a moderate trend can be observed. Despite the increasing trend in the production of
commodities, the growth in demand, particularly the demand of emerging economies, outweighs
the increase in supply, resulting in increasing prices. Hereby, the remarkable trend in lithium’s
price can be explained by the increasing demand for lithium-ion batteries, especially in more
recent times. However, the slowdown in Chinese demand for commodities, combined with the
sharp oil price drop in 2014 caused declining commodity prices in the mid-2010s, see World
Bank (2015). While most of the prices decreased, supply concerns as well as continuously falling
inventories lead to an increase in aluminum’s, lead’s, and zinc’s price.

Overall, the supply and demand of each commodity increased over the considered time period. In
particular, the exceptional growth rates in indium supply and demand, see Figure C.7, originate
from the high demand for indium tin oxide, used for electrical conductive purposes in a variety
of flat-panel displays as well as in alloys and solders, compounds, electrical components and
semiconductors, see U.S. Geological Survey (2019). Moreover, the continuous expansion in
lithium supply, see Figure C.8, is in response to the increased lithium demand for battery
applications, in portable electronic devices, electric tools, electric vehicles, and grid storage
applications, see U.S. Geological Survey (2019). However, due to declining prices, the world
production of lithium slightly decreased in 2019, see U.S. Geological Survey (2020c).

While the world production volume increases in response to an increased demand for most of
the considered metals, cobalt’s supply depends on the production volume of copper and nickel,
as it is mostly mined as a by-product. Therefore, the world production of cobalt decreased in
2016, see Figure C.4, due to lower production from nickel operations, despite the high demand
for cobalt in rechargeable battery and aerospace industries, see U.S. Geological Survey (2017).
Regarding the global supply concentration, measured by the Herfindal-Hirschman index (HHI),
cobalt as well as aluminum and lead are outstanding, see Figure C.4, Figure C.3 and Figure
C.11, since around half of the global world production of cobalt is mined in Congo, whereas
aluminum and lead are mainly mined in China, see U.S. Geological Survey (2020b), indicating
an amplified market concentration and associated supply risks.

4.3 Determinants of Commodity Prices

Apart from the commodity-specific supply and demand variables, there are numerous potential
influencing factors of commodity prices, see Section 2.2. In case of the risk assessment frame-
work, we also propose a logistic regression model combined with a commodity-specific model
selection to calculate the probability of scarcity per commodity, based on the most influencing
determinants of the commodity prices. Therefore, we choose the determinants from a wide
range of possible factors, which we classify into five dimensions: Macroeconomic, demographic,
capital market driven as well as supply- and demand-sided variables. Although this thesis inves-
tigates the risk of several German energy transformation pathways, global factors are considered
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as potential price influential factors, instead of their German counterpart. Hereby, we assume
global factors would affect the commodity prices more than changes in the German economy.
As some variables are not available on a global scope for the considered time period from 1970
to 2019, the global behavior is then approximated by U.S. based data. However, this approach
may underestimate the metal-intense rise of emerging markets in the recent years, as the impact
of the emerging markets are hereby not reflected. An overview of the determinants, their data
availability and sources is presented in Table 4.6.

Table 4.6: Overview of the price determinants

Abbr. Factor Freq. Data per. Data source
U.S. IP U.S. industrial production, unadjusted,

Index 2017=100
Monthly /
Annually

1935 - 2021 Board of Governors of the Federal
Reserve System (U.S.) (2022b) and Board
of Governors of the Federal Reserve
System (U.S.) (2022c)

IP world industrial production, unadjusted,
in U.S. dollar

Monthly 1991 - 2021 The World Bank (2022d)

U.S. GDP real U.S. gross domestic product, in
billions of chained 2012 dollars, seasonally
adjusted annual rate

Annually 1947 - 2021 U.S. Bureau of Economic Analysis (2022)

GDP world gross domestic product, in current
U.S. dollar

Annually 1969 - 2021 The World Bank (2022a)

GDPc world gross domestic product per capita,
in current U.S. dollar

Annually 1960 - 2021 The World Bank (2022b)

FX U.S. dollar index Monthly /
Annually

1967 - 2021 ICE Futures U.S. (2022a) and ICE
Futures U.S. (2022b)

FFR Federal Funds Effective Rate, in %, not
seasonally adjusted

Monthly /
Annually

1955 - 2021 Board of Governors of the Federal
Reserve System (U.S.) (2022a)

SIR 3-month U.S. Treasury rate, in % per
annum

Monthly /
Annually

1965 - 2021 Organization for Economic Co-operation
and Development (OECD) (2022b) and
Organization for Economic Co-operation
and Development (OECD) (2022c)

LIR 10-year U.S. Treasury rate, in % Annually 1953 - 2021 Board of Governors of the Federal
Reserve System (U.S.) (2022d)

MB U.S. monetary base, in millions of U.S.
dollar

Monthly 1959 - 2020 Federal Reserve Bank of St. Louis (2022a)

CPI U.S. consumer price index, in %, not
seasonally adjusted

Annually 1960 - 2021 The World Bank (2022c)

EMP U.S. employment, representing the % of
working age population

Annually 1955 - 2020 Organization for Economic Co-operation
and Development (OECD) (2022a)

POP world population Annually 1960 - 2021 The World Bank (2022e)
MSCI MSCI world stock index, annual index

level, closing price in basis points
Daily 1969 - 2021 MSCI (2022)

SPX Standard & Poor’s 500 index Annually 1963 - 2020 Standard & Poor’s (2022)
OIL West Texas Intermediate spot crude oil

price, in U.S. dollar per barrel
Annually 1946 - 2021 Federal Reserve Bank of St. Louis

(2022b)
ND global natural disasters Annually 1970 - 2021 Guha-Sapir (2021)
KOF KOF globalization index Annually 1970 - 2019 Gygli et al. (2021)
HHI Herfindal-Hirschman index (mining

countries)
Annually 1970 - 2019 U.S. Geological Survey (2020b)

Supply world production of each commodity Annually 1969 - 2021 The World Bureau of Metal Statistics
(2021) and U.S. Geological Survey
(2020b)

Demand estimated world apparent consumption
per commodity, based on data of the U.S.
apparent consumption as well as the ratio
of reported U.S. GDP and World GDP

Annually 1969 - 2021 The World Bureau of Metal Statistics
(2021) and U.S. Geological Survey
(2020a)

Price price per commodity in U.S. dollar per
ton

Monthly /
Annually

1970 - 2021 see Table 4.4

This table displays the variable names of the input factors U.S. industrial production (U.S. IP), world industrial production
(IP), U.S. gross domestic product (U.S. GDP), world gross domestic product (GDP), world gross domestic product per
capita (GDPc), U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 3-month U.S. Treasury rate (SIR), 10-year
U.S. Treasury rate (LIR), U.S. monetary base (MB), U.S. consumer price index (CPI), U.S. employment (EMP), world
population (POP), MSCI world stock index (MSCI), Standard & Poor’s 500 index (SPX), West Texas Intermediate spot
crude oil price (OIL), global natural disasters (ND) and KOF globalization index (KOF), and the commodity-specific
variables, the corresponding data frequency (Freq.), data period (Data per.) as well as data source.

In general, the economic state affects the commodity markets. Therefore, we include the U.S.
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industrial production (U.S. IP),13 drawn from Board of Governors of the Federal Reserve System
(U.S.) (2022c), as well as the world gross domestic product (GDP), drawn from The World
Bank (2022a), as proxies for the economic activity, see Kagraoka (2016) and Robinson (2019).
Moreover, we add the world gross domestic product per capita (GDPc), drawn from The World
Bank (2022b), which is expected to shift the demand curve over time, see Cuddington and Zellou
(2013) and Helbling et al. (2008), and the U.S. dollar index (FX), drawn from ICE Futures U.S.
(2022b), as proxy for the exchange rate, according to Baffes and Savescu (2014). Further, we
consider as monetary policy variables the Federal Funds Effective Rate (FFR), drawn from
Board of Governors of the Federal Reserve System (U.S.) (2022a), the 3-month U.S. Treasury
rate (SIR), drawn from Organization for Economic Co-operation and Development (OECD)
(2022c) as short-term interest rates as well as the 10-year U.S. Treasury rate (LIR), drawn from
Board of Governors of the Federal Reserve System (U.S.) (2022d), as long-term interest rate, see
Siami-Namini (2021). In addition, we take into account the U.S. monetary base (MB), drawn
from Federal Reserve Bank of St. Louis (2022a), which is also interpreted as a liquidity measure,
according to Guzmán and Silva (2018), and the U.S. consumer price index (CPI), drawn from
The World Bank (2022c), to account for the inflation rate, see Akram (2009).

Furthermore, demographic factors, covering indicators of societal evolution including socio-
economic progress and population growth, also influence commodity prices. Following Apergis
et al. (2014), we take into consideration the U.S. employment (EMP), drawn from Organization
for Economic Co-operation and Development (OECD) (2022a), as well as the world popula-
tion (POP), drawn from The World Bank (2022e). Additionally, we account for spillover effects
from the stock market to commodity markets and reflect the capital market driven determinants
by the MSCI world stock index (MSCI), drawn from MSCI (2022), as well as the Standard &
Poor’s 500 index (SPX), drawn from Standard & Poor’s (2022), according to Kagraoka (2016).

In addition to the actual world production as well as the indicator of global supply concentration
(HHI), we add the West Texas Intermediate spot crude oil price (OIL), drawn from Federal
Reserve Bank of St. Louis (2022b), which is a proxy for energy costs, according to Baffes
and Savescu (2014). Moreover, we include the global natural disasters (ND), considering the
occurrence and effects of disasters, drawn from Guha-Sapir (2021), and the KOF globalization
index (KOF), measuring the economic, social and political dimensions of globalization, drawn
from Gygli et al. (2021), as further determinants of the supply side of markets.

In case of the (MS-)GVAR model, we add exogenous variables to account for the common
effects of macroeconomic factors on commodity markets. Due to data limitations, we only
consider proxies for the global demand, the exchange rate14 and the monetary policy, which
affect commodity prices, see for example Akram (2009).15 In particular, we include the world
gross domestic product (GDP) or world industrial production (IP), drawn from The World Bank
(2022a) or The World Bank (2022d) for monthly values, as proxy for economic activity,16 the
U.S. dollar index (FX), drawn from ICE Futures U.S. (2022b) or ICE Futures U.S. (2022a)
for monthly values, as proxy for the exchange rate, as well as the Federal Funds Effective
Rate (FFR), drawn from Board of Governors of the Federal Reserve System (U.S.) (2022a), as

13As data for the world industrial production (IP) is only available since 1990, we use the U.S. industrial
production (U.S. IP) as proxy for the global behavior.

14The findings in the literature indicate the exchange rate is a determinant of commodity prices, however,
several studies emphasize its predictive power, see for example Chen et al. (2010).

15The oil price, reflecting the energy costs of the production of the commodities, might also influence the prices,
however, due to data limitations we exclude this variable from the (MS-)GVAR models, as the supply side is
already represented by the commodity-specific production volume and the evidence of the impact of oil prices on
commodity markets is mixed in the literature, see Section 2.2.2.4. Actually, we exemplary included the price of oil
as further exogenous variable in the GVAR model, but this did not provide added value, therefore, we excluded
this variable for our analysis.

16As the world gross domestic product is only reported quarterly, we include the world industrial production,
in the monthly analysis of the MS-GVAR model.
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interest rate.

For a long-term analysis of the scarcity risk as well as of the commodity market structure, we
base the first part of this thesis on annual data in the period from 1970 to 2019. In case of
the time-varying MS-GVAR model, we use monthly data from 1995 to 2020, due to the large
number of parameters. In line with the commodity-specific variables, we take the respective
annual average or the end of month value in case of higher frequency determinants. Further, we
apply the augmented Dickey-Fuller test for stationarity and calculate logarithmic returns17 in
case of non-stationary variables. Moreover, we adjust the monthly variables in the time-varying
MS-GVAR framework for seasonality by demeaning.

4.3.1 Descriptive Statistics

The descriptive statistics of the price influencing variables as well as the test statistics of the
augmented Dickey-Fuller test and the Shapiro-Wilk test, based on data in the considered time
period, are given in Table 4.7,18 with corresponding plots displayed in Appendix C.3. Finally, we
standardize the data for the (MS-)GVAR model to guarantee interpretability and comparability.

Overall, several determinants are non-normal regarding the Shapiro-Wilk test, only the loga-
rithmic returns of the world gross domestic product as well as the U.S. gross domestic product,
the world gross domestic product per capita, the U.S. dollar index, the long-term interest rate
(10-year U.S. Treasury rate), the U.S. employment, and the global natural disasters show a
normal behavior. While the Federal Funds Effective Rate, the annual U.S. short-term interest
rate (3-month U.S. Treasury rate), the U.S. consumer price index, the world population, the
KOF globalization index as well as the West Texas Intermediate spot crude oil price show lots
of variation, the standard deviation of the remaining variables is comparably small. Hereby,
the price of oil fluctuates more than most of the metal prices, displayed in Section 4.2, in ac-
cordance to Fernandez (2015a) and Sari et al. (2010), as well as more than the stock market
indices MSCI world stock index and Standard & Poor’s 500 index, in accordance to Buncic and
Moretto (2015), Liberda (2017) as well as Pierdzioch et al. (2016).

Regarding the reasons for the observed non-normality, the U.S. industrial production, the
monthly world industrial production, the U.S. gross domestic product, the annual U.S. dollar
index, the (monthly) Federal Funds Effective Rate, the U.S. short- and long-term interest rate
(3-month U.S. Treasury rate, 10-year U.S. Treasury rate), the U.S. employment as well as the
two stock indices MSCI world stock index and Standard & Poor’s 500 index follow a negatively
skewed distribution, in line with Buncic and Moretto (2015), whereas the U.S. consumer price
index, the U.S. monetary base, the world population, the West Texas Intermediate spot crude
oil price, global natural disasters, and KOF globalization index are right skewed. Moreover, the
U.S. industrial production, the world industrial production, the Federal Funds Effective Rate,
the U.S. short-term interest rate (3-month U.S. Treasury rate), the U.S. monetary base, the
U.S. consumer price index, the world population, as well as the KOF globalization index are
leptokurtic, implying fat tails.

Table 4.7: Descriptive statistics of the price determinants
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U.S. IP a -0.12 -0.05 0.00 0.03 0.02 0.05 0.08 0.09 0.04 -1.05 1.86 -4.85** 0.93**
IP m -0.13 -0.03 -0.01 -0.00 -0.00 0.01 0.03 0.07 0.02 -0.61 4.87 -25.66** 0.96***
U.S. GDP a -0.03 -0.01 0.02 0.03 0.03 0.04 0.06 0.08 0.02 -0.25 0.24 -2.69** 0.98

17We have to calculate returns twice for CPI, KOF as well as POP to obtain stationary variables.
18The descriptive statistics of the original, unadjusted variables as well as the corresponding results of the test

statistics of the augmented Dickey-Fuller test and the Shapiro-Wilk test are displayed in Table C.3.
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Descriptive statistics of the price determinants

M
in

.

5%
Q

.

25
%

Q
.

M
ed

.

M
ea

n

75
%

Q
.

95
%

Q
.

M
ax

.

SD Sk
ew

.

K
ur

t.

A
D

F

SW

GDP a -0.06 -0.01 0.02 0.06 0.07 0.11 0.16 0.20 0.06 0.03 -0.69 -2.37** 0.98
GDPc a -0.07 -0.02 0.01 0.05 0.05 0.10 0.14 0.18 0.06 0.00 -0.70 -2.76** 0.98
FX a -0.24 -0.13 -0.05 -0.00 -0.00 0.05 0.11 0.17 0.08 -0.35 0.56 -4.94** 0.99
FX m -0.07 -0.04 -0.01 0.00 -0.00 0.01 0.04 0.07 0.02 0.02 0.48 -16.63** 0.99
FFR a -2.49 -0.73 -0.26 0.01 -0.02 0.22 0.78 1.09 0.55 -1.59 6.40 -4.61** 0.87***
FFR m -2.48 -0.18 -0.03 0.01 0.00 0.06 0.19 0.69 0.20 -6.68 75.99 -12.10** 0.54***
SIR a -1.67 -0.58 -0.29 -0.01 -0.02 0.20 0.62 1.04 0.45 -0.60 2.12 -3.90** 0.96.
LIR a -0.44 -0.27 -0.14 -0.02 -0.02 0.08 0.21 0.27 0.15 -0.28 -0.26 -6.51** 0.98
MB a -0.10 -0.02 0.05 0.06 0.07 0.09 0.20 0.59 0.09 3.30 16.17 -3.34** 0.66***
CPI a -5.61 -0.72 -0.25 0.00 0.10 0.25 0.91 9.63 1.64 3.04 22.48 -7.01** 0.47***
EMP a -0.03 -0.01 0.00 0.01 0.01 0.01 0.02 0.03 0.01 -0.40 0.38 -3.21** 0.98
POP a -2.94 -1.89 -0.44 -0.06 -0.01 0.32 1.80 5.72 1.34 1.57 5.72 -7.49** 0.85***
MSCI a -0.33 -0.21 0.00 0.09 0.06 0.15 0.25 0.39 0.14 -0.64 0.56 -4.86** 0.94*
SPX a -0.27 -0.19 0.00 0.09 0.07 0.16 0.23 0.29 0.13 -0.86 0.28 -4.45** 0.93**
OIL a -0.65 -0.42 -0.07 0.05 0.06 0.20 0.43 0.99 0.27 0.15 2.25 -6.34** 0.94**
ND a -0.34 -0.18 -0.09 0.03 0.03 0.13 0.29 0.48 0.17 0.34 -0.14 -8.76** 0.99
KOF19 a -15.03 -7.20 -0.82 -0.26 -0.44 0.15 4.40 16.71 4.05 0.26 7.94 -6.69** 0.69***

This table displays the descriptive statistics (minimum (Min.), 5% quantile (5% Q.), 25% quantile (25% Q.), 75% quantile
(75% Q.), 95% quantile (95% Q.), median (Med.), mean (Mean), maximum (Max.), standard deviation (SD), skewness
(Skew.) and excess kurtosis (Kurt.)) of the stationary, determinants U.S. industrial production (U.S. IP), world industrial
production (IP), U.S. gross domestic product (U.S. GDP), world gross domestic product (GDP), world gross domestic
product per capita (GDPc), U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 3-month U.S. Treasury rate (SIR),
10-year U.S. Treasury rate (LIR), U.S. monetary base (MB), U.S. consumer price index (CPI), U.S. employment (EMP),
world population (POP), MSCI world stock index (MSCI), Standard & Poor’s 500 index (SPX), West Texas Intermediate
spot crude oil price (OIL), global natural disasters (ND) and KOF globalization index (KOF), as well as the results of the
test statistics of the augmented Dickey-Fuller (ADF) test and the Shapiro-Wilk (SW) test with corresponding significance
level (0.1% (***), 1% (**), 5% (*) and 10% (.)). Hereby, we report the descriptive statistics for the considered time period
from 1970 to 2019 for the annual (a) analysis or from 1995 to 2020 in case of the monthly (m) analysis.

4.4 Dependencies between Commodity Markets

In the scarcity risk assessment of four transformation pathways of the German Energiewende,
we take into account the commodity market structure. Therefore, we propose and apply the
(MS-)GVAR framework, reflecting the impact of fundamentals on - as well as the spillover
effects between - commodity prices, while controlling for the effect of the economy on commodity
markets. In contrast to Pesaran et al. (2004), who introduce the GVAR model to link individual
economies via trade weights, representing the shares of exports and imports between countries,
we propose several weight matrices to connect the individual commodity markets to the global
model. As the simultaneous impact of the economy on commodity markets is represented via
the exogenous variables, we aim to reflect the individual relationships between the commodities.
In particular, the metals are mined or used together, so their production or consumption, and
hence their prices, are related. Moreover, the increased interest in commodities as financial
assets and the accompanying increase in index investment in commodity markets since 2004
provide another source of common patterns in prices. Therefore, the weight matrices in this
thesis include information on the co-production, co-consumption and co-trading relationships
among commodities, reflecting possible linkages in commodity markets.

19 As noted above, we calculate returns twice instead of logarithmic returns in case of the CPI to ensure
stationarity. Further, we calculate returns twice for KOF as well as three times POP to obtain stationary
variables.
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4.4.1 Overview of Possible Linkages between Commodity Markets

First of all, metals are produced together. For instance, 70% of the lead production is derived
from mixed Lead-Zinc ores, according to Nassar et al. (2015) and Shammugam et al. (2019).
Further, several metals, like cobalt as well as indium, are extracted as companion metals. In
particular, Nassar et al. (2015) state the production of by-products is unable to respond to
demand increases in the short-term, as these metals are financially dependent on other metals
for recovery. Hereby, the production volume of cobalt, which is mostly mined as a by-product
of copper and nickel, declined in 2016 caused by a reduced nickel supply, despite the high
demand for cobalt in rechargeable battery and aerospace industries, see U.S. Geological Survey
(2017). Moreover, supply constraints due to e.g. natural disasters, political instability, or trade
restrictions affect the global supply of all metals extracted in the same mining project or region.

Dependencies between metals also occur on the demand side of markets. In particular, there
are substitution, but also co-consumption links. Baffes et al. (2020) state copper demand is
highly correlated to aluminum prices, which originates from the substitutability of copper by
aluminum in certain industries, electricity for example, whereas the use statistics of aluminum
and copper show their co-consumption inter alia in AlSi9Cu3 alloys, used for various automotive
applications, see Zapp et al. (2002). Additionally, renewable energy technologies, which are the
key element of the energy transition, require different raw materials which is why the demand
for several metals will significantly increase over the next decades, according to Valero et al.
(2018).

However, the common trend in prices, observed during the last decades, can no longer be ex-
plained via their co-production and co-consumption links only, as the co-movement in commodity
prices has significantly increased since the financialization of commodities and the associated in-
crease in index investments. In general, commodity prices tend to move in a synchronized way,
as they are simultaneously influenced by macroeconomic determinants. However, Basak and
Pavlova (2016) reveal the increasing investments of index funds in commodity markets should
further elevate the co-movement. Although Hamilton and Wu (2015) find no direct effect of
futures traders positions on prices, the study of Tang and Xiong (2012) empirically detects an
increase in the co-movement of commodities, starting in the year 2004, due to the financializa-
tion, which is stronger for indexed commodities.

In our framework, we aim to account for the possible linkages between the commodity markets.
Therefore, we connect the individual commodity markets via matrices including information
on the co-production, co-consumption and co-trading relations between commodities in the
exemplary application of the (MS-)GVAR framework on the industrial metals. Moreover, we
use the dependencies inferred from the transformation paths to directly reflect the relations in
the context of the energy transition in case of the risk assessment framework.

4.4.2 Co-Production

First, we use information on the common supply concentration of the commodities.20 Hereby,
we aggregate the common production per country as a measure of co-production via:

ŵi,ι̃ =
R∑

r=1
prodr,i · prodr,ι̃ (4.2)

20Actually, we consider the common mining countries instead of actual co-production data, due to data limita-
tions, where we do not differentiate whether the metals originate from the same mine. However, potential supply
risks, geological risks as well as political risks are similar in the same region, therefore, the consideration of the
common mining countries approximates the common supply relation between commodities. However, we use the
umbrella term co-production for notation reasons.
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with ŵi,ι̃ denoting the relation between commodity i and commodity ι̃, for i, ι̃ = 1, 2, . . . , N, i ̸= ι̃
and ŵi,i = 0. Moreover, prodi,r denotes the country-specific share of annual world production
of country r = 1, 2, . . . , R for commodity i, whereby the production data is the averaged, per-
country breakdown of the commodity-specific worldwide production (supplyi), in the period
from 2010 to 2019, provided by U.S. Geological Survey (2020b). Overall, this dimension shows
a comparably strong link between aluminum, lead, tin, and zinc, while copper and nickel are
connected less, see Table 4.8.

Table 4.8: Co-production of the commodities

Al Cu Ni Pb Sn Zn
Al 0.00 0.05 0.04 0.24 0.17 0.19
Cu 0.05 0.00 0.02 0.06 0.05 0.06
Ni 0.04 0.02 0.00 0.04 0.06 0.03
Pb 0.24 0.06 0.04 0.00 0.16 0.19
Sn 0.17 0.05 0.06 0.16 0.00 0.13
Zn 0.19 0.06 0.03 0.19 0.13 0.00

This table displays the co-production, based on
the common supply concentration, of aluminum
(Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn),
and zinc (Zn).

4.4.3 Co-Consumption

Besides the co-production, we analyze the sectors in which industrial metals are co-consumed,
approximating the economy by the five industries automotive/ transportation, chemistry/ phar-
maceutics, electrics, construction and mechanical engineering, which in summary account for
up to 90% of the worldwide demand of the considered commodities. Therefore, we use the
worldwide consumption data from Brandtzæg (2018) and Leder (2020), hereby implying that
the proportion between the industries remains unchanged over the investigated time period.21

The consumption of aluminum per industry, provided by Brandtzæg (2018), is given in Table
4.9. In order to join the different usages of the commodities, we assume the consumption
of aluminum in the categories foil, packaging, consumer goods and other is negligible. The
corresponding consumption per industry, displayed in Table 4.16, is used as input data for the
calculation of the weights. We note aluminum is mainly used in the automotive sector as well
as for construction, whereas there is no consumption in the chemical industry.

The worldwide consumption per industry of copper, according to Leder (2020), is displayed in
Table 4.10. We assign these branches as shown in Table 4.15 to the five industries and obtain the
corresponding weights. As the entry trade and other can not be matched to the five considered
industries in a reasonable way, we assume their proportion is zero. Similar to aluminum, copper
is not used in the sector chemistry/ pharmaceutics, while its majority is utilized for electrics
purposes.

As displayed in Table 4.11, more than half of the worldwide amount of nickel is used for stainless
steel (automotive, construction, engineering), see Leder (2020), which we equally attribute to
the industries automotive/ transportation, construction and mechanical engineering, see Table
4.15. We further assume the consumption of nickel in the industries nickel alloys, plating, steel
refiner, foundries and other is zero to join the different usages of the commodities.

21Reliable data on the consumption per industry of the commodities is rare and only reflects a snapshot in time.
However, for the exemplary introduction of the (MS-)GVAR framework on commodity markets as well as the
data limitations, we assume the proportion between the industries remains unchanged over the investigated time
period. Within the risk assessment framework, we are able to reflect the co-consumption of the commodities via
the correlation of the annual resource requirement per possible transformation path, which reflects the relation
between the metals in the period from 2020 to 2050 in the context of the German Energiewende, see Section 4.4.4.
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Table 4.9: Aluminum consumption

Industry %
Automotive/ transportation 0.26
Construction industry 0.24
Mechanical and plant engineering 0.11
Electrical engineering 0.11
Foil 0.08
Packaging 0.08
Consumer goods 0.06
Other 0.06

This table displays the proportion of alu-
minum (Al) consumption per industry.

Table 4.10: Copper consumption

Industry %
Cables and electrics 0.57
Construction industry 0.15
Automotive 0.09
Mechanical engineering 0.08
Trade 0.05
Other 0.06

This table displays the proportion of copper
(Cu) consumption per industry.

Table 4.11: Nickel consumption

Industry %
Stainless steel (automotive,
construction, mechanical
engineering)

0.57

Electrical engineering 0.03
Nickel alloys 0.13
Plating 0.11
Steel refiner 0.09
Foundries 0.06
Other 0.01

This table displays the proportion of nickel
(Ni) consumption per industry.

Table 4.12: Lead consumption

Industry %
Electrical engineering (lead-acid
batteries)

0.74

Construction (roof, facade) 0.06
Plant construction (radiation
protection, anodes)

0.06

Chemistry (pigments) 0.05
Other (alloys, cable sheath, glass) 0.09

This table displays the proportion of lead
(Pb) consumption per industry.

Table 4.13: Tin consumption

Industry %
Electronics industry (solder) 0.52
Chemical industry 0.15
Brass bronze 0.06
Float glass 0.02
Packaging (tinplate) 0.16
Other 0.09

This table displays the proportion of tin (Sn)
consumption per industry.

Table 4.14: Zinc consumption

Industry %
Automotive engineering
(galvanizing)

0.50

Construction (zinc, brass
products)

0.23

Chemistry / pharmaceutics 0.06
Other (zinc casting alloys) 0.21

This table displays the proportion of zinc
(Zn) consumption per industry.

Table 4.15: Commodity - industry mapping

Automotive /
transportation

Chemistry/
pharmaceutics

Electrics Construction Mechanical
engineering

Al automotive /
transportation

- electrical
engineering

building industry mechanical and
plant engineering

Cu automotive - cables and electrics building industry mechanical
engineering

Ni stainless steel
(automotive,
construction,
mechanical
engineering)

- electrical
engineering

stainless steel
(automotive,
construction,
mechanical
engineering)

stainless steel
(automotive,
construction,
mechanical
engineering)

Pb - chemistry electrical
engineering & other

construction plant construction

Sn - chemical industry electronics industry
(solder)

- -

Zn automotive
engineering

chemistry /
pharmaceutics

- construction

This table displays the mapping of the industry data for aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn) to the five industry sectors automotive/ transportation, chemistry/ pharmaceutics, electrics, construction and
mechanical engineering.

Table 4.12 displays the consumption of lead per industry, according to Leder (2020). We are able
to assign all of the consuming branches to the five industries considered, as displayed in Table
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4.15. The majority of lead is used in the electrics sector,22 as well as in construction, mechanical
engineering and chemistry/ pharmaceutics, but none in the automotive/ transportation industry.

In Table 4.13, we display the demand of tin per industry, where we neglect the consumption
for brass bronze, float glass, packaging (tinplate) as well as other, since there is no direct
assignment to the five considered industries. Hereby, the main use of tin is in electrics, followed
by the chemistry/ pharmaceutics sector.

Finally, we consider the consumption of zinc by the industries, displayed in Table 4.14. Since
the information about other (zinc casting alloys) is rather unspecific, we neglect it for further
calculations. The assigned branches are displayed in Table 4.15. Hereby, zinc is mainly used
in the automotive/ transportation sector, whereas there is no significant application in electrics
and mechanical engineering, according to Leder (2020). However, there is little consumption in
the industries chemistry/ pharmaceutics and construction.

Table 4.16: Consumption of the commodities

Industry Al Cu Ni Pb Sn Zn
Automotive/ transportation 0.36 0.10 0.32 0.00 0.00 0.63
Chemistry/ pharmaceutics 0.00 0.00 0.00 0.05 0.22 0.08
Electrics 0.15 0.64 0.05 0.83 0.78 0.00
Construction 0.33 0.17 0.32 0.06 0.00 0.29
Mechanical engineering 0.15 0.09 0.32 0.06 0.00 0.00

This table displays the aggregated consumption of aluminum (Al), cop-
per (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) in the industry
sectors automotive/ transportation, chemistry/ pharmaceutics, electrics,
construction and mechanical engineering.

Table 4.16 displays the proportion of consumption per commodity and industry. We aggregate
these industry-specific values to a demand-sided information matrix, see Table 4.17, via the
following formula:

ŵi,ι̃ =
∑

h

indh,i · indh,ι̃, (4.3)

where ŵi,ι̃ denotes the estimated weight between commodity i and commodity ι̃, for i, ι̃ =
1, 2, . . . , N, i ̸= ι̃ and ŵi,i = 0. Further, indh,i denotes the proportion of consumption of com-
modity i in industry h ∈ {automotive/ transportation, chemistry/ pharmaceutics, electrics,
construction, mechanical engineering}. Overall, the weights indicate a strong link between cop-
per, lead and tin due to their consumption in the electrics sector.

Table 4.17: Demand-sided information matrix

Al Cu Ni Pb Sn Zn
Al 0.00 0.20 0.27 0.15 0.12 0.33
Cu 0.20 0.00 0.15 0.55 0.50 0.11
Ni 0.28 0.15 0.00 0.08 0.04 0.29
Pb 0.16 0.55 0.08 0.00 0.66 0.02
Sn 0.12 0.50 0.04 0.66 0.00 0.02
Zn 0.33 0.11 0.29 0.02 0.02 0.00

This table displays the demand-sided informa-
tion matrix, based on the common proportion the
commodities aluminum (Al), copper (Cu), nickel
(Ni), lead (Pb), tin (Sn), and zinc (Zn), belong-
ing to the considered industry sectors automo-
tive/ transportation, chemistry/ pharmaceutics,
electrics, construction and mechanical engineer-
ing, according to Equation 4.3.

22Actually, lead is used in the electrics sector to construct inter alia lead acid batteries, which are used for the
automotive industry. Due to data limitations, we decided to assign the entire consumption of lead in the topic
electrical engineering to the initial electrics sector and do not distinguish whether the products are processed
further.
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4.4.4 Co-Consumption in the context of the German Energiewende

Within our risk assessment framework, we compare the scarcity risk of the resource demands
of several transformation pathways of the German energy system from 2020 to 2050 for the key
resources silver (Ag), cobalt (Co), copper (Cu), dysprosium (Dy), indium (In), lithium (Li),
neodymium (Nd), nickel (Ni), and platinum (Pt) as well as the remaining industrial metals
aluminum (Al), lead (Pb), tin (Sn), and zinc (Zn).23 As the clean energy market affects the
connectedness of metal markets, according to Song et al. (2022), the co-consumption of the
commodities in the context of the energy transition can directly be reflected via the correlation
of the annual resource requirements per transformation path.24

Focusing on the REMod − REF path, the commodities are highly correlated, except silver,
which even has a negative relation to indium, see Table 4.18. While the dependence with copper
is highest for most of the commodities, indium and zinc are only moderately related to the other
metals. Moreover, cobalt and lithium are almost perfectly correlated, which can be explained
by their common usage in storage technologies, like (lithium-ion) batteries.

In general, the relationship between the metals is comparable between the pathways. In case of
the REMod − SUF as well as REMod − UNA paths, displayed in Table 4.19 and Table 4.21
respectively, silver is more connected, while the dependencies of the metals to lead and platinum
are smaller. In addition, the link between indium and the remaining commodities is highest in
the REMod − PER path, see Table 4.20.

Table 4.18: Demand-sided information matrix based on the REMod − REF path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 1.00 0.60 0.37 0.38 -0.06 0.36 0.28 0.25 0.16 0.28 0.66
Al 0.60 1.00 0.95 0.91 0.58 0.94 0.92 0.79 0.77 0.84 0.83
Co 0.37 0.95 1.00 0.96 0.74 1.00 0.99 0.88 0.89 0.92 0.77
Cu 0.38 0.91 0.96 1.00 0.82 0.97 0.97 0.94 0.94 0.98 0.79
In -0.06 0.58 0.74 0.82 1.00 0.74 0.80 0.85 0.86 0.87 0.49
Li 0.36 0.94 1.00 0.97 0.74 1.00 0.99 0.89 0.90 0.93 0.76
Ni 0.28 0.92 0.99 0.97 0.80 0.99 1.00 0.90 0.92 0.94 0.74
Pb 0.25 0.79 0.88 0.94 0.85 0.89 0.90 1.00 0.93 0.95 0.67
Pt 0.16 0.77 0.89 0.94 0.86 0.90 0.92 0.93 1.00 0.98 0.67
Sn 0.28 0.84 0.92 0.98 0.87 0.93 0.94 0.95 0.98 1.00 0.73
Zn 0.66 0.83 0.77 0.79 0.49 0.76 0.74 0.67 0.67 0.73 1.00

This table displays the demand-sided information matrix in the context of the German Energiewende
based on the correlation of the annual resource demands of the REMod − REF path for the com-
modities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn).

Table 4.19: Demand-sided information matrix based on the REMod − SUF path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 1.00 0.71 0.68 0.48 0.20 0.69 0.59 0.20 0.33 0.36 0.54
Al 0.71 1.00 0.99 0.88 0.56 0.99 0.97 0.40 0.54 0.59 0.82
Co 0.68 0.99 1.00 0.92 0.63 1.00 0.99 0.48 0.62 0.65 0.86
Cu 0.48 0.88 0.92 1.00 0.85 0.93 0.96 0.71 0.82 0.84 0.93
In 0.20 0.56 0.63 0.85 1.00 0.65 0.73 0.88 0.91 0.93 0.84
Li 0.69 0.99 1.00 0.93 0.65 1.00 0.99 0.52 0.65 0.69 0.88

23In case of dysprosium and neodymium, we approximate their supply and demand data by the relative supply
and demand of rare earths metals provided by U.S. Geological Survey (2020b) and U.S. Geological Survey (2020a),
which is why we have to exclude these two metals for the risk assessment via the (MS-)GVAR framework to avoid
multicollinearity.

24In contrast to the observed data of co-production and (approximated) co-consumption, the co-consumption
information matrix in the context of the German Energiewende is based on estimated correlations of the future
resource requirements. While the basic idea of Pesaran et al. (2004) is to reduce the number of parameters
using the observed trade weights to link the individual country-specific models, Gross (2013) propose a procedure
to estimate the weights jointly with the GVAR’s parameters. In this line, the estimated correlations of the
co-consumption matrix for the German Energiewende will also lead to a feasible weight matrix.
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Demand-sided information matrix based on the REMod − SUF path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ni 0.59 0.97 0.99 0.96 0.73 0.99 1.00 0.57 0.70 0.73 0.90
Pb 0.20 0.40 0.48 0.71 0.88 0.52 0.57 1.00 0.95 0.95 0.70
Pt 0.33 0.54 0.62 0.82 0.91 0.65 0.70 0.95 1.00 0.99 0.83
Sn 0.36 0.59 0.65 0.84 0.93 0.69 0.73 0.95 0.99 1.00 0.86
Zn 0.54 0.82 0.86 0.93 0.84 0.88 0.90 0.70 0.83 0.86 1.00

This table displays the demand-sided information matrix in the context of the German Energiewende
based on the correlation of the annual resource demands of the REMod − SUF path for the com-
modities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn).

Table 4.20: Demand-sided information matrix based on the REMod − P ER path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 1.00 0.68 0.28 0.23 0.07 0.26 0.24 0.35 0.21 0.34 0.28
Al 0.68 1.00 0.86 0.83 0.68 0.84 0.85 0.81 0.54 0.84 0.80
Co 0.28 0.86 1.00 0.99 0.91 1.00 0.99 0.89 0.64 0.94 0.87
Cu 0.23 0.83 0.99 1.00 0.95 0.98 0.98 0.91 0.63 0.96 0.92
In 0.07 0.68 0.91 0.95 1.00 0.92 0.91 0.85 0.61 0.91 0.86
Li 0.26 0.84 1.00 0.98 0.92 1.00 0.98 0.89 0.65 0.94 0.87
Ni 0.24 0.85 0.99 0.98 0.91 0.98 1.00 0.85 0.66 0.93 0.89
Pb 0.35 0.81 0.89 0.91 0.85 0.89 0.85 1.00 0.60 0.93 0.89
Pt 0.21 0.54 0.64 0.63 0.61 0.65 0.66 0.60 1.00 0.70 0.60
Sn 0.34 0.84 0.94 0.96 0.91 0.94 0.93 0.93 0.70 1.00 0.95
Zn 0.28 0.80 0.87 0.92 0.86 0.87 0.89 0.89 0.60 0.95 1.00

This table displays the demand-sided information matrix in the context of the German Energiewende
based on the correlation of the annual resource demands of the REMod − P ER path for the com-
modities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn).

Table 4.21: Demand-sided information matrix based on the REMod − UNA path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 1.00 0.84 0.56 0.55 0.11 0.54 0.45 0.20 0.10 0.49 0.67
Al 0.84 1.00 0.88 0.86 0.51 0.85 0.81 0.37 0.41 0.78 0.86
Co 0.56 0.88 1.00 0.96 0.79 1.00 0.99 0.57 0.62 0.94 0.85
Cu 0.55 0.86 0.96 1.00 0.84 0.96 0.96 0.55 0.61 0.96 0.88
In 0.11 0.51 0.79 0.84 1.00 0.79 0.86 0.49 0.70 0.86 0.65
Li 0.54 0.85 1.00 0.96 0.79 1.00 0.99 0.59 0.63 0.95 0.84
Ni 0.45 0.81 0.99 0.96 0.86 0.99 1.00 0.58 0.65 0.95 0.83
Pb 0.20 0.37 0.57 0.55 0.49 0.59 0.58 1.00 0.37 0.56 0.32
Pt 0.10 0.41 0.62 0.61 0.70 0.63 0.65 0.37 1.00 0.69 0.46
Sn 0.49 0.78 0.94 0.96 0.86 0.95 0.95 0.56 0.69 1.00 0.84
Zn 0.67 0.86 0.85 0.88 0.65 0.84 0.83 0.32 0.46 0.84 1.00

This table displays the demand-sided information matrix in the context of the German Energiewende
based on the correlation of the annual resource demands of the REMod − UNA path for the com-
modities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn).

4.4.5 Co-Trading

Finally, we represent the co-trading of investors in commodity markets by calculating the Pearson
correlation coefficient between the daily total volume of traded contracts from the London Metal
Exchange (LME), provided by Thomson Reuters Eikon (2022j), in the period from 2010 to 2019,
see Table 4.22.25 Hereby, nickel, lead and zinc are strongly connected, whereby aluminum has a
negative correlation with nickel, and zinc.

25In contrast to the observed data of co-production and (approximated) co-consumption, the co-trading infor-
mation matrix is based on estimated correlations. In line with the co-consumption information matrices in the
context of the German Energiewende as well as Gross (2013), the estimated correlations of the trading volume
matrix will also lead to a feasible weight matrix.
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Table 4.22: Correlation matrix of Futures trading volumes

Al Cu Ni Pb Sn Zn
Al 1.00 0.05 -0.15 0.04 0.15 -0.01
Cu 0.05 1.00 0.35 0.37 0.20 0.42
Ni -0.15 0.35 1.00 0.35 -0.08 0.57
Pb 0.04 0.37 0.35 1.00 0.28 0.66
Sn 0.15 0.20 -0.08 0.28 1.00 0.14
Zn -0.01 0.42 0.57 0.66 0.14 1.00

This table displays the Pearson correlation matrix between
the daily total volume of traded contracts of the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn) from the London Metal Exchange
(LME), calculated over the period from 2010 to 2019.

4.4.6 Final Weight Matrices

To convert the presented information matrices into weight matrices, connecting the individual
commodity markets within the GVAR framework, we scale the values to row sums of one. The
resulting weight matrices for the dimensions supply (S), demand (D) and trading (T) for the
industrial metals are displayed in Table 4.23, Table 4.24, and Table 4.25.26 As co-production,
co-consumption and co-trading occur simultaneously in practice, we estimate a fourth, common
weight matrix (C), which aggregates all three dimensions, see Table 4.26. Hereby, we construct
the common weight matrix by equally weighting the previously calculated, individual weight
matrices.

Table 4.23: Supply weight matrix (S)

Al Cu Ni Pb Sn Zn
Al 0.00 0.08 0.06 0.34 0.25 0.27
Cu 0.21 0.00 0.10 0.26 0.19 0.24
Ni 0.19 0.12 0.00 0.21 0.32 0.16
Pb 0.34 0.09 0.06 0.00 0.23 0.28
Sn 0.30 0.08 0.11 0.28 0.00 0.23
Zn 0.32 0.10 0.05 0.32 0.22 0.00

This table displays the supply-sided weight matrix
of the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Table 4.24: Demand weight matrix (D)

Al Cu Ni Pb Sn Zn
Al 0.00 0.19 0.26 0.14 0.11 0.30
Cu 0.14 0.00 0.10 0.36 0.33 0.08
Ni 0.33 0.18 0.00 0.10 0.05 0.35
Pb 0.11 0.37 0.05 0.00 0.45 0.01
Sn 0.09 0.37 0.03 0.49 0.00 0.01
Zn 0.42 0.15 0.38 0.03 0.03 0.00

This table displays the demand-sided weight ma-
trix of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc
(Zn).

Table 4.25: Trading weight matrix (T)

Al Cu Ni Pb Sn Zn
Al 0.00 0.12 0.37 0.11 0.39 0.02
Cu 0.03 0.00 0.25 0.27 0.15 0.30
Ni 0.10 0.23 0.00 0.23 0.05 0.38
Pb 0.03 0.22 0.21 0.00 0.16 0.39
Sn 0.18 0.23 0.10 0.32 0.00 0.17
Zn 0.00 0.23 0.32 0.37 0.08 0.00

This table displays the trading weight matrix of
the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Table 4.26: Common weight matrix (C)

Al Cu Ni Pb Sn Zn
Al 0.00 0.13 0.23 0.20 0.25 0.20
Cu 0.13 0.00 0.15 0.30 0.22 0.20
Ni 0.21 0.18 0.00 0.18 0.14 0.30
Pb 0.16 0.23 0.11 0.00 0.28 0.23
Sn 0.19 0.23 0.08 0.36 0.00 0.14
Zn 0.25 0.16 0.25 0.24 0.11 0.00

This table displays the common weight matrix
of the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Overall, aluminum, lead, and zinc show the strongest interdependencies on the supply side,27

whereas aluminum, nickel, and zinc as well as copper, lead, and tin are highly connected on the
demand side. Moreover, nickel and lead depend mostly on zinc in case of the trading weight

26Table 4.23, Table 4.24, Table 4.25, and Table 4.26 show rounded values, whereas further calculations in the
model use the true values without rounding.

27While the dependency between lead and zinc originates from their co-production of lead-zinc ores, the strong
relation to aluminum is mainly caused by their common production countries, particularly China, see Table C.1
for the largest mining countries per commodity.
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matrix. In contrast, the weights of the common matrix are more balanced, as the individual
effects compensate each other to a certain extent.

The weight matrices in the context of the risk assessment framework for the German En-
ergiewende, connecting the commodities via their common resource requirements for the four
different transformation pathways, are displayed in Table 4.27, Table 4.28, Table 4.29, and Ta-
ble 4.30. Due to data limitations, the MS-GVAR model is based on the six industrial metals
aluminum, copper, nickel, lead, tin and zinc. Hereby, the corresponding weight matrices for the
German Energiewende, connecting the commodities via their common resource requirements for
the four different transformation pathways, are displayed in Table 4.31, Table 4.32, Table 4.33,
and Table 4.34.

Table 4.27: Demand-sided weight matrix based on the REMod − REF path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 0.00 0.18 0.11 0.11 0.02 0.11 0.08 0.07 0.05 0.08 0.19
Al 0.07 0.00 0.12 0.11 0.07 0.12 0.11 0.10 0.10 0.10 0.10
Co 0.04 0.11 0.00 0.11 0.09 0.12 0.12 0.10 0.10 0.11 0.09
Cu 0.04 0.11 0.11 0.00 0.09 0.11 0.11 0.11 0.11 0.11 0.09
In 0.01 0.09 0.11 0.12 0.00 0.11 0.12 0.12 0.13 0.13 0.07
Li 0.04 0.11 0.12 0.11 0.09 0.00 0.12 0.10 0.11 0.11 0.09
Ni 0.03 0.11 0.12 0.11 0.10 0.12 0.00 0.11 0.11 0.11 0.09
Pb 0.03 0.10 0.11 0.12 0.11 0.11 0.11 0.00 0.12 0.12 0.08
Pt 0.02 0.10 0.11 0.12 0.11 0.11 0.11 0.12 0.00 0.12 0.08
Sn 0.03 0.10 0.11 0.12 0.10 0.11 0.11 0.11 0.12 0.00 0.09
Zn 0.09 0.12 0.11 0.11 0.07 0.11 0.10 0.09 0.09 0.10 0.00

This table displays the demand-sided weight matrix in the context of the German Energiewende based
on the annual resource demands of the REMod − REF path for the commodities silver (Ag), aluminum
(Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn).

Overall, the weights for the German Energiewende almost equal, whereas the correlation between
the metals differ. However, the scaling of the correlations with the corresponding row sums
leads to the balanced weight matrices. Hereby, the matrices regarding the four transformation
pathways barely differ, due to the similar initial correlation matrices.

Table 4.28: Demand-sided weight matrix based on the REMod − SUF path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 0.00 0.15 0.14 0.10 0.04 0.14 0.12 0.04 0.07 0.08 0.11
Al 0.09 0.00 0.13 0.12 0.08 0.13 0.13 0.05 0.07 0.08 0.11
Co 0.09 0.13 0.00 0.12 0.08 0.13 0.13 0.06 0.08 0.08 0.11
Cu 0.06 0.11 0.11 0.00 0.10 0.11 0.12 0.09 0.10 0.10 0.11
In 0.03 0.08 0.09 0.12 0.00 0.09 0.10 0.12 0.13 0.13 0.12
Li 0.09 0.12 0.13 0.12 0.08 0.00 0.12 0.06 0.08 0.09 0.11
Ni 0.07 0.12 0.12 0.12 0.09 0.12 0.00 0.07 0.09 0.09 0.11
Pb 0.03 0.06 0.08 0.11 0.14 0.08 0.09 0.00 0.15 0.15 0.11
Pt 0.04 0.07 0.08 0.11 0.12 0.09 0.09 0.13 0.00 0.14 0.11
Sn 0.05 0.08 0.09 0.11 0.12 0.09 0.10 0.13 0.13 0.00 0.11
Zn 0.07 0.10 0.11 0.11 0.10 0.11 0.11 0.09 0.10 0.11 0.00

This table displays the demand-sided weight matrix in the context of the German Energiewende based
on the annual resource demands of the REMod − SUF path for the commodities silver (Ag), aluminum
(Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn).

Table 4.29: Demand-sided weight matrix based on the REMod − P ER path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 0.00 0.23 0.09 0.08 0.02 0.09 0.08 0.12 0.07 0.11 0.10
Al 0.09 0.00 0.11 0.11 0.09 0.11 0.11 0.10 0.07 0.11 0.10
Co 0.03 0.10 0.00 0.12 0.11 0.12 0.12 0.11 0.08 0.11 0.10
Cu 0.03 0.10 0.12 0.00 0.11 0.12 0.12 0.11 0.07 0.11 0.11
In 0.01 0.09 0.12 0.12 0.00 0.12 0.12 0.11 0.08 0.12 0.11
Li 0.03 0.10 0.12 0.12 0.11 0.00 0.12 0.11 0.08 0.11 0.10
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Demand-sided weight matrix based on the REMod − P ER path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ni 0.03 0.10 0.12 0.12 0.11 0.12 0.00 0.10 0.08 0.11 0.11
Pb 0.04 0.10 0.11 0.11 0.11 0.11 0.11 0.00 0.08 0.12 0.11
Pt 0.04 0.09 0.11 0.11 0.10 0.11 0.11 0.10 0.00 0.12 0.10
Sn 0.04 0.10 0.11 0.11 0.11 0.11 0.11 0.11 0.08 0.00 0.11
Zn 0.04 0.10 0.11 0.12 0.11 0.11 0.11 0.11 0.08 0.12 0.00

This table displays the demand-sided weight matrix in the context of the German Energiewende based
on the annual resource demands of the REMod − P ER path for the commodities silver (Ag), aluminum
(Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn).

Table 4.30: Demand-sided weight matrix based on the REMod − UNA path

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Ag 0.00 0.19 0.12 0.12 0.02 0.12 0.10 0.04 0.02 0.11 0.15
Al 0.12 0.00 0.12 0.12 0.07 0.12 0.11 0.05 0.06 0.11 0.12
Co 0.07 0.11 0.00 0.12 0.10 0.12 0.12 0.07 0.08 0.12 0.10
Cu 0.07 0.11 0.12 0.00 0.10 0.12 0.12 0.07 0.07 0.12 0.11
In 0.02 0.08 0.12 0.13 0.00 0.12 0.13 0.07 0.11 0.13 0.10
Li 0.07 0.11 0.12 0.12 0.10 0.00 0.12 0.07 0.08 0.12 0.10
Ni 0.06 0.10 0.12 0.12 0.11 0.12 0.00 0.07 0.08 0.12 0.10
Pb 0.04 0.08 0.12 0.12 0.11 0.13 0.13 0.00 0.08 0.12 0.07
Pt 0.02 0.08 0.12 0.12 0.13 0.12 0.12 0.07 0.00 0.13 0.09
Sn 0.06 0.10 0.12 0.12 0.11 0.12 0.12 0.07 0.09 0.00 0.10
Zn 0.09 0.12 0.12 0.12 0.09 0.12 0.11 0.04 0.06 0.12 0.00

This table displays the demand-sided weight matrix in the context of the German Energiewende based
on the annual resource demands of the REMod − UNA path for the commodities silver (Ag), aluminum
(Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn).

Table 4.31: Demand-sided weight matrix based on the
REMod − REF path for the industrial metals

Al Cu Ni Pb Sn Zn
Al 0.00 0.21 0.21 0.18 0.20 0.19
Cu 0.20 0.00 0.21 0.21 0.21 0.17
Ni 0.20 0.22 0.00 0.20 0.21 0.17
Pb 0.19 0.22 0.21 0.00 0.22 0.16
Sn 0.19 0.22 0.21 0.21 0.00 0.17
Zn 0.22 0.21 0.20 0.18 0.19 0.00

This table displays the demand-sided weight ma-
trix in the context of the German Energiewende
based on the annual resource demands of the
REMod − REF path for the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn).

Table 4.32: Demand-sided weight matrix based on the
REMod − SUF path for the industrial metals

Al Cu Ni Pb Sn Zn
Al 0.00 0.24 0.26 0.11 0.16 0.22
Cu 0.20 0.00 0.22 0.16 0.19 0.22
Ni 0.23 0.23 0.00 0.14 0.18 0.22
Pb 0.12 0.21 0.17 0.00 0.29 0.21
Sn 0.15 0.21 0.18 0.24 0.00 0.22
Zn 0.19 0.22 0.21 0.17 0.20 0.00

This table displays the demand-sided weight ma-
trix in the context of the German Energiewende
based on the annual resource demands of the
REMod − SUF path for the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn).

Table 4.33: Demand-sided weight matrix based on the
REMod − P ER path for the industrial metals

Al Cu Ni Pb Sn Zn
Al 0.00 0.20 0.21 0.20 0.20 0.19
Cu 0.18 0.00 0.21 0.20 0.21 0.20
Ni 0.19 0.22 0.00 0.19 0.21 0.20
Pb 0.18 0.21 0.19 0.00 0.21 0.20
Sn 0.18 0.21 0.20 0.20 0.00 0.21
Zn 0.18 0.21 0.20 0.20 0.21 0.00

This table displays the demand-sided weight ma-
trix in the context of the German Energiewende
based on the annual resource demands of the
REMod − P ER path for the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn).

Table 4.34: Demand-sided weight matrix based on the
REMod − UNA path for the industrial metals

Al Cu Ni Pb Sn Zn
Al 0.00 0.23 0.22 0.10 0.21 0.23
Cu 0.20 0.00 0.23 0.13 0.23 0.21
Ni 0.20 0.23 0.00 0.14 0.23 0.20
Pb 0.16 0.23 0.24 0.00 0.23 0.13
Sn 0.19 0.24 0.23 0.14 0.00 0.21
Zn 0.23 0.24 0.22 0.09 0.23 0.00

This table displays the demand-sided weight ma-
trix in the context of the German Energiewende
based on the annual resource demands of the
REMod − UNA path for the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn).

4.4. DEPENDENCIES BETWEEN COMMODITY MARKETS 87



5 Empirical Results

This thesis aims to compare the scarcity risk of the annual material requirements of four poten-
tial transformation pathways of the German energy system. Therefore, we apply the proposed
framework in Section 3, which assesses the scarcity risk of resource-demanding projects under
the consideration of the substitutability of commodities, the future resource amounts required
by the project, as well as the historical information available, in the context of the German
Energiewende. By interpreting the price of a commodity as scarcity indicator, we are able to
quantify the resource scarcity risk of each transformation path, while taking into account the
entire commodity market behavior. Thus, a comprehensive understanding of commodity mar-
kets is essential, which is why we base our framework on the (Markov-switching) global vector
autoregression ((MS-)GVAR) model to reflect commodity markets holistically, especially, the
interdependencies between supply, demand and price, as well as the co-movement between com-
modity prices. Hereby, we exemplary introduce the (MS-)GVAR model on the industrial metal
markets. First, we investigate the dynamic properties of the GVAR model under several weight
matrices, reflecting the co-production, co-consumption and co-trading relationship between com-
modities, see Section 5.1. Second, we disentangle the differences in the spillover effects between
the industrial metal markets at different points in time within the MS-GVAR model, explicitly
allowing for time-varying relations in commodity markets, see Section 5.2. Finally, we apply
the (MS-)GVAR model in the context of the German Energiewende to compare the resource
requirements of four transformation pathways with regard to their scarcity risk, see Section 5.3
and conclude the empirical part of this study with a brief discussion in Section 5.4.

5.1 A Joint Model for Industrial Metal Markets1

In this section, we exemplary model the industrial metal markets jointly, using the global vector
autoregression (GVAR) model to analyze the interrelations within and between the commodities.
In contrast to Pesaran et al. (2004), who use the GVAR model to link individual economies via
trade weights, we propose to link the commodity markets via information on co-production, co-
consumption and co-trading relationships among commodities. Therefore, we apply the GVAR
model several times using the different weight matrices supply (S), demand (D), trading (T) and
common (C), see Section 4.4. To analyze the spillover effects in the metal markets, we calculate
generalized impulse response functions (GIRFs) recursively, according to Equation 3.13, with
68% confidence bounds, in line with Anzuini et al. (2013) and Hammoudeh et al. (2015) among
others, obtained by a sieve bootstrap procedure2 and the recent observations as input variables,
as proposed in Dées, di Mauro, Pesaran, and Smith (2007). This methodology investigates
direct as well as indirect effects on the attributes to an innovation of one standard deviation in

1Parts of this section are included in the paper "Three Co’s to Jointly Model Commodity Markets: Co-
Production, Co-Consumption and Co-Trading", accepted for publication in Empirical Economics, 2023, co-
authored by Patric Papenfuß, and Andreas Rathgeber.

2In particular, we draw Nboot = 1000 times Tboot = 40 residuals with replacement to generate the bootstrap
sample.
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a certain variable. Thereby, we analyze the impact of supply and demand on commodity prices,
spillover effects between the commodity markets as well as the effects of shocks to the global
economy on commodity markets. Hereby, we first estimate individual, commodity-specific VAR
models and investigate the impact of the fundamentals on the price via GIRFs. Subsequently,
we analyze the spillover effects between the commodity markets of the GVAR models, based on
the different weight matrices. Finally, we underline our findings through a generalized forecast
error variance decomposition (GFEVD) analysis, as well as a correlation analysis.

5.1.1 Individual Commodity Market Models

First, we examine the spillover effects within the individual industrial metal markets, by analyz-
ing the generalized impulse response functions of the commodity-specific VAR models. There-
fore, we estimate each industrial metal market separately, with the commodity-specific variables
supply, demand, and price, via individual VAR models with one lag and without intercept,
according to Equation 3.1, based on annual data from 1970 to 2019.3 Since various studies
emphasize the common effects of the economy on commodity markets, especially the impact of
economic activity, exchange rates, and monetary policy, see Section 2.2, we include the exoge-
nous variables world gross domestic product (GDP), U.S. dollar index (FX), and Federal Funds
Effective Rate (FFR) with one lag to account for macroeconomic factors.

The results of the Durbin-Watson (DW) test, the multivariate ARCH Lagrange multiplier
(ARCH-LM) test and the OLS-cumulative sums of standardized residuals (OLS-CUSUM) test
to each commodity-specific VAR model indicate neither model suffers from autocorrelation, het-
eroscedasticity nor structural breaks at the 5% significance level, except the aluminum market,
which exhibits heteroscedasticity, see Table D.1. The Henze-Zirkler (HZ) test for normality
shows the VAR models of aluminum, copper, nickel, lead, and tin have multivariate normal
distributed residuals, whereas the Henze-Zirkler test rejects the null hypothesis of multivariate
normality for the zinc market at the 5% level. While the multivariate normal distributed resid-
uals are generally not required for the estimation of VAR models via ordinary least squares,
the GIRFs are calculated recursively under the assumption of normal errors, based on Equation
3.13. Since we only provide the GIRFs of the individual VAR models as preliminary analysis, to
allow for a comparison of the GVAR model with individual commodity market models, we do
not adjust the specifications of the VAR model of the zinc market, although the corresponding
residuals show a non-normal behavior. Hereby, we keep in mind the true generalized impulse
response functions may deviate from the presented ones.

To aggregate the GIRF results of each individual commodity market and to facilitate the com-
parison with the corresponding results of the GVAR model, we present the results of the GIRF
analysis in Table 5.1, where we indicate significant positive, or negative, responses of the column
variables to a shock in the row variables by a (+) or (-) respectively.

While we detect no interdependencies in the copper and zinc market, indicating their prices
are not affected by their individual supply and demand, spillover effects within the aluminum,
nickel, lead, and tin markets imply the fundamentals and prices are correlated. Hereby, demand
and price negatively interact to each other for aluminum and nickel, indicating a higher price
(demand) implies less demand (price). Moreover, nickel’s and tin’s supply and price positively
affect each other. In addition, we observe interactions between the supply and demand of tin
and lead. Hereby, the positive responses in the lead market are reasonably, whereas the negative
relation in the tin market is counterintuitive. However, as the GIRF methodology investigates
direct as well as indirect effects on the attributes to an innovation of one standard deviation in

3In particular, we estimate the VAR model without intercept to guarantee comparability to the GVAR models
in Section 5.1.2.
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a certain variable, the observed reactions may be caused by unobservable, indirect effects.
Table 5.1: GIRF results of the individual, commodity-specific VAR models
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supply + + + + + + + - + +
demand + - + + - + + - + +
price - + + + - + + + + +

This table displays the results of the GIRF analysis of the individual, commodity-specific VAR models,
showing the response of the column variables to a shock of the row variables supply (supply), demand
(demand) and price (price) of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn), where significant positive (+) or negative (-) effects are displayed, based on the
68%- level.

Besides the spillover effects within the individual commodity markets, we also investigate the
impact of shocks to the exogenous variables on the commodity markets. In particular, we
examine how the commodity-specific variables respond to innovations in the economic activity,
the exchange rate or the interest rate. Therefore, we first model the exogenous variables, world
gross domestic product (GDP), U.S. dollar index (FX) and Federal Funds Effective Rate (FFR),
via a VAR model with two lags to avoid autocorrelated residuals, but without intercept vector,
in line with the commodity market models.4 Subsequently, we derive the impact of a shock to
each exogenous variable on the individual commodity markets recursively, using Equation 3.17,
Equation 3.19, and Equation 3.20, and display the responses in analogy to the GIRF analysis
of shocks within the commodity markets in Table 5.2.

Overall, the GIRF analysis reveals the shocks to the macroeconomic variables affect each com-
modity market to a similar extent. In particular, an increase in the global demand, associated
with an expansion of the economic activity and thus indicated by a positive shock in the world
gross domestic product, leads to a significant increase in commodity markets, as production,
consumption, and prices rise simultaneously, which supports the synchronized pattern of com-
modity markets and economic activity, see Issler et al. (2014) among others. However, the
production of copper declines in response to a global demand increase. Since copper is regarded
as a leading indicator of the global economic situation, see Bauer (2023), copper producers may
reduce their supply in times of economic booms, to prevent their losses due to the subsequent
recession phases.

In addition, a positive shock to the exchange rate, U.S. dollar index, representing an appreciation
of the U.S. dollar, leads to decreasing commodity markets. In particular, since the metals are
quoted in U.S. dollars, a stronger U.S. dollar implies the metals become more expensive for
consumers holding other currencies, see Vansteenkiste (2009), and therefore, the demand and
ultimately, the price of the commodities decrease. Moreover, as the profits of the producers raise,
see Vansteenkiste (2009), the copper supply increases, and therefore, the copper price declines.
However, the production volumes of the other metals reduce, probably caused by indirect effects
of the reduction in demand and price, which are also represented in the GIRF analysis at annual
frequency.

Further, the reactions of the supply variables to a contrarian monetary policy, i.e. represented
by a positive shock to the interest rate, are mixed. While we observe no reaction in the supply
of aluminum, lead, and zinc, a positive shock in the interest rate leads to an increase in the

4The results of the Durbin-Watson (DW) test, the multivariate multivariate ARCH Lagrange multiplier
(ARCH-LM) test and the OLS-cumulative sums of standardized residuals (OLS-CUSUM) test to the VAR model
indicate the model does not suffer from autocorrelation, heteroscedasticity or structural breaks at the 5% sig-
nificance level, see Table D.1. Moreover, the Henze-Zirkler (HZ) test for normality shows the VAR model has
multivariate normal distributed residuals.
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production volume of copper, nickel, and tin, probably due to the more profitable extraction
of commodities in high interest rates environments, see Akram (2009) and Frankel (2008). In
contrast, a contrarian monetary policy shock implies increasing commodity-specific demand and
price. This contradicts the hypothesis of an inverse relationship of Frankel (2008), who argues
the cost of capital for holding a commodity should decrease during periods of expansionary
monetary policy, while at the same time the demand for commodities acting as an alternative
asset class should rise. However, Frankel (2008) only confirms his theory in the empirical anal-
ysis of commodity prices in the period from 1950 to 1979 (2005), whereas the observed relation
between interest rates and commodity prices is positive in the period from 1980 (1976) to 2005,
underlining the direction of relation between monetary policy and commodity prices changed
over time. Moreover, in times of increasing commodity prices, and therefore, a period of in-
creasing inflation, the central banks raise the interest rates. This increase in the interest rates
dampens the boom in commodity prices, but prices continue to rise in the short-term, which
could explain the positive reaction in the metals’ markets, see Schischke and Rathgeber (2023).

Table 5.2: GIRF results of the individual VAR models for shocks to the exogenous variables
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GDP + + + - + + + + + + + + + + + + + +
FX - - - + - - - - - - - - - - - -
FFR + + + + + + + + + + + + +

This table displays the results of the GIRF analysis of the individual, commodity-specific VAR models,
showing the response of the column variables supply (supply), demand (demand) and price (price) of
the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), to a shock
of the row variables world gross domestic product (GDP), U.S. dollar index (FX), and the Federal Funds
Effective Rate (FFR), where significant positive (+) or negative (-) effects are displayed, based on the 68%-
level.

Overall, we detect the commodity markets react to shocks in the global economy as well as in
the individual commodity markets. However, as the copper and zinc markets do not exhibit any
spillover effects, one may conclude microeconomic information of supply and demand is already
included in the price of copper and zinc, inducing their consideration is irrelevant and negligible
in modern commodity markets. However, the individual industrial metal market models do not
reflect spillover effects between the commodities yet, which is why we turn our attention to the
results of the GVAR models.

5.1.2 Global Commodity Market Model

To account for the impact of supply and demand on commodity prices as well as for spillover
effects between commodity markets, we apply the GVAR model, according to Equation 3.7,
on the industrial metal markets, whereby we include the impact of macroeconomic factors on
the commodity markets via the exogenous variables world gross domestic product (GDP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR). Hereby, we calculate the GVAR
model several times, using the different weight matrices supply (S), demand (D), trading (T)
and common (C), as outlined in Section 4.4, for a comparison between the possible linkages of
commodity markets. In particular, we estimate the GVAR models on annual data from 1970 to
2019, with one lag for the endogenous as well as exogenous variables, and without intercept, due
to data limitations. While the results of the Durbin-Watson (DW) test, the ARCH-LM test and
the OLS-cumulative sums of standardized residuals (OLS-CUSUM) test indicate neither model
suffers from autocorrelation, heteroscedasticity nor structural breaks at the 5% significance level,
the Henze-Zirkler (HZ) test implies the residuals of the GVAR model, based on the different
weight matrices, are multivariate normal distributed, see Table D.1.
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In line with the individual VAR models, we analyze the dynamic properties of the global vector
autoregression (GVAR) models, via generalized impulse response functions (GIRFs), according
to Equation 3.13. Hereby, direct as well as indirect effects on the attributes to an innovation
of one standard deviation in a certain variable are investigated. Our analysis is based on the
68% confidence bounds obtained by a sieve bootstrap procedure with 1000 replications and
the recent observations as input variables, as proposed in Dées, di Mauro, Pesaran, and Smith
(2007). Runkle (1987) and Lütkepohl (1990) both point out impulse response functions can
inflate false negatives, a problem also Galesi and Lombardi (2009) suffer from, in their analysis
of unrestricted GVAR models. Although data limitations, as caused by a small sample size,
could further harm the results, our analysis detects numerous significant responses.

To aggregate the GIRF analysis and to provide an holistic overview of the results, we indicate
significant positive, or negative, responses of the column variables to a shock in the row variables
by a (+) or (-) in Table 5.3. Hereby, we differentiate between the models with weight matrices
supply (S), demand (D), trading (T) and common (C), respectively.

The diagonal of Table 5.3 shows significant results for all variables and weight matrix combina-
tions, which is rather unsurprising, as it captures the effect of a shock to the response variable
itself. Despite the concerns of false negatives within GIRF analyses, we obtain numerous signif-
icant spillover effects in the cross-commodity dimension, underlining the importance of jointly
modeling commodity markets and making the findings of the framework even more pronounced.

Regarding the differences between the weight matrices, the GVAR model using the demand
weight matrix detects slightly more spillover effects, compared to the other models, indicating
the relations between commodities may be best modeled by their co-consumption. Since the
GVAR models based on the supply and trading weight matrices represent less spillover effects,
the relations between the commodities may be best reflected by their co-consumption or the
aggregated information including the co-consumption, indicating the importance of the demand
side in the (relation between) commodity markets. As the common weight matrix simultaneously
represents information on co-production, co-consumption and co-trading with equal weights, the
individual effects of the consumption behavior are potentially diminished to a certain extent.

Table 5.3: GIRF results of the GVAR models based on the supply, demand, trading and common weight matrices
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GIRF results of the GVAR models based on the supply, demand, trading and common weight matrices
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This table displays the results of the GIRF analysis of the GVAR model based on the different weight matrices (w) supply
(S), demand (D), trading (T) and common (C). We analyze the response of the column variables to a shock of the row
variables supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn). Significant positive (+) or negative (-) effects on the 68%- level are displayed.

To start, we compare the results of the individual VAR models to the commodity-specific results
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of the GVAR model, before we analyze the spillover effects in the cross-commodity dimension in
detail. Overall, the spillover effects in the individual commodity markets change, as the GVAR
model connects the commodity markets and therefore accounts for unobserved, indirect effects
between the commodities, which are not represented in the individual VAR models. Hereby, the
significant impact between supply (demand) and price in the nickel and tin markets as well as
the response of aluminum demand to price shocks vanish once the interdependence between the
commodities is included, whereas copper demand and price significantly influence each other in
the GVAR models. However, in line with the findings of the individual VAR models in Table
5.1, the GVAR analysis also detects no significant responses of zinc’s supply, demand and price
to shocks to its own variables. Moreover, the interdependencies in the lead market remain
valid, indicating the GVAR models also reflect the spillover effects in the individual commodity
markets.

Besides these responses in the individual markets, we observe various spillover effects in the
cross-commodity dimension, underlining the importance of jointly modeling commodity markets.
While tin, the smallest metal market in terms of the trading volume, is least connected to the
other markets, which is reasonable, as it is not co-mined with any of the remaining metals,5 nor is
there a specific, common use case, the nickel market is highly affected by the other metals. Since
nickel is mostly used in alloys, e.g. nickel-aluminum- or copper-nickel-(zinc)-alloys, the demand
for the other metals determines the demand, and ultimately, the price and supply of nickel.
Hereby, nickel depends on the other markets, whereas shocks to the lead and zinc market cause
various spillover effects, probably due to their co-production and co-consumption relation to the
other metal markets. However, the majority of spillover effects is from, and to, the aluminum
and copper markets, the largest metal markets in terms of the production, consumption, and
trading volume, and therefore, the most influential and connected metals. Hereby, shocks in the
two metal markets cause changes in all other markets, emphasizing the impact of both metals.

Overall, aluminum and copper also exhibit the strongest interrelation, even though their link
reflected in the weight matrices is not overwhelmingly large, see Section 4.4.6. The observed
strong spillover effects between these two metals are most likely due to their common applications
in electrical conduction, automotive and aerospace industries. Therefore, an increase in the
demand for one of these two metals leads to higher demand for the other metal, as there is
probably an increase in the demand for a common application, which increases the demand for
both metals. In addition, higher copper prices lead to a lower demand for aluminum, since an
increase in the price of copper reduces the demand for copper and the common applications and
increases the price of aluminum, which is why the demand for aluminum decreases. In addition,
an increase in the price of aluminum leads to lower production volume of copper, as the supply
is likely to react to the associated decrease in demand in response to the higher price. However,
a shock to the supply of one metal does not lead to any significant reaction in the supply of the
other metal, as aluminum and copper are not co-mined together.

In contrast, 70% of the lead production is derived from mixed Lead-Zinc ores, see Nassar et al.
(2015).6 Due to this strong co-production relationship between lead and zinc, a positive shock
to the supply of one of both metals cause an increase in the supply of the other metal. Moreover,
a shock to the demand of lead (or zinc) probably leads to an increase in the demand of zinc (or
lead). This observed interrelation between the demand might originate from indirect effects of
the co-production relation and the supply and demand equilibrium, combined with their common
use in the automotive industry. Hereby, zinc is mainly used for rust protection, whereas the

5Actually, tin is not co-mined with the other industrial metals. However, as we reflect the supply weight matrix
on the common supply concentration, based on the country-specific production volumes, the weight matrix displays
a co-production relation.

6As the supply weight matrix is based on the common supply concentration, based on the country-specific
production volumes, the relation between lead and zinc is probably underestimated, as both metals are actually
co-produced.
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most important application of lead is in car batteries.

Besides the interdependencies between lead and zinc, we observe strong spillover effects between
copper and zinc. Similar to the relation between aluminum and copper, the interactions in
the copper and zinc market probably originate from their common applications, in particular,
in the copper-zinc alloy brass, which is used due to its good electrical conductivity and me-
chanical stability. While the demand variables interact, an increase in zinc’s price lead to a
reduction in copper’s demand, probably caused by the associated reduction in zinc’s demand or
the corresponding increase in copper’s price.

Overall, regarding the spillover effects between supply, demand and price in the cross-commodity
dimension, the strongest effects are the positive interactions between supply and supply, demand
and demand, as well as price and price, with remarkable interdependencies between the demand
variables. Since the global demand is reflected by the exogenous variable world gross domestic
product (GDP), the common applications of the metals are an important determinant of the
observed strong relationship between the individual demand variables, as common consumption
leads to a concurrent behavior in the demand. In this context, the influence of the common
uses of the metals underlines the importance of the demand weight matrix, as the corresponding
model detects most of the interdependencies.

The demand-sided relationships are also reflected in the interdependencies between the prices.
Hereby, the various spillover effects between the prices are the direct result of the co-trading
as well as the indirect result of joint applications, as an increase in the demand leads to higher
prices. Overall, an increase in one commodity’s price generally leads to rising prices of the other
commodities, indicating a common behavior in the metals’ prices. In particular, aluminum,
copper, nickel and zinc prices influence each other. Hereby, shocks to the copper price affect the
other commodities, while the copper price reacts only to changes in the zinc price, indicating
a strong impact of copper on the other commodity markets. However, there are no spillover
effects from lead and tin prices, probably because these metals are the smallest in terms of their
trading volume. In addition, tin is only processed for specific applications with few common
uses with the other commodities, while lead has been substituted in several original use cases
in more recent years.

Besides the interdependencies between the demand and price variables, we also observe various
spillover effects between the supply variables, but to a lesser extent. On the one hand, the
co-production of the metals leads to the increase in supply in response to a positive shock to
another supply variable, for example for lead and zinc, as 70% of the lead production is derived
from mixed Lead-Zinc ores. On the other hand, the observed positive reactions may be caused
by indirect effects from the co-consumption relation, as an increase in the demand implies rising
prices and ultimately an increase in the production volume. In particular, the spillover effects
between aluminum and nickel can be explained by their common use in aircraft and vehicle
construction as well as in nickel-aluminum alloys.

Moreover, there are few spillover effects between supply and demand variables, whereby the
demand for one commodity more likely results in changes in the supply for another metal than
vice versa, underlining the (indirect) effect of the co-consumption on the supply side of the
markets. In addition, the fundamentals, especially the demand, significantly influence prices.
More importantly, shocks to the prices affect the supply and demand variables. While the
supply tendentially increases in response to a positive shock to the prices, higher prices cause a
reduction in the demand.

Similar to the GIRF analysis of the individual commodity markets, we also examine the effects
of global shocks to the commodity markets modeled by the GVAR framework, based on the
different weight matrices supply (S), demand (D), trading (T) and common (C). In particular,
we examine how the commodity-specific variables respond to innovations in the global economic
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activity, reflecting the global demand, the exchange rate or the interest rate. Therefore, we use
the VAR model of the exogenous variables, world gross domestic product (GDP), U.S. dollar
index (FX), and Federal Funds Effective Rate (FFR), specified in Section 5.1.1, and analyze
the impacts of a shock to each exogenous variable on the commodity markets, using the GIRFs
derived recursively, using Equation 3.17, Equation 3.19, and Equation 3.20. In analogy to the
GIRF analysis of shocks within and between the commodity markets, we display the responses
of the commodity markets to innovations in the exogenous variables in Table 5.4.

Overall, similar to the analysis of the individual commodity markets, we observe the shocks
to the macroeconomic variables affect each commodity market to a similar extent, across all
models. In particular, an increase in the global demand cause increasing supply, demand and
prices for all commodities, similar to the results of the individual commodity market models
in Section 5.1.1. The only exception is the copper production which reduces in response to
the demand increase, underlining the special role of copper. Moreover, a positive shock to the
exchange rate, reflecting an appreciation of the U.S. dollar, leads to a reduction in the metal
markets, except for copper supply, in line with Vansteenkiste (2009) as well as the results of the
individual VAR models.

Further, a contrarian monetary policy, reflected via a positive interest rate shock, leads to an
increase in the production volume of aluminum, copper and tin (zinc), underlining the arguments
of Akram (2009) and Frankel (2008), whereas the production volumes of lead (zinc) decrease.
Moreover, both, demand and price, increase in response to rising interest rates, contrary to
Frankel (2008), but confirming the reactions of the commodity markets in the individual VAR
models. Hereby, the central banks probably raise the interest rates in response to higher inflation,
caused by higher prices, leading to a concurrent behavior between metal markets and interest
rates, see Schischke and Rathgeber (2023).
Table 5.4: GIRF results of the GVAR models based on the supply, demand, trading and common weight matrices for shocks
to the exogenous variables

Al Cu Ni Pb Sn Zn
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D

P

S + + + - + + + + + + + + + + + + + +
D + + + - + + + + + + + + + + + + + +
T + + + - + + + + + + + + + + + + + +
C + + + - + + + + + + + + + + + + + +

F
X

S - - - + - - - - - - - - - - - -
D - - - + - - - - - - - - - - - -
T - - - + - - - - - - - - - - - -
C - - - + - - - - - - - - - - - -

F
F

R

S + + + + + + + - + + + + - + +
D + + + + + + + - + + + + + + +
T + + + + + - + + + + - +
C + + + + + - + + + + + +

This table displays the results of GIRF analysis of the GVAR model based on the different weight matrices (w) supply (S),
demand (D), trading (T) and common (C). We analyze the response of the column variables, supply (supply), demand
(demand) and price (price) of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn),
to a shock of the row variables world gross domestic product (GDP), U.S. dollar index (FX), and Federal Funds Effective
Rate (FFR), where significant positive (+) or negative (-) effects are displayed, based on the 68%- level.

Overall, the GIRF analysis reveals the industrial metal markets are strongly interrelated. While
the fundamentals still affect the commodity prices, various spillover effects underline innovations
in the supply, demand or price of one commodity lead to changes in the other metal markets,
highlighting the importance of jointly modeling commodity markets. Moreover, shocks in the
global economy affect all commodity markets simultaneously, indicating global shocks cause
similar patterns in the metals markets, supporting the impact of a common factor in commodity
prices.
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5.1.2.1 Forecast Error Variance Analysis

We further investigate the interdependencies between the commodity markets through a gen-
eralized forecast error variance decomposition (GFEVD) analysis, based on the GVAR models
with the weight matrices supply (S), demand (D), trading (T) or common (C). Hereby, we
calculate the generalized forecast error variance decompositions for each variable for one to ten
steps ahead, according to Equation 3.21, and display the attributes’ forecast errors variances,
which are decomposed by aggregated shocks of each endogenous variable as their mean of 1 to
10 years ahead, see Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4.

Figure 5.1: Generalized forecast error variance decomposition for the GVAR model based on the weight matrix supply (S)

This figure displays the scaled and aggregated generalized forecast error variance
decomposition (GFEVD) of the GVAR model based on the weight matrix supply
(S) by the mean of 1 to 10 steps ahead per attribute, decomposed by the shocks
to each endogenous variable.

Figure 5.2: Generalized forecast error variance decomposition for the GVAR model based on the weight matrix demand
(D)

This figure displays the scaled and aggregated generalized forecast error variance
decomposition (GFEVD) of the GVAR model based on the weight matrix de-
mand (D) by the mean of 1 to 10 steps ahead per attribute, decomposed by the
shocks to each endogenous variable.

In general, the forecast error variances are mainly influenced by each variable itself. Hereby, the
nickel supply as well as aluminum and zinc demand are outstanding, as over 50% of their forecast
error variances are explained by other commodities’ variables, indicating the high impact of the
other metals. Moreover, the GVAR model based on the demand weight matrix indicates the
forecast error variances are slightly more affected by the other commodities, however, the results
are similar across the models.
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Figure 5.3: Generalized forecast error variance decomposition for the GVAR model based on the weight matrix trading (T)

This figure displays the scaled and aggregated generalized forecast error variance
decomposition (GFEVD) of the GVAR model based on the weight matrix trading
(T) by the mean of 1 to 10 steps ahead per attribute, decomposed by the shocks
to each endogenous variable.

Figure 5.4: Generalized forecast error variance decomposition for the GVAR model based on the weight matrix common
(C)

This figure displays the scaled and aggregated generalized forecast error variance
decomposition (GFEVD) of the GVAR model based on the weight matrix com-
mon (C) by the mean of 1 to 10 steps ahead per attribute, decomposed by the
shocks to each endogenous variable.

Turning to a commodity-specific perspective, we observe the forecast error variance of alu-
minum’s supply is particularly influenced by the copper, lead, and tin markets. While the GIRF
analysis also detects spillover effects from copper and lead demand to the aluminum supply,
shocks to the tin market do not significantly affect the aluminum supply, however, tin’s vari-
ables contribute to the forecast error variance. Further, copper demand and price, followed by
lead and zinc demand, describe the forecast error variance of the aluminum demand, underlining
the findings of the GIRF analysis, where copper demand and price, as well as lead and zinc de-
mand significantly affect the aluminum demand. Besides aluminum’s fundamentals, the copper
market mostly affects the forecast error variance of aluminum’s price, further highlighting the
strong impact of copper on the aluminum market, as already outlined in Section 5.1.2. However,
the strong interdependencies between copper and aluminum are most pronounced in case of the
GVAR model based on the demand-sided weight matrix, as both metals are jointly consumed
in the field of electrical conduction, automotive and aerospace industries.

For the copper market, the forecast error variances are mainly influenced by its own, commodity-
specific attributes, further indicating copper affects the other metal markets, but it reacts to a
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smaller extent to changes in the other commodities. While copper supply is equally described
by aluminum, nickel and lead, a relative large proportion of the forecast error variance of cop-
per’s demand is determined by aluminum’s and zinc’s attributes. Hereby, the strong impact of
aluminum on the copper demand underlines the observed, significant spillover effects in Section
5.1.2, again highlighting the strong interrelation between these two metals, probably caused by
their co-consumption. Moreover, the GFEVD analysis also reveals the special position of copper,
as only the zinc price has a pronounced influence on the copper’s price forecast error variance, in
line with the GIRF analysis, which reveals the copper price affects the other commodity prices,
but only reacts itself to changes in the zinc price.

Nickel’s supply and price forecast error variances are mostly described by aluminum and copper,
underlining the results of the GIRF analysis, since a shock to the aluminum price leads to
significant responses in the nickel supply and price. Moreover, similar to the spillover effects,
lead and tin explain parts of the forecast error variance of nickel’s supply, while lead and zinc
demand determine the demand’s forecast error variance.

For lead, the forecast error variances of supply and demand are mainly explained by the variables
of zinc, apart from the contribution of lead’s own variables, underlining the findings of the GIRF
analysis, which detects lead’s fundamentals respond significantly to shocks in the zinc market,
probably caused by their strong co-production relation. Moreover, the variance of lead’s price
is affected by the copper and nickel market to a larger extent, in line with the spillover effects,
indicating the price of lead significantly responses to shocks to copper demand and price as well
as nickel demand.

Further, the strong interdependencies between lead and zinc are underlined by the forecast error
variance analysis of zinc. Hereby, lead determines the majority of the forecast error variances
of zinc’s supply and demand, caused by their co-production relation. In contrast, copper con-
tributes to a smaller extent to the forecast error variance, which is contrary to the significant
reactions of the zinc market to shocks in the copper demand. However, the forecast error vari-
ance of zinc’s price is mostly determined by copper, in particular, by the copper price, followed
by copper demand, underlining the co-movement between copper and zinc prices.

In case of tin, aluminum mostly explains the forecast error variance of tin’s demand, while
the forecast error variances of supply and price are mostly affected by nickel, underlining the
significant impact of shocks to the nickel market on tin. In general, the GFEVD analysis reveals
tin is explained by the other commodities, but rarely contributes to the forecast error variances
of the other metals itself, underlining tin is least connected to the other markets, as it is not
co-mined with any of the remaining metals, nor is there a specific common use case, in line with
the results of the GIRF analysis.

Overall, the copper price helps in explaining the metal’s price variances, further underlining the
strong impact of copper on commodity markets, in line with the results of the GIRF analysis.
Moreover, the GFEVD analysis emphasizes the interdependencies between aluminum and cop-
per, copper and zinc as well as lead and zinc, caused by their co-consumption and co-production
links.

5.1.2.2 Correlation Analysis

The GVAR model considers the impact of commodity-specific supply and demand on prices, but
also allows for spillover effects between the commodity markets. To highlight the framework’s
ability to represent the co-movement in commodity prices, we compare the price correlations
induced by the GVAR model with the market observed correlations. Therefore, we split our
dataset into an expanding in-sample window with data from 1971 to 2009 and an out-of-sample
window covering the years 2010 to 2019. For each time step in the out-of-sample window, we
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estimate the GVAR model with the weight matrices supply (S), demand (D), trading (T) or
common (C) based on the in-sample data and forecast all commodities’ annual prices7 one-step
ahead, using Equation 3.9. Subsequently, we calculate Pearson correlation matrices, using the
predicted and observed prices, respectively.

The comparison of the correlation matrices, presented in Table 5.5, Table 5.6, Table 5.7, Table
5.8, and Table 5.9, highlights the dependencies between the commodity markets are well mod-
eled by our framework, except for zinc.8 The focus of this brief correlation analysis is on the
replication’s accuracy of the observed co-movement, where the predictive power of the models
is not evaluated in further detail. While the correlations of copper (tin) with the other com-
modities observed from the GVAR models based on the different weight matrices supply (S),
demand (D), trading (T), or common (C), are similar, the negative relation observed between
zinc and the other metals is best reflected by the model based on the demand weight matrix,
whereas the other models overestimate the correlations, indicating the GVAR model based on
the weight matrix demand (D) performs best.

Apart from the negative relation observed between zinc and the other metals, which is not
reflected, the GVAR framework based on the weight matrix demand (D) performs exceptionally
well, with differences in the correlations for the predicted and real prices being smaller than
10%, except for the links between aluminum and lead. While the model based on the common
weight matrix also reflect the dependencies between aluminum, copper, nickel, lead and tin,
the negative correlation to zinc is missed. In contrast, the correlations derived from the GVAR
models based on the supply and trading weight matrix deviate more, underlining the relations
between the commodities may be best reflected by their co-consumption or the aggregated
information including the co-consumption.

Since the GIRF analysis reveals strong spillover effects between the commodity markets, espe-
cially between the commodity-specific demand variables, indicating the strong impact of demand
and the common applications of the metals, we focus in the following on the weight matrix
demand (D), based on information about the co-consumption between commodities. Over-
all, the correlation analysis underlines the importance of jointly modeling commodity markets,
confirming the results of the GIRF and GFEVD analysis. However, the GVAR model is a time-
invariant framework, which is why changes in the correlation structure of the commodities are
not reflected.

7As all original variables were non-stationary, we base the entire analysis on the logarithmic return data and
hence, also the price forecasts are forecasts of logarithmic returns, although we use the term price for notation
reasons.

8Throughout the sample period from 1970 to 2019, all metal prices are positively related, especially in the
early 2000s. However, the price of zinc gradually increased over the period from 2010 to 2019, whereas the metal
prices generally declined around 2015, caused by the slowdown in Chinese demand and the oil price drop. As our
analysis is based on annual data, the sharp decline in the prices, contrary to the increase in zinc’s price, skews the
calculation of the correlations, leading to the observed negative relationship between the metals. The depletion
of aluminum stocks in LME-linked warehouses and a sustained demand growth around 2015 prevented the price
of aluminum from declining further, which is why the two metals show a slightly positive relation. Moreover,
the price of lead, while also declining around 2015, shows similar patterns throughout the sample period, likely
due to its co-production with zinc, which is why zinc’s correlation with lead is the highest. Overall, the observed
correlations in the period from 2010 to 2019 differ from those over the entire sample period or the rolling 18-
months correlations, displayed in Figure 1.1, emphasizing the importance of a time-varying analysis which allows
for changing dependencies between the metal prices.
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Table 5.5: Correlation matrix of the observed spot prices

Al Cu Ni Pb Sn Zn
Al 1.00 0.84 0.76 0.88 0.83 0.29
Cu 0.84 1.00 0.92 0.68 0.90 -0.18
Ni 0.76 0.92 1.00 0.51 0.85 -0.30
Pb 0.88 0.68 0.51 1.00 0.81 0.50
Sn 0.83 0.90 0.85 0.81 1.00 -0.05
Zn 0.29 -0.18 -0.30 0.50 -0.05 1.00

This table displays the correlation matrix of the observed
spot prices of aluminum (Al), copper (Cu), nickel (Ni), lead
(Pb), tin (Sn), and zinc (Zn), between 2010 and 2019.

Table 5.6: Correlation matrix of predicted prices based on
the GVAR model with supply weight matrix

Al Cu Ni Pb Sn Zn
Al 1.00 0.76 0.72 0.77 0.76 0.45
Cu 0.76 1.00 0.86 0.60 0.84 0.18
Ni 0.72 0.86 1.00 0.55 0.87 -0.01
Pb 0.77 0.60 0.55 1.00 0.84 0.73
Sn 0.76 0.84 0.87 0.84 1.00 0.30
Zn 0.45 0.18 -0.01 0.73 0.30 1.00

This table displays the correlation matrix of the predicted
spot prices of aluminum (Al), copper (Cu), nickel (Ni), lead
(Pb), tin (Sn), and zinc (Zn), using the global vector autore-
gression (GVAR) framework with weight matrix supply S, in
an out-of-sample rolling window forecast from 2010 to 2019.

Table 5.7: Correlation matrix of predicted prices based on
the GVAR model with demand weight matrix

Al Cu Ni Pb Sn Zn
Al 1.00 0.84 0.81 0.70 0.76 0.34
Cu 0.84 1.00 0.84 0.66 0.84 0.04
Ni 0.81 0.84 1.00 0.65 0.86 -0.09
Pb 0.70 0.66 0.65 1.00 0.88 0.54
Sn 0.76 0.84 0.86 0.88 1.00 0.18
Zn 0.34 0.04 -0.09 0.54 0.18 1.00

This table displays the correlation matrix of the predicted
spot prices of aluminum (Al), copper (Cu), nickel (Ni), lead
(Pb), tin (Sn), and zinc (Zn), using the global vector au-
toregression (GVAR) framework with weight matrix demand
D, in an out-of-sample rolling window forecast from 2010 to
2019.

Table 5.8: Correlation matrix of predicted prices based on
the GVAR model with trading weight matrix

Al Cu Ni Pb Sn Zn
Al 1.00 0.75 0.57 0.63 0.68 0.38
Cu 0.75 1.00 0.87 0.67 0.89 0.32
Ni 0.57 0.87 1.00 0.49 0.84 -0.01
Pb 0.63 0.67 0.49 1.00 0.86 0.78
Sn 0.68 0.89 0.84 0.86 1.00 0.41
Zn 0.38 0.32 -0.01 0.78 0.41 1.00

This table displays the correlation matrix of the predicted
spot prices of aluminum (Al), copper (Cu), nickel (Ni), lead
(Pb), tin (Sn), and zinc (Zn), using the global vector au-
toregression (GVAR) framework with weight matrix trading
T, in an out-of-sample rolling window forecast from 2010 to
2019.

Table 5.9: Correlation matrix of predicted prices based on
the GVAR model with common weight matrix

Al Cu Ni Pb Sn Zn
Al 1.00 0.91 0.82 0.76 0.81 0.58
Cu 0.91 1.00 0.90 0.61 0.80 0.35
Ni 0.82 0.90 1.00 0.65 0.87 0.23
Pb 0.76 0.61 0.65 1.00 0.88 0.75
Sn 0.81 0.80 0.87 0.88 1.00 0.41
Zn 0.58 0.35 0.23 0.75 0.41 1.00

This table displays the correlation matrix of the predicted
spot prices of aluminum (Al), copper (Cu), nickel (Ni), lead
(Pb), tin (Sn), and zinc (Zn), using the global vector au-
toregression (GVAR) framework with weight matrix common
C, in an out-of-sample rolling window forecast from 2010 to
2019.

5.2 Time-varying Spillover Effects within and between Indus-
trial Metal Markets

The financialization of commodity markets, i.e. the entry of institutional investors into commod-
ity futures markets, corresponding with an increase in index investment in commodity markets,
has significantly changed the structure of commodity markets. In particular, the co-movement
between commodity prices increased during the financialization starting in 2004, see Le Pen and
Sévi (2017), Ohashi and Okimoto (2016), Peersman et al. (2021), Tang and Xiong (2012) and
Yin and Han (2015). Moreover, Peersman et al. (2021) name also the demand increase from
emerging countries, as well as spillover effects due to substitutions as possible reasons for the
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stronger co-movement in commodity prices observed at the beginning of the 2000s. This raises
the question whether a time-independent analysis of the relationship between commodity prices,
or even a trend analysis, can fully represent the interdependencies in commodity markets.

The initial, bi-variate, and time-varying correlation analysis, displayed in Figure 1.1, indicates
the rolling 18-months correlations between the industrial metal prices fluctuate around the time-
invariant correlation based on the entire sample period, underlining the relation between prices
is time-varying. Therefore, the question arises whether and how the constitution of commodity
markets, especially the impact of fundamentals on prices as well as the co-movement between
prices, changed over time.

For this reason, we extend the global vector autoregression (GVAR) framework, which reflects
the impact of supply and demand on commodity prices as well as the co-movement between
commodity prices, by a Markov-switching component, and exemplary apply the time-dependent
Markov-switching global vector autoregression (MS-GVAR) model on the six industrial metals,
using monthly data from 1995 to 2020.9 In particular, we reveal how the interdependencies
between markets change over time. Hereby, we simultaneously estimate individual, commodity-
specific Markov-switching vector autoregression (MS-VAR) models, accounting for the aggre-
gated impact of the other commodity markets as well as for the macroeconomic factors world
industrial production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR),10

and investigate the regime inference of each commodity market. Subsequently, we aggregate the
industrial metal markets to the overall commodity market model, the Markov-switching global
vector autoregression (MS-GVAR) model, via the weight matrix based on the co-consumption
of the commodities, see Table 4.24, as the information about the common use of the metals
reflects their dependencies best, see Section 5.1.

Moreover, we analyze the dynamic properties of the model via regime-dependent GIRFs, whereby
we investigate the spillover effects within and between the commodity markets. To disentangle
whether the impacts of shocks to the commodity markets differ in time, we artificially attribute
all industrial metal markets to calm or volatile periods and examine how shocks to the com-
modity variables, or even to exogenous variables, transmit to the commodity markets. Finally,
we underline the importance of a time-varying analysis by assessing the out-of-sample forecast
performance of the MS-GVAR model and compare it to the performance of the time-invariant
GVAR model.

5.2.1 Model Specification

To determine the optimal number of states, the lag length as well as the specification of the
commodity-specific MS-VAR models, we apply the slightly adjusted model selection proce-
dure of Li and Kwok (2021), described in Section 3.2.1.6, using the information criterion of
Hannan and Quinn (1979).11 Overall, we estimate the optimal number of states, up to the
predefined maximum number of states, Mmax = 3, the optimal lag length, up to the prede-
fined number of lags, Pmax = 2, as well as the specification out of all considered specifications
spec ∈ {MSI, MSIH, MSH, MSA, MSAH}, see Table 5.10. Hereby, the models with regime-
dependent exogenous variables are excluded from the selection process, as the inclusion of time-

9While the exemplary application of the GVAR model on the industrial metal markets is based on annual
data from 1970 to 2019, the MS-GVAR model is applied to monthly data from 1995 to 2020, due to data
limitations. Within the comparison of the results of the time-invariant GVAR model with those of the time-
dependent MS-GVAR model, the different data period as well as data frequency have to be taken into account.

10Similar to the GVAR model, we include exogenous variables to take into account the common effects of
the economy on commodity markets. However, the GDP is only reported on quarterly frequency, therefore, we
consider the world industrial production as proxy for the economic activity.

11We also apply the model selection based on the information criterion of Schwarz (1978) and obtain similar
results.
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varying parameters for the exogenous variables leads to unstable MS-GVAR models in our case.
However, the results of the model selection are not affected.

Table 5.10: Results of the model selection procedure for the MS-GVAR model based on the demand weight matrix

Nr.
States

Nr.
Lags

MSI MSIH MSH MSA MSAH

2 1 2523.44 2455.25 2447.64 2633.16 2599.09
2 2545.49 2481.92 2480.27 2785.01 2716.14

3 1 2515.10 2457.54 2446.58 2774.68 2717.13
2 2543.76 2444.17 2465.09 3033.36 2950.37

This table displays the model selection results for the MS-GVAR model based
on the demand weight matrix, using the information criterion of Hannan and
Quinn (1979), proposed in Section 3.2.1.6. Hereby, the MS-GVAR model is
estimated using different number of states (Nr. States), lag lengths (Nr. lags),
as well as specifications (MSI, MSIH, MSH, MSA, MSAH).

In particular, the MSIH(3)-VAR(2) model performs best, followed by the MSH(3)-VAR(1) and
MSH(2)-VAR(1) models. Since the models based on three states exhibit unstable regime infer-
ences, we base our analysis on the MSH(2)-VAR(1) model with regime-dependent covariance
matrix, but regime-invariant intercept as well as regime-invariant parameters for the endoge-
nous and exogenous variables, indicating the correlation between the variables differ, whereas
the magnitude of the impact of the variables do not change between the regimes. The two
regimes enable to capture calm as well as volatile periods, while they lead to stable regime in-
ferences, see Section 5.2.2. The results of the Durbin-Watson (DW) test indicate neither of the
commodity-specific MSH(2)-VAR(1) model suffers from autocorrelation, see Table D.2, indicat-
ing the lag length of one chosen by the model selection procedure is feasible from a statistical
point of view.

5.2.2 Regime Inferences

Since the MS-GVAR model aggregates the individual, commodity-specific MS-VAR models to
one, global commodity market model, the transition probabilities, i.e. the probabilities to switch
from state one to state two and vice versa, displayed in Table 5.11, as well as the smoothed
probabilities, indicating in which state a commodity is located in at a specific point in time,
differ across the markets. Therefore, we briefly discuss the transition and regime probabilities
of each industrial metal market in the following.

Table 5.11: Transition probability matrices for the individual, commodity-specific MS-VAR models

Al Cu Ni Pb Sn Zn
0.92 0.08 0.82 0.18 0.50 0.50 0.84 0.16 0.90 0.10 0.82 0.18
0.16 0.84 0.50 0.50 0.56 0.44 0.08 0.92 0.12 0.88 0.23 0.77

This table displays the transition probability matrices for the individual, commodity-
specific MS-VAR models of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin
(Sn), and zinc (Zn).

The transition probabilities indicate it is more likely to stay in the present state for aluminum,
lead, tin and zinc, whereas the copper market exhibits a strong tendency to remain in, or move
to, state one. Moreover, the probability to switch between the regimes is almost equal to the
probability to stay, in case of the nickel market. Therefore, the nickel market switches its states
numerous times, whereas the other metal markets show only few periods in regime two, see
Figure 5.5,12 indicating the industrial metal markets are stable, except the nickel market.

12These figures show the returns of each individual supply, demand and price variable over the entire sample
period. Shaded areas indicate the smoothed probability to be in state two exceeds 50%, hence, it is more likely
for the commodity market to be in state two at these points in time.

5.2. TIME-VARYING SPILLOVER EFFECTS IN INDUSTRIAL METAL MARKETS 103



CHAPTER 5. EMPIRICAL RESULTS

Overall, the metal markets are mainly located in regime one until 2004, the beginning of the
financialization of commodity markets, see Tang and Xiong (2012), with only few and brief
periods in regime two, indicating the increase in index investment changed the industrial metal
markets. Thereafter, the markets show longer periods in regime two, especially in the years
2006/07, 2009, 2011 and 2015, corresponding to the boom in commodity prices, the financial
crisis, the European debt crisis, and the sharp drop in the oil price. In the following, we turn to a
commodity-specific perspective and examine each commodity market and its regimes separately,
whereby we exemplary focus on the aluminum market. However, the regime switches are similar
in the copper, lead, tin and zinc markets, whereas the regimes in the nickel market fluctuate
more.

Figure 5.5: Regime inferences of the commodity markets, derived from the MS-GVAR model based on the demand weight
matrix
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Regime inferences of the commodity markets, derived from the MS-GVAR model based on the demand weight matrix
P
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supply demand price
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These figures show the logarithmic returns of each individual supply (supply), demand (demand) and price (price)
variable of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), over the entire
sample period from January 1995 to December 2020. Shaded areas indicate the smoothed probability to be in state one
exceeds 50%, hence, it is more likely for the individual commodity market to be in state one at these points in time.

While at the beginning of the considered time period the aluminum market shows longer periods
in state one, with only brief periods in state two, the market switches to state two at the end
of 2008, during the financial crisis, and remains almost four years in this regime. Moreover,
the aluminum market is located in state two in 2015 as well as 2017 for almost two years
each. Hereby, aluminum’s variables, especially the aluminum price, fluctuate widely within
these periods.

After the significant price increase from 2004 to mid-2008, caused by a strong demand growth
partly driven by the emerging countries, the physical as well as speculative demand dropped at
the end of the year 2008, due to the financial crisis, resulting in rising inventories and declining
prices, probably provoking the observed switch in aluminum’s regimes. While the prices were
recovered in 2010, due to the increase in Chinese demand, see U.S. Geological Survey (2013a),
the supply side of the aluminum market remained turbulent. The production from U.S. primary
aluminum smelters increased during the first half of 2011, whereas the leading U.S. aluminum
producer announced to close several smelters permanently at the beginning of 2012, see U.S.
Geological Survey (2012). However, caused by new capacity in China, India, and Qatar, the
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world production increased in 2012, see U.S. Geological Survey (2013b).

While the fluctuations in aluminum’s supply and price probably caused the market to be located
in regime two over the period 2009 to 2012, the decrease in aluminum inventories held by LME-
bonded warehouses, combined with an ongoing demand growth, might explain the market is
situated in state two in the year 2015, see U.S. Geological Survey (2016). In contrast, the
volatile price in the years 2017 and 2018, caused by supply concerns, inter alia due to regulation
problems of the world’s largest alumina refinery, Alunorte, sanctions on the Russian aluminum
producer Rusal as well as a labour strike at Alcoa, might be the reasons for the market being
in state two during the years 2017 and 2018, see U.S. Geological Survey (2020d).

The copper market rarely changes its regimes and exhibits only brief periods in regime two,
indicating its stability. While it is in state two for a longer period in 2006, just before the onset
of the financial crisis, and corresponding to periods of a more volatile copper price, the periods
in state one reflect calmer markets. In general, U.S. Geological Survey (2013a) state copper
prices react to disturbances to production at any given large mine, due to copper’s close balance
between production and consumption. For example, the pit wall failure in Indonesia and a mine
strike in Mexico in the year 2006, combined with the growth in global consumption during this
period, resulted in a price increase, which might explain the longer lasting period of the copper
market in state two.

As indicated by the transition probabilities, the nickel market exhibits the most regime switches,
with numerous but brief periods in state two. Hereby, the slightly longer lasting period in regime
two around 2009 is probably caused by the financial crisis, whereas the period in state two at
the end of 2013 to the beginning of 2014 corresponds to a period of weak prices, associated with
an oversupply of nickel, see U.S. Geological Survey (2015).

The lead market is situated in state two in periods of high price volatility, in particular, during
the beginning of the financialization of commodity markets in 2004, the commodity price boom
and the financial crisis. Hereby, the price increase between 2004 and 2007 is mainly driven by
the strong demand for lead in China, see U.S. Geological Survey (2013a), while the surplus in the
lead market might explain why the market is situated in state two in 2011, see U.S. Geological
Survey (2012). In addition, the decline in the average London Metal Exchange (LME) cash lead
price by about 13% in 2015 from that in 2014 caused the switch to regime two in 2015, see U.S.
Geological Survey (2016).

In contrast to the other metal markets, tin is in both regimes for almost the same length of
time, which can be explained by the corresponding transition probabilities, in particular, tin is
equally likely to remain in one of the two states, see Table 5.11. While the tin market is only
situated in state one until 1999, tin remains in regime two for longer periods at the beginning
of the recent century, during the financial crisis, between 2011 to 2013, 2014 to 2016 and 2019
to 2020. Hereby, the increase in the tin price around 2008, leading to a more volatile period,
was caused by supply disruptions in China as well as Indonesia, a demand growth of emerging
economies, the decrease in U.S. inventories as well as the increasing role of investment funds, see
U.S. Geological Survey (2013a). Additionally, the tin price increased around 2012, as major tin-
consuming countries aim to switch to lead-free solders that usually contain larger amounts of tin,
probably causing the switch of the market to regime two, see U.S. Geological Survey (2012). In
contrast, the volatile price, due to the price decline in response to the increased tin production
in Burma in 2014, as well as the reduced consumption of tin in the United States, probably
caused the tin markets staying in regime two in 2015, see U.S. Geological Survey (2016).

Similar to the copper market, the zinc market shows longer periods in state one, with only brief
periods in state two. However, the zinc market switches to - and remains in - state two for several
years during the commodity price boom from 2005 to 2008, and the financial crisis starting in
2009. Moreover, the production-to-consumption surplus in 2015, see U.S. Geological Survey
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(2016), and the increase in global zinc mine production, see U.S. Geological Survey (2020d),
both periods of higher price volatility, probably caused the switch of the zinc market to regime
two.

For an additional in-depth analysis of the commodity markets, we report distinct descriptive
statistics for each regime in Table 5.12, where we assume the commodities are either located
in state one or state two, depending on their respective smoothed probability exceeding 50%.
While copper is rarely located in state two, the tin market is situated in both states each half of
the time. Overall, the minimum, quantiles as well as maximum values show the markets take on
more extreme values in the second state. Moreover, the commodity variables exhibit a higher
volatility in state two, indicating periods of more fluctuations. In particular, the markets remain
in regime two during periods with high fluctuations in supply, demand and price, which is why
we refer to state two as volatile and state one as calm period in the following.
Table 5.12: Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR model
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supply 1 -0.04 -0.03 -0.01 0.00 -0.00 0.01 0.02 0.04 0.01 215
2 -0.10 -0.05 -0.02 0.00 0.00 0.02 0.06 0.13 0.04 97

demand 1 -0.11 -0.06 -0.02 0.00 0.00 0.02 0.06 0.13 0.04 215
2 -0.09 -0.08 -0.02 -0.00 -0.00 0.02 0.09 0.12 0.05 97

price 1 -0.18 -0.07 -0.03 -0.00 0.00 0.04 0.08 0.14 0.05 215
2 -0.18 -0.11 -0.04 -0.00 -0.00 0.03 0.11 0.14 0.07 97

C
u

supply 1 -0.06 -0.04 -0.01 -0.00 0.00 0.01 0.04 0.07 0.02 260
2 -0.09 -0.06 -0.02 -0.00 0.00 0.02 0.05 0.09 0.04 52

demand 1 -0.11 -0.06 -0.02 0.00 0.00 0.03 0.06 0.13 0.04 260
2 -0.18 -0.11 -0.05 -0.01 -0.01 0.04 0.12 0.16 0.07 52

price 1 -0.16 -0.08 -0.03 0.00 0.00 0.03 0.09 0.16 0.05 260
2 -0.43 -0.19 -0.09 -0.00 -0.00 0.10 0.16 0.25 0.13 52

N
i

supply 1 -0.09 -0.05 -0.01 0.00 0.01 0.03 0.05 0.12 0.03 198
2 -0.24 -0.16 -0.08 -0.03 -0.01 0.07 0.13 0.19 0.09 114

demand 1 -0.14 -0.11 -0.04 0.00 0.00 0.05 0.09 0.16 0.06 198
2 -0.25 -0.15 -0.08 -0.00 -0.00 0.06 0.17 0.27 0.10 114

price 1 -0.33 -0.15 -0.07 0.00 0.00 0.07 0.14 0.29 0.10 198
2 -0.26 -0.14 -0.07 -0.01 -0.00 0.06 0.18 0.22 0.10 114

P
b

supply 1 -0.09 -0.05 -0.02 -0.00 -0.00 0.02 0.05 0.09 0.03 217
2 -0.25 -0.14 -0.05 0.01 0.01 0.07 0.16 0.32 0.09 95

demand 1 -0.11 -0.07 -0.02 -0.00 -0.00 0.02 0.07 0.14 0.04 217
2 -0.19 -0.08 -0.04 -0.00 0.00 0.04 0.10 0.19 0.06 95

price 1 -0.19 -0.09 -0.04 -0.00 0.00 0.04 0.09 0.18 0.06 217
2 -0.31 -0.18 -0.08 0.00 -0.00 0.06 0.17 0.22 0.11 95

Sn

supply 1 -0.11 -0.09 -0.03 -0.01 -0.01 0.02 0.06 0.09 0.04 150
2 -0.27 -0.15 -0.04 0.01 0.01 0.07 0.13 0.26 0.09 162

demand 1 -0.17 -0.08 -0.03 -0.00 -0.00 0.03 0.08 0.13 0.05 150
2 -0.27 -0.18 -0.06 -0.00 0.00 0.07 0.17 0.34 0.11 162

price 1 -0.10 -0.05 -0.03 0.00 0.01 0.04 0.11 0.16 0.05 150
2 -0.24 -0.12 -0.05 -0.01 -0.01 0.03 0.11 0.21 0.07 162

Zn

supply 1 -0.08 -0.05 -0.02 -0.00 -0.00 0.01 0.04 0.06 0.03 196
2 -0.24 -0.10 -0.03 0.01 0.00 0.05 0.09 0.17 0.06 116

demand 1 -0.13 -0.06 -0.02 0.00 0.00 0.03 0.06 0.11 0.04 196
2 -0.27 -0.09 -0.04 0.00 -0.00 0.04 0.10 0.23 0.06 116

price 1 -0.21 -0.09 -0.04 -0.00 0.00 0.04 0.09 0.14 0.06 196
2 -0.41 -0.13 -0.06 0.01 -0.00 0.07 0.13 0.24 0.09 116

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%, 95% quantile (Q.), median (Med.), mean
(Mean), maximum (Max.), standard deviation (SD), and number ob observations (Nr. Obs.)) of the stationary, commodity-
specific variables supply, demand and price for the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn),
and zinc (Zn), being either in state one or in state two, when assuming the markets are in state two if the smoothed
probability to be in state two exceeds 50%.

5.2.3 Time-varying Spillover Effects in Commodity Markets

The analysis of the regime inferences in the industrial metal markets indicate the commodity
markets switch their regimes from state one to state two in more volatile periods. Hereby,
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the metal markets exhibit calm periods until the financialization, while inter alia the boom in
commodity prices, and the financial crisis lead to more fluctuations in the metals’ prices and
therefore, to a regime switch. However, the regimes between the markets differ, as for example
nickel changes its regimes more often than aluminum. To disentangle whether the interdepen-
dencies between the commodity markets change between the regimes, we artificially attribute
all industrial metal markets to either the calm or volatile regime and examine how shocks to the
commodity variables, or even to the exogenous variables, transmit to the commodity markets
under the calm or volatile regime.

In particular, we assume the commodity markets are all simultaneously in their calm (volatile)
state, and we calculate the corresponding regime-dependent generalized impulse response func-
tions, according to Ehrmann et al. (2003),13 based on the 68% confidence bounds, obtained by
the adjusted bootstrap procedure of Ehrmann et al. (2001),14 see Section 3.2.4.2.2. Hereby, we
shock each commodity-specific variable by one standard deviation to analyze the direct as well
as the indirect effects of this shock on the remaining variables, in the individual, commodity-
specific markets, as well as in the cross-commodity dimension. In addition, we also investigate
how shocks to the exogenous variables affect the commodity markets.

5.2.3.1 Spillover Effects within and between Commodity Markets under the Calm
Regime

First of all, we examine the spillover effects within and between the industrial metal markets
under the calm regime. To condense the GIRF results and to facilitate the comparison to the
GIRFs under the volatile regime as well as to the GIRFs of the GVAR model in Section 5.1,
we provide an overview of the results in Table 5.13. Hereby, we indicate significant positive, or
negative, responses of the column variables to a shock in the row variables by a (+), or (-).

Table 5.13: GIRF results of the MS-GVAR model based on the demand weight matrix under the calm regime
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Al

supply + - + - - +
demand + + - + -
price + + + + + + + + + + + -

Cu
supply - + - - - +
demand + + + + - + + -
price + + + + + + + + + -

Ni
supply + + + - +
demand + + + + + + -
price + + + + + + + + + + -

Pb
supply + - + + -
demand + + + - + -
price + + + + + + + + +

Sn
supply - + - + +
demand + + + - + + + - +
price + + + + + + + +

Zn
supply + - + +
demand + + + - + + - +
price + + + + + + + + + + + + +

This table displays the results of the GIRF analysis of the MS-GVAR model based on the weight matrix demand (D),
assuming each commodity market is situated in its calm regime. We analyze the response of the column variables to a shock
of the row variables supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu), nickel (Ni),
lead (Pb), tin (Sn), and zinc (Zn). Significant positive (+) or negative (-) effects on the 68%- level are displayed.

13We calculate the generalized impulse response functions via a Monte Carlo integration, described in Section
3.2.4.2. Hereby, we draw Nhist = 500 histories, and Nshock = 500 shocks.

14In particular, we draw Nboot = 500 times Tboot = 250 residuals with replacement to generate the bootstrap
sample.
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In analogy to Table 5.3 displaying the GIRF results of the GVAR model in Section 5.1, the di-
agonal of Table 5.13 shows significant positive responses for all variables, which is rather unsur-
prising, as it captures the effect of a shock to the response variable itself. Despite the concerns
of false negatives within GIRF analyses in general, see Runkle (1987), Lütkepohl (1990) and
Galesi and Lombardi (2009), we obtain numerous significant responses in the cross-commodity
dimension, underlining the importance of jointly modeling commodity markets, as discussed in
Section 5.1.

To start, we examine the spillover effects within the individual commodity markets, before we
focus on the effects in the cross-commodity dimension. In particular, the copper market is
affected most by its own shocks. Hereby, an increase in the copper demand or price leads to
a significantly rising supply, indicating the production volume of copper increases in response
to a higher demand and price. Moreover, the demand of copper (price of tin) reduces in case
of increasing supply (demand), which is rather counterintuitive, since we would expect a syn-
chronous reaction. However, the GIRF methodology investigates direct as well as indirect effects
on the attributes to an innovation of one standard deviation in a certain variable, therefore, the
observed responses may be caused by unobservable, indirect effects. In addition, the aluminum
price positively affects its demand, whereas zinc’s supply and demand significantly react to a
shock in the price of zinc. While these results indicate the MS-GVAR model reflects the spillover
effects in the individual markets of aluminum, copper, tin, and zinc, the nickel and lead mar-
ket do not exhibit any significant responses to shocks in their own supply, demand and price,
however, we observe various spillover effects in the cross-commodity dimension.

Similar to the results of the time-invariant GVAR model on annual data, presented in Section
5.1, the majority of the spillover effects is between the supply and supply, demand and demand,
as well as price and price variables, indicating a concurrent behavior between the metal markets.
While the impacts between the supply variables are less pronounced, the prices are the most
important driver, underlining the common pattern in commodity prices.

Overall, we observe strong interdependencies between the prices themselves, except for tin, the
smallest metal in terms of its trading volume, as its price does not influence and is not influenced
by the other commodity prices. However, an increase in the price of aluminum, copper, nickel,
lead, or zinc leads to rising prices of the other commodities, indicating a common behavior in
the metals’ prices. The only exception is zinc, as its price reduces in response to a positive shock
in the aluminum, copper, and nickel price. This decrease in the zinc price might be caused by a
disproportionaly increase in its supply, compared to the demand increase, also caused by rising
prices. Moreover, shocks to the copper price affect the other commodities, while the copper
price itself does not react to changes in the other prices, indicating a strong impact of copper
on the other commodity markets, which is in line with the findings of the time-invariant GVAR
model.

While the prices influence each other, supply and demand are also highly affected by rising
prices. Hereby, the positive reactions of the supply in response to price shocks can be explained
by indirect effects due to the co-production relation. A higher price of one commodity cause an
increase in its production volume, and therefore also in the production volume of a co-produced
metal. Thereafter, the demand might adjust in response to the increase in the overall supply,
leading to a demand increase. Further, the inverse relation between zinc’s and the other metals’
prices cause the positive response of demand to price shocks. In particular, a higher metal’s
price lead to a reduction in another price, and ultimately, to a higher demand.

Turning to a commodity perspective, we observe the majority of the spillover effects between
the aluminum, copper, nickel, tin, and zinc markets, whereby especially copper and tin are af-
fected by the other markets. While the GIRF results of the time-invariant GVAR model, based
on annual data from 1970 to 2019, indicate tin is least connected to the other markets, the
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time-varying MS-GVAR model detects various spillover effects from, and to, the tin market,
underlining the markets are more connected in recent times. Hereby, an increase in the demand
for copper-tin alloys, used in machine- and tool-construction, and in electrical engineering and
electronics, might explain the increased connectedness of tin with the other markets. More-
over, since the late 2000s, there is an increased interest in copper-zinc-tin-sulfides, a quaternary
semiconducting compound, for applications in thin film solar cells. In contrast, lead is least con-
nected to the other markets. While the GVAR model reflects the time-invariant dependencies
between the metal markets in the period from 1970 to 2019, the MS-GVAR model considers the
time-varying interdependencies in the period from 1995 to 2020, especially, a period where lead
was largely banned from many applications. Moreover, the dependencies are reflected by the
co-consumption relation between the metals, which probably explains that the co-production
relation between lead and zinc is not represented.

In contrast, the co-consumption of aluminum with the other metals explains the various spillover
effects from, and to the aluminum market. In particular, demand shocks lead to a significant
increase in the supply and demand of aluminum, indicating aluminum’s production and con-
sumption are highly affected by the demand of the other commodity markets, probably caused
by their common applications. Moreover, aluminum’s demand and price significantly increase in
response to price shocks, further underlining the sensitivity of the aluminum market to changes
in the other commodities.

Similar to the time-invariant analysis in Section 5.1, aluminum and copper are related most.
In particular, the increase in aluminum demand (price) in response to a positive shock to the
copper demand (price) can be explained by their common applications in electrical conduction,
automotive and aerospace industries. Further, an increase in the demand of aluminum (copper)
leads to a rising production volume, as the copper (aluminum) supply is likely to respond to
the associated increase in the demand of copper (aluminum). Moreover, higher prices, and the
associated higher production volumes, indirectly lead to an increase in the demand variables.
However, a positive shock to the aluminum supply leads to a reduction in copper supply, which
might be explained by the indirect effect of substitution of copper by aluminum, e.g. in electrics,
as the oversupply in aluminum might be used for copper’s applications and therefore, reduces
the production volume of copper.

In addition, the price of copper reacts significantly to shocks in the production volume of the
other commodities, whereas changes in the metals’ demand lead to a higher interest in copper
due to common applications, and therefore to an increase in copper supply. Moreover, a positive
shock to prices leads to an increase in copper’s supply and demand, suggesting the production
volume as well as the consumption of copper increases in periods of rising prices. However, the
copper price does not react to price changes, whereas it affects the other commodity prices,
indicating a strong impact of copper on the other commodity markets, since copper is one of the
largest metal in terms of the trading volume. Moreover, indirect effects in the GIRF analysis and
the balance between its supply and demand increase might compensate the reaction of copper’s
price.

While the lead demand increases in response to demand shocks, supply shocks negatively affect
the supply of nickel, whereas rising prices lead to increasing demand (and price) of nickel.
Moreover, we observe various negative spillover effects from demand variables to the prices of
nickel and tin, which are rather counterintuitive, since we would expect a synchronous reaction of
prices on demand shocks. However, unobservable, indirect effects, which are also reflected in the
GIRF analysis, might cause these results. Further, a positive supply shock reduces tin’s price,
while the supply of tin increases in response to rising prices, indicating the production volume
increases, probably due to higher demand and price expectations for tin. Moreover, supply
shocks positively affect zinc’s supply, whereas rising prices increase the supply and demand of
zinc simultaneously.
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Comparing the spillover effects under the calm regime in the monthly analysis with the time-
invariant responses in the annual analysis of the GVAR model, displayed in Table 5.3, we observe
different spillover effects within the individual commodity markets. Hereby, the time-invariant
model detects more interactions between supply and demand, whereas the time-varying model
indicates more spillover effects from prices to the fundamentals. The differences in the spillover
effects within the markets might be explained by the different time period under consideration,
as the GVAR model examines a longer period, in particular, before the financialization, and
the resulting stronger connection between the fundamentals. Furthermore, there are various
spillover effects between the commodity markets under the calm regime, which are not sig-
nificant in the annual, time-invariant model, possibly caused by the considered horizon, as in
the annual analysis, short-term fluctuations may be aggregated out. In particular, aluminum
reacts significantly to shocks, while changes in the nickel, lead and zinc price affect the other
commodities. Moreover, the tin market, which is least connected in the GVAR model, affects
and is affected by the other commodities in the MS-GVAR model, underlining an increase in
the interdependencies between the markets. However, the numerous significant responses in the
cross-commodity dimension, observed in both models, underline the importance of jointly mod-
eling commodity markets. Hereby, the fundamentals, especially demand, also affect, and are
affected by, commodity prices. Moreover, we observe spillover effects between the commodity
prices, which are even more pronounced in the time-varying MS-GVAR model. The strong con-
nections between aluminum and copper in the time-invariant analysis can also be confirmed in
the time-varying analysis, however, the connection between these two markets with the remain-
ing commodities is stronger in the MS-GVAR model, probably due to the stronger influence of
the post-financialization period.

5.2.3.2 Differences in the Spillover Effects between Calm and Volatile Regimes

The presented generalized impulse response functions in Table 5.13 indicate the spillover effects
within and between the commodity markets under the assumption each market is situated in
its calm regime. However, we are interested in whether and how the impact of shocks changes
over time. Therefore, we estimate the spillover effects under the volatile regime and examine
the differences in the corresponding results, see Table 5.13 and Table 5.14 for the effects under
the calm and volatile regime, respectively. In general, the shock size is larger under the volatile
regime due to the higher variances in the variables, which might lead to stronger responses.
However, the bootstrap bands are wider at the same time, which is why the results do not differ
across the states in terms of significance. In particular, we do not observe any differences in the
significant responses between the two regimes, indicating a shock to one variable either leads to
a significant response or not, independent of the underlying regime.

However, the magnitude of the spillover effects differs between the states. Hereby, we apply
the one-sided Wilcoxon-test15 on the absolute value of the median GIRFs, to examine whether
the responses of a shock to a variable is stronger under the volatile regime, compared to the
calm regime in absolute terms, see Table 5.15 for the test statistics. In particular, apart from
shocks to the aluminum and nickel price as well as to the lead and tin market, the responses are
significantly stronger under the volatile regime, at least at the 10% level, indicating the spillover
effects are stronger in more volatile periods. Thereby, shocks to the aluminum, copper, nickel,
and zinc market cause significantly stronger reactions in the commodity markets, especially the
prices are affected to a larger extent.

15Since the GIRFs do not follow a normal distribution, we apply the non-parametric Wilcoxon signed rank
test (Wilcoxon) test instead of the t-test. However, the results of the t-test are similar.
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Table 5.14: GIRF results of the MS-GVAR model based on the demand weight matrix under the volatile regime
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Al
supply + - + - - +
demand + + - + -
price + + + + + + + + + + + -

Cu
supply - + - - - +
demand + + + + - + + -
price + + + + + + + + + -

Ni
supply + + + - +
demand + + + + + + -
price + + + + + + + + + + -

Pb
supply + - + + -
demand + + + - + -
price + + + + + + + + +

Sn
supply - + - + +
demand + + + - + + + - +
price + + + + + + + +

Zn
supply + - + +
demand + + + - + + - +
price + + + + + + + + + + + + +

This table displays the results of the GIRF analysis of the MS-GVAR model based on the weight matrix demand (D),
assuming each commodity market is situated in its volatile regime. We analyze the response of the column variables
to a shock of the row variables supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn). Significant positive (+) or negative (-) effects on the 68%- level are displayed.

Table 5.15: Results of the Wilcoxon-test for the assessment of differences in the magnitude of spillover effects under the
calm and volatile regime
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Al
supply 81** 91***91*** 89** 86** 91*** 74* 91***91*** 85** 88** 81** 91***87** 91*** 91***87** 89**
demand 91***82** 81** 91***85** 70* 91***77* 86** 89** 90***80** 91***71* 87** 88** 88** 91***
price 25 15 15 13 3 23 18 20 15 28 4 42 13 5 7 24 9 20

Cu
supply 38 53 52 71* 62 73* 41 66. 64. 58 67. 36 51 34 66. 64. 66. 55
demand 74* 70* 66. 71* 49 59 65. 62 52 69. 86** 51 69. 71* 45 59 47 51
price 90***87** 91*** 91***88** 91*** 91***91***91*** 82** 90***91*** 89** 79** 72* 73* 85** 84**

Ni
supply 89** 88** 91*** 62 83** 73* 91***89** 87** 78* 78* 57 91***45 91*** 84** 87** 84**
demand 59 61 61 71* 72* 59 64. 65. 70* 67. 80** 41 91***68. 53 70* 72* 73*
price 86** 68. 63 84** 42 45 84** 60 74* 53 51 79** 52 45 64. 48 71* 79**

Pb
supply 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0
demand 10 7 0 0 0 0 0 0 0 0 0 0 1 1 0 7 0 7
price 0 1 18 3 0 2 4 0 0 1 2 0 0 0 0 0 0 11

Sn
supply 29 19 31 64. 0 4 36 5 14 18 22 41 13 5 20 46 12 30
demand 28 11 39 55 46 52 42 51 29 58 20 24 26 29 31 33 34 65.
price 29 37 24 34 12 38 17 31 2 18 29 31 36 25 28 33 28 47

Zn
supply 91***91***81** 81** 91***80** 87** 85** 74* 84** 86** 91*** 79** 73* 91*** 82** 86** 83**
demand 91***84** 91*** 82** 91***91*** 89** 89** 74* 89** 88** 81** 67. 83** 82** 86** 91***81**
price 78* 66. 78* 80** 79** 69. 85** 77* 89** 63 72* 76* 88** 72* 60 83** 84** 83**

This table displays the statistics of the Wilcoxon-test with corresponding significance level (0.1% (***), 1% (**), 5% (*)
and 10% (.)), to assess whether the magnitude of the spillover effects are stronger in absolute terms, under the volatile
regime than under the calm regime. Hereby, we investigate the differences in the spillover effects of the column variables
to shocks in the row variables (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu), nickel (Ni),
lead (Pb), tin (Sn), and zinc (Zn).

Due to the stronger reactions in the commodity markets, the spillover effects may lead to higher
risks in volatile periods, compared to calm periods. For that reason, we further investigate
the conditional value at risk (CoVaR)16 of the variables, a risk measure which represents the

16As all original variables were non-stationary, we base the entire analysis on the logarithmic return data and
hence, also the conditional value at risk values are based on logarithmic returns.
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expected return in the worst 10% of cases. In particular, the conditional value at risk indicates
the average maximum increase in the variables and therefore, provides an indication of the
increases in the commodity markets, especially the price, in response to shocks. In this context,
we focus on the price risk and graphically display the difference between the conditional value at
risk values under the volatile and calm regime of the prices for shocks to each variable in Figure
5.6. The corresponding differences of the conditional value at risk of the supply and demand
variables are presented in Figure D.1 and Figure D.2.

Figure 5.6: Differences in the conditional value at risk of the spillover effects on the price variables in the
MS-GVAR model under the volatile vs. the calm regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni S supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity prices of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) under the volatile vs. the calm regime.

Overall, we observe shocks to the aluminum, copper, nickel and zinc market cause an increased
price risk under the volatile regime, indicating the prices react stronger to changes in the other
markets in periods of more fluctuations. Moreover, the supply and demand variables exhibit
higher risks in response to these spillover effects. However, the conditional value at risk is
higher under the calm period in response to changes in the lead and tin market, confirming the
reactions and the corresponding risks are not stronger in the volatile periods, in line with the
Wilcoxon-test results.

Although the comparison of the significance of the GIRFs under the calm and volatile regime
indicate the spillover effects equal under the calm and volatile regime, the impact of fundamen-
tals as well as the effects between prices are stronger in the volatile regime, as the magnitude
is generally larger, implying stronger spillover effects. These larger effects in terms of the mag-
nitude cause higher risks of the spillover effects for shocks in the aluminum, copper, nickel and
zinc markets under the volatile regime.

Therefore, the commodity markets react stronger to any changes in the market in periods of
high fluctuations, whereas under the calm period they only slightly respond to shocks. This
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finding underlines the stability of the markets under the calm regime, whereas the responses
are more pronounced in the volatile regime, suggesting the risk is even higher under the volatile
regime, due to possible reactions in response to shocks in other commodity markets. However,
while the magnitude of the responses is higher for almost all shocks under the volatile regime,
the significance does not change, indicating neither the impact of fundamentals nor spillover
effects between prices affect commodity markets more in calm or volatile regime. In contrast,
the markets react more sensitive to both, shocks in the supply and demand as well as to prices,
under the volatile regime.

5.2.3.3 Global Spillover Effects to Commodity Markets

Besides the spillover effects within and between the commodity markets, we also examine how
global shocks affect the commodity markets under the calm and volatile regime in the MS-GVAR
model. In particular, the responses of the commodity variables to innovations in the global
economic activity, the exchange rate and the interest rate can be analyzed, similar to Section
5.1.2. However, due to the observed heteroscedasticity in the monthly exogenous variables
and in line with the MS-GVAR model, we model the exogenous variables, world industrial
production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR), via a MSH(2)-
VAR(1) model, enabling for a time-varying covariance matrix, in contrast to the time-invariant
VAR model in Section 5.1.17

Hereby, the transition probabilities in Table 5.16 indicate a high probability to remain in the
current state, especially, in the first state. Moreover, similar to the commodity-specific regime
inferences in Figure 5.5, the regime inference presented in Figure 5.7 suggests the exogenous
variables switch their regime to state two during the financial crisis, the European debt crisis
as well as the onset of the Covid-19 pandemic,18 each times of higher fluctuations, which is why
we refer to state two as the volatile regime, whereas state one represents the calm periods. The
distinct descriptive statistics for each regime in Table 5.17, where we assume the economy to be
located either in state one or state two, underlines the variables, especially the Federal Funds
Effective Rate, exhibit a higher volatility in state two.

Table 5.16: Transition probability matrices for the individual MS-VAR model of the exogenous variables

Exogenous variables
0.97 0.03
0.30 0.70

This table displays the transition probability matrix of the individual MS-VAR model of the exogenous
variables world industrial production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate
(FFR).

Since the MS-VAR model of the exogenous variables also classifies the economy into calm and
volatile periods, we examine in the following the impacts of global shocks on the commodity
markets under the assumption the economy, as well as the commodity markets, are either under
the calm or volatile regime and display the corresponding GIRF results in Table 5.18, whereby
we first focus on the results derived under the calm regime.

17The results of the Durbin-Watson (DW) test indicate the MSH(2)-VAR(1) model of the exogenous variables
does not suffer from autocorrelation, see Table D.2, therefore, the lag length of one is feasible from a statistical
point of view.

18The extreme drop in the world industrial production and Federal Funds Effective Rate in response to the
onset of the Covid-19 pandemic might affect the results of the MS-GVAR model and lead to biased impacts.
Therefore, we examine whether the MS-GVAR model and the corresponding MS-VAR model of the exogenous
variables change if these extreme values are replaced by a zero return. However, the results are comparable which
is why we base our analysis on the original data.
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Figure 5.7: Regime inferences of the exogenous variables

(a) IP (b) FX (c) FFR

These figures show the logarithmic returns of the exogenous variables world industrial production (IP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR), over the entire sample period from January 1995 to
December 2020. Shaded areas indicate the smoothed probability to be in state one exceeds 50%, hence, it is more
likely for the exogenous variables to be in state one at these points in time.

Table 5.17: Descriptive statistics of the exogenous variables based on the regime inferences of the MS-VAR model
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IP 1 -0.04 -0.03 -0.01 -0.00 0.00 0.01 0.03 0.06 0.02 285.00
2 -0.13 -0.05 -0.02 0.00 -0.00 0.01 0.03 0.07 0.04 27.00

FX 1 -0.05 -0.04 -0.01 0.00 -0.00 0.01 0.03 0.05 0.02 285.00
2 -0.07 -0.05 -0.02 0.00 0.00 0.02 0.06 0.07 0.03 27.00

FFR 1 -0.25 -0.12 -0.02 0.01 0.02 0.05 0.16 0.35 0.08 285.00
2 -2.48 -0.89 -0.28 -0.09 -0.18 0.17 0.41 0.69 0.60 27.00

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%,
95% quantile (Q.), median (Med.), mean (Mean), maximum (Max.), standard
deviation (SD), and number ob observations (Nr. Obs.)) of the stationary,
exogenous variables world industrial production (IP), U.S. dollar index (FX),
and Federal Funds Effective Rate (FFR), being either in state one or in state
two, when assuming the markets are in state two if the smoothed probability to
be in state two exceeds 50%.

Overall, similar to the analysis of the GVAR model, we observe the shocks to the macroeconomic
variables affect each commodity market to a similar extent, however, the impact differ, indicating
the relation between the economy and the commodity markets changed between the different
considered time periods. First of all, a global demand shock, represented by a positive shock to
the world industrial production cause decreasing commodity markets, the only exceptions are
tin and zinc supply as well as copper and tin demand which increase. The observed decline in
the markets is rather counterintuitive, since we would expect a synchronous reaction, similar to
the positive responses to the world gross domestic product shock in the GVAR model. While
the world industrial production and the commodity markets are positively correlated, the lagged
world industrial production exhibits a negative correlation with the markets, probably caused by
its negative autocorrelation, as the world industrial production fluctuates around its mean, see
Figure C.15. Due to the recursive calculation of the GIRFs, the lagged exogenous variables also
affect the commodity markets, and probably their effects predominate, compared to the positive
contemporaneous relation. In addition, indirect effects, also reflected in the GIRF analysis, may
intensify the negative reactions of the commodity markets, as an increase in the global demand
cause rising interest rates, which lead to decreasing demand and ultimately declining commodity
prices.

Moreover, an appreciation of the U.S. dollar, represented by a positive shock to the U.S. dollar
index, positively affects the commodity markets, contrary to the negative reaction observed
in the annual long-term analysis of the GVAR model. In line with the results of the GVAR
model, nickel’s, lead’s, and zinc’s demand as well as nickel’s price decline probably caused by
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the predominate reduction in the demand for consumers holding other currencies, for which
a stronger U.S. dollar implies the metals, quoted in U.S. dollars, become more expensive. In
contrast, aluminum, copper, and tin markets increase in response to an appreciation of the U.S.
dollar. Hereby, the higher demand for commodities of consumers holding the U.S. dollar probably
predominates the reduction in demand for consumers holding other currencies, finally, causing
rising markets. The mixed results between the time-invariant and time-varying analysis might be
explained by the different considered time horizon, indicating the relation between the economy
and the commodity markets changed over time. Since the MS-GVAR model only reflects the
more recent times, with more financialized commodity markets, the demand for consumers
holding the U.S. dollar probably predominates the foreign demand, at least for aluminum and
copper, the largest metal markets in terms of the trading volume.

Besides the effects of global demand and exchange rate, we also investigate how changes in
the monetary policy affect commodity markets. Hereby, a contrarian monetary policy, reflected
via a positive interest rate shock, cause increasing supply for copper and nickel, decreasing
demand for all commodities, as well as decreasing prices for aluminum, copper and nickel. These
inverse spillover effects underline the theory of Frankel (2008), who argues the cost of capital
for holding a commodity should decrease and the demand for commodities as an alternative
asset class should increase in response to an expansionary monetary policy. In contrast, the
positive reaction of the lead, tin and zinc price are in line with the findings of the GVAR model
as well as the studies of Hammoudeh et al. (2015), and Schischke and Rathgeber (2023). These
heterogeneous results further underline the commodity markets changed over time, as the GVAR
model, reflecting the annual relations in the period from 1970 to 2019, observes rising commodity
markets, whereas the MS-GVAR model, representing the monthly relations in the period from
1995 to 2020, detects a synchronous behavior in the lead, tin, and zinc price, probably caused
by a disproportionate reduction in the supply, and an inverse reaction in the aluminum, copper
and nickel market.

Table 5.18: GIRF results of the MS-GVAR model for shocks to the exogenous variables
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IP - - - - + - - - - - - - + + - + - -
FX + + + + + + + - - + - + + + + + - +
FFR - - - + - - + - - - - + - - + - - +

vo
la

ti
le IP - - - - + - - - - - - - + + - + - -

FX + + + + + + + - - + - + + + + + - +
FFR - - - + - - + - - - - + - - + - - +

This table displays the results of the GIRF analysis of the MS-GVAR model based on the weight matrix demand (D),
assuming each commodity market as well as the exogenous variables are situated in their calm or volatile regime. We
analyze the response of the column variables, supply (supply), demand (demand) and price (price) of the commodities
aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), to a shock of the row variables world industrial
production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR), where significant positive (+) or negative
(-) effects are displayed, based on the 68%- level.

Comparing the impacts of the global shocks under the calm and volatile regime in Table 5.18,
we do not detect any differences in the significance of the effects, similar to the results of
the endogenous shocks presented in Section 5.2.3.2. While the Wilcoxon test above underline
the spillover effects within and between commodity markets are generally more pronounced in
volatile periods, the one-sided Wilcoxon test applied on the GIRFs of the exogenous shocks
indicates the absolute magnitude of the spillover effects is comparable across the regimes, see
Table 5.19. In particular, the global shocks highly affect commodity markets in calm as well as
volatile periods.
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Moreover, we examine how the risk of increasing prices differs between calm and volatile peri-
ods. Therefore, we calculate the conditional value at risk (CoVaR) under both regimes, which
indicates the expected increase in the markets in the worst 10% of cases in response to a global
shock. The differences in the conditional value at risk values under the volatile and calm regime
are displayed in Figure D.3. Hereby, we observe mixed results. While the risk of increasing
variables is in the short-term particularly stronger under the volatile regime, the overall risk of
increases in the commodity markets is comparable under both regimes, underlining the economy
affect the commodity markets to a similar extent, in calm as well as volatile periods.

Overall, although the comparison of the significant GIRFs of the endogenous as well as exoge-
nous variables under the calm and volatile regime indicate the spillover effects coincide in both
regimes, the impact of fundamentals, as well as the effects between the markets, especially be-
tween prices, are stronger in the volatile regime, as the magnitude is generally larger, implying
stronger spillover effects and ultimately higher risks.
Table 5.19: Results of the Wilcoxon-test for the assessment of differences in the magnitude of spillover effects from the
exogenous variables to the commodity markets of the MS-GVAR model under the calm and volatile regime
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IP 27 18 78** 78** 23 68* 54 20 36 23 9 0 47 34 0 9 9 0
FX 32 21 59. 55 26 36 38 12 43 32 19 5 43 33 32 29 28 0
FFR 21 22 25 54 31 32 34 36 41 12 29 7 33 46 37 28 22 8

This table displays the statistics of the Wilcoxon-test with corresponding significance level (0.1% (***), 1% (**), 5% (*)
and 10% (.)), to assess whether the magnitude of the spillover effects are stronger in absolute terms, under the volatile
regime than under the calm regime. Hereby, we investigate the differences in the spillover effects of the column variables
supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn),
and zinc (Zn) to shocks in the row variables world industrial production (IP), U.S. dollar index (FX), and Federal Funds
Effective Rate (FFR).

5.2.4 Out-of-sample Forecast Performance of the (time-varying) Commodity
Market Models

To underline the importance of a time-varying analysis, we assess the out-of-sample forecast
performance of the MS-GVAR model and compare our results against the GVAR model as
benchmark model. Therefore, we forecast the commodity-specific variables with a rolling window
approach and compare the predictability using the test of Clark and West (2007) for nested
models.19 Hereby, we split our dataset into a rolling in-sample window covering J/(I +J) ≈ 3/4
observations of the entire sample, starting with data from January 1995 to December 2013, and
an out-of-sample window covering the period from January 2014 to December 2020.20 The model
selection of the MS-GVAR model, based on the in-sample data, indicates the MSH(2)-VAR(1)
and MSH(3)-VAR(1) model, which allows for regime-switches in the covariance matrix, perform
best. For simplicity and for consistence with the MS-GVAR model in Section 3.2.1.6, we apply
the MSH(2)-VAR(1) model throughout the entire analysis.

For each step in time of the out-of-sample window, we estimate the (MS-)GVAR model based
on the in-sample data and forecast all commodities’ monthly variables one-step ahead.21 Thus,
we estimate and solve the (MS-)GVAR model recursively, whereby we re-evaluate the regime-
probabilities in each step in the out-of-sample period.

19The MS-GVAR model nests the GVAR model in a natural way, as the only difference is in the time-varying
parameters. For a better comparability of the models, we include an intercept in the GVAR model for the
predictions, contrary to the time-invariant models in Section 5.1, and Section 5.3.

20Please refer to Appendix D.2.3 for more detailed information on the models.
21Hereby, we include the observed exogenous variables, instead of predicting the corresponding values, such

that the predictions are not biased by the forecasts of the exogenous variables.
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Table 5.20: Results of the model selection procedure for the MS-GVAR model in the in-sample period

Nr.
States

Nr.
lags

MSI MSIH MSH MSA MSAH

2 1 1857.72 1819.43 1811.27 1975.10 1957.00
2 1880.21 1847.98 1828.52 2110.88 2041.71

3 1 1859.84 1831.94 1811.11 2104.18 2078.70
2 1888.51 1821.18 1813.98 2353.61 2253.04

This table displays the model selection results for the MS-GVAR model in the
in-sample period, based on the information criterion of Hannan and Quinn
(1979), proposed in Section 3.2.1.6. Hereby, the MS-GVAR model is estimated
using different number of states (Nr. States), lag lengths (Nr. lags), as well
as specifications (MSI, MSIH, MSH, MSA, MSAH).

The results of the Clark and West (2007) test are displayed in Table 5.21. Hereby, we compare the
predictability of each commodity-specific variable. Overall, the MS-GVAR model significantly
outperforms the time-invariant GVAR model in 6 of the 18 variables at the 10% significance
level. In particular, the MS-GVAR model outperforms the predictions of the aluminum, copper,
nickel, and zinc price, whereas the time-varying analysis barely improves the predictions of the
supply and demand variables.

Table 5.21: Results of the out-of-sample Clark and West (2007) test
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0.12 -0.81 1.38. 0.72 1.27 1.43. 0.56 1.58. 1.30. 2.18* 0.70 0.75 0.06 -0.01 -0.01 0.57 1.22 2.31*

This table displays the out-of-sample forecast performance of the MS-GVAR model compared to the GVAR model, based
on the statistic of the Clark and West (2007) test with corresponding significance level (0.1% (***), 1% (**), 5% (*) and
10% (.)). Hereby, the forecasts are estimated for the out-of-sample window from January 2014 to December 2020 for each
individual variable supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Figure 5.8 shows a comparison between the observed prices in the out-of-sample period as well as
the estimated prices from the (MS-)GVAR model. The corresponding plots for the supply and
demand variables are displayed in Figure D.12 and Figure D.13. While the predicted prices of
the MS-GVAR model follow the direction and magnitude of the fluctuations in the actual prices,
with a brief delay, the GVAR model is not able to reflect the price movements. However, the
GVAR model slightly underestimates the fluctuations in the supply and demand variables, but
reflects the movements better compared to its price forecasts. Overall, the results indicate the
time-varying analysis reproduces the fluctuations in the variables, especially for the commodity
prices, leading to an improved predictability.

To highlight the MS-GVAR model is able to forecast commodity prices, but also represents the
co-movement between the prices, we compare the predicted price correlations of the (MS-)GVAR
model with the market observed dependencies, similar to the correlation analysis in Section
5.1. Therefore, we use the predicted prices of the (MS-)GVAR model, displayed in Figure 5.8,
calculate the corresponding Pearson correlation matrices and compare them with the observed
correlations in the period from January 2014 to December 2020, see Table 5.22, Table 5.23, and
Table 5.24.22 Hereby, we recognize the GVAR model overestimates the true correlations. This

22In contrast to the correlation analysis of the GVAR model in Section 5.1.2.2, we focus on the monthly
correlations in the period from 2014 to 2020, instead of the annual correlations in the period from 2010 to 2019.
Overall, the observed correlations differ, as the dependencies between the metal prices change over time, further
highlighting the importance of a time-varying analysis. In general, we notice the metal prices are less dependent on
each other in the more recent period, indicating the common pattern decreased at the end of the 2010s. However,
the declining prices in 2015 in contrast to the rising zinc price caused by supply problems no longer distort the
results of the monthly analysis as much, which is why zinc observes a positive correlation with all other prices.
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Figure 5.8: Observed and predicted prices in the out-of-sample period

(a) Al price (b) Cu price (c) Ni price

(d) Pb price (e) Sn price (f) Zn price

These figures compare the observed prices (price) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn),
and zinc (Zn) in the out-of-sample period from January 2014 to December 2020, indicated by the black line, with
the estimated prices of the GVAR model and the MS-GVAR model.

might be caused by the high correlations in the period until 2013, whereas the decrease in the
dependencies around 2015, see Figure 1.1, is not reflected by the time-invariant analysis. While
the slowdown in Chinese demand and the oil price drop cause generally declining metal prices,
aluminum’s and especially zinc’s price increased due to demand and supply concerns, resulting
in divergent price behavior. In contrast, the MS-GVAR model is able to reflect the dependencies
between the prices exceptionally well, with differences in the correlations for the predicted and
observed prices being smaller than 5%, indicating the time-varying analysis takes into account
the change in the correlation structure. Hereby, the predictions of the MS-GVAR model follow
the direction and magnitude of the fluctuations in the observed prices with a delay, see Figure
5.8, but represent the correlation structure.

Overall, the results indicate the MS-GVAR model reproduces the fluctuations as well as the
relations between the metal prices. Moreover, the time-varying properties allow for an in-
depth analysis of the commodity market structure. In particular, the spillover effects and the
associated risks can be analyzed in more detail. Hereby, the application of the MS-GVAR model
on the industrial metal markets reveals the spillover effects are stronger during volatile periods,
implying higher risks. Our results emphasize the importance of time-varying analyses in the
context of risk assessments. Especially the transformation of the energy system, to achieve
carbon neutrality, will affect commodity markets, which is why fluctuations should be taken
into account in the risk analysis.
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Table 5.22: Correlation matrix of the observed spot prices

Al Cu Ni Pb Sn Zn
Al 1.00 0.48 0.46 0.46 0.21 0.51
Cu 0.48 1.00 0.47 0.50 0.25 0.63
Ni 0.46 0.47 1.00 0.41 0.23 0.43
Pb 0.46 0.50 0.41 1.00 0.13 0.60
Sn 0.21 0.25 0.23 0.13 1.00 0.24
Zn 0.51 0.63 0.43 0.60 0.24 1.00

This table displays the correlation matrix of the observed
spot prices, between 2014 and 2020.

Table 5.23: Correlation matrix of predicted prices based on
the GVAR model

Al Cu Ni Pb Sn Zn
Al 1.00 0.77 0.70 0.81 0.63 0.83
Cu 0.77 1.00 0.71 0.95 0.85 0.89
Ni 0.70 0.71 1.00 0.70 0.67 0.81
Pb 0.81 0.95 0.70 1.00 0.82 0.87
Sn 0.63 0.85 0.67 0.82 1.00 0.83
Zn 0.83 0.89 0.81 0.87 0.83 1.00

This table displays the correlation matrix of the pre-
dicted prices, using the GVAR framework, in an out-
of-sample rolling window forecast from 2014 to 2020.

Table 5.24: Correlation matrix of predicted prices based on
the MS-GVAR model

Al Cu Ni Pb Sn Zn
Al 1.00 0.48 0.45 0.45 0.22 0.49
Cu 0.48 1.00 0.44 0.49 0.24 0.61
Ni 0.45 0.44 1.00 0.39 0.23 0.43
Pb 0.45 0.49 0.39 1.00 0.14 0.59
Sn 0.22 0.24 0.23 0.14 1.00 0.23
Zn 0.49 0.61 0.43 0.59 0.23 1.00

This table displays the correlation matrix of the pre-
dicted prices, using the MS-GVAR framework, in an
out-of-sample rolling window forecast from 2014 to
2020.

5.3 Scarcity Risk of the German Energiewende23

The objective of this thesis is the risk analysis and comparison of the resource requirements
for the German energy transition in regard to their availability, respectively their scarcity.
Therefore, we investigate four potential transformation paths, generated to optimally reduce
Germany’s CO2 emissions by 95% in 2050 compared to 1990, with regards to their resource
scarcity risk. Hereby, each path represents a resource-demanding project, requiring an enor-
mous amount of metals in its realization. In particular, we apply the proposed risk assessment
framework, introduced in Section 3.3, taking into account the substitutability of commodities,
the future required resource amounts of the project as well as the commodity market structure.
The general idea of the developed framework is based on the supply and demand equilibrium,
which is why we interpret a commodity’s price as scarcity indicator. First, we calculate the
risk of each considered commodity to become scarce. Subsequently, we aggregate the individ-
ual, commodity-specific risk measures on path level, enabling the comparison of the alternative
transformation pathways of the German Energiewende regarding their resource scarcity risk.

Within the first step, we calculate the individual probability of scarcity (PS) per commod-
ity. Hereby, we either use the (MS-)GVAR framework, generally introduced in Section 3.1
(Section 3.2), or simple logistic regression models. While the (MS-)GVAR framework models
the commodity markets and their interrelations in a holistic way under consideration of their
prospective relations induced by the resource requirements of the transformation paths of the
German Energiewende, the logistic regression model enables for commodity-specific price influ-
encing factors. Subsequently, we determine the commodity-specific risk measures, combining

23Parts of this section are published in the paper "Sustainable energy transition and its demand for scarce
resources: Insights into the German Energiewende through a new risk assessment framework", Renewable and
Sustainable Energy Reviews 176, 2023, co-authored by Patric Papenfuß, Max Brem, Paul Kurz, and Andreas
Rathgeber.
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the individual probability of scarcity with an appropriate substitutability score as well as the
required resource demands. Finally, we aggregate the individual risk measures to the resulting
expected loss due to scarcity (ES) on project level and compare the potential transformation
paths of the German Energiewende with regards to their resource scarcity risk.

5.3.1 Commodity-specific Probability of Scarcity

In order to calculate the individual probability of scarcity per commodity, we define an appro-
priate price threshold, which, once exceeded, determines the scarcity of the commodity and,
therefore, classifies the commodities into scarce and non-scarce states. In our case, we set this
threshold statistically, based on annual price data from 2010 to 2019, representing the commod-
ity prices of the previous decade, via the one-sigma approach displayed in Equation 3.159.24

Table 5.25: Commodity price threshold

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
$/t 901638 2187 53318 7951 608299 647207 111979 81920 19813 2294 50831971 23155 2655

This table displays the price threshold for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), dysprosium
(Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn) in U.S.$/t,
derived from the one-sigma approach in Equation 3.159, based on annual price data in the period from 2010 to 2019.

With help of the resulting threshold values given in Table 5.25, we calculate the commodity-
specific probability of scarcity, using either the (MS-)GVAR framework or the logistic regression
model. Therefore, we first present the results of the probability of scarcity derived from the
estimated (MS-)GVAR framework, subsequently, we display the two-step model selection for
the logistic regression models as well as the corresponding probability of scarcity values.

5.3.1.1 Probability of Scarcity derived from the (MS-)GVAR Model

While we introduce the (MS-)GVAR methodology exemplary in Section 5.1 (Section 5.2), in-
vestigating the (time-varying) spillover effects between the industrial metal markets, we predict
the commodity prices under consideration of their prospective relations induced by the German
Energiewende to get the individual probabilities of scarcity per commodity. Hereby, we apply
the GVAR25 framework on annual data from 1970 to 2019 and focus on the industrial metals, as
well as on the crucial commodities defined by Bastian et al. (2019)26, whereas we estimate the
MS-GVAR27 model only for the industrial metals, using monthly data from 1995 to 2019, due
to data limitations. Subsequently, we forecast the commodity prices under several, predefined
scenarios of the endogenous as well as exogenous variables to derive individual probabilities of
scarcity per commodity. Thereby, we get the probabilities of scarcity using a bootstrapping pro-
cedure, to obtain the probability distribution of the prices, as well as the definition of quantiles,
see Section 3.3.1.

24In general, the supply of commodities is rather inelastic in the short-term, since the launch of a new mining
project takes on average one decade. Therefore, we use data of the previous ten years to approximate the actual
market situation. However, we examine to what extent the results remain valid if the sample period is reduced
or enlarged, see the robustness analyses in Section 5.3.4.

25Please refer to Appendix D.3.1.1 for detailed information about the models. In particular, we include the
exogenous variables world gross domestic product (GDP), U.S. dollar index (FX), and Federal Funds Effective
Rate (FFR) to account for the common impact of the economy on prices.

26In case of dysprosium and neodymium, we approximate their supply and demand data by the relative supply
and demand of rare earths metals, provided by U.S. Geological Survey (2018), which is why we have to exclude
these two metals for the risk assessment via the (MS-)GVAR framework to avoid multicollinearity.

27Please refer to Appendix D.3.1.2 for detailed information about the models. In particular, we include the
exogenous variables world industrial production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate
(FFR) to account for the common impact of the economy on prices.
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The exemplary application of the (MS-)GVAR framework in Section 5.1 (Section 5.2) reveals
strong spillover effects between the commodity-specific demand variables, indicating the strong
impact of demand and the common applications of the metals, as the co-consumption leads to a
concurrent behavior in the demand and ultimately in the commodity markets. As we compare
the actual resource demands of several transformation pathways, the correlation of the future
annual resource requirements per path might reflect best the corresponding co-consumption re-
lation in the context of the German Energiewende, see Section 4.4.4. Therefore, we estimate
the (MS-)GVAR model four times, using the weight matrices displayed in Table 4.27, Table
4.28, Table 4.29 and Table 4.30 (Table 4.31, Table 4.32, Table 4.33 and Table 4.34), represent-
ing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − PER, and REMod − UNA paths, respectively. Detailed information on the models
as well as the spillover effects can be found in Appendix D.3.1.

Due to data limitations, we estimate each GVAR model with one lag for the endogenous, ex-
ternal as well as exogenous variables, and without intercept. Hereby, the Durbin-Watson (DW)
test implies all variables in the GVAR models, except lithium supply, do not exhibit any auto-
correlation at the 5% significance level. Moreover, neither model suffers from heteroscedasticity
nor structural breaks at the 5% significance level, except the indium market, indicating the
time-invariant model is not able to fully display the time-varying relationship between indium’s
variables, demanding for a time-dependent model, see Table D.9.28

In case of the MS-GVAR model, we apply the model selection, see Section D.3.1.2.1, for each
model using the different weight matrices, representing the four energy transition paths, sep-
arately. Hereby, we conclude, similar to the exemplary application of the MS-GVAR model
based on the demand weight matrix in Section 5.2, the MSH(2)-VAR(1) models perform best,
see Section D.3.1.2.1. Therefore, we estimate the MS-GVAR models with two states, one lag, a
regime-dependent covariance matrix, but a regime-invariant intercept as well as regime-invariant
parameters corresponding to the endogenous and exogenous variables. In particular, the two
states enable to capture calm as well as volatile periods, while the time-varying covariance matrix
solves the problem of heteroscedasticity, observed in the time-invariant models.

As the (MS-)GVAR models are based on stationary variables, we actually forecast the logarith-
mic returns of prices and calculate the prediction of the actual price under the assumption of
an initial price level. In particular, since we specifically consider the resource requirements of
the period from 2020 to 2050, we use the average price level of 2019 and the logarithmic returns
forecasts29 to predict an artificial price under several scenarios that we compare with the thresh-
old price, see Table 5.26. For a sensitivity analysis, we also examine the average price of the
previous decade as initial basis level, which coincides to the considered data used to calculate
the threshold price.

While the prices of lithium and zinc are higher in the year 2019 compared to the average price
level of the previous decade, the average prices of the other commodities are higher than the
price observed in 2019, indicating the commodity prices declined at the end of the decade, see
Appendix C.2.3. Hereby, the average indium and platinum prices are a multiple of their price
in 2019, due to the decrease in their prices in mid 2010s, probably caused by the slowdown in
Chinese demand and the sharp oil price drop. Overall, the initial price levels do not exceed
their threshold prices, based on the one-sigma approach, using price data from 2010 to 2019.

28Overall, autocorrelated (or heteroscedastic) residuals might lead to too narrow confidence intervals, obtained
by the bootstrap procedure, and therefore, the GVAR model might underestimate the probability of scarcity for
lithium (indium), as the predictions are based on the bootstrap procedure. However, a modification of the lag
length is not feasible due to data limitations.

29Actually, we base the (MS-)GVAR model on standardized logarithmic return data. Therefore, we first recal-
culate the logarithmic returns with help of the corresponding estimated mean and standard deviation used for
the standardization. Subsequently, we compute the predicted level values.
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However, due to the high initial price levels in 2019 (in the last decade) of zinc and lithium
(lead), we expect these three commodities exhibit a higher probability exceeding their threshold
prices. While the extreme rise in the price of zinc is caused by ongoing supply concerns, see
Figure C.14, the increased interest in lithium for batteries leads to the positive trend in its price,
see Figure C.8. Due to the additional demand caused by the energy transition, we expect the
prices will continue to rise, especially for lithium, probably leading to (short-term) shortages.
Therefore, we do not adjust the threshold price or the initial price level to reflect their higher
risks of scarcity.

Table 5.26: Initial commodity price levels

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
2019 521485 1794 33289 6008 187818 103128 13917 1997 27770710 18634 2549
Mean 679740 1945 38077 6761 443541 86304 15304 2105 40119566 20452 2276

This table displays the initial price level for the commodities silver (Ag), aluminum (Al), cobalt (Co),
copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn) to
calculate price forecasts based on the return forecasts derived from the (MS-)GVAR models. Hereby, we use
either the price observed in 2019, or the average price of the previous decade, from 2010 to 2019.

Using the (MS-)GVAR models with weight matrices representing the resource requirements of
the REMod − REF , REMod − SUF , REMod − PER, and REMod − UNA paths, respec-
tively, as well as the initial price level, we estimate the price probability distribution via the
bootstrapping procedure and compare the derived prices with the threshold prices to extract the
path-specific probabilities of scarcity per commodity. In this context, the price distributions are
derived by forecasting the commodity prices one-step ahead, under predefined conditions for the
(historical) endogenous as well as exogenous variables, see Section 3.3.1, using data from 2010
to 2019 in line with the period of the threshold price.30 Hereby, we consider a mean scenario,
examining the probability of scarcity under normal circumstances, while we investigate in the
shock and extreme scenario how the risk increases in periods when the variables take on extremer
values. Within the (extreme) focus scenarios, we analyze the sensitivity of the probability of
scarcity to an extreme value in an exogenous variable, while all other variables behave normal.
Further, we examine in the quantile scenarios how the probability of scarcity increases if the
variables are at different states of their distributions. The resulting values of the endogenous
and exogenous variables are displayed in Table 5.27.

In general, the scenario values differ across the commodities and scenarios. While we observe the
annual demand (and supply) generally increased over the previous decade, leading to positive
mean scenario values, most of the prices decreased, resulting in negative values, as displayed in
their time series plots in Section C.2.3. Overall, the values under the mean scenario are com-
parably high in absolute terms, especially for aluminum, lithium, nickel, lead, and platinum,
indicating volatile markets over the previous decade, since we standardized the data over the
entire sample period from 1970 to 2019. In contrast, the monthly variables exhibit more moder-
ate values, as they reflect the monthly returns. However, the values under the median scenario
differ from the values under the mean scenario for the annual as well as monthly variables,
indicating the underlying variables are skewed. As the input variables are all standardized over
the entire sample period from 1970 (1995) to 2019 to have mean zero and standard deviation
one, the input values under the shock, extreme and (extreme) focus scenarios are relatively
high, whereby the values of cobalt’s, lead’s, and platinum’s supply and demand, nickel’s supply,
lithium’s price as well as the Federal Funds Effective Rate (FFR) are outstanding. Moreover,
the 25% and 40% scenarios mostly indicate negative returns, except for the world gross domes-
tic product (GDP) and world industrial production (IP), whereas the input values naturally
increase to higher values under the 60% and 75% quantile scenarios, which are, however, smaller

30For a robustness analysis, we examine to what extent the results remain valid if the scenario values are derived
based on a reduced or an enlarged sample period.
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than the values under the shock and extreme scenario. Overall, we would expect the highest
probability of scarcity under the shock and extreme scenarios, while the negative input values
under the 25% and 40% scenario probably lead to a reduced scarcity risk.

Table 5.27: Scenario values for the input variables
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A
g supply -0.10 0.87 1.85 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.53 -0.15 0.30 0.54 0.54

demand 0.03 1.19 2.36 0.03 0.03 0.03 0.03 0.03 0.03 -0.65 -0.21 0.17 0.44 0.56
price -0.13 0.83 1.79 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.83 -0.54 -0.33 -0.13 0.11

A
l supply 0.29 1.09 1.90 0.29 0.29 0.29 0.29 0.29 0.29 -0.21 0.15 0.27 0.38 0.57

demand 0.36 1.31 2.26 0.36 0.36 0.36 0.36 0.36 0.36 -0.23 0.53 0.57 0.60 0.80
price -0.08 0.71 1.49 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.69 -0.42 -0.18 0.06 0.36

C
o supply -0.14 1.49 3.12 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.24 0.05 0.18 0.30 0.40

demand 0.25 1.61 2.98 0.25 0.25 0.25 0.25 0.25 0.25 -0.53 -0.21 -0.12 0.04 0.32
price -0.13 0.80 1.74 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.49 -0.31 -0.26 -0.11 0.18

C
u supply -0.05 0.89 1.83 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.83 -0.72 -0.41 0.05 0.67

demand 0.22 1.01 1.80 0.22 0.22 0.22 0.22 0.22 0.22 -0.18 -0.11 -0.07 0.00 0.25
price -0.06 0.76 1.57 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.55 -0.48 -0.45 -0.20 0.44

In

supply -0.08 0.45 0.98 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.24 -0.06 -0.04 0.02 0.12
demand -0.17 0.20 0.56 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.37 -0.24 -0.18 -0.16 -0.12
price -0.19 0.65 1.49 -0.19 -0.19 -0.19 -0.19 -0.19 -0.19 -0.89 -0.33 0.01 0.27 0.41

Li

supply 0.29 1.27 2.25 0.29 0.29 0.29 0.29 0.29 0.29 -0.19 -0.13 -0.04 0.00 0.38
demand 0.25 1.31 2.36 0.25 0.25 0.25 0.25 0.25 0.25 -0.46 -0.22 -0.05 0.02 0.26
price -0.05 1.73 3.52 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.70 -0.48 -0.23 -0.11 0.27

N
i supply 0.34 1.80 3.26 0.34 0.34 0.34 0.34 0.34 0.34 -0.46 0.35 0.57 0.62 0.78

demand 0.19 1.15 2.10 0.19 0.19 0.19 0.19 0.19 0.19 -0.43 0.16 0.50 0.70 0.97
price -0.13 0.70 1.52 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.80 -0.23 0.07 0.13 0.27

P
b

supply 0.29 1.61 2.92 0.29 0.29 0.29 0.29 0.29 0.29 -0.54 -0.14 0.21 0.76 1.13
demand 0.25 1.44 2.63 0.25 0.25 0.25 0.25 0.25 0.25 -0.82 -0.16 0.36 0.67 0.94
price -0.09 0.51 1.12 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.57 -0.27 -0.12 0.02 0.25

P
t supply -0.42 1.09 2.59 -0.42 -0.42 -0.42 -0.42 -0.42 -0.42 -1.86 -0.42 0.00 0.26 0.40

demand -0.23 1.29 2.81 -0.23 -0.23 -0.23 -0.23 -0.23 -0.23 -0.84 -0.18 0.11 0.21 0.44
price -0.34 0.34 1.02 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.54 -0.50 -0.44 -0.38 -0.30

Sn

supply 0.23 1.19 2.14 0.23 0.23 0.23 0.23 0.23 0.23 -0.42 -0.06 0.09 0.17 0.83
demand 0.15 0.81 1.46 0.15 0.15 0.15 0.15 0.15 0.15 -0.16 0.09 0.16 0.18 0.19
price -0.01 0.93 1.87 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.43 -0.17 -0.02 0.20 0.36

Zn

supply -0.26 0.59 1.44 -0.26 -0.26 -0.26 -0.26 -0.26 -0.26 -0.74 -0.26 -0.06 -0.05 -0.04
demand 0.18 1.42 2.65 0.18 0.18 0.18 0.18 0.18 0.18 -0.49 0.11 0.25 0.40 0.61
price -0.00 0.61 1.22 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.52 -0.18 -0.12 -0.01 0.27

ex
og

GDP -0.56 0.24 1.03 -0.56 -0.56 -0.56 -0.56 -0.56 -0.56 -0.88 -0.76 -0.72 -0.49 -0.12
FX 0.29 1.01 1.73 0.29 1.01 0.29 0.29 1.73 0.29 0.04 0.14 0.17 0.21 0.48
FFR 0.52 1.46 2.40 0.52 0.52 1.46 0.52 0.52 2.40 -0.17 0.29 0.48 0.68 1.04

lo
g.

R
eg

.

U.S. IP -0.09 0.48 1.06 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.53 -0.08 0.10 0.22 0.25
GDPc -0.51 0.30 1.11 -0.51 -0.51 -0.51 -0.51 -0.51 -0.51 -0.84 -0.72 -0.68 -0.44 -0.05
LIR -0.11 1.45 3.02 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.92 -0.78 -0.34 0.31 1.37
CPI 0.18 2.43 4.67 0.18 0.18 0.18 0.18 0.18 0.18 -0.26 -0.23 -0.11 0.01 0.27
MSCI 0.10 0.59 1.08 0.10 0.10 0.10 0.10 0.10 0.10 -0.33 -0.05 0.12 0.25 0.54
OIL -0.24 0.73 1.70 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 -0.59 -0.30 -0.16 0.11 0.43
ND -0.16 0.71 1.58 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.95 -0.42 -0.23 -0.03 0.46

M
S-

G
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A
l supply 0.01 1.34 2.67 0.01 0.01 0.01 0.01 0.01 0.01 -0.66 -0.27 -0.08 0.30 0.53

demand 0.02 1.08 2.14 0.02 0.02 0.02 0.02 0.02 0.02 -0.63 -0.31 -0.06 0.28 0.59
price -0.04 0.89 1.81 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.69 -0.30 -0.05 0.19 0.57

C
u supply -0.03 0.94 1.91 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.58 -0.29 -0.01 0.18 0.55

demand 0.00 1.08 2.17 0.00 0.00 0.00 0.00 0.00 0.00 -0.68 -0.18 0.06 0.24 0.73
price -0.09 0.71 1.51 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.54 -0.33 -0.02 0.10 0.36

N
i supply 0.02 1.30 2.58 0.02 0.02 0.02 0.02 0.02 0.02 -0.74 -0.18 0.03 0.31 0.80

demand 0.01 1.06 2.10 0.01 0.01 0.01 0.01 0.01 0.01 -0.71 -0.11 0.09 0.32 0.63
price -0.07 0.79 1.64 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.77 -0.29 -0.08 0.05 0.58

P
b

supply -0.03 0.89 1.81 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.54 -0.21 -0.03 0.09 0.38
demand -0.03 0.96 1.96 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.68 -0.28 -0.02 0.11 0.53
price -0.08 0.76 1.59 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.56 -0.33 -0.09 0.17 0.40

Sn

supply -0.02 1.13 2.28 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.59 -0.24 -0.07 0.16 0.62
demand -0.02 1.02 2.06 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.60 -0.23 0.05 0.20 0.58
price -0.12 0.87 1.86 -0.12 -0.12 -0.12 -0.12 -0.12 -0.12 -0.68 -0.42 -0.19 0.10 0.54

Zn

supply -0.07 1.17 2.41 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.74 -0.23 -0.02 0.24 0.62
demand -0.02 0.87 1.76 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.60 -0.25 -0.09 0.20 0.64
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Scenario values for the input variables
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price -0.04 0.82 1.68 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.72 -0.34 0.09 0.26 0.52

ex
og

IP 0.18 1.22 2.26 0.18 0.18 1.22 0.18 0.18 2.26 -0.23 0.06 0.11 0.34 0.61
FX 0.07 0.94 1.81 0.07 0.94 0.07 0.07 1.81 0.07 -0.50 -0.10 0.03 0.21 0.60
FFR -0.01 0.90 1.81 0.90 -0.01 -0.01 1.81 -0.01 -0.01 -0.52 -0.28 -0.16 0.15 0.53

This table displays the scenario values of the (potential) input variables under the different scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%). Hereby, the endogenous as
well as exogenous variables of the annual (monthly) (MS-)GVAR model as well as the commodity-specific determinants of
the logistic regression (log. Reg.) model are displayed. In particular, we report the scenario values of supply (supply), de-
mand (demand), and price (price) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In),
lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), as well as U.S. industrial production (U.S. IP),
world industrial production (IP), world gross domestic product (GDP), world gross domestic product per capita (GDPc),
U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 10-year U.S. Treasury rate (LIR), U.S. consumer price in-
dex (CPI), MSCI world stock index (MSCI), West Texas Intermediate spot crude oil price (OIL), and global natural
disasters (ND). Hereby, the values are derived statistically, using data in the period from 2010 to 2019.

In the following, we present the individual probability of scarcity per commodity derived from
the (MS-)GVAR model, using the threshold prices, the initial price levels as well as the scenario
values, presented in Table 5.25, Table 5.26, and Table 5.27.

5.3.1.1.1 Probability of Scarcity derived from the time-invariant GVAR Model
First, we focus on the commodity-specific probability of scarcity derived from the time-invariant
GVAR models, see Table 5.28, based on weights representing the dependencies of the commodi-
ties in the reference path (REMod − REF ), as well as under the assumption of the initial price
level being equal to the prices observed in 2019. Overall, the probability of scarcity under the
mean, 25%, 40% and 50% quantile scenario (focus scenario) is moderate (medium), whereas
the commodities exhibit high scarcity risks under the shock, extreme as well as 60% and 75%
quantile scenarios, indicating an increased risk in more stressed periods.

In particular, the mean scenario, proposed in Equation 3.160, which assumes all endogenous
and exogenous variables behave normal, leads to moderate results for silver, aluminum, cobalt,
copper, indium, nickel, platinum as well as tin. In contrast, lithium, lead and zinc exhibit
a higher risk of scarcity which is partly explained by their high price level in 2019, used as
initial basis level, see Table 5.26, the historical rise in prices, as well as the relatively high
input values, see Table 5.37. Except from indium and platinum which exhibit comparable low
initial price levels, the commodities will exceed their predefined thresholds almost surely under
the shock, and extreme scenarios, as in the shock and especially in the extreme scenario, all
variables simultaneously exhibit an extreme value. Hereby, the interdependencies between the
commodity markets, reflected by the GVAR model, cause these high risks, since the variables
affect each other.

Moreover, as shocks to the global economy affect all commodities simultaneously, see Section
D.3.1.1.2, which in turn influence each other, the probability of scarcity under the (extreme)
focus scenarios, reflecting a shock to one global variable, are higher than under the mean scenario.
In general, the industrial metals are more affected by the global economy as they are generally
more connected with the macroeconomy. However, the effects of the economy on the commodity
markets are relatively strong. While the shock and extreme scenarios assume the markets are
stressed overall, the focus scenarios only consider a shock to one global variable. The resulting
high probabilities of scarcity indicate the risks of a shortage in response to a stressed economy are
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comparatively high, underlining the strong influence of macroeconomics on commodity markets,
consistent with the results of the GIRF analysis.

Hereby, the commodities are affected most by changes in the global demand, underlining the
strong impact of demand in commodity markets. In particular, the six industrial metals, as
well as lithium almost surely exceed their thresholds if the world gross domestic product attains
extreme values. While niche metals react more to specific sector shocks, shocks to the global
economic activity influence the industrial metals through many applications, leading to these
strong reactions. In addition, extreme values in the exchange rate lead to increased price risks,
especially for the industrial metals, while most of the commodities bear only moderate risks in
a stressed interest rate environment, indicating the commodities react less to monetary policy
changes.

Table 5.28: Probability of scarcity per commodity derived from the GVAR models

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.06 0.00 0.00 0.31
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.85 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.01 0.58 0.24 0.57 0.00 0.97 0.79 0.96 0.00 0.88 1.00
Foc. FX 0.00 0.10 0.05 0.12 0.00 0.73 0.37 0.48 0.00 0.29 0.99
Foc. FFR 0.00 0.06 0.06 0.02 0.00 0.78 0.06 0.27 0.00 0.05 0.69
Foc. Extr. EA 0.32 0.98 0.89 0.98 0.03 1.00 0.98 1.00 0.08 1.00 1.00
Foc. Extr. FX 0.10 0.53 0.36 0.77 0.01 0.91 0.86 0.84 0.00 0.81 1.00
Foc. Extr. FFR 0.06 0.25 0.21 0.11 0.01 0.93 0.31 0.52 0.00 0.27 0.87
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.00 0.11
Q. 60% 0.00 0.14 0.07 0.03 0.00 0.89 0.12 0.45 0.00 0.09 0.81
Q. 75% 0.64 1.00 0.94 1.00 0.18 1.00 1.00 1.00 0.04 1.00 1.00

M
ea

n

Mean 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.17 0.00 0.01 0.05
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.35 0.96 0.61 0.99 0.30 0.01 0.94 1.00 0.11 1.00 0.99
Foc. FX 0.18 0.38 0.16 0.53 0.35 0.01 0.57 0.72 0.04 0.62 0.87
Foc. FFR 0.12 0.23 0.12 0.10 0.20 0.01 0.14 0.45 0.03 0.18 0.31
Foc. Extr. EA 0.86 1.00 0.97 1.00 0.83 0.21 1.00 1.00 0.85 1.00 1.00
Foc. Extr. FX 0.54 0.80 0.56 0.94 0.79 0.12 0.92 0.92 0.16 0.93 0.98
Foc. Extr. FFR 0.38 0.46 0.38 0.31 0.47 0.12 0.45 0.68 0.11 0.48 0.62
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.02
Q. 60% 0.24 0.41 0.18 0.12 0.27 0.02 0.27 0.70 0.03 0.28 0.38
Q. 75% 0.99 1.00 0.99 1.00 0.99 0.78 1.00 1.00 0.80 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.04 0.00 0.00 0.28
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.85 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.01 0.56 0.23 0.54 0.00 0.96 0.77 0.94 0.00 0.86 1.00
Foc. FX 0.00 0.07 0.05 0.10 0.00 0.71 0.32 0.44 0.00 0.27 0.99
Foc. FFR 0.00 0.05 0.04 0.02 0.00 0.81 0.04 0.25 0.00 0.04 0.67
Foc. Extr. EA 0.28 0.97 0.87 0.98 0.03 1.00 0.98 1.00 0.08 1.00 1.00
Foc. Extr. FX 0.09 0.50 0.33 0.77 0.01 0.90 0.87 0.83 0.00 0.81 1.00
Foc. Extr. FFR 0.04 0.22 0.18 0.11 0.00 0.95 0.27 0.49 0.00 0.25 0.86
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.11
Q. 60% 0.00 0.09 0.03 0.02 0.00 0.84 0.07 0.40 0.00 0.07 0.77
Q. 75% 0.56 0.99 0.92 0.99 0.12 1.00 1.00 1.00 0.04 1.00 1.00

M
ea

n

Mean 0.00 0.02 0.01 0.01 0.00 0.00 0.00 0.14 0.00 0.00 0.04
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.31 0.96 0.59 0.98 0.25 0.00 0.93 1.00 0.10 1.00 0.99
Foc. FX 0.15 0.35 0.12 0.52 0.33 0.00 0.56 0.70 0.03 0.62 0.86
Foc. FFR 0.10 0.20 0.10 0.08 0.16 0.00 0.10 0.41 0.02 0.16 0.30
Foc. Extr. EA 0.85 1.00 0.98 1.00 0.80 0.15 1.00 1.00 0.87 1.00 1.00
Foc. Extr. FX 0.51 0.80 0.52 0.94 0.78 0.08 0.93 0.92 0.16 0.93 0.98
Foc. Extr. FFR 0.36 0.44 0.32 0.28 0.44 0.09 0.42 0.65 0.10 0.46 0.60
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Probability of scarcity per commodity derived from the GVAR models

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Q. 50% 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.01
Q. 60% 0.19 0.32 0.11 0.10 0.23 0.01 0.18 0.63 0.03 0.21 0.34
Q. 75% 0.98 1.00 0.99 1.00 0.99 0.61 1.00 1.00 0.82 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.08 0.00 0.00 0.30
Shock 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.87 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.02 0.61 0.26 0.61 0.00 0.97 0.81 0.97 0.00 0.90 1.00
Foc. FX 0.01 0.11 0.06 0.14 0.00 0.76 0.38 0.56 0.00 0.32 0.99
Foc. FFR 0.00 0.07 0.06 0.02 0.00 0.83 0.05 0.31 0.00 0.06 0.69
Foc. Extr. EA 0.36 0.98 0.89 0.98 0.03 1.00 0.99 1.00 0.08 1.00 1.00
Foc. Extr. FX 0.14 0.54 0.36 0.78 0.01 0.92 0.88 0.87 0.01 0.83 1.00
Foc. Extr. FFR 0.09 0.28 0.24 0.14 0.01 0.95 0.31 0.56 0.00 0.27 0.87
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.11
Q. 60% 0.02 0.15 0.07 0.04 0.00 0.90 0.10 0.49 0.00 0.10 0.78
Q. 75% 0.74 1.00 0.95 0.99 0.15 1.00 1.00 1.00 0.05 1.00 1.00

M
ea

n

Mean 0.01 0.03 0.01 0.02 0.00 0.00 0.01 0.20 0.00 0.02 0.05
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.42 0.97 0.63 0.99 0.29 0.01 0.95 1.00 0.11 1.00 1.00
Foc. FX 0.23 0.43 0.17 0.56 0.37 0.01 0.62 0.76 0.04 0.65 0.87
Foc. FFR 0.18 0.26 0.13 0.11 0.20 0.01 0.14 0.51 0.03 0.20 0.32
Foc. Extr. EA 0.90 1.00 0.97 1.00 0.84 0.22 1.00 1.00 0.86 1.00 1.00
Foc. Extr. FX 0.58 0.82 0.58 0.95 0.81 0.12 0.94 0.94 0.16 0.95 0.99
Foc. Extr. FFR 0.45 0.51 0.40 0.33 0.47 0.13 0.46 0.72 0.11 0.51 0.61
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.02
Q. 60% 0.34 0.43 0.18 0.15 0.26 0.02 0.24 0.73 0.04 0.29 0.37
Q. 75% 1.00 1.00 0.99 1.00 0.99 0.74 1.00 1.00 0.82 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.06 0.00 0.00 0.28
Shock 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.83 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.01 0.58 0.25 0.56 0.00 0.96 0.80 0.97 0.00 0.88 1.00
Foc. FX 0.00 0.09 0.05 0.12 0.00 0.73 0.36 0.51 0.00 0.30 0.99
Foc. FFR 0.01 0.06 0.06 0.02 0.00 0.82 0.05 0.28 0.00 0.04 0.67
Foc. Extr. EA 0.33 0.98 0.89 0.99 0.03 1.00 0.99 1.00 0.08 1.00 1.00
Foc. Extr. FX 0.11 0.50 0.35 0.77 0.01 0.90 0.88 0.85 0.00 0.81 1.00
Foc. Extr. FFR 0.06 0.23 0.21 0.11 0.01 0.95 0.30 0.53 0.00 0.25 0.85
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.09
Q. 60% 0.00 0.10 0.05 0.02 0.00 0.85 0.07 0.43 0.00 0.06 0.73
Q. 75% 0.61 1.00 0.92 0.99 0.11 1.00 1.00 1.00 0.04 1.00 1.00

M
ea

n

Mean 0.00 0.03 0.01 0.02 0.00 0.00 0.00 0.17 0.00 0.01 0.04
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.36 0.98 0.61 0.99 0.27 0.01 0.94 1.00 0.10 1.00 0.99
Foc. FX 0.18 0.37 0.15 0.53 0.35 0.00 0.59 0.73 0.03 0.63 0.87
Foc. FFR 0.12 0.21 0.12 0.10 0.18 0.00 0.12 0.46 0.03 0.17 0.30
Foc. Extr. EA 0.87 1.00 0.98 1.00 0.83 0.16 1.00 1.00 0.87 1.00 1.00
Foc. Extr. FX 0.56 0.81 0.56 0.94 0.81 0.09 0.94 0.94 0.14 0.94 0.98
Foc. Extr. FFR 0.38 0.46 0.38 0.30 0.45 0.12 0.44 0.70 0.11 0.49 0.59
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.01
Q. 60% 0.20 0.33 0.13 0.11 0.22 0.01 0.19 0.67 0.02 0.22 0.32
Q. 75% 0.99 1.00 0.99 1.00 0.99 0.63 1.00 1.00 0.78 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), derived from the GVAR model based
on the weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the average
price level of the previous decade (Mean). Hereby, the probability of scarcity is calculated for the scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables.
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The sensitivities of the commodities to the quantile scenarios are heterogeneous. Due to the
negative scenario values, the commodities are available almost surely under the 25% and 40%
quantile scenarios. Moreover, the probabilities of scarcity of indium and platinum are compara-
bly low, even under the assumption all variables attain their 75% quantiles, probably caused by
the comparable low initial price level in 2019. In contrast, lithium’s, lead’s and zinc’s risks in-
crease to a relative high value already in the 50% quantile scenario, indicating these commodities
bear higher risks in the model setup, when all variables take on their median values.

For a sensitivity analysis, we use the average price level of the period 2010 to 2019, instead of
the price level of the year 2019, to reflect the market situation of the previous decade. In this
case, the probabilities of scarcity of aluminum, copper, lead, and tin are higher under the mean
scenario than using 2019 as basis level, whereas lithium and zinc exhibit a lower risk, due to
the comparably lower initial price level, see Table 5.26. However, the prices of all commodities
will exceed their predefined threshold almost surely under the shock, and extreme scenarios.
Moreover, even the probability of scarcity values under the (extreme) focus scenarios are higher,
except for lithium, and zinc, shocks to the U.S. dollar index mostly affect the commodity markets,
whereas the risk of price increases in response to shocks in the Federal Funds Effective Rate and
world gross domestic product is less pronounced. Further, lithium’s and platinum’s probability
of scarcity values are relatively small, even under the 60% scenario, whereas the risk of lead
is comparably high even under the 50% scenario. In the quantile scenarios, zinc also bear a
relatively high risk, however, the risk is higher in case of the price level of 2019. Moreover, in
contrast to the results under the initial price level of 2019, the probability of scarcity of indium
increases significantly in the quantile scenarios, underlining the sensitivity of the results on the
initial price level.

In general, the initial price level highly determines the final probability of scarcity values, indi-
cating the scarcity risk depends on the price level, whereby the risk increases in response to a
currently high price. While the actual probabilities of scarcity differ, the impact of the scenar-
ios on the commodity markets equals, indicating the effects of stressed circumstances coincide,
regardless of the assumed price level.

Comparing the probabilities of scarcity derived from the GVAR model based on weights rep-
resenting the dependencies of the commodities in the REMod − REF path, with those of the
GVAR models under the REMod − SUF , REMod − PER, and REMod − UNA path, also dis-
played in Table 5.28, we observe similar results, in particular the probabilities of scarcity of the
REMod − REF and REMod − UNA path almost equal. Overall, regardless of the considered
scenario and assumed price level, the probabilities of scarcity are slightly higher in the GVAR
model based on the REMod − PER path, probably originating from the highest dependency
between indium and the remaining commodities. Due to the stronger link of silver combined
with weaker dependencies of the metals to lead and platinum within the REMod − SUF path,
the corresponding probabilities of scarcity are tendentially smaller compared to the risks of the
REMod − REF path.

5.3.1.1.2 Probability of Scarcity derived from the time-varying MS-GVAR Model
Second, we focus on the probability of scarcity derived from the time-varying MS-GVAR model,
see Table 5.29, based on weights representing the dependencies of the commodities in the refer-
ence path (REMod − REF ), as well as under the assumption of the initial price level being equal
to the prices observed in 2019. Overall, the MS-GVAR models generally predict higher proba-
bilities of scarcity than the time-invariant GVAR model. While the MS-GVAR model indicates
the probability of scarcity under the mean, 25%, 40% and 50% quantile scenario (focus sce-
nario) is moderate (medium), especially for aluminum, copper, nickel, and tin, all commodities
exhibit high scarcity risks under the shock, extreme as well as 60% and 75% quantile scenarios,
indicating an increased risk in more stressed periods.
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In particular, the mean scenario, proposed in Equation 3.160, indicates the probability of scarcity
is moderate for aluminum, copper, nickel and tin, whereas lead and zinc bear high risks of
scarcity, although the variables only attain their average value, probably caused by their high
initial prices, in line with the results of the GVAR model. However, the probability of scarcity
increases to a high risk under the shock and extreme scenarios for all commodities, implying the
commodities will almost surely exceed their predefined thresholds if all variables simultaneously
exhibit an extreme value.

Moreover, shocks to the global economy lead to higher scarcity risks due to simultaneous spillover
effects from the economy to the commodity markets. In particular, the commodity markets and
the associated scarcity risks are more affected by a stressed economy in the case of the MS-GVAR
model compared to the GVAR model, due to the different considered period, indicating the
markets are more connected in recent times. Hereby, the risk of scarcity of all commodities
(except tin) increases to a high value if a shock hits the Federal Funds Effective Rate, whereas
the commodities react more moderately to shocks in the exchange rate. However, the global
demand affects the commodities the least, contrary to the finding of the GVAR model, observing
the most sensitive reactions in response to extreme values in the world gross domestic product.
These differences might be explained by the different considered time period, indicating the
impact of the Federal Funds Effective Rate (FFR) and the U.S. dollar index (FX) on commodity
markets increased in more recent times. Moreover, parts of this heterogeneous results might also
be explained by the different proxy for the economic activity, included in our analysis. While
we use the world gross domestic product (GDP), representing the change in the value of all
goods and services, in the annual GVAR model due to data limitations, we consider the world
industrial production (IP), measuring the change in physical volume of the industrial output, in
the monthly MS-GVAR model. However, if the exogenous variables attain extreme values, the
commodities will almost surely exceed their threshold price, underlining the commodity prices
are highly affected by the economy, in line with the significant spillover effects from the economy
to the commodity markets, see Section 5.2.3.3.

Similar to the results derived from the GVAR model, the sensitivities of the commodities to the
quantile scenarios are heterogeneous. While zinc almost surely exceeds its predefined threshold
already under the median scenario, the risk of scarcity is neglectable for aluminum, copper, nickel
and tin. This is rather counterintuitive, especially for aluminum, as the probability of scarcity
under the mean scenario indicates a higher risk. As the variables generally attain smaller values
in absolute terms under the median scenario, compared to the mean scenario, the corresponding
risk is higher in the latter case. However, all commodities bear high scarcity risks under the
60% and 75% quantile scenarios, indicating stressed markets lead to an increased scarcity risk.

Table 5.29: Probability of scarcity per commodity derived from the MS-GVAR models

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.25 0.11 0.11 0.91 0.05 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.96 0.61 0.78 1.00 0.51 1.00
Foc. FX 1.00 0.92 0.93 1.00 0.58 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 0.99 0.88 0.93 1.00 0.84 1.00
Foc. Extr. FX 1.00 0.98 0.99 1.00 0.85 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.01
Q. 50% 0.00 0.00 0.00 0.25 0.01 0.97
Q. 60% 1.00 1.00 1.00 1.00 0.96 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n Mean 1.00 0.99 0.53 1.00 0.43 0.61
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.97 1.00 0.93 0.98
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Probability of scarcity per commodity derived from the MS-GVAR models

Al Cu Ni Pb Sn Zn
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n

Foc. FX 1.00 1.00 1.00 1.00 0.94 0.97
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 0.99 1.00 0.97 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.98 0.99
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.00
Q. 50% 0.20 0.23 0.07 0.72 0.13 0.12
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.20 0.11 0.09 0.91 0.04 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.97 0.58 0.80 1.00 0.50 1.00
Foc. FX 1.00 0.91 0.88 1.00 0.59 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 0.99 0.86 0.95 1.00 0.82 1.00
Foc. Extr. FX 1.00 0.98 0.97 1.00 0.83 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.01
Q. 50% 0.00 0.01 0.00 0.27 0.01 0.96
Q. 60% 1.00 1.00 1.00 1.00 0.95 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.98 0.98 0.49 1.00 0.41 0.68
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.98 1.00 0.93 0.99
Foc. FX 1.00 1.00 0.98 1.00 0.92 0.99
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.97 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.98 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.00
Q. 50% 0.18 0.23 0.05 0.74 0.14 0.13
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.25 0.12 0.12 0.92 0.06 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.96 0.61 0.81 1.00 0.50 1.00
Foc. FX 1.00 0.92 0.94 1.00 0.60 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 1.00 0.87 0.95 1.00 0.82 1.00
Foc. Extr. FX 1.00 0.98 0.99 1.00 0.85 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.02
Q. 50% 0.00 0.01 0.01 0.27 0.01 0.97
Q. 60% 1.00 1.00 1.00 1.00 0.96 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 0.99 0.57 1.00 0.41 0.64
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.98 1.00 0.93 0.99
Foc. FX 1.00 1.00 1.00 1.00 0.94 0.99
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 0.99 1.00 0.98 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.98 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.00
Q. 50% 0.19 0.25 0.08 0.73 0.14 0.12
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

20
19

Mean 0.24 0.12 0.12 0.90 0.05 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.96 0.58 0.80 1.00 0.50 1.00
Foc. FX 1.00 0.91 0.95 1.00 0.57 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models

Al Cu Ni Pb Sn Zn
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Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 1.00 0.84 0.93 1.00 0.79 1.00
Foc. Extr. FX 1.00 0.97 0.99 1.00 0.84 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.02
Q. 50% 0.00 0.01 0.01 0.25 0.01 0.97
Q. 60% 1.00 1.00 1.00 1.00 0.95 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 0.98 0.54 1.00 0.45 0.70
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.98 1.00 0.91 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.94 0.99
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.98 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.97 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.00
Q. 50% 0.19 0.24 0.07 0.70 0.13 0.16
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), derived
from the MS-GVAR model based on the weight matrices representing the depen-
dencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the
initial basis price level of 2019 or on the average price level of the previous
decade (Mean). Hereby, the probability of scarcity is calculated for the scenar-
ios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus
FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Fo-
cus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quan-
tile (Q. 60%), 75% quantile (Q. 75%) of the input variables.

The GIRF analysis in Section D.3.1.2.3 reveals the MS-GVAR models detect various spillover
effects, which might cause the high risk values, as the commodity markets influence each other.
Hereby, due to data limitations, the applied MS-GVAR model only reflects the relations in
industrial metal markets. In contrast, the GVAR model includes the industrial metal markets
as well as further key commodities of the German Energiewende, which might compensate the
strong relations between the industrial metals. Moreover, the GVAR model is based on an
annual dataset in the period from 1970 to 2019, including a longer time period prior to the
financialization and the corresponding increase in the relation between commodity markets.
In contrast, the MS-GVAR model is based on monthly data from 1995 to 2019. Hereby, we
annualize the predicted logarithmic returns of the prices, assuming the return would not change
during the year. This approach slightly overestimates the scarcity risks, as the returns obviously
change during one year and the annualization approach does not account for the mean reverting
behavior in commodity prices. However, the estimation of the annual return via 12-step ahead
predictions would not be feasible, since this would require more assumptions for the exogenous
variables. Moreover, an overestimation of the risk is preferable to an underestimation, probably
obtained by the 12-step ahead forecasts. In addition, this thesis focuses on the comparison of
the resource risks of the four transformation paths, which is possible, even if the probabilities
of scarcity obtained slightly overestimate the risk.

In line with the GVAR model, we use the average price level of the previous decade, instead
of the price level of the year 2019, to aggregate out extreme underlying price levels, for a
sensitivity analysis. Overall, the derived probabilities of scarcity are higher, using the average
price level, caused by the corresponding higher initial price levels, see Table 5.26. Hereby,
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aluminum, copper and lead almost surely exceed their thresholds even under the mean scenario.
Additionally, the probabilities of scarcity of nickel and tin are higher compared to the results
based on the price level of the year 2019, whereas zinc’s risk reduces. However, the prices of
(almost) all commodities will exceed their predefined threshold almost surely under the shock,
extreme, ((extreme) focus) as well as 60% and 75% quantile scenarios. Moreover, lead bear even
under the median scenario high risks, due to its higher initial price level, whereas nickel, tin and
zinc (aluminum and copper) show a moderate (medium) risk.

Comparing the probabilities of scarcity derived from the MS-GVAR model based on weights
representing the dependencies of the commodities in the REMod − REF path, with those of
the MS-GVAR models under the REMod − SUF , REMod − PER as well as REMod − UNA
paths, also displayed in Table 5.29, we observe similar results with only small deviations, due to
the similar relations, reflected in the induced weight matrices, see Section 4.4.6. Hereby, the prob-
abilities of scarcity indicate a higher risk of the MS-GVAR model based on the REMod − PER
path, whereas the REMod − SUF path exhibits slightly smaller risk values, in line with the
results of the GVAR model.

Overall, the MS-GVAR model indicates higher scarcity risks compared to the GVAR model.
However, both frameworks attribute higher scarcity risks to zinc and lead. Moreover, the models
using the different weight matrices derive similar risk values, due to the comparable induced
weight matrices. In addition, the REMod − PER path exhibits higher risks, whereas the risk
is lowest in the REMod − SUF path, regardless of the considered framework, price level or
scenario.

5.3.1.2 Probability of Scarcity derived from the alternative Logistic Regression
Model

As the determinants of commodity prices are heterogeneous between the different metals, see
Gleich et al. (2013), we alternatively propose to estimate the path-independent probability
of scarcity directly via commodity-specific logistic regression models, allowing for individual
selected price influential factors. However, the co-movement between prices is only covered
by common price determinants, in contrast to the (MS-)GVAR framework, which allows for
spillover effects between commodity markets.

To start, we apply a two-step model selection to identify the price influential factors for each com-
modity separately. Subsequently, we estimate individual logistic regression models and calculate
the probability of scarcity per commodity, considering different scenarios for the commodity-
specific price determinants.

In particular, the two-step model selection procedure is applied for each commodity on the 18
potential price determinants, described in Section 4.3, capturing the dimensions macroeconomic,
demographic, capital market driven as well as supply and demand factors. Hereby, the short-
term interest rate 3-month U.S. Treasury rate (SIR), the monetary policy proxy U.S. monetary
base (MB), the demographic factors U.S. employment (EMP) and world population (POP), the
capital market related variable Standard & Poor’s 500 index (SPX), as well as the supply-sided
variables Herfindal-Hirschman index (HHI) and KOF globalization index (KOF) are not selected
for any commodity. However, the economic activity proxies, U.S. industrial production (U.S. IP),
world gross domestic product (GDP), and world gross domestic product per capita (GDPc), the
exchange rate U.S. dollar index (FX), the monetary policy variables, Federal Funds Effective
Rate (FFR) and 10-year U.S. Treasury rate (LIR), the inflation measure U.S. consumer price
index (CPI), the capital market related variable MSCI world stock index (MSCI), the supply-
sided variables commodity-specific supply, West Texas Intermediate spot crude oil price (OIL)
and global natural disasters (ND), as well as the commodity-specific demand are identified
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as influential attributes for at least one commodity. The resulting coefficients of the logistic
regression model per commodity are displayed in Table 5.30.

In general, the heterogeneity in the variable selection is remarkable, as the determinants identi-
fied by the individual model selection differ, indicating the importance of a commodity-specific
analysis. Hereby, the exchange rate, measured by the U.S. dollar index, and the West Texas
Intermediate spot crude oil price are outstanding as they are price determining factors for up to
six of the thirteen commodities.31 Moreover, the global demand, reflected by the U.S. industrial
production (U.S. IP), world gross domestic product (GDP) and world gross domestic product
per capita (GDPc), as well as the monetary policy, measured by the Federal Funds Effective
Rate (FFR) and the 10-year U.S. Treasury rate (LIR), affect several commodities, indicating
the economic activity, the exchange rate, the monetary policy as well as the oilprice influence
the commodity markets, in line with Guzmán and Silva (2018), while most of the remaining
factors are only included in up to three models.

Table 5.30: Estimated coefficients of the logistic regression models

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
U.S. IP 0.05
GDP 0.90 0.90
GDPc -0.16 0.75 0.65
FX 0.03 0.14 -0.31 0.14 -0.58 -0.33
FFR -0.20 -0.93 -0.93 1.73
LIR 0.73 -0.30 0.39 1.22
CPI 0.16
MSCI -0.21
supply 1.42 0.43
OIL 0.18 0.17 0.30 0.57 -0.05
ND -0.80
demand 0.91

This table displays the estimated coefficients of the individual logistic regression models of the commodities silver (Ag),
aluminum (Al), cobalt (Co), copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), based on the identified independent variables from the two stage model
selection. Hereby, the independent variables are U.S. industrial production (U.S. IP), world gross domestic product (GDP),
world gross domestic product per capita (GDPc), U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 10-year
U.S. Treasury rate (LIR), U.S. consumer price index (CPI), MSCI world stock index (MSCI), commodity-specific supply
(supply), West Texas Intermediate spot crude oil price (OIL), global natural disasters (ND), and commodity-specific
demand (demand).

Overall, the economic activity determines the commodity prices. In particular, the proxies U.S.
industrial production and world gross domestic product positively influence the probability of
scarcity of cobalt, dysprosium and neodymium, which is in line with the literature, see for
example Akram (2009), Baffes and Savescu (2014), and Issler et al. (2014), also detecting a
positive relation between economic activity and commodity prices, as well as with the positive
spillover effects from globald demand shocks to commodity markets in Section 5.1. Moreover,
the determinant world gross domestic product per capita positively influences the probability of
scarcity of aluminum and cobalt, whereas it slightly affects silver in the inverse direction.

In line with the results of Ahumada and Cornejo (2014), we find a negative relationship between
the prices of indium, lead and platinum, with the U.S. dollar index, indicating a lower exchange
rate leads to a higher probability of scarcity, confirming the negative spillover effects in Section
5.1. This is reasonable, as a decline in the dollar will cause an increase in the dollar price of the
commodity or a fall in the foreign currency price, which, finally, leads to a higher commodity
price, see Akram (2009). In contrast, dysprosium’s and neodymium’s (and copper’s) price

31Due to data limitation issues, the model selection could not be performed for dysprosium and neodymium.
Instead, we manually select the world gross domestic product (GDP), U.S. dollar index (FX), and the Federal
Funds Effective Rate (FFR), in line with the exogenous variables of the (MS-)GVAR model, for their logistic
regression models. Since the models of dysprosium and neodymium also show identical times, in which they are
classified as scarce, their results in the framework coincide.

5.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE 133



CHAPTER 5. EMPIRICAL RESULTS

increase in response to an appreciation of the dollar, implying the stronger U.S. dollar leads to
an increased demand for these, mostly in China (Chile) produced, metals of consumers holding
the U.S. dollar, whereby the findings of copper underline the results of the global spillover effects
in the time-varying MS-GVAR model, see Section 5.2.3.3.

Further, the short-term (long-term) interest rate, measured by the Federal Funds Effective Rate
(10-year U.S. Treasury rate), negatively affects the probability of scarcity of copper, nickel and
the rare earth metals, indicating a lower interest rate will lead to a higher risk of scarcity.
However, the positive coefficients in the logistic regression models of cobalt, lead as well as zinc
suggest a high interest rate is associated with a high probability of scarcity, in line with the
positive spillover effects from a contrarian monetary policy to commodity markets in Section 5.1.
Further, a higher inflation rate implies higher prices, which is why the scarcity risk of lithium
positively reacts to changes in the U.S. consumer price index.

In line with Kagraoka (2016), who detects the MSCI world stock index is one of four identified
factors explaining commodity prices, the capital market related determinant MSCI world stock
index affects the risk of aluminum, indicating rising markets lead to a reduced scarcity risk,
probably due to more liquidity in the markets or less demand of speculators in commodities. In
contrast, the Standard & Poor’s 500 index is not part of any commodity-specific model in our
study. This might be explained by the long time period analyzed beginning in 1970, whereas the
effect of the capital market on commodities raises during the financialization beginning around
2004, see Tang and Xiong (2012). Moreover, the demographic variables U.S. employment and
world population are not selected by our two-stage model selection, implying the demographic
situation is not the main determinant of commodity prices and their scarcity risk.

The results of the supply-sided variables are counter-intuitive. Hereby, a higher supply leads to
a higher probability of scarcity of nickel, whereas a higher global natural disasters value leads
to a lower probability of scarcity of cobalt, probably caused by a smaller economic activity in
response to the natural disaster. Moreover, the positive impact of the West Texas Intermediate
spot crude oil price, a proxy for energy costs, on the probability of scarcity of silver, copper,
indium as well as platinum, indicates a higher risk in case of higher oil prices, in line with the
literature, see for example Liberda (2017) and Vansteenkiste (2009). However, the scarcity risk
of tin slightly decreases in case of rising oil prices, further underlining the heterogeneous reactions
of the commodities to the price determinants. Moreover, the spillover effects in the industrial
metal markets in Section 5.1.2 reveal tin is least connected to the other metals, and therefore,
tin probably shows a less cyclical behavior to the price of oil. In addition, the demand variable
has a positive impact on the probability of scarcity of zinc, indicating a higher consumption of
zinc leads to a higher scarcity risk.

Overall, the heterogeneity of the selected variables as well as the (opposite) signs of the coeffi-
cients reveal the probability of scarcity is commodity-specific and the reaction to changes in de-
terminants may influence different commodities in a different way. This finding suggests the im-
portance of modeling commodity markets individually, however, in contrast to the (MS-)GVAR
frameworks, the dependencies between commodities and, especially, spillover effects between the
markets, are not reflected within this analysis.

Using the logistic regression models, the individual probability of scarcity can be calculated,
taking into account the commodity-specific determinants, see Table 5.31. Hereby, we investigate
different scenarios of the input variables, displayed in Table 5.27, similar to the (MS-)GVAR
models. As interdependencies are not reflected within the logistic regression model, the scarcity
risk is generally lower.
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Table 5.31: Probability of scarcity per commodity derived from the logistic regression models

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Mean 0.04 0.06 0.07 0.04 0.01 0.10 0.04 0.01 0.09 0.06 0.03 0.02 0.04
Shock 0.05 0.12 0.46 0.06 0.05 0.16 0.06 0.05 0.56 0.14 0.07 0.03 0.80
Extr. 0.06 0.21 0.90 0.09 0.24 0.24 0.08 0.24 0.94 0.32 0.14 0.05 1.00
Foc. EA 0.04 0.06 0.07 0.04 0.02 0.10 0.04 0.02 0.09 0.06 0.03 0.02 0.04
Foc. FX 0.04 0.06 0.07 0.04 0.01 0.12 0.04 0.01 0.09 0.08 0.04 0.02 0.04
Foc. FFR 0.04 0.06 0.07 0.05 0.02 0.10 0.04 0.02 0.09 0.06 0.03 0.02 0.17
Foc. Extr. EA 0.04 0.06 0.07 0.04 0.04 0.10 0.04 0.04 0.09 0.06 0.03 0.02 0.04
Foc. Extr. FX 0.04 0.06 0.07 0.04 0.01 0.15 0.04 0.01 0.09 0.12 0.05 0.02 0.04
Foc. Extr. FFR 0.04 0.06 0.07 0.06 0.06 0.10 0.04 0.06 0.09 0.06 0.03 0.02 0.51
Q. 25% 0.03 0.04 0.02 0.04 0.00 0.09 0.04 0.00 0.02 0.04 0.02 0.02 0.00
Q. 40% 0.03 0.05 0.03 0.04 0.01 0.10 0.04 0.01 0.08 0.04 0.03 0.02 0.01
Q. 50% 0.04 0.05 0.05 0.04 0.01 0.10 0.04 0.01 0.11 0.05 0.03 0.02 0.03
Q. 60% 0.04 0.07 0.11 0.05 0.01 0.11 0.04 0.01 0.14 0.06 0.04 0.02 0.10
Q. 75% 0.04 0.09 0.34 0.05 0.03 0.13 0.04 0.03 0.22 0.11 0.05 0.03 0.47

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn),
derived from the logistic regression models based on pre-selected determinants. Hereby, the probability of scarcity is
calculated for the scenarios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%) of the input variables.

While the initial mean scenario, proposed in Equation 3.168, leads to moderate results, with the
highest probability of scarcity observed for cobalt, indium and nickel with approximately 10%,
the sensitivities of the commodities to the scenarios are heterogeneous. Cobalt’s, nickel’s as well
as zinc’s risks increase to a high and extremely high value for the shock and extreme scenario,
whereas the probability of scarcity of silver, copper, lithium, platinum and tin are comparably
low, even under the extreme scenario. In addition, the rare earth metals show remarkably
moderate risks in all scenarios. Overall, the probabilities of scarcity are lower, especially under
the shock and extreme scenario, compared to the probabilities of scarcity derived from the
(MS-)GVAR models, as spillover effects between the markets are not reflected within the logistic
regression models and therefore, the scarcity risk is probably underestimated.

In line with the (MS-)GVAR models, we also consider shocks to the exogenous variables, the
world gross domestic product, the U.S. dollar index as well as the Federal Funds Effective Rate.
Hereby, the commodity markets remain rather unaffected by shocks in the three considered
macroeconomic variables, except zinc, which is highly affected by extreme values in the Federal
Funds Effective Rate, due to its comparably high corresponding coefficient. This is rather
unsurprising for silver, aluminum, cobalt, indium, lithium, nickel, lead, platinum, and tin, as
the macroeconomic variables are not included in the corresponding models due to the two-stage
model selection. However, the probabilities of scarcity of copper as well as the rare earth metals
barely react to the shocks, although the Federal Funds Effective Rate is included, implying the
logistic regression model underestimates the scarcity risk inferred from the economy.

In case of the scenarios based on different quantiles, we recognize the shock and extreme scenarios
lead to slightly higher probabilities of scarcity than even the 75% quantile scenario. The scarcity
risk of cobalt, nickel and zinc at least doubles in the 75% quantile scenario compared to the
25% quantile scenario, while the quantile scenarios barely differ in the other commodity markets,
suggesting the logistic regression model is not as sensitive to the quantiles of the input variables as
the (MS-)GVAR model. Moreover, the logistic regression models underestimate the scarcity risk,
since spillover effects are not reflected at all, leading to the comparable moderate probabilities
of scarcity.

Overall, the MS-GVAR model indicates the highest risks for all commodities, whereas the logistic
regression model underestimates the scarcity, as spillover effects between the commodity markets
are not reflected. While the probability of scarcity, derived from the (MS-)GVAR models under
the mean, 25%, 40% and 50% quantile scenario (focus scenario) is moderate (medium), the
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commodities exhibit high scarcity risks under the shock, extreme as well as 60% and 75%
quantile scenarios, indicating an increased risk in more stressed periods. As the MS-GVAR
model focuses on the industrial metal markets, which are highly connected, the resulting scarcity
risks are highest due to interdependencies between the markets, whereas the GVAR model
includes more metals, but slightly underestimates the risks induced from the spillover effects.
Moreover, shocks to the global economy lead to higher scarcity risks for the (MS-)GVAR models
due to simultaneous spillover effects from the economy to the commodity markets, whereas
the logistic regression model clearly underestimates these spillover risks. On commodity level,
(lithium) lead and zinc are outstanding for the commodity market models, whereas the logistic
regression model attributes cobalt, nickel and zinc a high probability of scarcity. The comparison
of the scarcity risk derived from the (MS-)GVAR model based on weights representing the
dependencies of the commodities in the REMod − REF path, with those of the (MS-)GVAR
models under the REMod − SUF , REMod − PER as well as REMod − UNA paths reveals
similar results, whereby the REMod − SUF (REMod − PER) path exhibits slightly smaller
(higher) risk values.

5.3.2 Loss Given Scarcity and Exposure at Scarcity

For a holistic assessment of the scarcity risk of the resource demands of the German En-
ergiewende, the derived commodity-specific probabilities of scarcity are aggregated with an
appropriate substitutability score as well as the required resource demands to the final scarcity
risk measure.

To reflect the substitutability, the loss given scarcity (LGS), of the commodities, we use the
information about the major metals applications with primary substitutes and substitute per-
formance from Figure 5 of Graedel et al. (2015). For other applications of the framework, where
a metal is only used in a specific application, we propose to apply technology-specific parameters
for the substitutability of the commodities.

Table 5.32: Loss given scarcity per commodity

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
LGS 0.44 0.44 0.54 0.70 1.00 0.60 0.41 0.41 0.62 1.00 0.66 0.36 0.38

This table displays the loss given scarcity (LGS) of the commodities aluminum (Al), cobalt (Co),
copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb),
platinum (Pt), tin (Sn), and zinc (Zn).

Table 5.32 displays the final loss given scarcity values per commodity, highlighting the inability
to substitute dysprosium and lead, indicated by a loss given scarcity of 1. In contrast, silver, alu-
minum, cobalt, lithium, neodymium, tin as well as zinc, have adequate substitutes, resulting in
a score of approximately 50%. Thereby, the comparably low loss given scarcity of neodymium is
caused by the possibility to substitute it by dysprosium within its major application, neodymium
magnets. However, as dysprosium bears a high scarcity risk itself, this example shows the sub-
stitutability score neglects the scarcity risks of the substitutes. Moreover, the study of Graedel
et al. (2015) examines the general substitutability of 62 metals and metalloids in their major
uses, and do not focus on the application of the metals in the context of renewable energies.
Further, they reveal several metals have no substitute or the product performance will suffer
from substitution. Therefore, we provide a robustness analysis in Section 5.3.4.3, investigating
how the results change if neither commodity is regarded as substitutable.

In addition to the commodity-specific probability of scarcity and substitutability, reflected by
the loss given scarcity, the required amount per commodity, represented by the exposure at
scarcity (EAS), determines the expected loss due to scarcity. As described in Equation 3.176,
the required quantity per commodity and pathway is scaled by the mean of the previous ten years’
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annual world production.32 The resulting exposure at scarcity values per path and commodity
are displayed in Table 5.33.

Overall the scaled resource requirements of lead and platinum are relatively low in each path,
as platinum is barely needed, whereas the required demand for lead is relatively low compared
to the average world production, see Table 4.3. In contrast, the scaled demand for cobalt
is exceptionally high, which is due to the high requirements of cobalt for storage capacities,
combined with a comparatively low average production volume, as cobalt is mostly mined as a
by-product of copper and nickel and thus depends on the demand and price for the other metals.
Moreover, the resource requirements of indium and dysprosium are relatively high, compared
to their average world production, indicating the demand for these metals will increase due to
their use in photovoltaic systems, and wind power plants. Hereby, the required amounts for
dysprosium are alarming, as, so far, this rare earth metal is not substitutable, see Table 5.32,
and there is an amplified market concentration, since dysprosium is mainly mined in China.
In addition, the exposure at scarcity of nickel is remarkable, as its total amounts, required for
the built-up of storage capacities, indicate an increased interest in this industrial metal in the
following decades.

Table 5.33: Exposure at scarcity per commodity

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
REMod − REF 0.21 0.19 5.64 0.39 1.42 2.20 0.62 0.45 1.41 0.01 0.01 0.25 0.19
REMod − SUF 0.14 0.13 3.79 0.28 1.01 1.61 0.41 0.32 0.95 0.01 0.01 0.17 0.19
REMod − P ER 0.24 0.17 4.06 0.33 1.36 2.25 0.44 0.42 1.11 0.01 0.01 0.24 0.16
REMod − UNA 0.33 0.21 5.77 0.37 0.68 3.36 0.63 0.19 1.41 0.01 0.01 0.19 0.20

This table displays the exposure at scarcity (EAS) of the commodities aluminum (Al), cobalt (Co), copper (Cu),
dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn) per transformation path (REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA).
In particular, the exposure at scarcity is derived as the total required amount per commodity and path scaled
by the average world production in the period from 2010 to 2019, according to Equation 3.176.

In general, we clearly notice an elevated exposure at scarcity for almost all commodities of the
REMod − UNA path, caused by the assumed protests against big infrastructural projects, lead-
ing to a compensation through additional solar parks and energy storage build-ups, resulting
in the highest demand in cobalt and indium. Hereby, the required quantities for cobalt in the
REMod − UNA path are one and a half times the amounts in the REMod − SUF path, and
as high as six times of the average annual world production, allocated only for the German En-
ergiewende. Due to less installed wind energy parks, the REMod − UNA path requires the least
amounts of the rare earth metals, in particular, the REMod − REF path requires more than
twice the amount compared to the REMod − UNA path. In this context, the REMod − REF
path is notable, as the energy system is hereby modeled without further boundary conditions,
but results into comparable high resource amounts, indicating the behavior of the population
can significantly reduce the required amounts of commodities. Further, the comparably low
exposure at scarcity values for the REMod − PER path are remarkable, as the persistence on
- and usage of - conventional technologies in the German population, for the transportation and
housing sector, leads to reduced commodity demands, especially in cobalt and zinc, because of
a reduced demand for storage capacities. Moreover, the REMod − SUF path shows the lowest
exposure at scarcity values for most of the commodities, indicating the acceptance of the society
significantly reduces the resource requirements, except for the rare earth metals.

Overall, the REMod − SUF path exhibits the least average resource requirements for almost
all commodities, followed by the REMod − PER path, whereas the REMod − REF path, and
especially the REMod − UNA path, require the most resource amounts. The only exceptions

32For a robustness analysis, we examine to what extent the results remain valid if the considered period of the
world production is reduced or enlarged, see Section 5.3.4.4.
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are zinc, which is required least for the REMod − PER path, and the rare earth metals, which
are barely needed for the REMod − UNA path, since only few wind turbines will be installed.

All in all, lead and zinc are outstanding in terms of their high probability of scarcity, whereas we
clearly identify cobalt as a key commodity, followed by indium, nickel as well as the rare earth
metal dysprosium, due to their high resource requirements. While cobalt, indium and nickel are,
at least partly, substitutable, dysprosium can not be replaced by any other metal, indicating
the severity of its high demand. Moreover, the risk indicators probability of scarcity and the
exposure at scarcity show the commodities exhibit the least risks under the REMod − SUF
path, whereas the REMod − UNA path bears the highest risks.

5.3.3 Expected Loss due to Scarcity

The objective of this thesis is the risk assessment of the four transformation paths of the German
Energiewende. Therefore, the probability of scarcity, the loss given scarcity as well as the
exposure at scarcity are aggregated following Equation 3.177, to calculate the scarcity risk, the
expected loss due to scarcity (ES), per commodity, scenario and path. Hereby, we use either
the path-specific probabilities of scarcity obtained via the (MS-)GVAR framework, by reflecting
the relationship between the commodities over their common requirements within the energy
transition pathway, or the path-independent probabilities of scarcity from the logistic regression
model.

5.3.3.1 Expected Loss due to Scarcity per Commodity

The commodity- and path-specific expected loss due to scarcity (ES) values for the different
scenarios, are displayed in Table 5.34 (Table 5.35) in case of the (MS-)GVAR model, with
weight matrices corresponding to the paths considered, and Table 5.36 for the results of the
logistic regression model.

Overall, the GVAR model indicates cobalt bears by far the greatest risk, followed by indium
and nickel. In addition, the risk from copper and lithium is noticeable, whereas the risk of lead
and platinum is negligible. While lithium and zinc (cobalt and indium) bear higher scarcity
risks, especially under the mean scenario, using the price level of 2019 (the average price level),
caused by their comparable high prices in 2019 (the previous decade), the risks of the other
commodities are comparable, which is why we focus on the GVAR model based on the price
level of the basis year 2019 in the following.
Table 5.34: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.03 0.30 0.00 0.00 3.84 0.17 0.08 0.00 0.03 2.26
REMod − SUF 0.00 0.02 0.20 0.00 0.00 2.58 0.12 0.05 0.00 0.02 2.30
REMod − P ER 0.00 0.02 0.22 0.00 0.00 2.77 0.14 0.07 0.00 0.03 1.86
REMod − UNA 0.00 0.03 0.31 0.00 0.00 3.92 0.17 0.04 0.00 0.02 2.40

M
ea

n REMod − REF 0.04 0.23 1.52 0.35 0.40 0.00 0.35 0.24 0.00 0.12 0.35
REMod − SUF 0.02 0.16 1.02 0.26 0.29 0.00 0.24 0.16 0.00 0.08 0.35
REMod − P ER 0.04 0.21 1.10 0.30 0.41 0.00 0.28 0.24 0.00 0.11 0.28
REMod − UNA 0.06 0.26 1.56 0.34 0.60 0.00 0.35 0.13 0.00 0.09 0.37

Sh
oc

k 20
19

REMod − REF 9.17 8.36 304.32 27.27 126.63 25.23 87.36 1.38 0.45 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 92.73 16.96 59.05 0.94 0.30 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 129.75 18.20 69.11 1.36 0.57 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 193.47 25.82 87.45 0.78 0.32 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66
REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

E
xt

r.
20

19

REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 0.09 4.87 73.34 15.57 0.00 24.40 68.84 1.33 0.00 7.99 7.21
REMod − SUF 0.06 3.30 49.31 11.25 0.00 16.40 46.53 0.90 0.00 5.45 7.33
REMod − P ER 0.10 4.27 52.87 13.22 0.00 17.60 54.46 1.30 0.00 7.69 5.91
REMod − UNA 0.15 5.45 75.06 14.73 0.00 24.96 68.91 0.75 0.00 5.90 7.66

M
ea

n REMod − REF 3.24 8.07 184.72 26.89 39.79 0.35 81.86 1.38 0.06 9.09 7.16
REMod − SUF 2.18 5.47 124.19 19.43 29.14 0.24 55.33 0.94 0.04 6.19 7.28
REMod − P ER 3.69 7.08 133.17 22.84 40.77 0.25 64.75 1.36 0.07 8.74 5.87
REMod − UNA 5.16 9.04 189.06 25.44 60.80 0.36 81.94 0.78 0.04 6.70 7.60

Fo
c.

F
X 20

19

REMod − REF 0.04 0.83 16.43 3.16 0.00 18.44 32.15 0.67 0.00 2.64 7.12
REMod − SUF 0.02 0.56 11.05 2.29 0.00 12.40 21.73 0.46 0.00 1.80 7.24
REMod − P ER 0.04 0.73 11.85 2.69 0.00 13.30 25.43 0.66 0.00 2.54 5.83
REMod − UNA 0.06 0.93 16.82 2.99 0.00 18.87 32.18 0.38 0.00 1.95 7.56

M
ea

n REMod − REF 1.61 3.14 47.17 14.59 46.78 0.23 49.97 1.00 0.02 5.66 6.26
REMod − SUF 1.09 2.13 31.71 10.54 34.25 0.15 33.78 0.68 0.01 3.86 6.36
REMod − P ER 1.84 2.75 34.00 12.39 47.93 0.16 39.53 0.98 0.02 5.44 5.13
REMod − UNA 2.57 3.51 48.28 13.80 71.47 0.23 50.02 0.56 0.01 4.18 6.65

Fo
c.

F
F

R 20
19

REMod − REF 0.05 0.49 17.04 0.65 0.00 19.61 5.59 0.38 0.00 0.44 5.00
REMod − SUF 0.03 0.33 11.46 0.47 0.00 13.18 3.78 0.26 0.00 0.30 5.09
REMod − P ER 0.05 0.43 12.29 0.56 0.00 14.14 4.42 0.37 0.00 0.42 4.10
REMod − UNA 0.07 0.55 17.44 0.62 0.00 20.06 5.60 0.21 0.00 0.32 5.31

M
ea

n REMod − REF 1.08 1.89 36.82 2.62 26.49 0.18 11.88 0.62 0.02 1.67 2.26
REMod − SUF 0.73 1.28 24.76 1.89 19.39 0.12 8.03 0.42 0.01 1.14 2.29
REMod − P ER 1.23 1.66 26.55 2.22 27.14 0.13 9.40 0.61 0.02 1.60 1.85
REMod − UNA 1.73 2.12 37.69 2.48 40.46 0.18 11.89 0.35 0.01 1.23 2.40

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 2.90 8.19 271.46 26.78 4.08 25.16 86.05 1.38 0.04 9.10 7.21
REMod − SUF 1.96 5.55 182.50 19.35 2.99 16.91 58.16 0.94 0.03 6.20 7.33
REMod − P ER 3.30 7.19 195.69 22.74 4.19 18.14 68.07 1.36 0.05 8.75 5.91
REMod − UNA 4.62 9.18 277.83 25.34 6.24 25.74 86.14 0.78 0.03 6.71 7.66

M
ea

n REMod − REF 7.87 8.36 295.50 27.24 109.37 5.32 87.27 1.38 0.46 9.12 7.20
REMod − SUF 5.31 5.67 198.66 19.69 80.09 3.58 58.99 0.94 0.30 6.21 7.32
REMod − P ER 8.96 7.34 213.02 23.14 112.06 3.84 69.04 1.36 0.57 8.77 5.90
REMod − UNA 12.54 9.36 302.44 25.78 167.09 5.45 87.36 0.78 0.33 6.72 7.65

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 0.94 4.46 108.64 21.02 1.58 22.99 75.39 1.16 0.00 7.37 7.20
REMod − SUF 0.64 3.02 73.04 15.20 1.16 15.45 50.96 0.79 0.00 5.02 7.32
REMod − P ER 1.08 3.91 78.32 17.86 1.62 16.58 59.64 1.14 0.00 7.09 5.90
REMod − UNA 1.51 4.99 111.20 19.89 2.42 23.52 75.47 0.65 0.00 5.44 7.65

M
ea

n REMod − REF 4.95 6.65 169.51 25.74 104.36 3.08 80.55 1.28 0.09 8.44 7.09
REMod − SUF 3.34 4.51 113.96 18.61 76.42 2.07 54.44 0.87 0.06 5.75 7.21
REMod − P ER 5.64 5.84 122.20 21.86 106.93 2.22 63.72 1.26 0.11 8.12 5.82
REMod − UNA 7.89 7.44 173.49 24.36 159.44 3.15 80.63 0.72 0.06 6.23 7.53

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 0.55 2.08 62.69 3.00 1.45 23.47 27.26 0.72 0.00 2.43 6.24
REMod − SUF 0.37 1.41 42.15 2.17 1.06 15.78 18.42 0.49 0.00 1.66 6.35
REMod − P ER 0.63 1.83 45.19 2.55 1.49 16.92 21.56 0.70 0.00 2.34 5.12
REMod − UNA 0.88 2.33 64.16 2.84 2.21 24.01 27.28 0.40 0.00 1.80 6.63

M
ea

n REMod − REF 3.46 3.87 114.73 8.37 61.80 3.00 39.75 0.94 0.06 4.42 4.44
REMod − SUF 2.33 2.62 77.13 6.05 45.25 2.02 26.87 0.64 0.04 3.01 4.52
REMod − P ER 3.94 3.40 82.71 7.11 63.32 2.17 31.44 0.93 0.07 4.25 3.64
REMod − UNA 5.51 4.34 117.42 7.92 94.42 3.07 39.79 0.53 0.04 3.26 4.72

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0% 20
19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.61 0.09 0.02 0.00 0.00 0.77
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.41 0.06 0.02 0.00 0.00 0.78
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.44 0.07 0.02 0.00 0.00 0.63
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.62 0.09 0.01 0.00 0.00 0.82

M
ea

n REMod − REF 0.02 0.13 0.30 0.03 0.00 0.00 0.26 0.09 0.00 0.01 0.14
REMod − SUF 0.01 0.09 0.20 0.02 0.00 0.00 0.18 0.06 0.00 0.01 0.14
REMod − P ER 0.02 0.11 0.22 0.02 0.00 0.00 0.21 0.09 0.00 0.01 0.11
REMod − UNA 0.03 0.14 0.31 0.03 0.00 0.00 0.26 0.05 0.00 0.01 0.15

Q
.6

0%
20

19

REMod − REF 0.04 1.15 21.61 0.85 0.00 22.51 10.31 0.62 0.00 0.83 5.82
REMod − SUF 0.02 0.78 14.53 0.61 0.00 15.13 6.97 0.42 0.00 0.57 5.92
REMod − P ER 0.04 1.01 15.58 0.72 0.00 16.23 8.15 0.61 0.00 0.80 4.77
REMod − UNA 0.06 1.28 22.11 0.80 0.00 23.03 10.32 0.35 0.00 0.61 6.18

M
ea

n REMod − REF 2.22 3.44 54.17 3.35 35.31 0.56 23.76 0.97 0.02 2.55 2.75
REMod − SUF 1.50 2.33 36.42 2.42 25.86 0.37 16.06 0.66 0.01 1.74 2.80
REMod − P ER 2.53 3.02 39.05 2.85 36.18 0.40 18.80 0.96 0.02 2.45 2.26
REMod − UNA 3.54 3.85 55.44 3.17 53.95 0.57 23.79 0.55 0.01 1.88 2.92

Q
.7

5%
20

19

REMod − REF 5.90 8.33 286.67 27.16 23.98 25.23 87.36 1.38 0.02 9.11 7.21
REMod − SUF 3.98 5.65 192.73 19.63 17.56 16.96 59.05 0.94 0.01 6.20 7.33
REMod − P ER 6.72 7.31 206.66 23.07 24.57 18.20 69.11 1.36 0.03 8.76 5.91
REMod − UNA 9.40 9.33 293.41 25.70 36.64 25.82 87.45 0.78 0.02 6.72 7.66

M
ea

n REMod − REF 9.12 8.36 301.58 27.27 130.98 19.61 87.36 1.38 0.43 9.12 7.21
REMod − SUF 6.15 5.67 202.76 19.71 95.91 13.18 59.05 0.94 0.28 6.21 7.33
REMod − P ER 10.38 7.34 217.41 23.16 134.20 14.14 69.11 1.36 0.54 8.77 5.91
REMod − UNA 14.53 9.36 308.67 25.80 200.11 20.06 87.45 0.78 0.31 6.72 7.66

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean).

In general, the results are driven by the exposure at scarcity, as higher resource requirements
cause higher scarcity risks. Hereby, the resource demands from 2020 to 2050 for the energy
expansion pathways of the energy system derived from the project InteRessE,33 combined with
the probability of scarcity based on the different commodity frameworks highly determine the risk
of scarcity. Especially in case of the shock, extreme, as well as 60% and 75% quantile scenarios,
for which the GVAR model indicates for most of the commodities to exceed their threshold
almost surely, the corresponding commodity-specific expected loss due to scarcity values equal
to the product of substitutability and exposure at scarcity. However, with a few exceptions,
the order of the most risky commodities remains the same across all scenarios. Hereby, cobalt,
indium and nickel are outstanding, but also the risk of lithium and copper is remarkable, whereas
the low demand for lead and platinum indicate their scarcity risks are neglectable. While the
probability of scarcity of lead indicates a general high scarcity risk, the low scaled demand cause
the negligible overall risk for lead.

Under the mean scenario, lithium and zinc are outstanding, caused by their high probabilities of
scarcity, while the other expected loss due to scarcity values are near zero, as their probabilities
of scarcity indicate the commodities almost never exceed their thresholds. Hereby, the risks
of cobalt and nickel are relatively high, although their probabilities of scarcity are comparable
to those of the other commodities, however, their high required resource amounts cause their
expected loss due to scarcity values, underlining the impact of the resource requirements on the
risk results. In contrast, the probability of scarcity of copper determines its low scarcity risk,
despite its comparable high resource requirements.

33The specific data for the technologies considered as well as the resource requirement are not yet published.
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Comparing the expected loss due to scarcity values between the scenarios, we detect the results
highly depend on the probability of scarcity and the exposure at scarcity. Since most of the
commodities exceed their threshold almost surely under the shock, extreme, as well as 60% and
75% quantile scenarios, the expected loss due to scarcity is determined by their substitutability
as well as their resource requirements. In particular, cobalt and indium, followed by nickel, bear
the highest risks, caused by their high scaled demand, reflected in their exposure at scarcity,
while the expected loss due to scarcity of lead and platinum is almost neglectable, caused by
their lower requirements. Since extreme situations in the global demand affects the probability
of scarcity of the commodities most, the scarcity risk under the (extreme) focus scenario with
stressed world gross domestic product is higher than the respective scenarios with stressed
U.S. dollar index or Federal Funds Effective Rate. Hereby, the risks of the industrial metals,
especially copper and nickel, increases most, indicating they are impacted most by the economy.
In contrast, the probability of scarcity vanishes in case of the 25% and 40% quantile scenarios,
resulting in expected loss due to scarcity values of zero, indicating the risk of commodity scarcity
is almost neglectable under these circumstances.

Overall, the results of the GVAR model reveal cobalt, indium and nickel bear the highest scarcity
risks, caused by their resource requirements, indicating the demand for the metals is the most
important risk driver.

The MS-GVAR model reflects the time-varying spillover effects in the industrial metal markets
to assess the scarcity risks. Hereby, the commodities bear higher risks if the average price level
is used to derive the probability of scarcity, since the average prices of the previous decade are
higher than the prices in 2019, except for zinc. However, regardless of the initial price level,
copper and nickel are outstanding, while the scarcity risk of lead is neglectable, in line with the
results of the GVAR model, see Table 5.35.
Table 5.35: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models

Al Cu Ni Pb Sn Zn

M
ea

n 20
19

REMod − REF 2.11 3.05 9.26 1.26 0.47 7.21
REMod − SUF 1.43 2.21 6.26 0.86 0.32 7.33
REMod − P ER 1.85 2.59 7.33 1.24 0.46 5.91
REMod − UNA 2.36 2.89 9.27 0.71 0.35 7.66

M
ea

n REMod − REF 8.33 26.89 46.30 1.38 3.92 4.38
REMod − SUF 5.65 19.43 31.30 0.94 2.67 4.46
REMod − P ER 7.31 22.84 36.63 1.36 3.77 3.59
REMod − UNA 9.33 25.44 46.35 0.78 2.89 4.66

Sh
oc

k 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

E
xt

r.
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 8.04 16.58 68.32 1.38 4.65 7.21
REMod − SUF 5.45 11.98 46.18 0.94 3.17 7.33
REMod − P ER 7.06 14.08 54.04 1.36 4.47 5.91
REMod − UNA 9.01 15.69 68.38 0.78 3.43 7.66

M
ea

n REMod − REF 8.36 27.27 84.57 1.38 8.51 7.08
REMod − SUF 5.67 19.71 57.16 0.94 5.80 7.20
REMod − P ER 7.34 23.16 66.90 1.36 8.19 5.80
REMod − UNA 9.36 25.80 84.65 0.78 6.28 7.52
REMod − REF 8.34 25.20 81.07 1.38 5.32 7.21
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models

Al Cu Ni Pb Sn Zn

Fo
c.

F
X 20

19

REMod − SUF 5.66 18.21 54.80 0.94 3.63 7.33
REMod − P ER 7.33 21.40 64.13 1.36 5.12 5.91
REMod − UNA 9.34 23.84 81.15 0.78 3.93 7.66

M
ea

n REMod − REF 8.36 27.27 87.19 1.38 8.53 7.02
REMod − SUF 5.67 19.71 58.93 0.94 5.81 7.14
REMod − P ER 7.34 23.16 68.97 1.36 8.20 5.76
REMod − UNA 9.36 25.80 87.27 0.78 6.29 7.46

Fo
c.

F
F

R 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.02 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.15 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.68 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.66 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 8.31 24.00 81.25 1.38 7.66 7.21
REMod − SUF 5.63 17.34 54.92 0.94 5.22 7.33
REMod − P ER 7.30 20.38 64.27 1.36 7.36 5.91
REMod − UNA 9.31 22.71 81.33 0.78 5.65 7.66

M
ea

n REMod − REF 8.36 27.27 86.49 1.38 8.86 7.18
REMod − SUF 5.67 19.71 58.46 0.94 6.04 7.30
REMod − P ER 7.34 23.16 68.42 1.36 8.52 5.89
REMod − UNA 9.36 25.80 86.57 0.78 6.54 7.63

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 8.36 26.78 86.31 1.38 7.73 7.21
REMod − SUF 5.67 19.35 58.34 0.94 5.27 7.33
REMod − P ER 7.34 22.74 68.28 1.36 7.43 5.91
REMod − UNA 9.36 25.34 86.40 0.78 5.70 7.66

M
ea

n REMod − REF 8.36 27.27 87.19 1.38 8.97 7.17
REMod − SUF 5.67 19.71 58.93 0.94 6.11 7.29
REMod − P ER 7.34 23.16 68.97 1.36 8.63 5.88
REMod − UNA 9.36 25.80 87.27 0.78 6.62 7.61

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.10
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.10
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.08
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.11

M
ea

n REMod − REF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.01 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.11 0.35 0.34 0.09 7.02
REMod − SUF 0.00 0.08 0.24 0.23 0.06 7.14
REMod − P ER 0.00 0.09 0.28 0.34 0.09 5.76
REMod − UNA 0.00 0.10 0.35 0.19 0.07 7.46

M
ea

n REMod − REF 1.69 6.16 6.12 0.99 1.22 0.87
REMod − SUF 1.14 4.45 4.13 0.67 0.83 0.88
REMod − P ER 1.48 5.23 4.84 0.98 1.17 0.71
REMod − UNA 1.89 5.83 6.12 0.56 0.90 0.92

Q
.6

0%
20

19

REMod − REF 8.36 27.27 87.36 1.38 8.75 7.21
REMod − SUF 5.67 19.71 59.05 0.94 5.96 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.42 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.46 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models

Al Cu Ni Pb Sn Zn
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.7

5%
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

This table displays the expected loss due to scarcity for the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER
and REMod − UNA), as well as per scenario (Mean (Mean), Shock
(Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme
FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quan-
tile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quan-
tile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the
values are derived from the MS-GVAR model based on the weight ma-
trices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or
on the average price level of the previous decade (Mean).

As the MS-GVAR model considers the time period from 1995 to 2019 and only includes the
industrial metals, which are most connected to the economy, the scarcity risks are highly af-
fected by shocks to the global variables, compared to the GVAR model. Overall, the stronger
interdependencies between the commodity markets as well as between the commodities and
the economy lead to higher probabilities of scarcity and ultimately higher expected loss due to
scarcity values, compared to the GVAR model. However, the expected loss due to scarcity of the
industrial metals derived from the MS-GVAR model coincide with those derived from the GVAR
model under the shock, extreme, 60% and 75% quantile scenarios, as both models indicate the
commodities almost surely exceed their threshold prices, which is why the expected loss due to
scarcity equals to the product of loss given scarcity and exposure at scarcity. Despite the higher
risk values, copper and nickel are outstanding, caused by their comparable high probability of
scarcity as well as exposure at scarcity, whereas the risk of lead is comparable low, in line with
the results derived from the GVAR model.

Since spillover effects between the commodity markets are not reflected within the logistic re-
gression models to derive the probability of scarcity, leading to smaller probability of scarcity
values, the risk of scarcity is underestimated, compared to the results of the (MS-)GVAR model,
see Table 5.36. However, the results derived from the logistic regression model also reveal cobalt,
followed by indium and nickel are the most risky commodities, similar to the GVAR model. In
contrast, the risk of copper and lithium is by far lower, due to their lower probability of scarcity.
Moreover, contrary to the results of the (MS-)GVAR model, the expected loss due to scarcity
of the rare earth metals, dysprosium as well as neodymium, can be derived under the logistic
regression model. Hereby, dysprosium bears a comparable high risk, caused by its subsitutability
score as well as its required resource amount, however, its expected loss due to scarcity value
is not outstanding, due to the low probability of scarcity. In addition, the scaled resource re-
quirement of neodymium is comparable low, resulting in moderate expected loss due to scarcity
values. While lithium exhibits comparable high risks under the mean scenario, zinc’s risks in-
creases in case of the shock scenario, caused by its higher probability of scarcity. Moreover, the
risks of the commodities barely react to shocks to the global economy, as spillover effects are
not reflected in the logistic regression model. Only copper and indium are affected by shocks to
the Federal Funds Effective Rate and U.S. dollar index, respectively. In general, the risks of the
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precious metals, the industrial metals, except nickel, as well as neodymium are comparably low,
even under the extreme scenario, while cobalt, indium, and nickel are outstanding, exhibiting
comparably high risks even under the mean scenario.

Table 5.36: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n

REMod − REF 0.33 0.50 22.05 1.16 1.48 13.36 1.05 0.19 7.88 0.08 0.02 0.19 0.27
REMod − SUF 0.22 0.34 14.82 0.84 1.06 9.78 0.70 0.14 5.33 0.05 0.01 0.13 0.28
REMod − P ER 0.37 0.44 15.89 0.99 1.42 13.69 0.75 0.18 6.23 0.08 0.02 0.18 0.22
REMod − UNA 0.52 0.56 22.57 1.10 0.70 20.41 1.07 0.08 7.89 0.04 0.01 0.14 0.29

Sh
oc

k

REMod − REF 0.44 0.96 140.56 1.66 7.70 21.03 1.46 1.01 48.70 0.20 0.04 0.29 5.80
REMod − SUF 0.30 0.65 94.50 1.20 5.51 15.40 0.98 0.72 32.92 0.14 0.02 0.20 5.90
REMod − P ER 0.50 0.84 101.33 1.41 7.42 21.54 1.05 0.93 38.53 0.20 0.05 0.28 4.76
REMod − UNA 0.70 1.08 143.86 1.57 3.67 32.12 1.49 0.43 48.75 0.11 0.03 0.22 6.16

E
xt

r.

REMod − REF 0.59 1.75 275.15 2.34 33.85 31.90 2.01 4.42 82.22 0.44 0.08 0.46 7.19
REMod − SUF 0.40 1.18 184.98 1.69 24.19 23.36 1.35 3.14 55.58 0.30 0.05 0.31 7.31
REMod − P ER 0.67 1.53 198.35 1.99 32.60 32.69 1.45 4.09 65.04 0.43 0.09 0.44 5.90
REMod − UNA 0.94 1.96 281.61 2.22 16.14 48.74 2.06 1.89 82.30 0.25 0.05 0.34 7.64

Fo
c.

E
A

REMod − REF 0.33 0.50 22.05 1.16 2.99 13.36 1.05 0.39 7.88 0.08 0.02 0.19 0.27
REMod − SUF 0.22 0.34 14.82 0.84 2.14 9.78 0.70 0.28 5.33 0.05 0.01 0.13 0.28
REMod − P ER 0.37 0.44 15.89 0.99 2.88 13.69 0.75 0.36 6.23 0.08 0.02 0.18 0.22
REMod − UNA 0.52 0.56 22.57 1.10 1.43 20.41 1.07 0.17 7.89 0.04 0.01 0.14 0.29

Fo
c.

F
X

REMod − REF 0.33 0.50 22.05 1.19 1.63 16.34 1.05 0.21 7.88 0.12 0.02 0.19 0.27
REMod − SUF 0.22 0.34 14.82 0.86 1.17 11.96 0.70 0.15 5.33 0.08 0.01 0.13 0.28
REMod − P ER 0.37 0.44 15.89 1.01 1.57 16.74 0.75 0.20 6.23 0.11 0.03 0.18 0.22
REMod − UNA 0.52 0.56 22.57 1.12 0.78 24.96 1.07 0.09 7.89 0.07 0.02 0.14 0.29

Fo
c.

F
F

R REMod − REF 0.33 0.50 22.05 1.40 3.51 13.36 1.05 0.46 7.88 0.08 0.02 0.19 1.20
REMod − SUF 0.22 0.34 14.82 1.01 2.51 9.78 0.70 0.33 5.33 0.05 0.01 0.13 1.22
REMod − P ER 0.37 0.44 15.89 1.19 3.38 13.69 0.75 0.42 6.23 0.08 0.02 0.18 0.99
REMod − UNA 0.52 0.56 22.57 1.32 1.67 20.41 1.07 0.20 7.89 0.04 0.01 0.14 1.28

Fo
c.

E
xt

r.
E

A REMod − REF 0.33 0.50 22.05 1.16 6.00 13.36 1.05 0.78 7.88 0.08 0.02 0.19 0.27
REMod − SUF 0.22 0.34 14.82 0.84 4.29 9.78 0.70 0.56 5.33 0.05 0.01 0.13 0.28
REMod − P ER 0.37 0.44 15.89 0.99 5.78 13.69 0.75 0.73 6.23 0.08 0.02 0.18 0.22
REMod − UNA 0.52 0.56 22.57 1.10 2.86 20.41 1.07 0.34 7.89 0.04 0.01 0.14 0.29

Fo
c.

E
xt

r.
F

X REMod − REF 0.33 0.50 22.05 1.21 1.80 19.86 1.05 0.23 7.88 0.17 0.03 0.19 0.27
REMod − SUF 0.22 0.34 14.82 0.87 1.29 14.54 0.70 0.17 5.33 0.12 0.02 0.13 0.28
REMod − P ER 0.37 0.44 15.89 1.02 1.73 20.35 0.75 0.22 6.23 0.17 0.03 0.18 0.22
REMod − UNA 0.52 0.56 22.57 1.14 0.86 30.34 1.07 0.10 7.89 0.10 0.02 0.14 0.29

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.33 0.50 22.05 1.67 8.16 13.36 1.05 1.07 7.88 0.08 0.02 0.19 3.64

REMod − SUF 0.22 0.34 14.82 1.21 5.84 9.78 0.70 0.76 5.33 0.05 0.01 0.13 3.70
REMod − P ER 0.37 0.44 15.89 1.42 7.86 13.69 0.75 0.99 6.23 0.08 0.02 0.18 2.99
REMod − UNA 0.52 0.56 22.57 1.58 3.89 20.41 1.07 0.46 7.89 0.04 0.01 0.14 3.87

Q
.2

5%

REMod − REF 0.29 0.37 5.39 0.96 0.57 11.32 0.98 0.07 2.11 0.05 0.01 0.14 0.02
REMod − SUF 0.20 0.25 3.62 0.69 0.41 8.29 0.66 0.05 1.42 0.03 0.01 0.09 0.02
REMod − P ER 0.33 0.32 3.89 0.81 0.55 11.59 0.71 0.07 1.67 0.05 0.02 0.13 0.01
REMod − UNA 0.47 0.41 5.52 0.91 0.27 17.29 1.00 0.03 2.11 0.03 0.01 0.10 0.02

Q
.4

0%

REMod − REF 0.31 0.42 9.96 1.10 0.98 12.58 0.98 0.13 6.63 0.06 0.02 0.16 0.08
REMod − SUF 0.21 0.29 6.70 0.79 0.70 9.21 0.66 0.09 4.48 0.04 0.01 0.11 0.08
REMod − P ER 0.36 0.37 7.18 0.93 0.94 12.89 0.71 0.12 5.25 0.06 0.02 0.16 0.06
REMod − UNA 0.50 0.47 10.20 1.04 0.47 19.22 1.01 0.05 6.64 0.03 0.01 0.12 0.08

Q
.5

0%

REMod − REF 0.32 0.45 16.10 1.17 1.22 13.20 1.00 0.16 9.89 0.07 0.02 0.18 0.21
REMod − SUF 0.22 0.30 10.82 0.85 0.87 9.66 0.67 0.11 6.68 0.05 0.01 0.12 0.21
REMod − P ER 0.37 0.39 11.60 0.99 1.17 13.52 0.72 0.15 7.82 0.07 0.02 0.17 0.17
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
REMod − UNA 0.52 0.50 16.48 1.11 0.58 20.16 1.02 0.07 9.90 0.04 0.01 0.13 0.22
REMod − REF 0.35 0.55 34.00 1.27 1.81 14.35 1.02 0.24 12.51 0.09 0.02 0.18 0.70

Q
.6

0%

REMod − SUF 0.24 0.37 22.86 0.92 1.29 10.51 0.69 0.17 8.46 0.06 0.01 0.13 0.71
REMod − P ER 0.40 0.48 24.51 1.08 1.74 14.70 0.74 0.22 9.90 0.09 0.03 0.18 0.57
REMod − UNA 0.56 0.61 34.80 1.20 0.86 21.92 1.04 0.10 12.53 0.05 0.01 0.14 0.74

Q
.7

5%

REMod − REF 0.40 0.75 104.03 1.44 3.63 16.83 1.06 0.47 19.44 0.15 0.03 0.25 3.37
REMod − SUF 0.27 0.51 69.94 1.04 2.59 12.32 0.71 0.34 13.14 0.10 0.02 0.17 3.42
REMod − P ER 0.45 0.66 74.99 1.23 3.50 17.24 0.76 0.44 15.38 0.15 0.03 0.24 2.76
REMod − UNA 0.63 0.84 106.47 1.37 1.73 25.71 1.08 0.20 19.46 0.08 0.02 0.18 3.58

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model.

Overall, independent of the model used to derive the probability of scarcity, the REMod − SUF
path mostly exhibits the lowest commodity-specific expected loss due to scarcity values, while
the REMod − REF , REMod − PER and REMod − UNA paths bear higher risks, caused by
their higher probabilities of scarcity and, especially, their higher resource demands, reflected in
the exposure at scarcity (EAS). Hereby, the REMod − UNA path bears the highest risks for
almost all commodities caused by its high resource demands, whereas the risk of copper, lead and
tin (platinum) is slightly higher under the REMod − REF (REMod − PER) path. However,
the probability of scarcity vanishes in case of the 25% and 40% quantile scenarios for all paths,
resulting in expected loss due to scarcity values of zero, indicating the risk of commodity scarcity
is almost neglectable under these circumstances.

5.3.3.2 Expected Loss due to Scarcity per Path

Aggregating the commodity-specific expected loss due to scarcity values on path level, we obtain
our final measure of scarcity, the expected loss due to scarcity ESp,ζ per path and scenario
displayed in Table 5.37. Hereby, the expected loss due to scarcity values differ in the underlying
commodities. The results of the logistic regression model incorporates the risks of the industrial
metals as well as the key elements of the German Energiewende, defined by Bastian et al.
(2019). However, the GVAR model excludes the rare earth metals, dysprosium and neodymium,
whereas the MS-GVAR model only reflects the risks of the industrial metals markets, due to
data limitations. In Section 5.3.4.5, we restrict the commodity set to the industrial metals to
allow a comparison between the models.

Table 5.37: Path-specific expected loss due to scarcity
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REMod − REF 6.71 606.51 611.73 203.64 81.48 49.25 442.34 250.77 129.89 0.00 0.00 1.49 63.72 482.35
REMod − SUF 4.46 419.38 423.50 136.75 52.02 31.04 295.84 166.61 81.00 0.00 0.00 1.22 32.60 318.89
REMod − P ER 5.79 492.78 499.35 163.65 66.28 37.55 335.94 195.08 106.35 0.00 0.00 1.18 46.81 369.25
REMod − UNA 6.74 680.83 691.38 207.29 81.09 50.42 449.17 251.12 131.82 0.00 0.00 1.32 52.18 482.21
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Path-specific expected loss due to scarcity
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REMod − REF 3.60 611.73 611.73 362.61 176.42 85.51 559.09 411.73 244.85 0.00 0.00 0.97 129.11 602.41
REMod − SUF 2.07 423.48 423.50 241.14 114.03 48.49 383.79 279.13 152.78 0.00 0.00 0.23 65.87 414.73
REMod − P ER 3.67 499.35 499.35 293.24 159.69 76.89 456.97 354.01 210.74 0.00 0.00 0.81 107.32 492.34
REMod − UNA 5.22 691.38 691.38 382.96 198.92 94.83 626.61 474.60 277.47 0.00 0.00 0.62 114.91 677.09
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REMod − REF 23.37 140.70 140.70 106.18 128.52 140.60 129.80 137.77 140.66 0.00 0.10 7.91 140.33 140.70
REMod − SUF 17.35 98.91 98.91 75.27 87.27 98.86 91.89 95.74 98.89 0.00 0.06 7.76 98.62 98.91
REMod − P ER 20.48 115.64 115.64 88.74 106.11 115.54 107.25 113.56 115.62 0.00 0.09 7.07 115.26 115.64
REMod − UNA 24.25 137.77 137.77 105.80 127.90 137.73 126.18 135.42 137.76 0.00 0.14 8.41 137.45 137.77

M
ea

n

REMod − REF 91.20 140.70 140.70 137.17 139.75 140.66 139.54 140.33 140.70 0.00 0.01 17.05 140.70 140.70
REMod − SUF 62.63 98.91 98.91 97.34 97.40 98.89 98.48 98.65 98.89 0.00 0.01 11.11 98.91 98.91
REMod − P ER 78.46 115.64 115.64 113.35 115.03 115.62 115.03 115.42 115.62 0.00 0.01 15.48 115.64 115.64
REMod − UNA 90.88 137.77 137.77 135.43 136.97 137.76 137.26 137.57 137.76 0.00 0.02 16.47 137.76 137.77

lo
g.

R
eg

. REMod − REF 48.56 229.84 442.40 50.27 51.77 52.01 53.68 55.56 59.99 22.27 33.42 43.97 67.08 151.84
REMod − SUF 33.70 158.42 303.86 34.93 36.05 36.46 37.36 38.82 42.90 15.75 23.38 30.59 46.40 104.58
REMod − P ER 40.48 178.83 345.28 42.12 43.75 43.64 45.39 47.63 50.92 20.15 29.05 37.18 54.62 117.83
REMod − UNA 55.40 240.19 446.14 56.20 60.07 57.69 57.81 65.60 63.02 28.16 39.84 50.74 74.57 161.36

This table displays the expected loss due to scarcity per path (REMod − REF , REMod − SUF , REMod − P ER, and
REMod − UNA) and scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) of the input variables. Hereby, the values are derived from the (MS-)GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean) as well as from the logistic regression (log. Reg.) model.

While the expected loss due to scarcity values of the 25% and 40% quantile scenarios of the
(MS-)GVAR model are equal to zero due to the vanishing probabilities of scarcity, the risks
under the shock, extreme, focus and 75% quantile scenarios are exceptionally high, mainly
caused by the high expected loss due to scarcity of cobalt, indium and nickel (copper and
nickel). As the path-specific expected loss due to scarcity in the mean scenario is comparably
low, caused by the almost neglectable commodity-specific probabilities of scarcity under the
GVAR model, the MS-GVAR model exhibits the highest values, since the commodities almost
surely exceed their threshold price, although only the industrial metals are considered. However,
except for the mean scenario, the expected loss due to scarcity values are significantly smaller
for the MS-GVAR models, due to the reduced commodity set. Moreover, the (MS-)GVAR
models indicate stressed values in the global demand, reflected by the world gross domestic
product (world industrial production) cause the highest (smallest) risks, whereas shocks to the
Federal Funds Effective Rate incrases the scarcity risk the least (most) in the time-invariant
(time-varying) analysis. However, the relative high expected loss due to scarcity values indicate
the global economy affect the commodity markets and their associated scarcity risks, in line
with the spillover effects from the economy to the commodities in Section 5.1.2 and Section
5.2.3.3. In case of the logistic regression models, the expected loss due to scarcity values of the
shock, extreme and 75% scenario are outstanding, while the remaining scenario specific values
are comparable, indicating the scarcity risk barely differ across the scenarios. In particular, a
stressed economy leads only to moderate risks, as the commodities barely react to shocks to the
global economy, especially, only few commodities are determined by the macroeconomic variables
at all. However, the commodity-specific analysis neglects the interdependencies between the
commodities and therefore, underestimates the scarcity risk, especially in the shock, extreme,
(extreme) focus as well as 60% and 75% quantile scenarios.
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Overall, the sufficiency path (REMod − SUF ) bears the lowest risk, due to the least required
amounts for the commodities. In contrast, the unacceptance path (REMod − UNA), closely
followed by the reference path (REMod − REF ), shows the highest expected loss due to scarcity
values of all pathways for the GVAR model and the logistic regression model, in almost all sce-
narios considered, inter alia due to the high demand in cobalt, caused by the large amount of
battery storage required in this path. However, in case of the 60% (40% and 50%) quantile sce-
nario using the prices of 2019 (average prices) as basis level, the reference path (REMod − REF )
path bears higher risks in the mean scenario, caused by the higher expected loss due to scarcity
values of copper, lead, and tin. The higher expected loss due to scarcity values of copper, lead,
and tin also lead to higher overall risks of the REMod − REF path in the MS-GVAR model.
Overall, despite the different frameworks applied, despite the different time periods used for
the initial price level, and despite the different metals considered, our analysis suggests, the
REMod − SUF path should be accomplished, as an higher acceptance of the society reduces
the commodity requirements, and therefore the scarcity risks, substantially.

5.3.4 Robustness Analyses

The derived scarcity risk of the transformation pathways is based on assumptions of a price
threshold, the underlying scenario values, the substitutability, as well as a scaling factor for the
commodity requirements, which we choose due to the close connection with our setup, as well as
for its simplicity and statistical validity. In this section, we examine to what extent our results
remain valid by using different assumptions for the price threshold, the definition of the scenario
values, the substitutability, as well as for the scaling factor, whereby we focus on one assumption
each, see Section 5.3.4.1, Section 5.3.4.2, Section 5.3.4.3, and Section 5.3.4.4.34 Moreover, due
to data limitations, the results presented above correspond to different commodities analyzed.
While the MS-GVAR model is only based on the industrial metal markets, the logistic regression
models incorporates all key resources for the German Energiewende, according to Bastian et al.
(2019), including the rare earth metals, which are omitted for the GVAR model. For the
comparability of the results derived from the different models, we restrict the commodities to
the industrial metals, for which the data is available in each case. Subsequently, we are able
to compare the corresponding expected loss due to scarcity per path, scenario and model, see
Section 5.3.4.5.

5.3.4.1 Robustness Analysis for the Threshold Price

First, we consider the sensitivity of the proposed risk assessment framework to the threshold.
As we set the price threshold statistically with the one-sigma approach, its calculation depends
on the considered time period. Instead of approximating the historical mean and standard
deviation on data over the previous decade, we reduce and enlarge the considered time period
to five and 25 years, respectively, to analyze the sensitivity of the risk assessment framework to
changes in the price threshold.35

Table 5.38 displays the resulting thresholds based on the reduced as well as enlarged sample
period, which are generally lower than the original ones, presented in Table 5.25. As the com-
modity prices stayed at a high level for several years after the price boom in the beginning of
2000s, the thresholds based on the previous decade includes a period of high prices, while the
thresholds based on the last 25 years also include a time span of a calmer period, resulting in

34Adjusting two or more assumptions at the same time lead to different expected loss due to scarcity values,
however, the main findings, especially the hierarchy between the paths, remain valid.

35Due to data availability issues, the prices of the rare earth metals dysprosium and neodymium are only
available within the last decade, thus, the considered time period can not be enlarged.
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lower values, especially for the precious metal prices. Moreover, the decline in the prices around
2015, caused by the slowdown in Chinese demand as well as the oil price drop, lead to lower
threshold prices if only the recent five years are considered. The exceptions are cobalt, lithium,
and zinc, as their prices increased over the previous years. While supply concerns cause the
ongoing growth in zinc’s price, the increased interest in cobalt and lithium for batteries lead to
the observed rising prices.

Table 5.38: Commodity price threshold of the robustness analysis

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
2015 2019 $/t 548814 2037 63650 6461 317529 373960 129735 70520 13576 2270 32914653 20258 2929
1995 2019 $/t 692596 2229 59546 7165 608299 659014 101435 81920 21167 2194 44638013 20183 2549

This table displays the price threshold for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), dysprosium
(Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn) in U.S.$/t,
derived from the one-sigma approach in Equation 3.159, based on annual price data in the period from 1995 to 2019 or
from 2015 to 2019.

Table D.28, Table D.29 and Table D.31 (Table D.35, Table D.36 and Table D.38) display the
resulting probabilities of scarcity derived under the thresholds considering five years (25 years)
for the (MS-)GVAR model and the logistic regression model, respectively. In general, the results
suggest a higher threshold price leads to a reduced scarcity risk for the (MS-)GVAR models with
different weight matrices as well as the logistic regression model.

Regarding the GVAR model and the mean scenario as well as the scenarios, representing a
stressed economy, the risk of lithium, lead, tin as well as zinc are significantly higher under the
thresholds based on the previous 25 years for most of the model specifications, whereas silver,
aluminum, copper, indium, nickel and platinum observe the highest risk under the thresholds
based on the previous five years.

In case of the MS-GVAR model, the probabilities of scarcity under the thresholds based on
the previous 25 years are slightly lower for aluminum and nickel. However, the results of the
adapted thresholds lead generally to higher risk values, especially, the risks observed under the
mean scenario are exceptionally high if the threshold based on the previous five years is used,
except for zinc.

In case of the logistic regression model, the model selection identifies the same determinants
under the new threshold, except for lithium, which is now driven by the 10-year U.S. Treasury
rate as well as the U.S. consumer price index, see Table D.30 and Table D.37, which is why
lithium’s risks differ across the scenarios. Hereby, the mean scenario indicates a neglectable,
risk under the threshold based on the previous five years, whereas lithium’s risk is exceptionally
high under the shock and extreme scenarios. In general, the commodity-specific probabilities of
scarcity are slightly higher under the adapted thresholds, except for cobalt, caused by its smaller
threshold value. Overall, the (MS-)GVAR models as well as the logistic regression model indicate
higher scarcity risks in case of smaller threshold prices.

Due to the different probabilities of scarcity, the expected loss due to scarcity values differ
across the analyses. However, a higher threshold price cause a smaller probability of scarcity
and therefore a reduced expected loss due to scarcity value, see Table D.39, Table D.40 and Table
D.41 for the (MS-)GVAR and the logistic regression model, respectively. While the GVAR model
exhibits an increased risk of silver and nickel (lithium) under the threshold based on the previous
five years (25 years), aluminum, copper and nickel (tin) show high expected loss due to scarcity
values in case of the MS-GVAR model, using the threshold prices, based on the previous five
years (25 years). Besides nickel, the logistic regression model also indicates higher risks for the
rare earth metals.

Overall, the models based on the threshold price of the previous five years exhibits the highest
path-specific expected loss due to scarcity, see Table 5.39. However, although the commodity-
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and path-specific expected loss due to scarcity values differ, the ordering between the paths
remains the same for all considered models as well as threshold prices. While the REMod − SUF
path bears the lowest commodity-specific risks, the REMod − UNA path exhibits the highest
values across all scenarios, except for the MS-GVAR model, similar to the results in Table 5.35.

Table 5.39: Path-specific expected loss due to scarcity of the robustness analysis for the threshold price
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REMod − REF 31.92 611.73 611.73 171.07 138.67 94.74 405.98 244.87 173.36 0.00 0.09 11.54 120.36 506.24
REMod − SUF 20.50 423.50 423.50 116.77 96.46 62.48 275.05 167.52 113.06 0.00 0.06 6.79 76.87 332.55
REMod − P ER 31.12 499.35 499.35 143.88 118.95 83.13 326.02 214.22 151.21 0.00 0.07 10.10 99.59 411.93
REMod − UNA 33.88 691.38 691.38 174.45 144.65 98.74 431.52 275.04 184.06 0.00 0.09 10.25 116.56 546.66

M
ea

n

REMod − REF 207.68 611.02 611.73 335.79 287.66 267.67 539.25 374.10 320.32 0.02 18.21 131.15 281.59 565.34
REMod − SUF 146.15 422.42 423.50 234.49 201.90 186.72 372.19 257.57 220.67 0.01 13.20 93.25 193.46 381.29
REMod − P ER 204.63 498.73 499.35 302.40 265.09 250.13 448.69 329.49 292.77 0.01 22.07 134.09 259.19 463.86
REMod − UNA 280.23 689.88 691.38 413.03 358.72 341.07 615.67 446.09 394.69 0.05 31.69 188.24 349.68 630.30
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R

REMod − REF 136.53 140.70 140.70 140.54 140.49 140.70 140.66 140.66 140.70 0.00 11.53 120.38 140.70 140.70
REMod − SUF 96.00 98.91 98.91 98.83 98.82 98.89 98.89 98.88 98.91 0.00 7.42 83.27 98.91 98.91
REMod − P ER 112.04 115.64 115.64 115.52 115.46 115.62 115.61 115.59 115.62 0.00 9.85 97.52 115.64 115.64
REMod − UNA 134.58 137.77 137.77 137.68 137.65 137.76 137.72 137.72 137.77 0.00 13.25 118.56 137.77 137.77
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ea

n

REMod − REF 133.89 140.70 140.70 137.78 138.43 140.70 139.76 139.99 140.70 0.00 65.20 133.04 140.70 140.70
REMod − SUF 92.14 98.91 98.91 96.81 97.37 98.91 98.26 98.41 98.91 0.00 47.79 91.37 98.91 98.91
REMod − P ER 110.10 115.64 115.64 113.58 114.13 115.64 115.00 115.20 115.64 0.00 53.97 109.38 115.64 115.64
REMod − UNA 130.56 137.77 137.77 135.29 135.52 137.77 137.11 137.20 137.77 0.00 65.73 129.91 137.77 137.77

lo
g.

R
eg

. REMod − REF 126.06 294.99 435.87 143.31 149.96 187.31 162.06 176.02 224.74 81.38 95.92 108.85 152.70 238.66
REMod − SUF 89.66 208.57 306.35 101.98 106.76 133.47 115.39 125.40 160.28 58.04 68.32 77.48 108.46 168.85
REMod − P ER 117.33 265.95 379.16 133.90 140.27 176.08 151.93 165.26 211.86 76.49 89.70 101.53 141.47 217.56
REMod − UNA 123.84 252.08 389.54 132.02 136.53 153.20 140.91 150.25 171.20 95.04 104.39 112.38 143.26 207.25
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REMod − REF 29.37 606.04 611.73 165.21 80.10 46.50 407.32 219.44 111.50 0.00 1.35 22.53 54.99 452.67
REMod − SUF 20.42 419.25 423.50 113.31 52.87 31.82 275.66 146.11 70.44 0.00 1.66 16.02 34.27 293.14
REMod − P ER 21.76 491.90 499.35 137.23 65.99 39.65 315.27 176.47 91.02 0.00 1.18 17.00 43.89 347.49
REMod − UNA 29.64 680.50 691.38 170.12 78.45 47.51 418.20 224.74 110.66 0.00 2.73 23.80 49.93 451.15

M
ea

n

REMod − REF 11.81 611.73 611.73 262.85 154.38 83.22 549.05 368.39 219.81 0.00 0.00 4.41 113.33 598.32
REMod − SUF 7.25 423.50 423.50 175.78 101.71 50.26 372.85 249.97 140.67 0.00 0.00 2.87 60.40 409.39
REMod − P ER 13.44 499.35 499.35 219.27 142.05 75.93 449.24 321.28 195.32 0.00 0.01 5.30 99.02 488.54
REMod − UNA 14.02 691.38 691.38 283.79 177.61 95.00 615.67 428.78 248.62 0.00 0.00 5.37 104.59 670.36

M
S-

G
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A
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REMod − REF 43.78 140.70 140.70 98.97 124.32 140.70 127.75 137.67 140.70 0.00 0.46 15.40 140.52 140.70
REMod − SUF 33.28 98.91 98.91 71.95 83.67 98.89 92.09 95.45 98.91 0.00 0.44 12.78 98.91 98.91
REMod − P ER 38.64 115.64 115.64 83.71 104.29 115.62 106.23 113.53 115.62 0.00 0.37 13.55 115.50 115.64
REMod − UNA 40.81 137.77 137.77 96.80 123.86 137.76 125.55 135.09 137.77 0.00 0.73 15.12 137.60 137.77

M
ea

n

REMod − REF 70.20 140.70 140.70 128.99 137.38 140.70 137.38 140.35 140.70 0.00 1.79 42.40 140.70 140.70
REMod − SUF 49.08 98.91 98.91 91.81 95.25 98.91 97.25 97.84 98.91 0.00 1.21 30.80 98.91 98.91
REMod − P ER 60.96 115.64 115.64 108.73 113.57 115.64 113.57 115.64 115.64 0.00 1.63 37.02 115.64 115.64
REMod − UNA 66.44 137.77 137.77 127.10 134.97 137.77 134.80 137.25 137.77 0.00 1.65 38.18 137.77 137.77

lo
g.

R
eg

. REMod − REF 34.39 150.39 295.42 36.11 35.85 39.18 39.51 37.46 48.34 20.32 28.75 35.04 44.53 69.32
REMod − SUF 24.10 105.04 204.71 25.33 25.17 28.13 27.76 26.33 35.67 14.33 20.17 24.54 31.23 48.84
REMod − P ER 29.36 121.65 237.99 31.00 30.80 33.62 34.27 32.38 41.88 18.13 24.94 29.97 37.52 57.09
REMod − UNA 39.21 155.18 290.00 40.01 41.07 42.88 41.62 43.10 49.43 24.79 33.55 40.00 49.81 74.76

This table displays the expected loss due to scarcity per path (REMod − REF , REMod − SUF , REMod − P ER, and
REMod − UNA) and scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) of the input variables. Hereby, the values are derived from the (MS-)GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean) as well as from the logistic regression model (Log Reg). The displayed
expected loss due to scarcity values represent the results of the robustness analysis, in which the threshold is derived based
on data from 1995 to 2019 or 2015 to 2019.

While the aggregated expected loss due to scarcity values on path level, displayed in Table 5.39,
are higher than the original ones, displayed in Table 5.37, in case of the (MS-)GVAR model, the
risk on path level, derived from the logistic regression model, is smaller. The higher expected loss
due to scarcity values are caused by the higher probability of scarcity for almost all commodities,
whereas the effect of the smaller probability of scarcity of cobalt in combination with its exposure
at scarcity on the expected loss due to scarcity outweighs the higher probabilities of the remaining
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commodities in case of the logistic regression model, resulting in smaller expected loss due to
scarcity values. However, the ordering between the paths remains the same, similar to the
commodity-specific results. This finding holds for the (MS-)GVAR models based on different
initial price levels and for the logistic regression models as well as for the various scenarios.
In particular, the REMod − UNA (and REMod − REF ) path, requiring the highest demand
in cobalt for battery storage, bears the highest risk derived from the GVAR model and the
logistic regression model (MS-GVAR model), while the acceptance of the society reduces the
risk, reflected by the smallest expected loss due to scarcity values for the REMod − SUF path.

5.3.4.2 Robustness Analysis for the Scenario Values

Besides the threshold price, the definition of the scenario values also depends on the considered
time periods, as the scenario values reflect the (adjusted) historical mean or quantiles of the
variables. Similar to the above robustness analysis, we reduce and enlarge the period from the
previous decade to five and 25 years and display the resulting scenario values in Table D.42 and
Table D.49, respectively.

Overall, the comparison of the scenario values based on the previous decade or on the period
from 2015 (1995) to 2019 provide mixed results. In general, the values are highest based on
the previous 25 years, followed by the values based on the previous decade. However, several
demand variables, especially for cobalt, and the monthly prices are higher if only data of the
previous five years is considered, indicating the recent increase in demand. In contrast, the
scenario values of the supply and price variables are higher in the enlarged sample, probably
caused by the commodity price boom at the beginning of the 2000s. Moreover, the annual
global demand proxies (monetary policy variables) obtain higher values in the period from 1995
(2015) to 2019, whereas their monthly counterparts exhibit higher values in the period from 2015
(1995) to 2019. In addition, the comparison of the mean, and (extreme) focus scenario values
differ from the comparison of the shock, extreme and quantile scenarios, further underlining the
heterogeneity of the results.

Using the scenario values based on the previous five years (25 years), the probability of scarcity
of the (MS-)GVAR model as well as the logistic regression model can be derived, see Section
D.3.2.2. The mixed evidence of the comparison of the scenario values is also reflected in the
probability of scarcity values. While the GVAR model exhibits the highest (smallest) values
for the quantile scenarios under the values based on the previous 25 years (five years), the risks
of the focus scenarios are mostly higher in case of the scenario values based on the previous
decade, whereas the risks under the mean, shock, and extreme scenarios are comparable, except
for lithium, which is highest in case of the values of the previous five years. In contrast, the
MS-GVAR model obtains the highest risks for all commodities and scenarios under the scenario
values based on the previous five years, confirming the heterogeneous results. However, the
probabilities of scarcity derived from the logistic regression model barely differ, only the results
of nickel and zinc are outstanding, as their probabilities of scarcity are highest under the values
based on the previous ten or five years, respectively. As the logistic regression model enables for
individual selected price influential factors, the results of the commodities differ, whereas the
(MS-)GVAR model reflects spillover effects between the metals, which is why higher (smaller)
scenario values affect all markets.

These heterogeneous results of the probability of scarcity are also reflected in the final risk
measure expected loss due to scarcity (ES), on commodity as well as path level, see Section
D.3.2.2. While the risks from the MS-GVAR model is higher (smaller) across almost all scenarios,
using the scenario values based on the previous five years (25 years), the results of the GVAR
model differ across the scenarios. Hereby, the mean (quantile) scenario indicates higher expected
loss due to scarcity using the scenario values based on the previous five years (25 years). In
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case of the logistic regression model, the expected loss due to scarcity values are comparable,
whereby the results differ more under the quantile scenarios.

However, even if the expected loss due to scarcity values differ, the comparison of the resource
scarcity risk of the paths is mostly preserved. In particular, the REMod − SUF path carries
the lowest risks across most of the scenarios and models, the only exceptions are under the
mean scenario, whereby the REMod − PER and REMod − UNA path exhibits the smallest
risk once. In general, the heterogeneous scenario values cause mixed evidence for the different
models and scenarios, however, the ordering between the paths generally remains the same,
underlining the REMod − SUF path exhibits the lowest scarcity risks.

Table 5.40: Path-specific expected loss due to scarcity of the robustness analysis for the scenario values
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REMod − REF 7.96 606.98 611.73 125.20 75.04 29.76 404.07 245.79 60.90 0.00 0.00 0.72 49.06 469.20
REMod − SUF 6.00 419.82 423.50 83.61 51.46 20.12 276.54 165.52 39.62 0.00 0.02 0.83 29.15 307.00
REMod − P ER 6.61 493.53 499.35 98.89 60.24 22.79 311.05 191.86 47.10 0.00 0.00 0.81 34.19 355.65
REMod − UNA 9.23 682.16 691.38 131.98 80.00 32.13 413.52 250.11 64.00 0.00 0.03 1.52 46.64 470.04

M
ea

n

REMod − REF 10.26 611.73 611.73 218.52 151.64 43.86 527.49 379.10 110.54 0.00 0.00 0.86 79.44 599.69
REMod − SUF 6.80 423.48 423.50 152.45 103.55 27.17 362.32 262.39 69.84 0.00 0.01 0.61 46.05 411.59
REMod − P ER 7.75 499.33 499.35 181.85 139.67 40.09 425.72 325.85 98.00 0.00 0.00 0.46 64.79 488.66
REMod − UNA 14.18 691.38 691.38 250.10 188.08 56.74 590.50 445.39 131.30 0.00 0.00 0.75 86.95 672.74

M
S-

G
V

A
R

REMod − REF 116.54 140.70 140.70 139.25 138.95 140.55 140.07 140.37 140.64 0.00 0.46 22.49 140.40 140.70
REMod − SUF 81.81 98.91 98.91 97.88 97.66 98.82 98.61 98.51 98.88 0.00 0.68 17.07 98.67 98.91
REMod − P ER 99.30 115.64 115.64 114.12 114.13 115.48 115.00 115.26 115.59 0.00 0.45 19.48 115.34 115.64
REMod − UNA 116.61 137.77 137.77 136.51 136.68 137.69 137.34 137.43 137.76 0.00 0.92 22.54 137.54 137.77

M
ea

n

REMod − REF 139.19 140.70 140.70 140.41 140.60 140.66 140.64 140.64 140.70 0.00 0.32 89.53 140.70 140.70
REMod − SUF 97.78 98.91 98.91 98.83 98.83 98.88 98.88 98.87 98.89 0.00 0.25 63.73 98.91 98.91
REMod − P ER 114.21 115.64 115.64 115.55 115.52 115.61 115.59 115.57 115.62 0.00 0.42 79.20 115.64 115.64
REMod − UNA 136.85 137.77 137.77 137.68 137.69 137.76 137.72 137.73 137.76 0.00 0.42 92.48 137.76 137.77

lo
g.

R
eg

. REMod − REF 44.39 219.87 432.75 47.12 48.52 48.05 52.69 53.61 54.21 21.33 27.05 33.00 65.19 186.40
REMod − SUF 31.10 152.16 297.76 33.05 34.11 34.13 37.03 37.83 39.15 15.13 19.06 23.18 45.45 128.72
REMod − P ER 37.30 170.79 338.81 39.92 41.51 40.61 45.26 46.70 46.20 19.52 23.94 28.50 53.07 143.62
REMod − UNA 50.50 230.50 439.22 51.79 56.40 53.11 54.41 63.69 57.32 26.56 32.30 38.28 71.44 195.10

19
95

to
20

19
G

V
A

R
20

19

REMod − REF 0.19 606.14 611.73 179.58 43.53 32.38 420.74 235.27 150.20 0.00 0.00 0.09 117.71 532.57
REMod − SUF 0.19 419.40 423.50 122.22 26.65 21.57 287.79 159.69 91.77 0.00 0.00 0.13 58.04 356.96
REMod − P ER 0.16 492.94 499.35 138.58 33.67 23.75 319.81 183.80 118.96 0.00 0.00 0.08 81.05 409.54
REMod − UNA 0.19 681.05 691.38 177.94 38.67 32.96 430.17 232.47 151.54 0.00 0.00 0.07 91.77 553.22

M
ea

n

REMod − REF 0.00 611.73 611.73 306.89 104.85 51.55 526.52 392.08 269.14 0.00 0.00 0.00 273.37 609.08
REMod − SUF 0.00 423.48 423.50 209.52 69.17 29.27 362.86 272.13 176.96 0.00 0.00 0.00 155.97 420.12
REMod − P ER 0.00 499.33 499.35 236.69 90.65 42.69 423.76 333.39 226.61 0.00 0.00 0.00 213.97 497.16
REMod − UNA 0.00 691.35 691.38 314.45 114.18 53.51 583.14 454.33 301.42 0.00 0.00 0.00 255.41 686.63

M
S-

G
V

A
R

REMod − REF 3.36 140.70 140.70 23.91 65.78 140.57 80.71 120.37 140.66 0.00 0.00 6.10 114.23 140.70
REMod − SUF 3.51 98.91 98.91 20.47 42.01 98.82 61.70 81.79 98.88 0.00 0.00 6.60 77.48 98.91
REMod − P ER 2.68 115.64 115.64 19.42 55.76 115.50 66.07 99.88 115.61 0.00 0.00 5.22 95.11 115.64
REMod − UNA 3.42 137.77 137.77 24.01 66.27 137.72 80.75 119.70 137.76 0.00 0.00 6.96 112.79 137.77

M
ea

n

REMod − REF 1.03 140.70 140.70 57.10 108.58 140.66 112.21 133.67 140.70 0.00 0.00 4.68 140.49 140.70
REMod − SUF 0.70 98.91 98.91 44.79 72.40 98.89 80.76 91.90 98.89 0.00 0.00 3.28 98.91 98.91
REMod − P ER 1.10 115.64 115.64 47.27 90.85 115.61 92.19 110.40 115.62 0.00 0.00 4.19 115.49 115.64
REMod − UNA 0.90 137.77 137.77 58.47 106.92 137.76 109.55 131.15 137.77 0.00 0.00 4.11 137.74 137.77

lo
g.

R
eg

. REMod − REF 48.29 190.97 424.10 49.67 51.94 51.95 52.64 56.38 63.82 22.91 34.29 48.10 68.79 139.40
REMod − SUF 33.42 131.57 292.24 34.41 36.10 36.25 36.53 39.34 45.65 16.10 23.94 33.37 47.46 95.50
REMod − P ER 39.99 149.41 335.17 41.32 43.73 43.38 44.17 48.26 54.30 20.27 29.52 40.15 56.06 108.90
REMod − UNA 55.45 200.81 419.75 56.10 60.83 57.72 57.50 67.36 65.30 28.41 41.05 55.67 76.98 149.28

This table displays the expected loss due to scarcity per path (REMod − REF , REMod − SUF , REMod − P ER, and
REMod − UNA) and scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) of the input variables. Hereby, the values are derived from the (MS-)GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean) as well as from the logistic regression model (Log Reg). The displayed
expected loss due to scarcity values represent the results of the robustness analysis, in which the scenario values are derived
using data from 1995 to 2019 or from 2015 to 2019.
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5.3.4.3 Robustness Analysis for the Loss given Scarcity

In our main analysis, we use information about the metals’ applications with primary substitutes
and substitute performance from Graedel et al. (2015) to reflect the substitutability of the
considered commodities. However, Graedel et al. (2015) do not only focus on technologies for the
energy transition, therefore, we might assume a metal can be replaced, although this is not the
case for the German Energiewende. Moreover, the substitute materials may be equally or even
more scarce than the current material. Consequently, we investigate whether the resource risks
change if we assume there is no possibility to substitute any commodity within the pathways,
resulting in a loss given scarcity of one for each commodity.

In general, the expected loss due to scarcity values on commodity as well as on path level are
higher under the assumption the metals are not substitutable, see Appendix D.3.2.3 and Table
5.41 for the commodity-specific and aggregated expected loss due to scarcity values, respectively.
However, the ordering between the paths remains the same for each model considered as well as
for the different scenarios. While the REMod − UNA path bears the highest risks in case of the
GVAR and logistic regression model, the REMod − REF path has the highest values in case of
the MS-GVAR model. In contrast, the REMod − SUF path exhibits the lowest expected loss
due to scarcity overall, further underlining the path with the lowest resource requirements bears
the smallest scarcity risk.

Table 5.41: Path-specific expected loss due to scarcity of the robustness analysis for the loss given scarcity

M
ea

n

Sh
oc

k

E
xt

r.

Fo
c.

E
A

Fo
c.

F
X

Fo
c.

F
F

R

Fo
c.

E
xt

r.
E

A

Fo
c.

E
xt

r.
F

X

Fo
c.

E
xt

r.
F

F
R

Q
.

25
%

Q
.

40
%

Q
.

50
%

Q
.

60
%

Q
.

75
%

G
V

A
R

20
19

REMod − REF 16.37 1102.22 1110.90 382.38 160.49 105.32 818.79 464.40 253.88 0.00 0.00 3.67 133.66 890.10
REMod − SUF 11.10 762.57 769.44 258.62 105.01 68.80 548.93 309.83 161.24 0.00 0.00 3.12 72.26 590.52
REMod − P ER 13.91 891.97 902.91 306.92 130.18 80.72 622.12 361.21 207.24 0.00 0.00 2.98 98.50 682.37
REMod − UNA 16.54 1230.31 1247.89 388.74 160.18 108.88 831.69 464.56 258.35 0.00 0.00 3.35 112.54 891.50

M
ea

n

REMod − REF 6.64 1110.91 1110.91 650.95 311.32 153.63 1005.39 731.92 440.51 0.00 0.00 1.83 231.83 1090.51
REMod − SUF 3.99 769.40 769.44 434.45 202.27 87.88 690.72 496.20 275.32 0.00 0.00 0.50 118.49 749.43
REMod − P ER 6.69 902.91 902.91 526.89 281.57 138.09 819.62 627.79 378.71 0.00 0.00 1.56 192.99 887.42
REMod − UNA 9.63 1247.89 1247.89 686.30 348.58 169.32 1120.75 838.07 496.57 0.00 0.00 1.21 205.08 1216.16

M
S-

G
V

A
R 20

19

REMod − REF 45.64 244.53 244.53 185.42 220.86 244.28 225.83 238.29 244.43 0.00 0.27 19.79 243.52 244.53
REMod − SUF 35.52 173.76 173.76 133.40 152.33 173.62 161.63 167.46 173.73 0.00 0.16 19.58 172.97 173.76
REMod − P ER 39.58 202.49 202.49 155.52 183.39 202.20 187.66 197.69 202.44 0.00 0.25 17.08 201.42 202.49
REMod − UNA 47.81 238.79 238.79 185.04 219.95 238.68 219.18 233.84 238.75 0.00 0.36 21.11 237.89 238.79

M
ea

n

REMod − REF 155.82 244.53 244.53 238.01 242.14 244.43 242.34 243.73 244.53 0.00 0.01 29.17 244.53 244.53
REMod − SUF 108.61 173.76 173.76 170.65 170.70 173.73 172.86 173.19 173.73 0.00 0.01 19.30 173.76 173.76
REMod − P ER 134.30 202.49 202.49 198.07 200.81 202.44 201.29 201.88 202.44 0.00 0.01 26.38 202.49 202.49
REMod − UNA 156.52 238.79 238.79 234.33 236.98 238.75 237.78 238.22 238.75 0.00 0.04 28.47 238.75 238.79

lo
g.

R
eg

. REMod − REF 85.20 409.49 774.27 87.20 90.43 90.66 91.17 96.63 103.61 38.75 57.79 76.36 118.25 273.83
REMod − SUF 59.09 283.51 532.80 60.52 62.91 63.73 63.35 67.44 74.92 27.32 40.36 53.07 81.84 189.27
REMod − P ER 70.46 316.57 597.99 72.37 75.81 75.31 76.16 82.13 86.76 34.78 49.88 64.11 95.58 211.25
REMod − UNA 97.30 430.19 792.38 98.23 105.02 101.46 100.08 114.17 111.50 48.89 68.98 88.22 131.61 291.61

This table displays the expected loss due to scarcity per path (REMod − REF , REMod − SUF , REMod − P ER, and
REMod − UNA) and scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) of the input variables. Hereby, the values are derived from the (MS-)GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean) as well as from the logistic regression model (Log Reg). The displayed
expected loss due to scarcity values represent the results of the robustness analysis, in which the loss given scarcity is set
equal to one.

5.3.4.4 Robustness Analysis for the Exposure at Scarcity

Besides the threshold price and the scenario values, the scaling factor for the exposure at scarcity
also depends on the considered time period. Similar to those robustness analyses, we reduce
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and enlarge the period from the previous ten years to five and 25 years and display the resulting
exposure at scarcity in Table 5.42.36 In general, the rise in commodities over the last decades
lead to an increase in the production volume of the commodities, which is why the exposure
at scarcity is highest for the enlarged sample period, whereas the scaled demand based on the
scaling factor of the previous five and ten years are comparable. Hereby, cobalt is outstanding,
as albeit its high demand for storage capacities, the production volume decreased in the previous
years, as cobalt’s supply depends on the supply of its host metals, resulting in a higher exposure
at scarcity.

Table 5.42: Exposure at scarcity values of the robustness analysis

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

20
15

to

20
19

REMod − REF 0.20 0.17 6.52 0.36 1.42 2.20 0.44 0.45 1.42 0.01 0.01 0.24 0.19
REMod − SUF 0.14 0.12 4.39 0.26 1.01 1.61 0.29 0.32 0.96 0.01 0.01 0.16 0.19
REMod − P ER 0.23 0.15 4.70 0.31 1.36 2.25 0.31 0.42 1.13 0.01 0.01 0.23 0.16
REMod − UNA 0.32 0.19 6.68 0.34 0.68 3.35 0.45 0.19 1.42 0.01 0.01 0.18 0.20

19
95

to

20
19

REMod − REF 0.25 0.27 7.78 0.46 1.42 3.04 1.09 0.45 1.89 0.02 0.01 0.27 0.23
REMod − SUF 0.17 0.18 5.23 0.34 1.01 2.22 0.74 0.32 1.28 0.01 0.01 0.18 0.23
REMod − P ER 0.28 0.24 5.61 0.39 1.36 3.11 0.79 0.42 1.50 0.02 0.01 0.26 0.19
REMod − UNA 0.39 0.30 7.96 0.44 0.68 4.64 1.12 0.19 1.89 0.01 0.01 0.20 0.24

This table displays the exposure at scarcity (EAS) of the commodities aluminum (Al), cobalt (Co), copper (Cu), dyspro-
sium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn) per
transformation path (REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA). In particular, the expo-
sure at scarcity is derived as the total required amount per commodity and path scaled by the average world production in
the period from 2015 to 2019 or 1995 to 2019, according to Equation 3.176.

The corresponding expected loss due to scarcity values on commodity as well as path level for
the considered scenarios are displayed in Section D.3.2.4, as well as Table 5.43. In general,
the expected loss due to scarcity values per commodity and per path are higher if the resource
demands are scaled by the average production volume of the previous 25 years, whereas the
results of the other scaling factors are similar.

While the absolute risk values differ across the scenarios and scaling factors, similar to the
other robustness analyses, the ordering between the paths does not change by varying the
assumptions on the scaling factor for the exposure at scarcity. In line with the results above, the
REMod − SUF path, reflecting a high acceptance of the society for the German Energiewende,
bears the lowest risks, while the REMod − UNA (REMod − REF ) path, modeling strong
resistances to actions for the energy transition, shows the highest risk values in case of the
GVAR and logistic regression model (MS-GVAR model).

Table 5.43: Path-specific expected loss due to scarcity of the robustness analysis for the exposure at scarcity
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REMod − REF 5.65 644.33 649.55 206.72 78.59 46.18 475.28 259.54 132.64 0.00 0.00 1.32 60.47 517.54
REMod − SUF 3.88 444.72 448.84 138.60 49.97 28.45 317.08 171.65 81.85 0.00 0.00 1.11 29.44 341.81
REMod − P ER 4.93 519.48 526.05 165.95 64.01 35.12 359.09 200.99 109.20 0.00 0.00 1.04 44.28 394.25
REMod − UNA 5.60 719.55 730.10 211.10 78.17 47.06 482.78 260.05 134.70 0.00 0.00 1.15 48.24 517.46

M
ea

n

REMod − REF 3.79 649.55 649.55 389.09 182.57 90.89 601.39 435.18 261.09 0.00 0.00 1.01 136.93 641.44
REMod − SUF 2.25 448.83 448.84 258.34 117.15 51.41 412.63 293.98 162.09 0.00 0.00 0.22 69.23 441.81
REMod − P ER 3.86 526.05 526.05 312.57 164.18 81.06 487.01 371.18 222.96 0.00 0.00 0.83 112.78 520.24
REMod − UNA 5.66 730.10 730.10 410.40 204.96 100.26 670.61 498.83 294.52 0.00 0.00 0.65 120.86 718.21

M
S-

G
V

A
R

REMod − REF 23.10 138.31 138.31 104.67 126.46 138.22 127.68 135.50 138.28 0.00 0.10 7.97 137.97 138.31
REMod − SUF 17.20 97.22 97.22 74.27 85.80 97.17 90.44 94.12 97.21 0.00 0.06 7.81 96.95 97.22
REMod − P ER 20.24 113.48 113.48 87.40 104.25 113.38 105.37 111.50 113.47 0.00 0.10 7.11 113.12 113.48
REMod − UNA 23.98 135.53 135.53 104.42 125.97 135.49 124.27 133.29 135.51 0.00 0.14 8.46 135.22 135.53

M
ea

n REMod − REF 88.75 138.31 138.31 134.79 137.40 138.28 137.16 137.95 138.31 0.00 0.01 16.46 138.31 138.31
REMod − SUF 60.89 97.22 97.22 95.67 95.74 97.21 96.80 96.97 97.21 0.00 0.01 10.68 97.22 97.22

36Due to data availability issues, the production data of the rare earth metals dysprosium and neodymium, the
scaling factors and therefore the exposure at scarcity coincide.
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Path-specific expected loss due to scarcity of the robustness analysis for the exposure at scarcity
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REMod − P ER 76.34 113.48 113.48 111.21 112.91 113.47 112.88 113.27 113.47 0.00 0.01 14.94 113.48 113.48
REMod − UNA 88.50 135.53 135.53 133.21 134.75 135.51 135.02 135.33 135.51 0.00 0.02 15.87 135.51 135.53

lo
g.

R
eg

. REMod − REF 47.14 243.64 477.07 49.87 51.27 50.80 55.44 56.36 56.96 21.60 27.88 34.43 70.40 207.44
REMod − SUF 32.94 168.15 327.57 34.89 35.96 35.97 38.87 39.67 41.00 15.31 19.62 24.13 48.95 142.87
REMod − P ER 39.26 187.91 370.74 41.88 43.47 42.57 47.22 48.65 48.16 19.70 24.52 29.50 56.80 158.77
REMod − UNA 53.31 254.81 484.55 54.60 59.21 55.92 57.22 66.49 60.14 26.83 33.14 39.73 76.76 216.62

19
95

to
20

19
G

V
A

R
20

19

REMod − REF 10.35 832.92 840.11 281.33 115.78 74.36 607.57 344.59 184.98 0.00 0.00 2.15 94.99 662.16
REMod − SUF 6.62 575.29 580.96 188.40 73.57 47.15 405.61 228.21 115.51 0.00 0.00 1.69 49.25 437.08
REMod − P ER 8.92 674.63 683.68 224.45 93.35 56.63 459.47 266.51 150.32 0.00 0.00 1.73 69.46 504.68
REMod − UNA 10.55 935.94 950.49 287.33 115.59 76.70 617.86 345.82 188.29 0.00 0.00 1.93 79.20 662.70

M
ea

n

REMod − REF 4.75 840.11 840.11 487.75 235.72 116.02 759.76 556.87 333.26 0.00 0.00 1.29 175.17 825.05
REMod − SUF 2.75 580.93 580.96 323.54 151.73 65.57 520.58 376.59 207.43 0.00 0.00 0.29 89.09 566.25
REMod − P ER 4.83 683.68 683.68 393.39 213.16 104.05 619.71 478.14 286.26 0.00 0.00 1.06 145.12 672.19
REMod − UNA 7.02 950.49 950.49 516.49 267.12 128.97 852.76 643.81 378.53 0.00 0.00 0.83 156.16 927.01

M
S-

G
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A
R

REMod − REF 29.75 181.56 181.56 138.07 166.60 181.46 167.83 178.10 181.52 0.00 0.12 9.53 181.17 181.56
REMod − SUF 21.81 127.27 127.27 97.66 112.65 127.21 118.58 123.37 127.25 0.00 0.07 9.33 126.96 127.27
REMod − P ER 26.09 148.77 148.77 115.24 137.22 148.66 138.40 146.39 148.75 0.00 0.11 8.57 148.36 148.77
REMod − UNA 30.98 178.59 178.59 138.25 166.52 178.54 164.06 175.84 178.57 0.00 0.17 10.15 178.25 178.59

M
ea

n

REMod − REF 117.07 181.56 181.56 177.01 180.48 181.52 180.08 181.12 181.56 0.00 0.01 21.50 181.56 181.56
REMod − SUF 79.99 127.27 127.27 125.30 125.40 127.25 126.75 126.96 127.25 0.00 0.01 13.83 127.27 127.27
REMod − P ER 100.69 148.77 148.77 145.87 148.11 148.75 148.01 148.53 148.75 0.00 0.01 19.46 148.77 148.77
REMod − UNA 117.11 178.59 178.59 175.61 177.63 178.57 177.95 178.37 178.57 0.00 0.02 20.82 178.57 178.59

lo
g.

R
eg

. REMod − REF 66.14 311.14 591.78 67.85 70.50 69.82 71.26 75.66 78.33 30.55 45.53 59.84 91.28 206.70
REMod − SUF 45.87 214.04 405.64 47.10 49.06 48.84 49.53 52.83 55.81 21.58 31.84 41.59 63.07 142.11
REMod − P ER 54.99 241.32 459.03 56.64 59.44 58.34 59.90 64.71 66.06 27.56 39.49 50.48 74.15 159.99
REMod − UNA 75.93 327.16 604.64 76.74 82.35 78.46 78.34 89.95 84.35 38.82 54.64 69.47 102.03 220.66

This table displays the expected loss due to scarcity per path (REMod − REF , REMod − SUF , REMod − P ER, and
REMod − UNA) and scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) of the input variables. Hereby, the values are derived from the (MS-)GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean) as well as from the logistic regression model (Log Reg). The displayed
expected loss due to scarcity values represent the results of the robustness analysis, in which the exposure at scarcity is
derived by a scaling factor using data from 1995 to 2019 or from 2015 to 2019.

5.3.4.5 Robustness Analysis for the Industrial Metal Markets

Due to data limitations, we are not able to apply the MS-GVAR model to all key resources for
the German Energiewende, according to Bastian et al. (2019). Therefore, the expected loss due
to scarcity values on path level differ in the underlying commodities. To guarantee comparability
between the models, we restrict the commodities to the industrial metals, for which the data is
available in each case.

The resulting probabilities of scarcity for the GVAR model, taking into account the spillover ef-
fects between the industrial metal markets, are presented in Table D.65. Hereby, the probabilities
of scarcity values are higher compared to the original GVAR model, but smaller compared to the
MS-GVAR model, indicating the time-invariant model underestimates the scarcity risk. Since
the logistic regression model do not reflect the spillover effects between commodity markets, the
adapted commodity set do not affect the probability of scarcity. Aggregating the probability of
scarcity with the substitutability and the scaled resource amounts to the risk measure expected
loss due to scarcity (ES), we observe the highest risks induced by the time-varying MS-GVAR
model, whereas the time-invariant GVAR model underestimates the scarcity risk, especially un-
der the mean, focus, and quantile scenarios, see Table 5.44. However, the logistic regression
model underestimates the scarcity risk the most, as the interdependencies between the markets
are neglected. Despite the differences in the expected loss due to scarcity values, the ordering
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between the paths equals across all models. Hereby, the REMod − REF path bears the highest
risks, whereas a reduction in the resource requirements due to an optimal energy system with
full acceptance of the society for the German Energiewende leads to the smallest scarcity risks
for the REMod − SUF path.

Table 5.44: Path-specific expected loss due to scarcity of the robustness analysis for the industrial metal markets
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REMod − REF 4.41 140.70 140.70 122.51 58.53 13.80 140.23 126.64 42.10 0.00 0.09 2.06 23.14 140.49
REMod − SUF 5.62 98.91 98.91 89.58 52.54 16.81 98.57 89.98 39.06 0.00 0.07 2.77 28.65 98.90
REMod − P ER 3.79 115.64 115.64 100.78 48.40 11.20 115.30 104.06 35.02 0.00 0.07 1.69 19.06 115.57
REMod − UNA 4.28 137.77 137.77 119.52 55.82 13.03 137.39 122.97 39.47 0.00 0.05 1.89 20.35 137.63

M
ea

n

REMod − REF 4.36 140.70 140.70 139.14 102.96 26.10 140.70 135.89 67.42 0.00 0.00 1.77 42.05 140.70
REMod − SUF 6.70 98.91 98.91 98.03 77.62 28.23 98.91 95.51 55.93 0.00 0.01 2.93 44.93 98.91
REMod − P ER 3.50 115.64 115.64 114.52 84.90 21.37 115.64 112.00 55.29 0.00 0.00 1.56 35.19 115.64
REMod − UNA 4.02 137.77 137.77 136.41 98.85 23.81 137.77 132.83 63.44 0.00 0.02 1.81 36.27 137.77

lo
g.

R
eg

. REMod − REF 10.09 57.62 94.40 10.09 10.15 11.25 10.09 10.22 13.96 3.64 8.45 11.96 15.30 25.40
REMod − SUF 6.97 41.01 66.38 6.97 7.01 8.08 6.97 7.06 10.76 2.51 5.79 8.21 10.64 18.39
REMod − P ER 8.15 46.02 75.34 8.15 8.20 9.11 8.15 8.27 11.34 3.00 6.83 9.62 12.29 20.41
REMod − UNA 10.03 57.89 94.70 10.03 10.07 11.23 10.03 10.12 14.08 3.58 8.39 11.90 15.26 25.51

This table displays the expected loss due to scarcity per path (REMod − REF , REMod − SUF , REMod − P ER, and
REMod − UNA) and scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) of the input variables. Hereby, the values are derived from the (MS-)GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean) as well as from the logistic regression model (Log Reg). The displayed
expected loss due to scarcity values represent the results of the robustness analysis, in which only the industrial metal
markets are considered.

Overall, the expected loss due to scarcity values differ between the robustness analyses, in-
vestigating different assumptions for the threshold, the substitutability as well as the scaling
factor. However, the ordering between the paths remains the same, indicating the risk assess-
ment framework is stable in its assumptions. Moreover, neglecting the time-dependence or the
interdependencies between the commodities lead to an underestimation of the risk, as (time-
varying) spillover effects are not accounted for. In addition, the robustness analyses underline
the importance of the acceptance of the society for the German Energiewende, as the associated
resource risks are significantly lower.

5.4 Discussion

The objective of this thesis is the analysis and comparison of the resource requirements of
four transformation pathways of the German energy transition in regard to their availability,
respectively their scarcity. In this context, we propose and apply a new framework to assess
the scarcity risk of resource-demanding projects under the consideration of the substitutability
of commodities, the future required resource amounts of the project as well as the commodity
market structure, using new commodity market models, reflecting the impact of fundamentals
on - as well as the spillover effects between - commodity prices.

In the following, we first discuss the methodological developments of this thesis. Thereafter, we
relate our findings of the commodity market models as well as the results of the risk assessment
framework to the literature.
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5.4.1 Discussion of the methodological extensions

Overall, we propose a new risk assessment framework for resource-demanding projects based
on newly introduced commodity market models derived from economics. In particular, Pesaran
et al. (2004) initially proposed the global vector autoregression (GVAR) model as a feasible
statistical approach to analyze the world economy from an individual country level, under the
limitation of small sample data sets. Hereby, they link individual economies into one model
via import and export data, the so-called trade weights. In contrast, we adopt the approach
to commodity markets. While Basak and Pavlova (2016) are the first combining the classical
fundamental theory with the empirical observation of co-movement between commodity prices in
a theoretical model, the GVAR framework enables the empirical analysis. Thereby, we link the
commodity markets, using information about their common supply, demand and trading activity,
instead of the originally proposed trade weights. While previous studies on the co-production, see
Nassar et al. (2015) or the co-consumption of metals, see Shammugam et al. (2019), only analyze
their effects on prices, we incorporate this information to reflect the interdependencies between
commodity markets in a holistic model. In addition, the macroeconomic variables included
reflect the simultaneous effects of the global demand, the exchange rate, and the monetary policy
on commodity markets, taking into account the interrelationships among commodity markets
and not just prices. Moreover, the GVAR model investigates the co-movement between - as
well as the impact of commodity-specific supply and demand on - commodity prices, whereas
previous models in the literature either examine the common behavior in prices, see Le Pen
and Sévi (2017), Nicola et al. (2016), Ohashi and Okimoto (2016) and Pindyck and Rotemberg
(1990) among others, or the influence of the individual supply and demand on prices, see Chen
et al. (2019), Lutzenberger et al. (2017), Stuermer (2018) and Thomas et al. (2010).

Due to the increase in the co-movement between commodity prices since the financialization
and the growth in emerging countries, according to Tang and Xiong (2012) and Helbling et al.
(2008), the question arises how the constitution of commodity markets, especially the impact of
fundamentals on prices as well as the co-movement between prices, changes over time. While
previous studies focus on whether the relation between commodity prices changed over time, see
inter alia Aepli et al. (2017), Fernandez (2015a), Le Pen and Sévi (2017), Poncela et al. (2014), we
aim to consider the change in the co-movement between prices, but also the change in the impact
of supply and demand on prices. Therefore, we extend the GVAR framework, which includes
the interrelations between commodity-specific supply, demand and price information, the effects
of marcoeconomic variables on - as well as the interdependencies between - the commodity
markets, to a Markov-switching global vector autoregression (MS-GVAR) model to account for
time-varying relations in commodity markets and to disentangle the differences in the spillover
effects at different points in time. Hereby, we extend the initially proposed MS-GVAR model of
Binder and Gross (2013) for economies, by allowing inter alia for time-varying interdependencies
between supply, demand and prices, as well as for time-varying correlations between prices.
Moreover, we extend the model selection procedure for MS-VAR models of Li and Kwok (2021)
to handle global MS-VAR models with different specifications.

While the (MS-)GVAR model disentangles (time-varying) single-market effects from (time-
varying) inter-market effects, this thesis focuses on the application of these models within the
proposed risk assessment framework. Hereby, we aim to analyze and compare the actual resource
requirements of four transformation pathways for the German Energiewende in regard to their
availability, respectively their scarcity.

In this context, we propose a new framework for the risk assessment of resource-demanding
projects. While Rosenau-Tornow et al. (2009) include past and future trends in commodity
markets to identify the long-term supply risks of commodities, the results of most of the pre-
vious risk assessment frameworks are only snapshots in time and do not account for future
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developments. Hereby, they examine the general criticality of commodities via several indica-
tors of the dimensions supply risks, vulnerability of a system to potential supply disruptions, as
well as economic, environmental and social impacts, see inter alia Bach et al. (2017), Graedel
et al. (2012), Kolotzek et al. (2018), as well as the review study of Erdmann and Graedel (2011).

Since the built-up of renewable energies will increase the demand for commodities, the question
arises whether the resources are available to achieve the climate goals. In this context, only few
studies include the total future resource amounts for the energy transition in their risk assessment
or only focus on solar PV and wind power on technology level, see Liang et al. (2022) and Watari
et al. (2020). While the study of European Commission (2020) identifies critical commodities
in terms of their economic importance and supply risk, Valero et al. (2018) and Viebahn et al.
(2015) determine possible bottlenecks of the energy transition by comparing the future required
resource amounts with the global reserves, neglecting the economic implications of the increase
in demand. Moreover, linkages between the required metals are so far neglected in the criticality
assessment in the context of the energy transition, according to the literature review study of
Watari et al. (2020).

In this regard, we propose a new risk assessment framework, interpreting the commodity price
as scarcity indicator, following Gleich et al. (2013) and Tilton et al. (2018). Hereby, we consider
the actual future required resource amounts of the energy transition, the substitutability of
commodities, potentially reducing the scarcity risk, as well as the commodity market structure,
which accounts for the (time-varying) impact of fundamentals on prices as well as the (time-
varying) relations between commodities, since changes in one commodity market also affect
the (scarcity of the) other markets and the clean energy market affects the connectedness of
metal markets, according to Song et al. (2022). Moreover, the proposed framework allows
for an aggregation of the commodity-specific scarcity risks on path level to compare potential
transformation pathways of the energy transition in regard to their scarcity risk, enabling policy
recommendations.

5.4.2 Discussion of the Major Findings with regard to the Literature

The application of the proposed models provides us new insights into commodity markets and
the scarcity risk, induced from the German Energiewende. First of all, our results reveal the
global economy affect each metal market to a similar extent, indicating the common behavior in
commodity prices is partly caused by the economy. Moreover, commodity-specific supply and
demand still influence commodity prices, but we also observe strong spillover effects between the
markets, underlining the importance of jointly modeling commodity markets. Hereby, the co-
consumption of the metals leads to a concurrent behavior in the markets, especially in the prices.
Further, the results highlight shocks cause more pronounced reactions in the commodity markets
in periods of high fluctuations. In particular, stressed commodity markets or stressed economic
conditions increase the scarcity risk of the resources required for the German Energiewende, due
to spillover effects. However, the risk analysis reveals a full support of the society for the energy
transition generally reduces the scarcity risk.

5.4.2.1 Impact of the Global Economy on Commodity Markets

The proposed commodity market models disentangle (time-varying) single-market effects from
(time-varying) inter-market effects, but also account for the impact of the economy on commodi-
ties. Hereby, our analysis underlines a strong impact of the global economy on metal markets,
indicating the common pattern between prices can be partly attributed to global effects. In
particular, we examine the impact on the individual, commodity-specific supply, demand, and
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price variables, and reveal each metal market is affected to a similar extent, whereas most stud-
ies in the literature only investigate the impact of global shocks on the commodity price, see
among others Baffes and Savescu (2014), Issler et al. (2014), Kagraoka (2016), Lombardi et al.
(2012), and Vansteenkiste (2009) or even on a commodity index, see among others Akram (2009),
Anzuini et al. (2013), Chen et al. (2010), Hammoudeh et al. (2015), Schischke and Rathgeber
(2023), and Smiech et al. (2015).

In particular, the results of the time-invariant GVAR model, reflecting the long-term relations
within and between commodity markets, suggest an increase in the global demand, represented
by the world gross domestic product, causes rising commodity markets, in line with various
studies in the literature, for example Issler et al. (2014), Robinson (2019), and Smiech et al.
(2015). However, we observe an inverse response of the industrial metal markets to a global
demand shock in the time-varying MS-GVAR analysis. Hereby, the counterintuitive results
can be partly explained by the different frequency, time period and economic activity proxy
considered, as we include the world industrial production in the monthly analysis which only
represents the output of the industrial sector of the economy. Moreover, indirect effects from
the monetary policy as well as the negative impact of the lagged economic activity may cause
the observed inverse reactions.

The different sample period may also explain the mixed evidence in the impact of the exchange
rate on commodity markets, indicating the relation between the economy and the commodity
markets changed over time, as the time-varying analysis only reflects the more recent times,
with more financialized and more connected commodity markets, see inter alia Silvennoinen and
Thorp (2013). In general, an appreciation of the U.S. dollar implies the metals become more
expensive for consumers holding other currencies, as the metals are quoted in U.S. dollars, and
therefore, the demand of foreign consumers decrease, whereas the demand of consumers holding
the U.S. dollar increase. While the growth in the domestic demand for aluminum, copper, and tin
cause rising prices in the time-varying analysis, the decline in the foreign demand predominates
the increase in the demand of consumers holding the U.S. dollar in the time-invariant analysis as
well as for nickel, lead, and zinc in the time-varying analysis, leading to decreasing commodity
prices, in line with the findings of Akram (2009), Ahumada and Cornejo (2014), and Gilbert
(1989) among others.

Moreover, the reaction of the metal markets to a contrarian monetary policy shock are hetero-
geneous, confirming the mixed evidence in the literature and indicating the impact of interest
rates on commodities varies over time. Hereby, the results of the time-varying analysis, based
on monthly data in the period from 1995 to 2020, underline the theory of Frankel (2008), who
argues the cost of capital for holding a commodity as well as carrying costs should decrease and
the demand for commodities as an alternative asset class as well as the demand for inventories
should increase in response to an expansionary monetary policy, supporting the empirical results
of Akram (2009), Anzuini et al. (2013) and Smiech et al. (2015). In contrast, the time-invariant
analysis, based on annual data from 1970 to 2019, detects rising interest rates lead to increasing
demand and price of the commodities, in line with Hammoudeh et al. (2015) as well as Schischke
and Rathgeber (2023), probably indicating the central banks respond to high commodity prices
via the interest rate, and thus prices run ahead of the interest rate.

Overall, the results imply the economy highly affect commodity markets, in accordance with
Akram (2009), Byrne et al. (2013), Chen et al. (2014), Kagraoka (2016), Lombardi et al. (2012)
among others. Hereby, all commodity markets react to a similar extent, indicating the economy
partly causes the common behavior in commodity prices.
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5.4.2.2 Evidence on the Structure of Commodity Markets

In addition to the impact of the economy, the commodity market models also reflect the impact
of supply and demand on prices as well as the co-movement between them. Hereby, the literature
addressing the influence of commodity-specific supply and demand factors on commodity prices
is limited probably due to data constraints. In this regard, most of the previous studies approx-
imate the demand of commodities by economic growth indicators, see for example Ahumada
and Cornejo (2014), Borensztein and Reinhart (1994), Deaton and Laroque (2003), Helbling
et al. (2008), Kilian (2009), and Stuermer (2018). Moreover, some studies use proxies for the
supply as well as demand to determine the impact on commodity prices. In particular, Baffes
and Dennis (2013) use the combined stock-to-use-ratio for food commodities, which represents
the supply side, by indirectly reflecting the weather conditions, as well as the demand side, by
indirectly reflecting the increased demand for biofuels and the income effects, whereas Nick and
Thoenes (2013) consider unexpected supply shortfalls as well as temperature induced demand
spikes in their analysis of the German gas market. In contrast, Ahumada and Cornejo (2014)
and Stuermer (2018) examine the impact of the actual world production of the commodities.
Hereby, Stuermer (2018) only detects a significant impact for tin and copper, while Ahumada
and Cornejo (2014) reveal long-run price effects for a broad spectrum of eight different storable
commodities, including metals.

Some of the few studies with commodity-specific supply and demand variables are Chen et al.
(2019), Lutzenberger et al. (2017), and Thomas et al. (2010). In particular, Thomas et al.
(2010) and Chen et al. (2019) investigate the impact of supply, demand and speculation on
the price of oil and copper, respectively, and underline the importance of both fundamentals,
while Lutzenberger et al. (2017) reveal metal-specific determinants, reflected by the global mine
production, secondary production, reserves, stocks, as well as apparent consumption, still play
a relevant role on metal prices. Hereby, these studies only focus on the specific commodity
markets and are not able to account for cross-commodity linkages.

In contrast, we reflect the commodity-specific supply and demand by the world production
and consumption and examine their impact on the commodity prices (in the cross-commodity
dimension). In particular, our time-invariant as well as time-varying analyses reveal commodity-
specific supply and demand still have a significant impact on commodity prices in the individual
markets, confirming the results of Chen et al. (2019), Lutzenberger et al. (2017), and Thomas
et al. (2010). In addition, the results imply the fundamentals also affect the prices in the cross-
commodity dimension, suggesting supply and demand contribute to the common pattern in the
markets. Moreover, various spillover effects from prices to the supply and demand variables indi-
cate a price shock leads to an increase in the supply and a reduction in the demand, implying the
production as well as the consumption respond to changes in the price (in the cross-commodity
dimension).

While only few studies consider the impact of the actual supply and demand on prices, the
literature focusing on the co-movement between prices is more pronounced. As early as 1990,
Pindyck and Rotemberg (1990) investigate the common pattern in commodity prices and detect
the co-movement exceeds the effects which can be explained by common macroeconomic impacts.
Thereafter, several studies attempted to characterize the determinants and the magnitude of the
co-movement between prices, see inter alia Byrne et al. (2013), Chen et al. (2014), Le Pen and
Sévi (2017), Nicola et al. (2016), Tang and Xiong (2012), West and Wong (2014), and Zhang
et al. (2019). In particular, Tang and Xiong (2012) conclude the individual commodity prices
are not only determined solely by their supply and demand, but also by the investment behavior.
However, these studies only focus on the correlation between the commodity prices, but do not
account for the commodity-specific impact of supply and demand.

In contrast, our (MS-)GVAR analysis models the co-movement between prices as well as the
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impact of the fundamentals, by connecting the commodity markets via information based on
the co-production, co-consumption as well as co-trading. Moreover, the models consider the
simultaneous effects from the economy on commodities, partly explaining the common behavior
in prices. Hereby, we provide new insights into the relations between the markets, since we
observe various spillover effects in the cross-commodity dimension, underlining the importance
of jointly modeling commodities.

While supply and supply, as well as demand and demand show a concurrent behavior, indicating
the fundamentals are interrelated between the metal markets, we also observe strong interdepen-
dencies between the prices themselves, confirming the co-movement between commodity prices
observed in several studies, see Ciner et al. (2020), Fernandez (2015a), and Tang and Xiong
(2012) among others. In particular, a brief correlation analysis highlights the (MS-)GVAR
framework performs exceptionally well in replicating the dependency structure underlying in
the prices. In general, our analysis also reveals the degree of connectedness between the mar-
kets. Hereby, copper has the strongest impact on the co-movement between prices, as shocks
to the copper price affect the other commodities, whereas the copper price itself only responds
to changes in the zinc price, underlining the findings of Ciner et al. (2020). Moreover, the
aluminum and copper markets, the largest metal markets in terms of the production, consump-
tion, and trading volume, are most connected with the other markets as well as with each
other, most likely due to their common applications in electrical conduction, automotive and
aerospace industries. Hereby, the substantial dependency between aluminum and copper, due
to their co-consumption, is in line with the studies of Ciner et al. (2020) and Shammugam et al.
(2019), whereby we can not confirm the strong correlation between copper and tin found by
Shammugam et al. (2019), whereas we also detect copper and zinc are related.

In general, our analysis reveals the common applications of the metals are an important de-
terminant of the observed relationships between the commodities, confirming the findings of
Shammugam et al. (2019), since the common consumption leads to a concurrent behavior in
the demand, and ultimately in the markets. Hereby, the strong interdependencies between the
commodity-specific demand variables as well as the impact of the demand on the supply and
the price (in the cross-commodity dimension) are remarkable. In particular, the spillover effects
are caused by the actual co-consumption relation, as the impact of the global demand on com-
modity markets is represented by the exogenous variable world Gross Domestic Product (GDP).
In contrast, the commodity-specific supply is less important, underlining the findings of Kilian
(2009), Nick and Thoenes (2013) for the energy markets, as well as of Shammugam et al. (2019)
for metal markets. Moreover, our results indicate information about the co-consumption models
best the interdependencies between the commodity markets, whereas information about the co-
production or co-trading does not fully reflect the relations, further highlighting the relevance
of the demand-side.

Overall, our results reveal the individual commodity-specific supply and demand still affect com-
modity prices, also in the cross-commodity dimension, indicating the fundamentals contribute
to the common patterns in the markets, especially to the co-movement between the prices.
Moreover, the impact of the demand is more pronounced, suggesting the co-consumption of the
metals is an important determinant of the co-movement.

5.4.2.3 Time-varying Structure in Commodity Markets

While the GVAR framework disentangles the impact of supply, demand and the economy on - as
well as the co-movement between - prices, one major limitation is its time-invariance. However,
the studies of Ciner et al. (2020), Fernandez (2015a), Le Pen and Sévi (2017), and Ohashi and
Okimoto (2016) detect the (excess) co-movement between commodities varies over time. In
addition, Aepli et al. (2017), Irwin and Sanders (2012) and Zhang and Broadstock (2020) even
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observe a change in the connectedness of commodity markets. In particular, Peersman et al.
(2021), Poncela et al. (2014) and Tang and Xiong (2012) attribute the closer integration in
commodity markets to the financialization starting in 2004, whereas Song et al. (2022) state
the clean energy market is a determinant of the dynamic connectedness between metal markets.
Moreover, Ciner et al. (2020) and Zaremba et al. (2021) detect periods of increasing as well
as decreasing co-movement between prices, indicating the degree of connectedness varies over
time. Overall, the evidence in the literature implies the importance of a time-varying commodity
market model.

In this regard, the application of the time-varying MS-GVAR framework supports the findings
in the literature, as the analysis reveals the commodity markets react stronger to any changes in
the market in periods of high fluctuations, in accordance with the findings of Ciner et al. (2020).
In addition, the regime inferences indicate the individual commodity markets change between
calm and volatile states. In particular, the metal markets are attributed to the volatile regime
in the years 2004, 2006/07, 2009, 2011, and 2015, corresponding to the financialization of com-
modity markets, the boom in commodity prices, the financial crisis, the European debt crisis,
and the sharp drop in the oil price, combined with the slowdown of Chinese demand, suggesting
the structure of the commodity markets changed during time, in line with Aepli et al. (2017),
Irwin and Sanders (2012) and Zhang and Broadstock (2020). Hereby, the increased demand for
copper-tin alloys and copper-zinc-tin-sulfides in more recent times, caused the observed stronger
interdependencies between tin and the other metal markets. Further, the spillover effects in the
commodity markets are more pronounced in the volatile regime, implying higher risks of increas-
ing prices. Moreover, the out-of-sample forecasting analysis shows the time-varying MS-GVAR
model significantly outperforms the time-invariant analysis in predicting prices and reproduces
the fluctuations as well as the relations between the metal prices exceptionally well.

Overall, the (time-varying) commodity market models reveal various spillover effects between the
markets, underlining the importance of jointly modeling commodities. The interdependencies
between the prices hereby confirm the co-movement. Moreover, as the models include the impact
of the economy on the commodity markets, the observed strong impacts of commodity-specific
demand shocks on the markets underline the co-consumption between the commodities highly
affects the markets and their common patterns. In addition, the results suggest the structure of
the markets changed over time, as the spillover effects are more pronounced in volatile periods.

5.4.2.4 Scarcity Risk of the German Energiewende

The objective of this thesis is to analyze and compare the scarcity risk of the resource require-
ments of the German Energiewende. Since the results of the commodity markets underline
the inclusion of a global demand proxy does not fully reflect the demand-sided effects on prices,
commodity-specific demand data should be included in the analysis of scarcity risk of the energy
transition.

However, various studies investigate the supply risks, the vulnerability of a system to a poten-
tial supply disruption as well as environmental, economic and social impacts of materials to
determine the general criticality of commodities, see Arendt et al. (2020), Graedel et al. (2012),
and Kolotzek et al. (2018) among others. Hereby, the review study of Erdmann and Graedel
(2011) detects the results in the literature vary, due to different definitions and methodologies
applied, and only the platinum group metals and the rare earth elements are found to be critical
in various studies. These studies only analyze the criticality of materials in general, and do not
focus on their risk induced by the energy transition, but the "access to resources is a strategic
security question for Europe’s ambition to deliver the Green Deal", see European Commission
(2020).
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Regarding the literature with focus on the material requirements of different renewable energy
technologies, the review study of Liang et al. (2022) reveals most of the previous studies fo-
cus on a global level on photovoltaic systems and wind power, neglecting further important
technological requirements. Hereby, the studies of Valero et al. (2018) and Arrobas et al. (2017)
examine the future demand of several renewable technologies on a global scale under a business as
usual scenario or under different climate goals, respectively. Moreover, Marscheider-Weidemann
et al. (2021) investigate the future resource amounts of various different technologies of global
socio-economic scenarios and emphasize the intensified needs of energy technologies in the sus-
tainability scenario. In addition, the article of Viebahn et al. (2015) analyzes relevant green
technologies for the German Energiewende with respect to the geological availability and supply
of mineral resources, but their considered material requirements are based on a meta-analysis.
Moreover, Roelich et al. (2014) examine the criticality risk of two potential scenarios of the en-
ergy transition of the United Kingdom from 2012 to 2050, but they focus their case study only
on the requirements of neodymium for wind turbines. However, linkages between metals are so
far neglected in the criticality assessment in the context of the energy transition, according to
the literature review of Watari et al. (2020).

In contrast, this thesis compares the joint resource scarcity risk of the actual future material re-
quirements of 28 representative technologies of renewable energy technologies, storage capacities,
electricity transport as well as building renovation, for four potential transformation pathways
of the German energy system. Hereby, the transformation paths are all generated under the re-
striction of 95% CO2 reduction in 2050, compared to Germany’s emissions in 1990, see Sterchele
et al. (2020), but differentiate by the underlying assumptions of the German society’s acceptance
for actions to fulfill these reduction goals.

In this context, our results of the commodity-specific probability of scarcity indicate similar
risks across the pathways, whereby the REMod − SUF (REMod − PER) path exhibits slightly
smaller (higher) risk values. In general, lithium, lead and zinc bear the highest probability of
scarcity under normal circumstances, however all commodities exhibit high scarcity risks in
more stressed periods. Moreover, shocks to the global economy lead to higher scarcity risks due
to simultaneous spillover effects from the economy to the commodity markets. Furthermore,
the results underline the importance of jointly modeling commodity markets, as the alternative
individual logistic regression model, enabling for commodity-specific price influencing factors,
underestimates the scarcity risks.

The final risk measure, the expected loss due to scarcity, derived by aggregating the proba-
bility of scarcity with the substitutability as well as the required resource demand, highlights
cobalt, indium, and nickel, followed by copper and lithium, which are mainly allocated to energy
storage, solar PV technologies, and wind farms, due to their high required quantities combined
with higher probabilities of scarcity. Hereby, these results confirm the studies of Arrobas et al.
(2017), Valero et al. (2018) and European Commission (2020), which focus on the criticality in
the context of the energy transition on a global and European level. However, lead and platinum
show a negligible risk in our analysis, in contrast to the findings of Arrobas et al. (2017) and
European Commission (2020). These differences might be explained by the choice of representa-
tive technologies, as the actual demand is also a question of "which wind, solar technologies, and
zero/low emission vehicles" will be deployed, see Arrobas et al. (2017). Moreover, the scope of
the study may lead to different results, since this thesis only focuses on the German energy tran-
sition, whereas the studies of Arrobas et al. (2017) and European Commission (2020) consider
the resources on a global and European level, respectively.

Overall, this thesis reveals the REMod − SUF path, representing a substantial change in the
behavior of the German population towards a reduction in the energy consumption, mostly
exhibits the lowest commodity-specific expected loss due to scarcity values. Hereby, several
robustness analyses reveal this result remains valid, despite the different frameworks applied,
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despite the different time periods used for the definition of the model setup, and despite the
different metals considered, as a higher acceptance of the society reduces the commodity re-
quirements, and therefore the scarcity risks, substantially. In contrast, delays or a resistance
of the population for new technologies cause higher risks. Hereby, the probabilities of scarcity
increase, but more important the higher resource demands lead to the higher risks, indicating
the economic scarcity risk of commodities highly depends on the required amounts. Especially,
the REMod − UNA path, representing a strong resistance against infrastructure projects, bear
the highest risks, inter alia due to the high demand in cobalt, caused by the large amount
of battery storage required in this path. Overall, a reduced energy demand combined with a
resource-optimal energy system fully supported by the German population lead to a reduced
scarcity risk.
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Humans and wild animals face new challenges for survival because of climate
change. More frequent and intense drought, storms, heat waves, rising sea levels,
melting glaciers and warming oceans can directly harm animals, destroy the places
they live, and wreak havoc on people’s livelihoods and communities.

World Wildlife Fund (2023)

To keep the climate change under control, 196 parties signed the legally binding, international
treaty on climate change, the Paris Agreement (2015), in which they committed themselves to
limit global warming to below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial
levels. Therefore, the decarbonization of the energy sector is an important part on the way to
CO2 neutrality. As a consequence, renewable energy technologies like wind power and photo-
voltaic systems, associated storage technologies as well as building renovations are key elements.
However, the built-up of these technologies requires large amounts of raw materials, see Valero
et al. (2018). Hereby, Europe, and in particular Germany, highly depend on importing raw
materials, as the delivery difficulties during the beginning of the Covid-19 pandemic as well
as the Ukraine war demonstrated. Especially, an increased demand for resources can lead to
(short-term) shortages, see Federal Ministry for Economic Affairs and Climate Action (2022a).

In this context, this thesis analyzed the resource scarcity risks in the context of the German
Energiewende. Hereby, we compared the risk of the annual material requirements from 2020
to 2050 of four potential transformation pathways of the German energy system, which are
generated in order to optimally reduce Germany’s CO2 emissions by 95% in 2050 compared to
1990, under different assumptions about the acceptance of the energy transition in the German
population. While from a geological point of view, enough mineral raw materials seem to be
available, see Federal Ministry for Economic Affairs and Climate Action (2022a), the increased
resource requirements can lead to (short-term) shortages, and therefore to price peaks. Inter-
preting the commodity price as scarcity indicator, we proposed and applied a new framework to
assess the resource scarcity risk of four potential transformation pathways of the German energy
system to reach the climate goals. In particular, the framework accounts for the substitutabil-
ity of commodities, the future required commodity amounts as well as the commodity market
structure and enables an aggregation and comparison of the commodity-specific scarcity risks
on path level.

Initially, a comprehensive understanding of commodity markets is essential. While the classical
fundamental theory states a good’s price is the result of its supply and demand equilibrium,
see Hotelling (1931) and Deaton and Laroque (2003), several empirical studies detect a com-
mon behavior in commodity prices, characterized first as (excess) co-movement by Pindyck and
Rotemberg (1990). To account for the impact of fundamentals on prices, due to the increased
resource demand of the German Energiewende, as well as for the interdependencies between
commodity markets, as the German Energiewende affects various commodities simultaneously,
we proposed a new empirical commodity market framework, which overcomes the problem of
limited data in large-scale models. In this context, we adopted the global vector autoregres-
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sion (GVAR) model, which was initially designed by Pesaran et al. (2004) to analyze the world
economy from an individual country level, to commodity markets. Hereby, each commodity
market is modeled separately using VAR models with the commodity-specific, microeconomic
variables supply, demand, and price, as well as exogenous, macroeconomic attributes. Sub-
sequently, these individual models are connected via appropriate weight matrices to a global
commodity market model, which allows for spillover effects between the commodities.

The exemplary application of the GVAR model on the industrial metal markets, connecting the
commodities via information based on the co-production, co-consumption as well as co-trading
relation, disentangled single-market effects from inter-market effects. In particular, the results
indicate the framework is able to showcase the strong co-movement in commodity prices as
well as the simultaneous impact of the economy on all commodity markets. Moreover, various
spillover effects of commodity-specific supply and demand, both within and across commodity
markets, as well as their impact on prices, underline the importance to account for fundamentals,
but also to jointly model commodity markets. Hereby, the results reveal the commodity demand
as well as the common applications of the metals are important determinants of the observed
relationships between the commodities. Overall, the analysis provided new insights into the
relation between commodity markets, in particular, the impact of fundamentals on prices (in
the cross-commodity dimension).

One of the major limitation of the standard GVAR framework is its time-invariance, while
the commodity markets changed over time. Especially, the entry of institutional investors in
commodity futures markets during the so-called financialization led to a closer integration in
commodity markets. Therefore, the question arises how the constitution of commodity markets,
especially the impact of fundamentals on prices as well as the co-movement between prices,
changes over time. For this reason, we extended the GVAR framework, by a Markov-switching
component, to a Markov-switching global vector autoregression (MS-GVAR) model, enabling for
time-varying interdependencies in commodity markets. Hereby, regime-switches in the impact
of supply and demand on commodity prices as well as the co-movement between commodity
prices allow to disentangle the differences in the spillover effects at different points in time.

In particular, we exemplary applied the MS-GVAR model on the industrial metal markets.
Hereby, the regime inference of the individual commodity-specific models reveals the framework
is able to classify the commodity markets into calm and volatile states. The distinct analysis
of calm and volatile regimes underline the importance to account for supply and demand, but
also to jointly model commodity markets, suggested by the time-invariant model, as we detected
several spillover effects within and between the commodity markets. However, the results imply
the commodity variables either react significantly to shocks or not, independent of the underly-
ing regime. In spite of that, the responses of the commodity markets are more pronounced in
periods of high fluctuations, implying higher risks of increasing prices. An out-of-sample fore-
casting analysis underlines the importance of a time-varying analysis, as the MS-GVAR model
significantly outperforms the GVAR model in the price predictions. Moreover, the MS-GVAR
model reproduces the fluctuations as well as the relations between the metal prices better than
its time-invariant counterpart.

While the exemplary application of the (MS-)GVAR model on industrial metal markets revealed
the models are able to disentangle (time-varying) single-market effects from (time-varying) inter-
market effects, this thesis focuses on the analysis and comparison of the resource scarcity risk
of four transformation pathways for the German Energiewende. Therefore, the (time-varying)
global commodity market model was incorporated in the proposed scarcity risk assessment frame-
work. In particular, as the commodity price is interpreted as scarcity indicator, the individual
probability of scarcity for each commodity of the transformation pathway is generated with help
of the modeled prices from the (MS-)GVAR model. Subsequently, the commodity-specific risk
indicators per pathway are derived, combining the individual probability of scarcity with a sub-

165



CHAPTER 6. CONCLUSION

stitutability score and the scaled resource requirements per transformation pathway. Finally, the
aggregation of the commodity-specific risk indicators on path level allows for a comparison of
the four transformation paths with regard to their resource risks and enables policy suggestions.

The application of the proposed risk assessment framework on four potential transformation
pathways of the German Energiewende revealed lithium, lead and zinc bear the highest proba-
bility of scarcity. However, when additionally accounting for the substitutability as well as the
required resource demand for the German Energiewende, cobalt, indium and nickel, followed
by copper and lithium, mainly allocated to energy storage, solar PV technologies and wind
parks, bear the highest scarcity risks, and therefore, will be the key commodities for the Ger-
man Energiewende. The comparison of the four transformation paths, suggests the path which
models the transition of the German energy system with full support by the society, shows the
lowest scarcity risks, as an active support of the German population for the energy transition
significantly reduces the required amounts of raw materials and therefore the scarcity risks.

While the proposed risk assessment framework considers the substitutability, the required re-
sources as well as the commodity market structure, the model also has its weaknesses and
limitations that must be thoughtfully considered. First of all, the proposed risk assessment is a
statistical approach aiming to examine and compare the scarcity risk of four potential transfor-
mation pathways of the German energy system, however, as all statistical analyses it is based
on historical data and the corresponding assumption that past data can be extrapolated to the
future. However, the climate change and the associated decarbonization of the energy system
will change the future energy system and especially the applied energy technologies. Second,
although the future resource demands are included, the impacts on the economy can only be
roughly estimated. In particular, the resource requirements used reflect the demands of 28 rep-
resentative technologies for wind, solar, storage, electricity transport and building renovation,
however, the actual choice of the deployed technology may change the results. Third, the actual
resource demands for the transformation paths are scaled with the historical average of world
production to allow a comparison between the commodities. Since not all of a metal’s resource
consumption is used for energy applications, the scaling used could skew the results. However,
the analyses on the robustness of the scaling factor show that the main findings remain valid
even if the scaling factor is changed. Fourth, the analysis investigates the commodity markets
and the risks induced from the energy transition from a global perspective and does not focus on
individual commodity trades. Those might be affected by delivery difficulties inter alia caused
by an amplified market concentration, which are not considered within this thesis and which may
lead to resource shortages in the short-term. Fifth, this thesis investigates the German energy
system and the associated resource demands, however, all countries have to contribute to keep
the climate change under control which is why the actual resource requirements for a worldwide
energy system based on renewable technologies will be a multiple of the German demand.

Because of these limitations, the final risk scores should be interpreted carefully. However,
various robustness analyses reveal the hierarchy between the alternative transformation paths re-
mains the same, indicating the risk assessment framework helps in comparing resource-demanding
projects, independent of the assumption under focus. Therefore, the main finding, a reduced
energy demand combined with a resource-optimal energy system reduces the resource amounts
and ultimately the resource scarcity, keeps valid in either case.

Overall, a new risk assessment framework is developed and applied for the comparison of the
resource requirements of four potential transformation pathways of the German Energiewende.
Hereby, the framework accounts for the substitutability of commodities, the actual future re-
quired resource amounts of the project as well as the commodity market structure, using new
commodity market models, reflecting the impact of fundamentals on - as well as the spillover
effects between - commodity prices. The results indicate on commodity level cobalt, indium,
and nickel are potential bottlenecks of the German Energiewende. In particular, the analysis
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reveals the fewer resources are required, the better. On the one hand, electricity consumption
must be reduced, on the other hand, it is important that infrastructure projects for the con-
struction of wind turbines and electricity lines are made possible, especially been accepted and
supported by the German population, since the development of an optimal electricity market
reduces the required raw materials and thus reduces the scarcity risk. Therefore, policy should
raise the awareness in the German population to save electricity and stand behind the necessary
infrastructure projects such that the energy system can be set up optimally.
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A Literature Overview

The transition process to climate neutrality will require large amounts of raw materials, see
Valero et al. (2018). In this context, the demand for raw materials can cause price peaks and
delivery bottlenecks in their supply, see Federal Ministry for Economic Affairs and Climate
Action (2022a). Since Skinner (1979), who emphasizes the importance of reliable supplies of
metals, several studies assessed the criticality of various commodities. However, the limiting
factor for the availability of a commodity is the extraction, see Tilton et al. (2018), since the
supply of resources only reacts slowly to changes in demand. For this reason, commodity prices
may be interpreted as scarcity indicators which is why a comprehensive understanding of com-
modity markets and, in particular, of price determinants as well as their common pattern is
essential. Hereby, previous studies examine various commodity-specific as well as global price
determinants as well as the reasons for the observed co-movement.

Table A.1 provides an overview of the studies analyzing the criticality of commodities, the price
determinants or the co-movement between prices. Hereby, the table displays the used method-
ology, the considered time period and frequency of data and whether individual commodities
or a commodity index is analyzed. Moreover, the included determinants are tagged as well as
whether the study focuses on the criticality of commodities - in general or in the context of the
energy transition - or on the (time-varying) (excess) co-movement between prices.
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B Methodology

In this thesis, we propose a new framework to analyze resource-demanding projects in terms of
the resource scarcity risk. Hereby, we account for the time-varying commodity market structure,
via the Markov-switching global vector autoregression (MS-GVAR) model. In the following,
additional information about the state space representation, and the expectation-maximization
(EM) algorithm for the commodity-specific MS-VAR models, as well as about the generalized
impulse response functions (GIRFs) for the global model, is provided.

B.1 Markov-switching Global Vector Autoregression Model

B.1.1 State Space Representation

In general, the commodity-specific MS(M)-VAR(P ) models in Equation 3.22 can be rewritten
into their state space representation, consisting of a measurement and a transition equation.
In this context, the regression equations for all MS-VAR specifications are derived from the
measurement equation in Equation 3.29 of the state space representation of the model. In the
following, the regression equation for the most general MSIAHX-VAR model will be derived,
where all parameters, the intercept term (ν), the parameters corresponding to the exogenous
variables (ψ), the lagged coefficient matrices (α) as well as the covariance matrix (Σ), are
regime-dependent.

Hereby, we define Xi,t as follows:

Xi,t = x̄′
i,t ⊗ IKi

=
(
1, e′

t, e′
t−1, . . . , e′

t−Pexog
, x∗′

i,t, x∗′
i,t−1, . . . , x∗′

i,t−P , x′
i,t−1, x′

i,t−2, . . . , x′
i,t−P

)
⊗ IKi

:=
(
1, ex′

i,t, en′
i,t−1

)
,

(B.1)

with ex′
i,t :=

(
e′

t, e′
t−1, . . . , e′

t−Pexog
, x∗′

i,t, x∗′
i,t−1, . . . , x∗′

i,t−P

)
denoting the exogenous variables,

en′
i,t−1 :=

(
x′

i,t−1, x′
i,t−2, . . . , x′

i,t−P

)
the endogenous variables of the model, IKi a Ki × Ki

identity matrix and ⊗ the Kronecker product.
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Then, the measurement equation can be rewritten:

xi,t = Xi,tBiξi,t + ui,t

=
((

1, ex′
i,t−1, en′

i,t−1

)
⊗ IKi

)νi,1 νi,2 · · · νi,M

ψi,1 ψi,2 · · · ψi,M

αi,1 αi,2 · · · αi,M



ξi,1,t

ξi,2,t
...

ξi,M,t

+ ui,t

=
(
1 ⊗ IKi , ex′

i,t−1 ⊗ IKi , en′
i,t−1 ⊗ IKi

) νi,1ξi,1,t + νi,2ξi,2,t + · · · + νi,Mξi,M,t

ψi,1ξi,1,t +ψi,2ξi,2,t + · · · +ψi,Mξi,M,t

αi,1ξi,1,t +αi,2ξi,2,t + · · · +αi,Mξi,M,t


+ ui,t

= (1 ⊗ IKi) (νi,1ξi,1,t + νi,2ξi,2,t + · · · + νi,Mξi,M,t)

+
(
ex′

i,t−1 ⊗ IKi

)
(ψi,1ξi,1,t +ψi,2ξi,2,t + · · · +ψi,Mξi,M,t)

+
(
en′

i,t−1 ⊗ IKi

)
(αi,1ξi,1,t +αi,2ξi,2,t + · · · +αi,Mξi,M,t) + ui,t

=
M∑

m=1
(1 ⊗ IKi)νi,mξi,m,t +

M∑
m=1

(
ex′

i,t−1 ⊗ IKi

)
ψi,mξi,m,t

+
M∑

m=1

(
en′

i,t−1 ⊗ IKi

)
αi,mξi,m,t + ui,t

=
M∑

m=1
(ξi,m,t1 ⊗ IKi)νi,m +

M∑
m=1

(
ξi,m,tex′

i,t−1 ⊗ IKi

)
ψi,m

+
M∑

m=1

(
ξi,m,ten′

i,t−1 ⊗ IKi

)
αi,m + ui,t.

(B.2)

Further, we define Exi =
(
ex′

i,−0, ex′
i,−1, . . . , ex′

i,−Pexog

)
with

exi,−p = (exi,0−p, exi,1−p, . . . , exi,T −p), for p = 0, 1, . . . , Pexog, and
Eni =

(
en′

i,−1, en′
i,−2, . . . , en′

i,−P

)
with eni,−p = (eni,1−p, eni,2−p, . . . , eni,T −p), for

p = 1, 2, . . . , P . This can be used for xi =
(
x′

i,1, x′
i,2, . . . , x′

i,T

)′
as follows:

xi =
M∑

m=1
(diag (ξi,m) 1T ⊗ IKi)νi,m +

M∑
m=1

(
diag (ξi,m) Ex′

i ⊗ IKi

)
ψi,m

+
M∑

m=1

(
diag (ξi,m) En′

i ⊗ IKi

)
αi,m + ui

=
M∑

m=1
(Ξi,m1T ⊗ IKi)νi,m +

M∑
m=1

(
Ξi,mEx′

i ⊗ IKi

)
ψi,m

+
M∑

m=1

(
Ξi,mEn′

i ⊗ IKi

)
αi,m + ui,

(B.3)

with the innovation process:

ui ∼ N (0,Ωi) , with Ωi =
M∑

m=1
Ξi,m ⊗ Σii,m. (B.4)

In order to get the regression equations with the corresponding distribution of the innovation
process of the different MS-VAR specifications, the regime-invariant parameters simplify the
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equations. Especially, in case of homoscedastic models, in which the covariances are equal for
each regime, the innovation process is given by:

ui ∼ N (0,Ωi) , with Ωi = IT ⊗ Σii. (B.5)

Under the assumption of regime-invariant covariances, it holds Σii,m = Σii, for all m =
1, 2, . . . , M , and therefore, the corresponding definition of Ωi simplifies to:

M∑
m=1

Ξi,m ⊗ Σii,m =
M∑

m=1
Ξi,m ⊗ Σii

=
(

M∑
m=1

Ξi,m

)
⊗ Σii

= IT ⊗ Σii.

(B.6)

The terms of the regression equation corresponding to regime-invariant parameters can be sim-
plified in a similar manner. For example, if the intercept is regime-invariant, the corresponding
term simplifies as follows:

M∑
m=1

(Ξi,m1T ⊗ IKi)νi,m =
M∑

m=1
(Ξi,m1T ⊗ IKi)νi

=
(

M∑
m=1

(Ξi,m1T ⊗ IKi)
)
νi

=
(((

M∑
m=1

Ξi,m

)
1T

)
⊗ IKi

)
νi

= (1T ⊗ IKi)νi.

(B.7)
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B.1.2 Expectation-Maximization Algorithm

In the following, we show the maximum likelihood (ML) estimator equals to the generalized
least squares estimator of the corresponding linear regression model with many observations
per cell, where the pseudo observations (xi,t, Xi,m,t, ξi,t = ιm) are weighted with the smoothed
probabilities ξ̂i,m,t|T

(
λj−1

i

)
= Pr

(
ξi,t = ιm|Xi,T ,λj−1

i

)
. Hereby, we obtain the maximum like-

lihood estimator for the VAR parameters by using the definition of the residuals and setting
the first partial derivative of the log-likelihood function with respect to the VAR parameters
(γi), including the intercept (νi), the autoregressive parameters (αi) as well as the parameters
corresponding to the exogenous variables(ψi), equal to zero.

Therefore, using the definitions of Section 3.2.1.5, it holds:

∂ℓ (θi|Xi,T )
∂γi

= −1
2

∂ui (γi)′ W−1
i ui (γi)

∂γi
= −ui (γi)′ W−1

i

∂ui (γi)
∂γi

= − (1M ⊗ xi − Xiγi)′ W−1
i

∂

∂γi
(1M ⊗ xi − Xiγi)

= − (1M ⊗ xi − Xiγi)′ W−1
i (−Xi)

= (1M ⊗ xi)′ W−1
i Xi − (Xiγi)′ W−1

i Xi

= (1M ⊗ xi)′ W−1
i Xi − γ ′

iX′
iW−1

i Xi
!= 0

⇔ γ ′
iX′

iW−1
i Xi = (1M ⊗ xi)′ W−1

i Xi

⇔ γ ′
i = (1M ⊗ xi)′ W−1

i Xi

(
X′

iW−1
i Xi

)−1

⇔ γi =
(

(1M ⊗ xi)′ W−1
i Xi

(
X′

iW−1
i Xi

)−1
)′

⇔ γi =
((

X′
iW−1

i Xi

)−1
)′

X′
iW−1′

i (1M ⊗ xi)

⇔ γi =
(
X′

iW−1
i Xi

)−1
X′

iW−1
i (1M ⊗ xi) .

(B.8)

With help of the definitions of the matrices described in Section 3.2.1.5, we rewrite the maximum
likelihood estimator to reduce the computational effort:

γi =
(
X′

iW−1
i Xi

)−1
X′

iW−1
i (1M ⊗ xi)

=
((

X′
i,1, X′

i,2, . . . , X′
i,M

)
Ξ̂i,1 ⊗ Σ−1

ii,1 0
. . .

0 Ξ̂i,M ⊗ Σ−1
ii,M




Xi,1
Xi,2

...
Xi,M


)−1

(
X′

i,1, X′
i,2, . . . , X′

i,M

)
Ξ̂i,1 ⊗ Σ−1

ii,1 0
. . .

0 Ξ̂i,M ⊗ Σ−1
ii,M




xi

xi
...

xi


=
(
X′

i,1

(
Ξ̂i,1 ⊗ Σ−1

ii,1

)
Xi,1 + X′

i,2

(
Ξ̂i,2 ⊗ Σ−1

ii,2

)
Xi,2 + . . .

+X′
i,M

(
Ξ̂i,M ⊗ Σ−1

ii,M

)
Xi,M

)−1(X′
i,1

(
Ξ̂i,1 ⊗ Σ−1

ii,1

)
+ X′

i,2

(
Ξ̂i,2 ⊗ Σ−1

ii,2

)
+ . . .

+X′
i,M

(
Ξ̂i,M ⊗ Σ−1

ii,M

) )
xi

=
(

M∑
m=1

X′
i,m

(
Ξ̂i,m ⊗ Σ−1

ii,m

)
Xi,m

)−1( M∑
m=1

X′
i,m

(
Ξ̂i,m ⊗ Σ−1

ii,m

))
xi.

(B.9)
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If the regressors are identical for each equation xi,ki
, ki = 1, 2, . . . , Ki, it holds Xi,m = X̄i,m ⊗IKi

and it follows:

γi =
(

M∑
m=1

(
X̄′

i,m ⊗ IKi

) (
Ξ̂i,m ⊗ Σ−1

ii,m

) (
X̄i,m ⊗ IKi

))−1

(
M∑

m=1

(
X̄′

i,m ⊗ IKi

) (
Ξ̂i,m ⊗ Σ−1

ii,m

)
xi

)

=
(

M∑
m=1

(
X̄′

i,mΞ̂i,mX̄i,m

)
⊗ Σ−1

ii,m

)−1( M∑
m=1

(
X̄′

i,mΞ̂i,m

)
⊗ Σ−1

ii,m

)
xi.

(B.10)
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B.1.3 Impulse Response Analysis of Shocks to Exogenous, Global Variables
- Monte Carlo Integration

The impulse responses of the commodity-specific variables to shocks in the exogenous variables
are calculated recursively, using Equation 3.155, Equation 3.157, and the generalized impulse
response functions of exogenous variables to shocks to the exogenous variables, denoted by
GIe:ekexog

(n, δexog, Ωt−1). Since the innovations εexog,t are, in general, non-normal, we calcu-
late the generalized impulse response functions via a Monte Carlo integration, similar to the
procedure described in Section 3.2.4.2.1. However, we slightly adjust the procedure.

1. Draw with replacement a block of P̃exog consecutive observations of the exogenous variables
from the observed data to get Nhist randomly drawn histories ωnhist

t−1 , nhist = 1, 2, . . . , Nhist.

2. Randomly sample with replacement (NIRF + 1) × Nshock values of the Kexog-dimensional
estimated residuals of the MS-VAR model to get a sequence {εnshock

exog,t+n}NIRF
n=0 of Kexog-

dimensional shocks εnshock
exog,t+n, n = 0, 1, . . . , NIRF , nshock = 1, 2, . . . , Nshock. Under the

assumption of jointly distributed shocks, if date t’ s shock is drawn, all Kexog residuals for
date t are collected.

3. For a specific nshock as well as nhist, use the NIRF +1 random shocks {εnshock
exog,t+n} to compute

the realization enhist,nshock
t+n

(
εnshock

exog,t+n, ωnhist
t−1

)
for n = 0, 1, . . . , NIRF , using Equation 3.153,

and iterating on the estimated, nonlinear time series model under consideration from the
given initial conditions εnshock

exog,t+n, ωnhist
t−1 .

4. Use the same draw of NIRF + 1 random shocks {εnshock
exog,t+n}, but replace the first shock

εnshock
exog,t+0 by εnshock,δexog

exog,t+0 = εnshock
exog,t+0 + δexog to produce a realization of the time series,

enhist,nshock,δexog

t+n

(
ε

nshock,δexog

exog,t+n , ωnhist
t−1

)
, for n = 0, 1, . . . , NIRF , based on the initial condi-

tions εnshock,δexog

exog,t+n , ωnhist
t−1 .

5. Repeat steps 3 and 4 Nshock times and form the averages for each individual component:

ẽnhist,δexog

t+n

(
ε
δexog

exog,t+n, ωnhist
t−1

)
=

1
Nshock

Nshock∑
nshock=1

enhist,nshock,δexog

t+n

(
ε

nshock,δexog

exog,t+n , ωnhist
t−1

)
,

ẽnhist
t+n

(
εexog,t+n, ωnhist

t−1
)

= 1
Nshock

Nshock∑
nshock=1

enhist,nshock
t+n

(
εnshock

exog,t+n, ωnhist
t−1

)
.

(B.11)

According to Koop et al. (1996), these averages will converge by the law of large numbers
to the conditional expectations E

[
et+n|εexog,t,sexog,t = δexog, ωnhist

t−1
]

and E
[
et+n|ωnhist

t−1
]
.

6. The Monte Carlo estimate of the history dependent GIRF is calculated by taking the
difference:

GIe:ekexog

(
εexog,t+n, ωnhist

t−1
)

= ẽnhist,δexog

t+n

(
ε
δexog

exog,t+n, ωnhist
t−1

)
− ẽnhist

t+n

(
εexog,t+n, ωnhist

t−1
)

.
(B.12)

7. Repeat steps 2 to 6 Nhist times and take the average over GIe:ekexog

(
εexog,t+n, ωnhist

t−1
)

to get the history independent estimate of the generalized impulse response function
GIe:ekexog

(εexog,t+n, ωt−1). With an increasing number of repetitions the pointwise con-
vergence will be guaranteed by the law of large numbers, according to Koop et al. (1996).
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B.1.4 Impulse Response Analysis of Shocks to Exogenous, Global Variables
- Bootstrapping

In order to analyze the significance of the generalized impulse response function analysis, we
employ an adjusted version of the bootstrap techniques proposed in Ehrmann et al. (2001).
Hereby, we create a history for the regimes as well as for the variables within the bootstrap-
ping. As we apply the bootstrapping to generate confidence bounds for our GIRF analysis, the
bootstrapping is also regime-dependent, just like the GIRF, which is why the bootstrapping is
calculated for the predetermined regime-constellation S of the commodity-specific variables as
well as the regime-constellation sexog of the exogenous variables.

In the following, we describe the algorithm for the bootstrapping procedure:

1. Create a history for the regimes sexogt, t = 1, 2, . . . , T . As the regimes are not observable,
but the smoothed probabilities represent their best estimate, we assume the history of
regimes to correspond to the estimated smoothed probabilities.

2. Calculate the residuals ε̂exog,t,sexog , t = 1, 2, . . . , T of the fitted VAR model in Equation
3.153, with the estimated parameters for the prevailing regime-constellations.

3. Draw randomly with replacement a block of Tboot ≤ T consecutive residuals to get Nboot

sets of residuals εnboot
exog =

(
εnboot

exog,T −Tboot
, εnboot

exog,T −Tboot+1, . . . , εnboot
exog,T

)
, nboot = 1, 2, . . . , Nboot.

4. Generate Nboot bootstrap samples enboot =
(
enboot

T −Tboot
, enboot

T −Tboot+1, . . . , enboot
T

)
, according to

Equation 3.153, using the resampled, recentered1 residuals εnboot
exog as well as the estimated

parameters of the fitted VAR model for the prevailing regime-constellations.

5. Estimate the MS-VAR model for a specific bootstrap sample, enboot via the EM algorithm,
described in Section 3.2.1.5.

6. Calculate the GIRFs GIe:ekexog
(n, δexog, Ωt−1) for the predefined regime-constellation sexog

for the specific bootstrap sample, enboot , based on the new estimated parameters corre-
sponding to the bootstrap sample and recursively derive the GIRFs of the commodity-
specific variables GIx:ekexog

(n, δexog, Ωt−1), using Equation 3.155, and Equation 3.157.

7. Repeat steps 4 to 6 Nboot times.

8. Sort the GIRFs into an ascending order for all time periods n = 0, 1, . . . , NIRF , and
calculate the 68% confidence interval by using the 0.16 and 0.84 quantiles of the bootstrap
distribution of the GIRFs.

In line with the impulse response analysis of shocks to the endogenous variables, we apply the
bootstrap technique for Nboot = 500 runs, which is sufficiently large to be a good numerical
approximation of the distribution of the underlying estimates.

1In line with the bootstrapping procedure for the GVAR model, described in Section 3.1.2.1, we follow Dées,
di Mauro, Pesaran, and Smith (2007) and recenter the residuals to ensure the bootstrap population mean is zero.
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C Data

In this section, we provide additional information about the data used in this study. First, we
graphically consider the required resource amounts per transformation pathway of the German
Energiewende over time. Subsequently, we report the main uses and the largest mining countries
of these resources in Table C.1. Further, we present time series plots of the level and logarith-
mic return data as well as the histogram of the logarithmic returns for all commodity-specific
attributes as well as their determinants. In particular, the commodity-specific demand variable
represents the approximated global commodity-specific demand, which we estimate by adjusting
the U.S. apparent consumption, provided by U.S. Geological Survey (2018), by the ratio of U.S.
gross domestic product (U.S. GDP) and world gross domestic product (GDP), drawn from U.S.
Bureau of Economic Analysis (2022) and The World Bank (2022a).
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C.1 Path-specific Commodity Requirements

Figure C.1: Required amount per commodity for the considered transformation pathways

(a) Ag (b) Al (c) Co (d) Cu

(e) Dy (f) In (g) Li (h) Nd

(i) Ni (j) Pb (k) Pt (l) Sn

(m) Zn

These figures display the required amount in metric ton per commodity silver (Ag), aluminum (Al), cobalt (Co),
copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt),
tin (Sn), and zinc (Zn), in the period from 2020 to 2050, for the four considered transformation pathways
REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA.
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C.2 Commodity Markets

C.2.1 Main Uses of the Commodities

Table C.1: Main uses of the metals

Main Use Largest mining countries
Ag Electrical and electronics (30%), jewelry and silverware (26%), coins

and medals (12%), photography (3%)
Mexico (23%), Peru (14%), China
(13%)

Al Transportation applications (39%), packaging (19%), building
(14%), electrical (9%), consumer durables (8%), machinery (8%)

China (56%), India (6%), Russia
(6%), Canada (5%)

Co Superalloys mainly in aircraft gas turbine engines (46%), cemented
carbides for cutting and wear-resistant applications (9%), metallic
applications (14%), chemical applications (31%)

Congo (71%), Russia (4%),
Australia (4%)

Cu Building construction (43%), electrical and electronic products
(20%), transportation equipment (20%), consumer and general
products (10%), industrial machinery and equipment (7%)

Chile (28%), Peru (12%), China
(8%), United States (7%), Congo
(Kinshasa) (7%)

In Electrically conductive purposes (e.g. flat screens), alloys and
solders, compounds, electrical components and semiconductors

China (39%), Republic of Korea
(31%)

Li Batteries (65%), ceramics and glass (18%), lubricating greases (5%),
polymer production (3%), continuous casting mold flux powders
(3%), air treatment (1%)

Australia (55%), Chile (23%),
China (10%), Argentina (18%)

Ni Stainless and alloy steels, nonferrous alloys and superalloys,
electroplating, catalysts and chemicals

Indonesia (30%), Philippines
(16%), Russia (10%), New
Caledonia (8%)

Pb Lead-acid battery industry (93%) Ammunition,
building-construction materials, lead-acid storage batteries, lead
oxides for ceramics, chemicals, glass, and pigments, lead sheet

China (47%), Australia (10%),
United States (6%), Peru (6%)

Pt Catalytic converters, chemical and petroleum refining, dental and
medical devices, electronics, jewelry

South Africa (72%), Russia
(12%), Zimbabwe (8%)

Rare
Earths 1

Catalysts (75%), metallurgical applications and alloys (5%),
ceramics and glass (5%), polishing (5%)

China (63%), United States
(12%), Burma (10%) Australia
(10%)

Sn Tinplate (21%), chemicals (17%), solder (14%), alloys (10%),
babbitt, brass and bronze, and tinning, (11%)

China (27%), Indonesia (26%),
Burma (17%)

Zn Galvanizing, brass and bronze, zinc-based alloys China(33%), Peru (12%),
Australia (9%), United States
(7%), India (6%)

This table displays the main uses as well as the largest producing countries for the considered commodities, silver (Ag),
aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), the rare earth
metals, tin (Sn), and zinc (Zn), based on data of 2019 provided by U.S. Geological Survey (2020d).

1 U.S. Geological Survey (2020d) only considers rare earth metals aggregated, including dysprosium and
neodymium.
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C.2.2 Descriptive Statistics of the Level Data

Table C.2: Descriptive statistics of the level data of the commodity-specific variables
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HHI a 794 829 896 936 968 982 1275 1394 123 1.72 2.94 0.47 0.82***
supply a 9170 9369 11650 16000 16783 20800 26665 26900 5666 0.34 -1.16 3.60 0.93**
demand a 11024 12103 16149 18684 20658 24168 33393 37399 6591 0.75 -0.32 0.33 0.93**
price× a 50 68 152 188 308 462 720 1135 240 1.50 1.98 -0.65 0.82***

A
l

HHI a 747 800 890 1173 1426 1515 3116 3502 770 1.47 0.96 2.47 0.76***
supply× a 9650 11495 15175 19750 26943 36375 59175 63600 15947 1.01 -0.32 6.58 0.84***
supply× m 1517 1704 2066 3133 3330 4557 5390 5722 1295 0.31 -1.37 1.74 0.90***
demand× a 9339 12644 16498 19086 18939 21681 24237 26893 3813 -0.29 -0.37 0.66 0.99
demand× m 1561 1730 2052 2999 3272 4536 5328 5611 1270 0.35 -1.37 0.99 0.90***
price a 594 615 1263 1509 1533 1837 2555 2640 526 0.18 -0.42 -0.31 0.97
price m 1168 1320 1525 1757 1837 2043 2703 3070 413 0.90 0.23 -0.58 0.93***

C
o

HHI a 1415 1500 1771 2703 2743 3351 4548 5039 997 0.46 -0.67 -0.07 0.94**
supply× a 38 41 52 69 90 120 197 223 52 1.11 0.08 -0.00 0.84***
demand× a 17 20 28 33 33 39 45 68 9 0.81 2.13 0.43 0.94*
price a 4850 5987 16595 30578 33183 47890 70119 86002 20049 0.56 -0.44 -1.35 0.96.

C
u

HHI a 947 1007 1302 1423 1386 1542 1616 1833 208 -0.40 -0.38 0.43 0.95
supply× a 5900 6630 7630 9750 11695 15400 20055 20400 4530 0.50 -1.14 6.30 0.90***
supply× m 749 894 1111 1293 1317 1551 1752 1846 270 0.11 -0.98 0.50 0.97***
demand× a 5028 5657 7287 8136 8099 8968 10538 11061 1443 0.01 -0.41 0.31 0.98
demand× m 914 1001 1232 1483 1517 1845 2053 2313 343 0.17 -1.10 0.11 0.96***
price a 1073 1277 1577 2240 3243 5102 7454 8820 2297 0.99 -0.59 0.03 0.79***
price m 1351 1550 2097 5097 4784 6917 8443 9880 2485 0.05 -1.41 0.03 0.91***

D
y2 supply a 107 127 207 435 503 706 917 1482 322 0.77 0.13 2.83 0.91***

demand a 128 161 241 305 349 435 655 735 150 0.68 -0.31 -0.82 0.94**
price× a 249 249 258 318 396 414 751 861 212 1.23 -0.00 -4.35** 0.75**

In

HHI a 1410 1621 2316 3003 2792 3279 3947 4190 776 -0.29 -0.97 0.09 0.93.
supply a 23 33 53 208 326 645 807 968 299 0.60 -1.24 2.26 0.84***
demand a 12 31 63 163 242 495 580 651 210 0.62 -1.30 0.94 0.83***
price× a 57 80 142 238 310 422 704 961 218 1.01 0.28 -1.24 0.89***

Li

HHI a 1813 1937 2309 3196 3419 4294 5561 5790 1214 0.39 -1.13 0.37 0.93**
supply× a 20 74 109 175 335 375 1357 1929 443 2.75 7.10 1.63 0.58***
demand a 3488 4795 8250 9291 9126 10445 12508 14229 2223 -0.40 0.21 -0.52 0.97
price a 18 18 46 68 64 79 102 131 27 -0.03 -0.49 0.83 0.96.

N
d supply a 2628 3119 5090 10659 12340 17311 22492 36358 7901 0.77 0.13 2.83 0.91***

demand a 3139 3960 5917 7493 8564 10662 16059 18020 3680 0.68 -0.31 -0.82 0.94**
price a 53555 56139 61987 69904 69585 71373 87961 95179 12335 0.78 -0.28 -1.53 0.90

N
i

HHI a 903 974 1199 1299 1366 1475 2009 2606 346 1.64 3.22 -1.92* 0.84***
supply× a 6110 632 795 1025 1269 1543 2494 2790 616 0.98 -0.26 1.79 0.86***
supply× m 70 83 103 120 137 175 223 240 45 0.67 -0.81 0.08 0.90***
demand× a 329 478 679 760 767 861 1081 1181 178 -0.00 0.15 0.65 0.98
demand× m 72 77 94 112 124 146 208 254 40 0.98 0.26 -0.04 0.91***
price a 2844 3215 4861 6967 9754 13663 22414 37149 6856 1.69 3.35 -0.96 0.82***
price m 3873 5321 7979 12309 13765 16585 29520 49825 7816 1.68 3.85 -0.77 0.86***

P
b

HHI a 912 929 1211 1823 1846 2478 2931 3310 731 0.29 -1.28 0.30 0.93*
supply× a 2710 2873 3200 3435 3627 3705 5022 5440 677 1.24 0.57 0.85 0.84***
supply× m 209 229 253 318 323 386 441 506 74 0.29 -1.23 -0.14 0.93***
demand× a 3336 3490 4267 5057 5252 6302 7296 8983 1292 0.44 -0.35 1.24 0.96.
demand× m 407 457 544 740 738 937 1031 1119 202 0.07 -1.45 0.41 0.92***
price a 306 352 545 811 1065 1614 2280 2586 672 0.86 -0.76 0.01 0.84***
price m 406 460 613 1683 1446 2091 2583 3683 788 0.15 -1.20 -0.39 0.90***

P
t

HHI a 4092 4262 4525 5293 5335 6038 6497 6873 793 0.04 -1.29 0.69 0.94**
supply a 127 147 214 308 323 421 498 515 116 0.04 -1.34 0.87 0.94*
demand a 215 272 418 570 602 696 1065 1301 247 0.80 0.27 -0.61 0.95*
price× a 3890 4522 11665 15061 20702 28693 50203 55273 14441 0.91 -0.33 -0.14 0.88***

Sn

HHI a 1079 1118 1345 1696 1796 2260 2692 3054 545 0.45 -1.04 -0.06 0.93***
supply× a 173 180 219 238 241 264 300 318 38 0.16 -0.78 0.28 0.97
supply m 15395 17034 19860 25012 24123 27904 30142 37033 4444 -0.08 -0.92 -0.17 0.96***
demand× a 138 162 171 183 192 208 247 286 30 0.94 0.71 -0.25 0.93***
demand m 18036 19778 22673 28451 27333 30898 33667 38663 4881 -0.26 -0.97 -0.48 0.94***
price a 3498 3883 5605 8305 10780 15047 21528 26006 6170 0.69 -0.83 0.03 0.89***
price m 3727 4317 5786 13944 13135 19633 23500 32295 7258 0.28 -1.19 0.06 0.90***

2 Due to data limitations, we exclude the HHI from the analysis of the rare earth metals, dysprosium and
neodymium.
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Descriptive statistics of the level data of the commodity-specific variables
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Zn

HHI a 794 805 961 1180 1242 1550 1760 1920 344 0.39 -1.23 1.30 0.92*
supply× a 5440 5597 6168 7275 8473 10900 12855 13300 2663 0.60 -1.23 3.59 0.85***
supply× m 562 598 740 937 889 1037 1154 1270 186 -0.13 -1.25 -0.02 0.94***
demand× a 2741 2956 3512 3825 3877 4364 4786 5112 591 -0.04 -0.84 0.31 0.98
demand× m 577 608 752 934 922 1093 1202 1262 197 -0.12 -1.26 0.12 0.94***
price a 297 467 792 1040 1317 1838 2907 3266 750 1.03 0.22 -0.24 0.88***
price m 742 797 1063 1828 1805 2340 3323 4442 807 0.66 -0.22 -0.19 0.93***

This table displays the descriptive statistics (minimum (Min.), 5% quantile (5% Q.), 25% quantile (25% Q.), 75% quantile
(75% Q.), 95% quantile (95% Q.), median (Med.), mean (Mean), maximum (Max.), standard deviation (SD), skewness
(Skew.) and excess kurtosis (Kurt.)) of the level data of the commodity-specific variables Herfindal-Hirschman index (HHI),
supply (supply), demand (demand) and price (price) for the commodities silver (Ag), aluminum (Al), cobalt (Co),
copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn), as well as the results of the test statistics of the augmented Dickey-Fuller (ADF) test and the Shapiro-
Wilk (SW) test with corresponding significance level (0.1% (***), 1% (**), 5% (*) and 10% (.)). Hereby, we report the
descriptive statistics for the considered time period from 1970 to 2019 for the annual (a) analysis or from 1995 to 2020 in
case of the monthly (m) analysis. Moreover, all supply and demand data are displayed in metric tons (or thousand metric
tons indicated by ×), and all prices are in U.S. dollar per metric ton (or U.S. dollar per thousand metric tons indicated by
×).

196 C.2. COMMODITY MARKETS



APPENDIX C. DATA

C.2.3 Development of the commodity-specific Variables over Time3

Figure C.2: Time series plots for silver (Ag)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of silver (Ag).

3In this section, we only plot the annual prices over the considered sample period from 1970 to 2019.
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Figure C.3: Time series plots for aluminum (Al)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of aluminum (Al).
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Figure C.4: Time series plots for cobalt (Co)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of cobalt (Co).
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Figure C.5: Time series plots for copper (Cu)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of copper (Cu).
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Figure C.6: Time series plots for dysprosium (Dy)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of dysprosium (Dy).

Due to data limitations, we exclude the HHI from the analysis of the rare earth metals, dysprosium and
neodymium. In addition, the price is only available since 2012.

C.2. COMMODITY MARKETS 201



APPENDIX C. DATA

Figure C.7: Time series plots for indium (In)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of indium (In).
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Figure C.8: Time series plots for lithium (Li)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of lithium (Li).
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Figure C.9: Time series plots for neodymium (Nd)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of neodymium (Nd).

Due to data limitations, we exclude the HHI from the analysis of the rare earth metals, dysprosium and
neodymium. In addition, the price is only available since 2012.
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Figure C.10: Time series plots for nickel (Ni)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of nickel (Ni).
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Figure C.11: Time series plots for lead (Pb)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of lead (Pb).
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Figure C.12: Time series plots for platinum (Pt)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of platinum (Pt).
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Figure C.13: Time series plots for tin (Sn)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of tin (Sn).
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Figure C.14: Time series plots for zinc (Zn)
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These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the commodity-specific attributes Herfindal-Hirschman index (HHI), supply (supply) in metric
tons, demand (demand) in metric tons and price (price) in U.S. dollar per metric ton of zinc (Zn).
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C.3 Determinants of Commodity Prices

C.3.1 Descriptive Statistics of the Level Data of the Determinants of Com-
modity Prices

Table C.3: Descriptive statistics of the level data of the price determinants
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U.S. IP a 37.56 41.34 51.25 70.47 72.85 94.30 101.94 103.18 22.34 -0.04 -1.63 2.75 0.89***
IP m 859 934 1076 1300 1313 1545 1752 1888 266 0.16 -1.18 0.37 0.95***
U.S. GDP a 4939 5560 7016 10629 11300 15376 18079 19202 4362 0.17 -1.39 10.00 0.93**
GDP a 2997 4195 11756 29463 34715 56707 80655 87654 26700 0.61 -1.03 5.60 0.89***
GDPc a 812 1081 2558 5108 5424 8466 10827 11321 3345 0.40 -1.19 4.26 0.91***
FX a 76.48 80.58 87.25 96.27 97.59 103.38 123.22 143.01 14.72 1.05 0.97 -0.73 0.92***
FX m 71.80 76.24 82.06 90.18 91.35 98.29 113.33 120.24 10.84 0.52 -0.22 -0.14 0.96***
FFR a 0.09 0.12 1.86 5.03 5.16 7.47 11.78 16.38 3.85 0.61 -0.00 -1.29 0.95*
FFR m 0.05 0.09 0.16 1.74 2.42 5.07 5.85 6.54 2.24 0.43 -1.46 -2.02. 0.84***
SIR a 0.12 0.25 2.19 5.30 5.29 7.69 11.80 15.91 3.74 0.54 -0.12 -1.28 0.95*
LIR a 1.80 2.14 4.08 6.28 6.32 7.96 12.00 13.91 3.04 0.48 -0.36 -1.00 0.96.
MB a 78 92 175 423 975 823 3789 3974 1239 1.45 0.51 2.14 0.69***
CPI a 17.81 19.71 44.61 68.93 67.66 94.43 111.36 117.24 30.57 -0.08 -1.27 10.39 0.95*
EMP a 26 26 27 38 35 40 44 45 7 -0.10 -1.73 2.48 0.84***
POP a 3690 3878 4623 5684 5680 6697 7539 7743 1218 0.03 -1.30 37.90 0.95*
MSCI a 78.24 104.26 156.82 645.90 783.83 1252.78 1835.01 2151.02 612.10 0.49 -0.94 2.39 0.91***
SPX a 81.48 90.88 135.96 503.77 821.64 1264.37 2303.48 2937.96 765.28 0.96 0.10 4.29 0.86***
OIL a 3.35 3.70 17.50 26.01 35.96 50.34 94.68 99.57 27.34 1.01 -0.11 -0.44 0.86***
ND a 60.00 63.00 147.00 254.00 245.58 345.50 412.65 432.00 115.34 -0.11 -1.33 0.29 0.94*
KOF a 38.03 39.15 41.74 46.94 48.92 57.64 61.37 61.63 8.20 0.32 -1.52 8.08 0.88***

This table displays the descriptive statistics (minimum (Min.), 5% quantile (5% Q.), 25% quantile (25% Q.), 75% quantile
(75% Q.), 95% quantile (95% Q.), median (Med.), mean (Mean), maximum (Max.), standard deviation (SD), skewness
(Skew.) and excess kurtosis (Kurt.)) of the determinants U.S. industrial production (U.S. IP) as index with 2017 = 100,
world industrial production (IP) in billion U.S. dollars, real U.S. gross domestic product (U.S. GDP) in billions of chained
2012 dollars, world gross domestic product (GDP) in billion U.S. dollars, world gross domestic product per capita (GDPc)
in U.S. dollars, U.S. dollar index (FX), Federal Funds Effective Rate (FFR) in %, 3-month U.S. Treasury rate (SIR) in %
per annum, 10-year U.S. Treasury rate (LIR) in %, U.S. monetary base (MB) in billion U.S. dollars, U.S. consumer price
index (CPI) in %, U.S. employment (EMP) as % of working age population, world population (POP) in billions, MSCI world
stock index (MSCI) as annual index level in basis points, Standard & Poor’s 500 index (SPX), West Texas Intermediate
spot crude oil price (OIL) in U.S. dollar per barrel, global natural disasters (ND) and KOF globalization index (KOF), as
well as the results of the test statistics of the augmented Dickey-Fuller (ADF) test and the Shapiro-Wilk (SW) test with
corresponding significance level (0.1% (***), 1% (**), 5% (*) and 10% (.)). Hereby, we report the descriptive statistics for
the considered time period from 1970 to 2019 for the annual (a) analysis or from 1995 to 2020 in case of the monthly (m)
analysis.
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C.3.2 Development of the Determining Factors over Time4

Figure C.15: Time series plots of the determining factors
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U.S. industrial production (U.S. IP), index 2017 = 100, not seasonally adjusted

IP

monthly world industrial production (IP), in U.S. dollar

G
D

P

world gross domestic product (GDP), in billions of chained 2012 dollars, seasonally adjusted annual rate

4In this section, we only plot the annual variables over the considered sample period from 1970 to 2019, except
for the world industrial production, which is available since 1995 in monthly frequency.
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Time series plots of the determining factors
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world gross domestic product per capita (GDPc), in current U.S. dollar
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U.S. dollar index (FX)
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Federal Funds Effective Rate (FFR), in %

SI
R

3-month U.S. Treasury rate (SIR), in % per annum
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Time series plots of the determining factors

Level Return Histogram
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10-year U.S. Treasury rate (LIR), in %

M
B

U.S. monetary base (MB), in millions of U.S. dollar

C
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I

U.S. consumer price index (CPI), in percent, not seasonally adjusted

E
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P

U.S. employment (EMP), displaying the % of working age population ×1000
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Time series plots of the determining factors

Level Return Histogram
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MSCI world stock index (MSCI), closing price in basis points

SP
X

Standard & Poor’s 500 index (SPX)

O
IL

West Texas Intermediate spot crude oil price (OIL), in U.S. dollar per barrel
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Time series plots of the determining factors
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global natural disasters (ND)
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KOF globalization index (KOF)

These figures display the histogram of the logarithmic returns and the time series plots of the level as well as of the
logarithmic return data of the price determinants U.S. industrial production (U.S. IP), world industrial production (IP),
world gross domestic product (GDP), world gross domestic product per capita (GDPc), U.S. dollar index (FX), Federal
Funds Effective Rate (FFR), 3-month U.S. Treasury rate (SIR), 10-year U.S. Treasury rate (LIR), U.S. monetary base (MB),
U.S. consumer price index (CPI), U.S. employment (EMP), world population (POP), MSCI world stock index (MSCI),
Standard & Poor’s 500 index (SPX), West Texas Intermediate spot crude oil price (OIL), global natural disasters (ND),
and KOF globalization index (KOF).
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D Empirical Results

The scarcity risk assessment of the annual material requirements of four potential transformation
pathways of the German energy system is assessed by taking into account the substitutability
of the commodities, the future required resource amounts as well as the commodity market
structure. Hereby, we model the commodity markets via a (MS-)GVAR model.

First, we provide in Section D.1 (Section D.2) additional information on the exemplary appli-
cations of the (MS-)GVAR framework on the industrial metal markets. Besides the test results
of the models, we give further insights into the differences in the spillover effects between the
calm and volatile regime, as well as between the GVAR and MS-GVAR model. Subsequently, we
apply the (MS-)GVAR model in the context of the German Energiewende. Hereby, we provide
additional information about these models in Section D.3, in particular, their induced spillover
effects. In addition, we also analyze the regime-inferences of the time-varying MS-GVAR models.
Moreover, we present further results of the robustness analyses.

D.1 A time-invariant Model for Industrial Metal Markets

Table D.1: Test results for autocorrelation, heteroscedasticity, structural breaks and normality of the individual VAR
models, the GVAR models based on the weight matrices supply (S), demand (D), trading (T), and common (C), and the
VAR model of the exogenous variables

DW ARCH-LM OLS-CUSUM HZ
supply demand price

Stat. p Stat. p Stat. p Stat. p Stat. p Stat. p

in
di

vi
du

al
VA

R Al 1.81 0.23 1.82 0.24 2.04 0.50 54.85 0.02 1.01 0.26 0.76 0.22
Cu 2.12 0.62 1.83 0.25 2.20 0.72 19.69 0.99 0.69 0.74 0.55 0.75
Ni 1.93 0.36 1.99 0.43 2.19 0.68 23.65 0.94 0.83 0.50 0.81 0.15
Pb 2.09 0.61 1.73 0.17 1.97 0.45 26.18 0.89 0.97 0.31 0.60 0.63
Sn 2.00 0.48 2.02 0.51 2.06 0.57 36.96 0.42 0.77 0.59 0.90 0.06
Zn 2.10 0.58 1.55 0.05 1.99 0.44 24.08 0.94 0.56 0.92 0.96 0.03

S

Al 2.07 0.54 2.05 0.51 2.08 0.55 44.46 0.16 0.79 0.57 1.00 0.22
Cu 2.04 0.49 1.82 0.23 2.03 0.48 43.71 0.18 0.59 0.88 1.00 0.22
Ni 1.85 0.25 1.96 0.37 2.26 0.75 38.49 0.36 0.52 0.95 1.00 0.22
Pb 1.85 0.30 1.79 0.24 2.20 0.72 31.21 0.70 0.70 0.72 1.00 0.22
Sn 1.78 0.20 2.01 0.45 1.96 0.38 28.81 0.80 0.59 0.88 1.00 0.22
Zn 2.19 0.65 1.93 0.32 1.83 0.22 31.56 0.68 0.75 0.62 1.00 0.22

D

Al 1.86 0.27 2.18 0.66 2.08 0.54 32.97 0.61 0.78 0.58 1.00 0.30
Cu 2.04 0.49 1.85 0.26 2.02 0.47 41.13 0.26 0.54 0.93 1.00 0.30
Ni 1.90 0.31 1.90 0.30 2.26 0.74 28.90 0.79 0.55 0.92 1.00 0.30
Pb 1.88 0.32 1.64 0.10 2.20 0.71 37.14 0.42 0.70 0.72 1.00 0.30
Sn 1.87 0.29 2.05 0.52 2.02 0.48 24.60 0.92 0.59 0.87 1.00 0.30
Zn 2.12 0.60 1.82 0.24 1.80 0.22 19.50 0.99 0.81 0.52 1.00 0.30

T

Al 1.71 0.14 2.06 0.52 2.17 0.65 37.42 0.40 0.80 0.55 1.00 0.51
Cu 2.08 0.56 1.81 0.23 2.08 0.55 44.75 0.15 0.64 0.81 1.00 0.51
Ni 1.93 0.35 1.94 0.36 2.14 0.61 23.34 0.95 0.63 0.83 1.00 0.51
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Test results for autocorrelation, heteroscedasticity, structural breaks and normality of the individual VAR models, the
GVAR models based on the weight matrices supply (S), demand (D), trading (T), and common (C), and the VAR model
of the exogenous variables

DW ARCH-LM OLS-CUSUM HZ
Stat. p Stat. p Stat. p Stat. p Stat. p Stat. p

supply demand price
T

Pb 1.94 0.39 1.99 0.46 2.02 0.50 33.73 0.58 0.82 0.51 1.00 0.51
Sn 1.77 0.19 2.05 0.51 1.98 0.42 24.68 0.92 0.58 0.89 1.00 0.51
Zn 2.13 0.58 1.82 0.21 1.70 0.12 28.45 0.81 1.06 0.21 1.00 0.51

C

Al 1.92 0.35 2.10 0.57 2.10 0.57 40.17 0.29 0.74 0.65 1.00 0.29
Cu 2.04 0.49 1.82 0.24 2.04 0.49 46.20 0.12 0.57 0.90 1.00 0.29
Ni 1.91 0.31 1.94 0.35 2.24 0.73 29.21 0.78 0.55 0.92 1.00 0.29
Pb 1.88 0.32 1.80 0.24 2.18 0.69 32.70 0.63 0.73 0.66 1.00 0.29
Sn 1.80 0.22 2.03 0.49 1.99 0.43 25.56 0.90 0.58 0.89 1.00 0.29
Zn 2.16 0.61 1.95 0.35 1.73 0.14 19.97 0.99 0.98 0.30 1.00 0.29

GDP FX FFR
exog. VAR 1.91 0.35 1.86 0.29 1.83 0.25 46.96 0.10 0.63 0.82 0.66 0.45

This table displays the results of the Durbin-Watson (DW) test for autocorrelation, the multi-
variate ARCH Lagrange multiplier (ARCH-LM) test for heteroscedasticity, the OLS-cumulative
sums of standardized residuals (OLS-CUSUM) test for structural breaks, and the Henze-Zirkler
(HZ) test for normality. Hereby, the Durbin-Watson test is applied on each, individual regression
equation of the VAR model, corresponding to the commodity-specific supply (supply), demand
(demand), and price (price) of the commodities aluminum (Al), copper (Cu), nickel (Ni),
lead (Pb), tin (Sn), and zinc (Zn), whereas the multivariate ARCH Lagrange multiplier test and
the OLS-cumulative sums of standardized residuals test are applied on the commodity-specific
VAR models, and the Henze-Zirkler test is applied on the residuals of the (global) vector au-
toregression ((G)VAR) model. In particular, we report the test results for the individual VAR
models, the GVAR models based on the weight matrices supply (S), demand (D), trading (T),
and common (C), as well as the VAR model of the exogenous variables world gross domestic
product (GDP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR), which are
estimated on the sample period from 1970 to 2019.
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D.2 Time-varying Spillover Effects

D.2.1 Test for Autocorrelation

Table D.2: Test results for autocorrelation and normality of the MS-GVAR models

DW test HZ test
Al Cu Ni Pb Sn Zn
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D 2.09 2.65 1.90 2.50 2.63 1.69 2.08 2.58 1.76 2.34 2.72 2.01 2.50 2.80 1.82 2.30 2.67 2.02 1.02 0.00
REMod − REF 2.18 2.62 1.83 2.43 2.61 1.73 2.10 2.53 1.76 2.44 2.75 2.05 2.60 2.73 1.85 2.41 2.73 1.98 1.02 0.00
REMod − SUF 2.13 2.59 1.84 2.39 2.60 1.73 2.08 2.54 1.76 2.43 2.75 2.03 2.58 2.74 1.85 2.48 2.71 1.97 1.02 0.00
REMod − P ER 2.19 2.62 1.83 2.41 2.61 1.73 2.10 2.53 1.76 2.45 2.76 2.05 2.59 2.74 1.86 2.41 2.73 1.97 1.02 0.00
REMod − UNA 2.16 2.60 1.83 2.42 2.58 1.73 2.09 2.52 1.76 2.44 2.73 2.04 2.60 2.77 1.87 2.48 2.72 1.98 1.02 0.00
Exog. IP FX FFR
1995 - 2020 2.48 2.04 1.40 4.19 0.00
1995 - 2019 2.71 2.04 1.33 2.16 0.00

This table displays the results of the Durbin-Watson (DW) test for autocorrelation, and the Henze-Zirkler (HZ) test for
normality. Hereby, the Durbin-Watson test is applied on each, individual regression equation of the MS-GVAR model,
corresponding to the commodity-specific supply (supply), demand (demand), and price (price) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), whereas the Henze-Zirkler test is applied on the
residuals of the MS-GVAR model. In particular, we report the test results for the MS-GVAR models based on the weight
matrix demand (D), estimated on the sample period from 1995 to 2020, the weight matrices, representing the dependencies
between the commodities within the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transforma-
tion path, estimated on the sample period from 1995 to 2019, as well as the MS-VAR model of the exogenous variables
(Exog.) world industrial production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR), estimated on
the sample period from 1995 to 2019 or 1995 to 2020.
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D.2.2 Differences in the Spillover Effects between Calm and Volatile Regimes1

Figure D.1: Differences in the conditional value at risk of the spillover effects on the supply variables in the
MS-GVAR model under the volatile vs. the calm regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity supply of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) under the volatile vs. the calm regime.

1As all original variables were non-stationary, we base the entire analysis on the logarithmic return data and
hence, also the calculation of the conditional value at risk is based on logarithmic returns.
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Figure D.2: Differences in the conditional value at risk of the spillover effects on the demand variables in the
MS-GVAR model under the volatile vs. the calm regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity demand of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) under the volatile vs. the calm regime.
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Figure D.3: Differences in the conditional value at risk of the spillover effects from the exogenous variables to the
commodity markets in the MS-GVAR model under the volatile vs. the calm regime

(a) IP (b) FX (c) FFR

supply

(d) IP (e) FX (f) FFR

demand

(g) IP (h) FX (i) FFR

price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
exogenous variables world industrial production (IP), U.S. dollar index (FX), Federal Funds Effective Rate (FFR)
to the commodity supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu), Nickel
(Ni), lead (Pb), tin (Sn), and zinc (Zn) under the volatile vs. the calm regime.
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D.2.3 Differences in the Spillover Effects of the GVAR Model and the MS-
GVAR Model

The GIRF analysis of the MS-GVAR model detects various spillover effects within and between
the commodity markets. However, the significance of these effects does not change under the
regimes, whereas the reactions of the variables to shocks are generally stronger in the volatile
regime. In the following, we examine the differences in the spillover effects of the time-invariant
GVAR model, compared to the time-varying MS-GVAR model. For comparability, we estimate
the GVAR model, based on the demand matrix, on monthly data from 1995 to 2020.2 Moreover,
we include the impact of macroeconomic factors via the exogenous variables world industrial
production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR).

While the results of the Durbin-Watson (DW) test and the OLS-cumulative sums of standardized
residuals (OLS-CUSUM) test indicate neither of the underlying individual commodity models
suffers from autocorrelation, nor structural breaks, the multivariate ARCH Lagrange multiplier
(ARCH-LM) test indicates the commodity-specific models are heteroscedastic, see Table D.3.
Since even the inclusion of up to six lags does not lead to homoscedastic results, the time-
invariant model is not able to reflect the dependence structure in the monthly data, indicating
the need for a time-varying covariance matrix.3 Moreover, the Henze-Zirkler (HZ) test implies
the residuals of the GVAR model are not multivariate normal distributed. In particular, the
heteroscedastic residuals lead to too narrow confidence intervals, obtained by the sieve bootstrap
procedure, and therefore, the true values of the GIRFs may deviate.4

Table D.3: Test results for autocorrelation, heteroscedasticity, structural breaks and normality of the monthly GVAR model

DW ARCH-LM OLS-CUSUM HZ
supply demand price

Stat. p Stat. p Stat. p Stat. p Stat. p Stat. p
Al 2.05 0.72 2.18 0.96 2.03 0.67 65.54 0.00 0.37 1.00 1.01 0.00
Cu 2.09 0.82 2.22 0.98 1.98 0.50 47.17 0.10 0.63 0.83 1.01 0.00
Ni 2.07 0.76 2.13 0.89 2.00 0.55 86.82 0.00 0.74 0.64 1.01 0.00
Pb 2.03 0.66 2.18 0.95 1.98 0.49 88.28 0.00 0.77 0.60 1.01 0.00
Sn 2.12 0.88 2.19 0.97 2.04 0.69 56.56 0.02 0.59 0.87 1.01 0.00
Zn 2.05 0.72 2.20 0.97 2.01 0.59 86.25 0.00 0.61 0.85 1.01 0.00

GDP FX FFR
Exog. 1.85 0.10 2.01 0.55 1.98 0.46 189.54 0.00 0.63 0.83 5.51 0.00

This table displays the results of the Durbin-Watson (DW) test for autocorrelation, the
multivariate ARCH Lagrange multiplier (ARCH-LM) test for heteroscedasticity, the OLS-
cumulative sums of standardized residuals (OLS-CUSUM) test for structural breaks, and
the Henze-Zirkler (HZ) test for normality. Hereby, the Durbin-Watson test is applied on
each, individual regression equation of the VAR model, corresponding to the commodity-
specific supply (supply), demand (demand), and price (price) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), whereas the
multivariate ARCH Lagrange multiplier test and the OLS-cumulative sums of standardized
residuals test are applied on the commodity-specific VAR models, and the Henze-Zirkler
test is applied on the residuals of the GVAR model. In particular, we report the test results
for the GVAR model based on the demand weight matrix (D), estimated on monthly data
from 1995 to 2020, as well as the VAR model of the exogenous variables (Exog.) world gross
domestic product (GDP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR).

Table D.4 displays the spillover effects derived from the GVAR model based on monthly data,
whereby we indicate significant positive, or negative, responses of the column variables to a

2Actually, we include an intercept in case of the GVAR model estimated on monthly data for comparability
with the MS-GVAR model.

3A further increase of the lag length is due to data limitations not feasible.
4Since we aim to compare the GIRF analysis of the GVAR model with the results of the MS-GVAR model,

we do not adapt the estimation of the GIRFs for the time-invariant model. However, while the MS-GVAR model
allows for a regime-switching covariance matrix, we keep in mind the GVAR model is misspecified.
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shock in the row variables by a (+) or (-), respectively. In general, the time-invariant GVAR
model only detects few significant spillover effects within and between the commodity markets.
However, similar to the GVAR model on annual data in Section 5.1 as well as the MS-GVAR
model in Section 5.2, various spillover effects between the prices indicate the model reflects the
co-movement between the prices. In particular, the copper price affects the metal prices, but
only reacts to shocks in the price of zinc.

In contrast, the strong interrelations between the commodity markets, especially, between the
aluminum and copper market, are not reflected in the monthly GVAR model. While the in-
terdependencies between the lead and zinc markets are reflected, caused by their co-production
relationship, the supply and demand variables generally do not interact with each other, sug-
gesting that the model does not represent the relationship between supply, demand, and price.
In addition, the GVAR model on annual data as well as the MS-GVAR model detect various
interdependencies within the individual commodity markets, whereas the GVAR model based
on monthly data does not exhibit any significant response in the copper, nickel, lead and zinc
markets to shocks in their own market. Only the supply and demand variables of aluminum and
tin affect each other.

Overall, the GIRF analysis indicates the GVAR model based on the monthly data is not able
to fully reflect the commodity market structure. Moreover, the heteroscedasticity in the com-
modity markets implies the model is misspecified, whereas the MS-GVAR model controls for
time-depending relations and the associated spillover effects reveal the model represents the
interdependencies between the commodity markets.

Table D.4: GIRF results of the GVAR model based on monthly data

Al Cu Ni Pb Sn Zn
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Al
supply + +
demand + +
price +

Cu
supply +
demand +
price + + +

Ni
supply +
demand +
price +

Pb
supply + +
demand +
price + +

Sn
supply + +
demand + +
price + +

Zn
supply + +
demand +
price + + +

This table displays the results of the GIRF analysis of the GVAR model
based on the demand weight matrix (D), estimated on monthly data in the
period from 1995 to 2020. We analyze the response of the column variables
to a shock of the row variables supply (supply), demand (demand) and
price (price) of the commodities aluminum (Al), copper (Cu), nickel (Ni),
lead (Pb), tin (Sn) and zinc (Zn). Significant positive (+) or negative (-)
effects on the 68%- level are displayed.

Similar to the above analyses, we also investigate how global shocks affect the commodity mar-
kets. Hereby, we model the monthly exogenous variables, world industrial production (IP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR), via a VAR model with two lags
to avoid autocorrelated residuals and base the analysis on monthly data in the period from
1995 to 2020. While the results of the Durbin-Watson (DW) test and the OLS-cumulative
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sums of standardized residuals (OLS-CUSUM) test suggest the VAR model does not suffer
from autocorrelation nor structural breaks at the 5% significance level, the residuals suffer from
heteroscedasticity, see Table D.3, indicating the time-invariant model is not able to reflect the
dependence structure in the monthly data, in line with the results of the commodity market
models. Moreover, the Henze-Zirkler (HZ) test implies the residuals of the GVAR model are
not multivariate normal distributed, therefore, the true values of the GIRFs may deviate. How-
ever, we only use the spillover effects from the economy to the commodity markets to compare
the GVAR model with the MS-GVAR model, therefore, we do not adapt the estimation of the
GIRFs for the time-invariant model.

Regarding the impact of global shocks on the commodity markets, the results of the GVAR
model based on monthly data in the period from 1995 to 2020 coincides with those of the
corresponding annual model, but differ to those of the time-varying model, see Table D.5. In
particular, a shock to the global demand, represented by the world industrial production (IP),
or the interest rate, represented by the Federal Funds Effective Rate (FFR), cause significantly
rising commodity markets, while an increase in the exchange rate reduces the prices. Hereby,
the results are contrary to the effects derived from the time-varying MS-GVAR model, since
the impact of the lagged values as well as the indirect effects are probably stronger in the time-
varying setup, whereas the time-invariant model is less sensitive. However, both models detect
a strong impact of the economy to the commodity markets, indicating shocks to the economy
significantly affect the supply, demand as well as price of commodities.

Table D.5: GIRF results of the GVAR model based on monthly data for shocks to the exogenous variables

Al Cu Ni Pb Sn Zn
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IP + + + + + + + + + + + + + + + + +
FX - - - + - - - - - + -
FFR + + + + + + + + + + + + + + + +

This table displays the results of the GIRF analysis of the GVAR
model based on the demand weight matrix (D), estimated on
monthly data in the period from 1995 to 2019. We analyze
the response of the column variables supply (supply), demand
(demand) and price (price) of the commodities aluminum (Al),
copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), to a
shock of the row variables world industrial production (IP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR), where
significant positive (+) or negative (-) effects are displayed, based
on the 68%- level.

In addition to the analysis of the differences between the significance in the GIRFs, we also
compare the magnitude as well as the implied risk of the spillover effects. Hereby, we apply
the two-sided Wilcoxon-test5 on the absolute value of the median generalized impulse response
functions of the GVAR model against the corresponding spillover effects of the MS-GVAR model
under the calm (volatile) regime to examine whether the responses of a shock to a variable
significantly differ between the models, see Table D.6 (Table D.7). In general, besides few shocks,
the spillover effects significantly differ between the GVAR model and the MS-GVAR model
under the calm as well as the volatile regime, indicating the time-invariant analysis provides
significantly different spillover effects than the time-varying model. While the MS-GVAR model
distinguishes between the responses either under the calm or volatile regime, the GVAR model
reflects the overall effects. In contrast, the magnitude of most of the spillover effects from the
exogenous variables to the commodity markets is comparable between the GVAR model and

5Since we can not ensure the GIRFs follow a normal distribution, we apply the non-parametric Wilcoxon
signed rank test (Wilcoxon) test instead of the t-test. However, the results of the t-test are similar.
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the MS-GVAR model under the calm and volatile regime, see Table D.8.6

Table D.6: Results of the Wilcoxon-test for the assessment of differences in the magnitude of spillover effects of the GVAR
model compared to the MS-GVAR model under the calm regime
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A
l

supply 78* 79* 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
demand 91** 78* 91** 86** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
price 66 79* 78* 81* 80* 80* 91** 78* 79* 91** 91** 91** 91** 91** 91** 66 56 79*

C
u

supply 91** 91** 91** 68 78* 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
demand 91** 80* 91** 91** 78* 91** 91** 91** 91** 91** 67 91** 91** 91** 91** 91** 81* 91**
price 83** 80* 91** 78* 80* 78* 91** 80* 79* 91** 91** 91** 72. 91** 79* 91** 78* 91**

N
i

supply 91** 91** 83** 91** 91** 91** 68 78* 79* 91** 91** 91** 91** 91** 91** 81* 91** 91**
demand 91** 66 91** 91** 91** 91** 78* 67 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
price 70. 80* 76* 91** 91** 91** 78* 72. 67 91** 91** 91** 91** 91** 91** 66 78* 81*

P
b

supply 91** 91** 91** 80* 91** 91** 91** 91** 91** 78* 91** 91** 91** 81* 79* 91** 91** 91**
demand 91** 68 91** 78* 79* 91** 91** 91** 91** 91** 78* 91** 91** 91** 91** 91** 91** 91**
price 91** 82* 82* 66 66 80* 91** 91** 83** 78* 91** 78* 78* 91** 79* 91** 91** 91**

Sn

supply 91** 91** 91** 79* 91** 91** 91** 91** 91** 91** 91** 91** 78* 79* 91** 91** 91** 91**
demand 91** 91** 91** 79* 83** 91** 91** 91** 91** 91** 66 91** 81* 68 79* 91** 91** 91**
price 91** 91** 91** 79* 66 80* 91** 91** 91** 91** 91** 91** 78* 82* 78* 91** 91** 91**

Zn

supply 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 67 79* 80*
demand 80* 78* 80* 79* 91** 91** 91** 91** 79* 91** 91** 91** 91** 91** 91** 91** 56 91**
price 67 68 68 91** 91** 91** 84** 78* 91** 91** 91** 91** 91** 91** 91** 78* 80* 67

This table displays the statistics with corresponding significance level (0.1% (***), 1% (**), 5% (*) and 10% (.)) of the
two-sided Wilcoxon test to assess whether the magnitude of the spillover effects differs in absolute terms between the GVAR
model and the MS-GVAR model under the calm regime. Hereby, we investigate the differences in the spillover effects of
the column variables to shocks in the row variables (supply), demand (demand) and price (price) of aluminum (Al),
copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Table D.7: Results of the Wilcoxon-test for the assessment of differences in the magnitude of spillover effects of the GVAR
model compared to the MS-GVAR model under the volatile regime

Al Cu Ni Pb Sn Zn
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supply 78* 79* 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 81* 91** 91**
demand 91** 78* 91** 82* 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
price 66 79* 78* 82* 81* 80* 91** 78* 79* 91** 91** 91** 91** 91** 91** 66 57 79*

C
u

supply 91** 91** 91** 68 78* 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
demand 91** 80* 91** 91** 78* 91** 91** 91** 91** 91** 67 91** 91** 91** 91** 91** 81* 91**
price 73. 79* 81* 78* 79* 70. 91** 79* 79* 91** 91** 91** 69 91** 78* 91** 78* 91**

N
i

supply 91** 91** 83** 91** 91** 91** 67 78* 79* 91** 91** 91** 91** 91** 91** 80* 91** 91**
demand 91** 66 91** 91** 91** 91** 78* 66 91** 91** 91** 91** 91** 91** 91** 91** 91** 91**
price 70. 79* 72. 91** 91** 91** 78* 71. 67 91** 91** 91** 91** 91** 91** 66 78* 81*

P
b

supply 91** 91** 91** 81* 91** 91** 91** 91** 91** 78* 91** 91** 91** 91** 91** 91** 91** 91**
demand 91** 74* 91** 78* 82* 91** 91** 91** 91** 91** 78* 91** 91** 91** 91** 91** 91** 91**
price 91** 91** 83** 66 66 80* 91** 91** 85** 79* 91** 78* 79* 91** 80* 91** 91** 91**

Sn

supply 91** 91** 91** 79* 91** 91** 91** 91** 91** 91** 91** 91** 78* 79* 91** 91** 91** 91**
demand 91** 91** 91** 80* 82* 91** 91** 91** 91** 91** 67 91** 82* 68 79* 91** 91** 91**
price 91** 91** 91** 80* 66 80* 91** 91** 91** 91** 91** 91** 78* 82* 78* 91** 91** 91**
supply 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 91** 57 79* 79*

6Since we apply the Wilcoxon-test on the absolute values of the GIRFs, we only test for differences in the
magnitude of the spillover effects and not for the direction, which deviates between the models.
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Results of the Wilcoxon-test for the assessment of differences in the magnitude of spillover effects of the GVAR model
compared to the MS-GVAR model under the volatile regime

Al Cu Ni Pb Sn Zn
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Zn

demand 80* 67 80* 79* 91** 91** 91** 91** 69 91** 87** 91** 91** 91** 91** 91** 56 91**
price 67 67 66 91** 91** 91** 81* 78* 83** 91** 91** 91** 91** 91** 91** 78* 80* 67

This table displays the statistics with corresponding significance level (0.1% (***), 1% (**), 5% (*) and 10% (.)) of the
two-sided Wilcoxon test to assess whether the magnitude of the spillover effects differs in absolute terms between the GVAR
model and the MS-GVAR model under the volatile regime. Hereby, we investigate the differences in the spillover effects
of the column variables to shocks in the row variables (supply), demand (demand) and price (price) of aluminum (Al),
copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Table D.8: Results of the Wilcoxon-test for the assessment of differences in the magnitude of spillover effects from the
exogenous variables to the commodity markets of the GVAR model compared to the MS-GVAR model
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IP 38 33 20. 36 45 21. 26 39 21. 23 31 22 13* 43 11* 24 26 9*
FX 82* 91** 59 55 80* 60 54 56 80* 61 84** 72. 35 50 61 46 40 37
FFR 62 78* 41 59 80* 59 39 60 21. 80* 81* 48 34 54 44 56 50 10*

vo
la

ti
le IP 32 32 19. 26 34 21. 15* 29 20. 13* 23 20. 13* 39 0** 22 20. 8**

FX 81* 91** 57 55 80* 54 52 55 77* 53 84** 71. 33 49 60 29 37 32
FFR 26 70. 24 56 67 26 20. 45 19. 59 78* 29 24 43 23 42 32 10*

This table displays the statistics with corresponding significance level (0.1% (***), 1% (**), 5% (*) and 10% (.)) of
the two-sided Wilcoxon test to assess whether the magnitude of the spillover effects from the exogenous variables world
industrial production (IP), U.S. dollar index (FX) and Federal Funds Effective Rate (FFR) to the commodity markets
differs in absolute terms between the GVAR model and the MS-GVAR model under the calm and volatile regime. Hereby,
we investigate the differences in the spillover effects of the column variables to shocks in the row variables (supply), demand
(demand) and price (price) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

The additional analysis of the conditional value at risk7 underlines the magnitude of the spillover
effects differs between the time-invariant and time-varying analysis. Hereby, Figure D.4, Figure
D.7, Figure D.5, Figure D.8, Figure D.6, Figure D.9, Figure D.10, D.11 display the differences
in the conditional value at risk for increases in the commodity-specific supply, demand and price
variables in response to shocks in the endogenous (exogenous) variables between the GVAR
model and the MS-GVAR model under the calm (volatile) regime. Overall, the GVAR model
overestimates the spillover risk, as the time-invariant analysis observes a stronger increase in
the commodity markets in response to shocks compared to the time-varying MS-GVAR model
under the calm as well as volatile regime.

7As all original variables were non-stationary, we base the entire analysis on the logarithmic return data and
hence, also the calculation of the conditional value at risk is based on logarithmic returns.
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Figure D.4: Differences in the conditional value at risk of the spillover effects on the supply variables between
the GVAR model vs. the MS-GVAR model under the calm regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity supply of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the calm
regime.
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Figure D.5: Differences in the conditional value at risk of the spillover effects on the demand variables between
the GVAR model vs. the MS-GVAR model under the calm regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures the differences in the conditional value at risk (CoVaR) of the spillover effects from the individual
supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper (Cu), nickel
(Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity demand of aluminum (Al), copper (Cu), Nickel (Ni),
lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the calm regime.
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Figure D.6: Differences in the conditional value at risk of the spillover effects on the price variables between the
GVAR model vs. the MS-GVAR model under the calm regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity prices of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the calm
regime.
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Figure D.7: Differences in the conditional value at risk of the spillover effects on the supply variables between
the GVAR model vs. the MS-GVAR model under the volatile regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity supply of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the volatile
regime.
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Figure D.8: Differences in the conditional value at risk of the spillover effects on the demand variables between
the GVAR model vs. the MS-GVAR model under the volatile regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity demand of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the volatile
regime.
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Figure D.9: Differences in the conditional value at risk of the spillover effects on the price variables between the
GVAR model vs. the MS-GVAR model under the volatile regime

(a) Al supply (b) Al demand (c) Al price (d) Cu supply (e) Cu demand (f) Cu price

(g) Ni supply (h) Ni demand (i) Ni price (j) Pb supply (k) Pb demand (l) Pb price

(m) Sn supply (n) Sn demand (o) Sn price (p) Zn supply (q) Zn demand (r) Zn price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
individual supply (supply), demand (demand) and price (price) of the commodities aluminum (Al), copper
(Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) to the commodity prices of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the volatile
regime.
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Figure D.10: Differences in the conditional value at risk of the spillover effects from the exogenous variables to
the commodity markets of the GVAR model vs. the MS-GVAR model under the calm regime

(a) IP (b) FX (c) FFR

supply

(d) IP (e) FX (f) FFR

demand

(g) IP (h) FX (i) FFR

price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
exogenous variables world industrial production (IP), U.S. dollar index (FX) and Federal Funds Effective Rate
(FFR) to the commodity supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the calm
regime.
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Figure D.11: Differences in the conditional value at risk of the spillover effects from the exogenous variables to
the commodity markets of the GVAR model vs. the MS-GVAR model under the volatile regime

(a) IP (b) FX (c) FFR

supply

(d) IP (e) FX (f) FFR

demand

(g) IP (h) FX (i) FFR

price

These figures indicate the differences in the conditional value at risk (CoVaR) of the spillover effects from the
exogenous variables world industrial production (IP), U.S. dollar index (FX) and Federal Funds Effective Rate
(FFR) to the commodity supply (supply), demand (demand) and price (price) of aluminum (Al), copper (Cu),
Nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn) of the GVAR model vs. the MS-GVAR model under the volatile
regime.
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D.2.4 Out-of-sample Forecast Performance of the (time-varying) Commodity
Market Models8

Figure D.12: Observed and predicted supply in the out-of-sample period

(a) Al supply (b) Cu supply (c) Ni supply

(d) Pb supply (e) Sn supply (f) Zn supply

These figures compare the observed supply (supply) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn) in the out-of-sample period from January 2014 to December 2020, indicated by the black
line, with the estimated supply of the GVAR model and the MS-GVAR model.

8As all original variables were non-stationary, we base the entire analysis on the logarithmic return data and
hence, also the forecasts are forecasts of logarithmic returns.
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Figure D.13: Observed and predicted demand in the out-of-sample period

(a) Al demand (b) Cu demand (c) Ni demand

(d) Pb demand (e) Sn demand (f) Zn demand

These figures compare the observed demand (demand) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb),
tin (Sn), and zinc (Zn) in the out-of-sample period from January 2014 to December 2020, indicated by the black
line, with the estimated demand of the GVAR model and the MS-GVAR model.
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D.3 Scarcity Risk of the German Energiewende

D.3.1 Results of the Global Commodity Market Models

The objective of this study is to assess and compare the scarcity risk of the annual material
requirements of four potential transformation pathways of the German energy system. Hereby,
we apply the proposed framework in Section 3, which assesses the scarcity risk of resource-
demanding projects, taking into account the substitutability of commodities, the future required
resource amounts of the project as well as the historical information available, in the context of
the German Energiewende. In particular, we model the commodity markets via the (MS-)GVAR
model. Thereby, the interrelations between the commodities reflect their prospective relations
induced by the German Energiewende, using the weight matrices in Table 4.27, Table 4.28,
Table 4.29 and Table 4.30 (Table 4.31, Table 4.32, Table 4.33 and Table 4.34), represent-
ing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − PER, and REMod − UNA paths, respectively. In the following, we provide more
information on the time-invariant GVAR as well as the time-varying MS-GVAR models, used
for the risk assessment in Section 5.3.

D.3.1.1 Time-invariant Commodity Market Models

In general, we estimate the GVAR models based on the weight matrices induced by the German
Energiewende with one lag for the endogenous variables (commodity-specific supply, demand,
and price) as well as exogenous variables (world gross domestic product (GDP), U.S. dollar index
(FX), and Federal Funds Effective Rate (FFR)) and without intercept, due to data limitations.
Hereby, we include the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn).9 For
a comparison of the results derived under the GVAR and MS-GVAR model, we also apply
the model only on the industrial metal markets. Moreover, for a better understanding of the
relations within the individual commodity markets, we also examine commodity-specific VAR
models.

Overall, despite the lithium supply, all variables in the individual as well as the global VAR
models do not exhibit any autocorrelation at the 5% significance level, according to the Durbin-
Watson (DW) test. Moreover, neither model suffers from heteroscedasticity nor structural
breaks, except for the indium market, indicating the time-invariant model is not able to fully dis-
play the time-varying relationship between indium’s variables, demanding for a time-dependent
model. In addition, the Henze-Zirkler (HZ) test implies the residuals of the GVAR model, based
on the different weight matrices, are multivariate normal distributed, see Table D.9. The in-
dividual VAR models of cobalt, indium, lithium, platinum, and zinc have non-normal errors,
which is why the true generalized impulse response functions may deviate from the presented
ones. Further, due to the autocorrelation (heteroscedasticity) in the lithium (indium) market,
the confidence bounds of the GIRFs may deviate, since the sieve bootstrap procedure assumes
independent and identically distributed residuals. However, the GIRF analysis of the GVAR
models based on the weight matrices induced by the German Energiewende is only reported to
provide better insights into the market structure for the risk assessment, therefore, we do not
adjust the specifications.

9Due to data limitations, the rare earth metals dysprosium (Dy) and neodymium (Nd) are not included in the
GVAR models.
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Table D.9: Test results for autocorrelation, heteroscedasticity, structural breaks and normality for the individual VAR
models and the GVAR models based on the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA path

DW ARCH-LM OLS-CUSUM HZ
supply demand price

Stat. p Stat. p Stat. p Stat. p Stat. p Stat. p
in

di
v.

VA
R

Ag 1.88 0.30 1.95 0.38 1.93 0.36 35.29 0.50 0.56 0.92 0.72 0.30
Al 1.81 0.23 1.82 0.24 2.04 0.50 54.85 0.02 1.01 0.26 0.76 0.22
Co 2.03 0.50 1.89 0.31 2.10 0.59 38.79 0.35 0.65 0.80 0.96 0.03
Cu 2.12 0.62 1.83 0.25 2.20 0.72 19.69 0.99 0.69 0.74 0.55 0.75
In 2.11 0.64 2.22 0.77 2.11 0.65 58.92 0.01 0.80 0.55 1.00 0.02
Li 0.97 0.00 2.19 0.71 1.58 0.07 53.76 0.03 0.74 0.65 0.93 0.04
Ni 1.93 0.36 1.99 0.43 2.19 0.68 23.65 0.94 0.83 0.50 0.81 0.15
Pb 2.09 0.61 1.73 0.17 1.97 0.45 26.18 0.89 0.97 0.31 0.60 0.63
Pt 1.75 0.20 1.88 0.34 1.94 0.42 43.18 0.19 0.78 0.58 0.99 0.02
Sn 2.00 0.48 2.02 0.51 2.06 0.57 36.96 0.42 0.77 0.59 0.90 0.06
Zn 2.10 0.58 1.55 0.05 1.99 0.44 24.08 0.94 0.56 0.92 0.96 0.03

R
E

M
o
d

−
R

E
F

Ag 2.03 0.47 2.10 0.55 1.95 0.36 31.73 0.67 0.57 0.90 1.00 0.35
Al 1.67 0.11 2.09 0.55 2.17 0.66 25.60 0.90 0.66 0.78 1.00 0.35
Co 2.28 0.80 2.15 0.66 2.15 0.66 22.88 0.96 0.60 0.87 1.00 0.35
Cu 2.17 0.67 1.68 0.12 1.93 0.36 34.94 0.52 0.58 0.89 1.00 0.35
In 2.09 0.58 2.27 0.80 2.07 0.56 50.96 0.05 0.79 0.56 1.00 0.35
Li 1.12 0.00 1.86 0.29 1.72 0.16 33.29 0.60 0.76 0.62 1.00 0.35
Ni 1.91 0.32 1.99 0.41 2.20 0.68 35.65 0.48 0.45 0.99 1.00 0.35
Pb 2.09 0.61 1.71 0.18 2.24 0.78 48.27 0.08 0.53 0.94 1.00 0.35
Pt 1.81 0.23 1.69 0.13 1.90 0.34 33.68 0.58 0.69 0.74 1.00 0.35
Sn 1.82 0.25 2.11 0.60 1.95 0.40 28.30 0.82 0.89 0.40 1.00 0.35
Zn 2.12 0.58 1.91 0.31 1.95 0.36 26.54 0.88 0.84 0.48 1.00 0.35

R
E

M
o
d

−
S

U
F

Ag 2.05 0.50 2.07 0.52 1.90 0.32 29.47 0.77 0.64 0.80 1.00 0.30
Al 1.63 0.09 2.08 0.53 2.17 0.65 26.44 0.88 0.61 0.85 1.00 0.30
Co 2.28 0.78 2.16 0.66 2.14 0.64 25.33 0.91 0.66 0.78 1.00 0.30
Cu 2.19 0.68 1.67 0.11 1.91 0.33 35.84 0.48 0.58 0.89 1.00 0.30
In 2.09 0.59 2.24 0.75 2.06 0.54 53.72 0.03 0.79 0.56 1.00 0.30
Li 1.14 0.00 1.84 0.26 1.77 0.19 34.84 0.52 0.76 0.61 1.00 0.30
Ni 1.91 0.30 1.95 0.35 2.19 0.66 35.87 0.47 0.44 0.99 1.00 0.30
Pb 2.02 0.52 1.67 0.14 2.18 0.72 49.09 0.07 0.55 0.92 1.00 0.30
Pt 1.78 0.21 1.65 0.11 1.94 0.38 32.66 0.63 0.69 0.72 1.00 0.30
Sn 1.82 0.25 2.13 0.63 1.98 0.44 30.02 0.75 0.82 0.51 1.00 0.30
Zn 2.10 0.57 1.87 0.29 1.94 0.36 26.98 0.86 0.88 0.42 1.00 0.30

R
E

M
o
d

−
P

E
R

Ag 2.02 0.46 2.09 0.53 1.89 0.29 35.29 0.50 0.65 0.80 1.00 0.30
Al 1.69 0.12 2.07 0.53 2.17 0.66 27.23 0.85 0.68 0.75 1.00 0.30
Co 2.23 0.75 2.14 0.65 2.15 0.65 22.20 0.97 0.57 0.90 1.00 0.30
Cu 2.18 0.67 1.71 0.14 1.92 0.35 34.80 0.53 0.57 0.90 1.00 0.30
In 2.10 0.59 2.22 0.74 2.06 0.54 53.13 0.03 0.81 0.52 1.00 0.30
Li 1.11 0.00 1.87 0.31 1.72 0.16 31.21 0.70 0.74 0.64 1.00 0.30
Ni 1.92 0.33 1.98 0.40 2.18 0.65 35.23 0.51 0.45 0.99 1.00 0.30
Pb 2.07 0.58 1.70 0.16 2.27 0.80 49.39 0.07 0.54 0.93 1.00 0.30
Pt 1.81 0.23 1.70 0.13 1.91 0.34 33.90 0.57 0.68 0.75 1.00 0.30
Sn 1.79 0.21 2.12 0.60 1.96 0.41 26.64 0.87 0.87 0.43 1.00 0.30
Zn 2.11 0.58 1.87 0.29 1.90 0.31 29.44 0.77 0.84 0.48 1.00 0.30

R
E

M
o
d

−
U

N
A

Ag 2.08 0.53 2.09 0.53 1.92 0.33 30.58 0.72 0.61 0.85 1.00 0.35
Al 1.66 0.10 2.07 0.51 2.17 0.64 27.27 0.85 0.65 0.79 1.00 0.35
Co 2.25 0.77 2.16 0.66 2.14 0.64 23.68 0.94 0.61 0.85 1.00 0.35
Cu 2.19 0.68 1.67 0.11 1.91 0.33 35.76 0.48 0.57 0.90 1.00 0.35
In 2.10 0.60 2.23 0.75 2.07 0.56 53.00 0.03 0.77 0.60 1.00 0.35
Li 1.13 0.00 1.85 0.27 1.75 0.18 33.30 0.60 0.75 0.62 1.00 0.35
Ni 1.92 0.32 1.97 0.38 2.19 0.66 36.59 0.44 0.44 0.99 1.00 0.35
Pb 2.11 0.63 1.72 0.18 2.27 0.81 48.34 0.08 0.52 0.95 1.00 0.35
Pt 1.81 0.24 1.71 0.15 1.90 0.34 34.73 0.53 0.71 0.69 1.00 0.35
Sn 1.78 0.21 2.13 0.62 1.94 0.38 29.34 0.78 0.87 0.44 1.00 0.35
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Test results for autocorrelation, heteroscedasticity, structural breaks and normality for the individual VAR models and the
GVAR models based on the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA path

DW ARCH-LM OLS-CUSUM HZ
Stat. p Stat. p Stat. p Stat. p Stat. p Stat. p

supply demand price
Zn 2.11 0.56 1.88 0.28 1.97 0.39 25.00 0.92 0.82 0.51 1.00 0.35

R
E

M
o
d

−
R

E
F Al 1.90 0.31 2.14 0.61 2.08 0.54 35.39 0.50 0.68 0.74 1.00 0.28

Cu 2.07 0.52 1.80 0.20 2.00 0.43 39.74 0.31 0.59 0.88 1.00 0.28
Ni 1.86 0.26 1.96 0.37 2.27 0.76 37.53 0.40 0.50 0.96 1.00 0.28
Pb 1.93 0.40 1.89 0.35 2.17 0.70 38.34 0.36 0.77 0.60 1.00 0.28
Sn 1.69 0.12 2.16 0.64 1.95 0.38 24.81 0.92 0.58 0.89 1.00 0.28
Zn 2.16 0.62 1.93 0.33 1.80 0.20 21.39 0.97 0.93 0.35 1.00 0.28

R
E

M
o
d

−
S

U
F Al 1.83 0.24 2.16 0.63 2.08 0.53 29.46 0.77 0.73 0.67 1.00 0.28

Cu 2.09 0.55 1.79 0.20 2.00 0.43 37.14 0.42 0.58 0.89 1.00 0.28
Ni 1.86 0.26 1.93 0.34 2.27 0.76 33.91 0.57 0.52 0.95 1.00 0.28
Pb 1.91 0.36 1.86 0.30 2.16 0.68 33.86 0.57 0.76 0.62 1.00 0.28
Sn 1.70 0.13 2.12 0.59 1.95 0.38 24.18 0.93 0.58 0.89 1.00 0.28
Zn 2.16 0.62 1.92 0.32 1.80 0.19 20.89 0.98 0.94 0.34 1.00 0.28

R
E

M
o
d

−
P

E
R Al 1.92 0.33 2.13 0.60 2.08 0.54 36.67 0.44 0.68 0.74 1.00 0.30

Cu 2.07 0.53 1.80 0.20 2.01 0.44 40.76 0.27 0.58 0.88 1.00 0.30
Ni 1.87 0.27 1.95 0.36 2.26 0.75 36.23 0.46 0.52 0.95 1.00 0.30
Pb 1.93 0.39 1.89 0.35 2.16 0.68 37.57 0.40 0.77 0.60 1.00 0.30
Sn 1.68 0.12 2.15 0.63 1.95 0.38 24.82 0.92 0.58 0.89 1.00 0.30
Zn 2.16 0.62 1.91 0.30 1.80 0.19 23.09 0.95 0.92 0.37 1.00 0.30

R
E

M
o
d

−
U

N
A Al 1.87 0.28 2.13 0.60 2.06 0.50 26.33 0.88 0.74 0.64 1.00 0.21

Cu 2.10 0.56 1.81 0.21 1.99 0.42 32.97 0.61 0.57 0.90 1.00 0.21
Ni 1.86 0.26 1.94 0.35 2.26 0.74 37.88 0.38 0.54 0.94 1.00 0.21
Pb 1.94 0.41 1.91 0.37 2.18 0.70 39.02 0.34 0.77 0.59 1.00 0.21
Sn 1.64 0.09 2.20 0.69 1.94 0.37 25.25 0.91 0.58 0.89 1.00 0.21
Zn 2.14 0.61 1.91 0.32 1.82 0.22 19.44 0.99 0.90 0.40 1.00 0.21

GDP FX FFR
exogenous VAR 1.56 0.07 1.88 0.35 1.96 0.46 18.54 0.99 0.57 0.90 0.83 0.13

This table displays the results of the Durbin-Watson (DW) test for autocorrelation, the multivariate
ARCH Lagrange multiplier (ARCH-LM) test for heteroscedasticity, the OLS-cumulative sums of
standardized residuals (OLS-CUSUM) test for structural breaks, and the Henze-Zirkler (HZ) test for
normality. Hereby, the Durbin-Watson test is applied on each, individual regression equation of the
VAR model, corresponding to the commodity-specific supply, demand, and price of the commodities
silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb),
platinum (Pt), tin (Sn), and zinc (Zn), whereas the multivariate ARCH Lagrange multiplier test
and the OLS-cumulative sums of standardized residuals test are applied on the commodity-specific
VAR models, and the Henze-Zirkler test is applied on the residuals of the (G)VAR model. In
particular, we report the test results for the individual VAR models, the GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF ,
REMod − SUF , REMod − P ER, and REMod − UNA transformation path, as well as the VAR
model of the exogenous variables world gross domestic product (GDP), U.S. dollar index (FX), and
Federal Funds Effective Rate (FFR), which are estimated on the sample period from 1970 to 2019.

In the following, we briefly consider the spillover effects within the individual markets. There-
after, we examine the interdependencies between the commodity markets, by aggregating the
individual models to the GVAR model.

D.3.1.1.1 Individual Commodity Market Models In line with the time-invariant anal-
ysis in Section 5.1, we first focus on the individual commodity market models. Therefore, we
estimate generalized impulse response function (GIRF) on the individual VAR models to exam-
ine the spillover effects within the markets.10 We summarize the GIRF results, based on the
68% confidence bounds, of each individual commodity market in Table D.10, where we indicate

10The VAR models of the industrial metals have already been presented in Section 5.1.1, but are included in
this section again for the sake of completeness.
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significant positive, or negative, responses of the column variables to a shock in the row variables
by a (+) or (-) respectively.

Overall, there are no spillover effects between supply, demand and price in the copper, indium,
lithium, platinum, and zinc markets, whereas demand (supply) and price affect each other in the
aluminum, cobalt, and nickel (silver, nickel, and tin) markets. Moreover, supply and demand
interact to each other for lead and tin. While we expect rising (decreasing) prices in response to
a positive shock in the demand (supply), we suppose an increase in the prices cause decreasing
(increasing) demand (supply). However, the results indicate a concurrent behavior, probably
caused by unobservable indirect effects, included in the GIRF analysis.

Table D.10: GIRF results of the individual, commodity-specific VAR models for all considered metals

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
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supply + - + + + + + + + + + + + - + +
demand + + - + - + + + + - + + + - + +
price - + - + - + + + + + - + + + + + +

This table displays the results of the GIRF analysis of the individual, commodity-specific VAR models,
estimated on annual data from 1970 to 2019, showing the response of the column variables to a shock
of the row variables supply (supply), demand (demand) and price (price) of the commodities
silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead
(Pb), platinum (Pt), tin (Sn), and zinc (Zn), where significant positive (+) or negative (-) effects are
displayed, based on the 68%- level.

To account for the impact of the economy on commodity prices, we analyze the impact of shocks
to the exogenous variables on the individual markets. Hereby, we investigate the spillover effects
from the economic activity, the exchange rate or the interest rate to the commodity-specific
variables. Therefore, we apply the GIRF analysis on the VAR model of the exogenous variables,
world gross domestic product (GDP), U.S. dollar index (FX), and Federal Funds Effective
Rate (FFR), using Equation 3.17, Equation 3.19, and Equation 3.20.

Table D.11: GIRF results of the individual VAR models for all considered metals for shocks to the exogenous variables

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
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GDP + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + +
FX - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - -
FFR + + + + - + + + + + + + + + + + + + + + + + + +

This table displays the results of the GIRF analysis of the individual, commodity-specific VAR models,
estimated on annual data from 1970 to 2019, showing the response of the column variables supply
(supply), demand (demand) and price (price) of the commodities silver (Ag), aluminum (Al),
cobalt (Co), copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn),
and zinc (Zn), to a shock of the row variables world gross domestic product (GDP), U.S. dollar
index (FX), and the Federal Funds Effective Rate (FFR), where significant positive (+) or negative
(-) effects are displayed, based on the 68%- level.

The results in Table D.11 indicate the commodity markets are affected by shocks in the economy
to a similar extent, in line with the results in Section 5.1. While an increase in the economic
activity (a contrarian monetary policy), represented by a positive shock in the world gross do-
mestic product (Federal Funds Effective Rate), cause rising commodity markets, an appreciation
of the dollar, represented by a positive shock in the U.S. dollar index, leads to a reduction in the
commodity markets. The only exception is copper supply which negatively (positively) reacts to
the shock in the world gross domestic product (U.S. dollar index), probably caused by copper’s
role as leading indicator of the global economic situation.
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D.3.1.1.2 Global Commodity Market Models The aggregation of the individual VAR
models to global VAR models enables for interdependencies between the commodities. Hereby,
we reflect the relation between the metals via weight matrices, representing the resource re-
quirements of the German Energiewende, see Section 4.4.4, and apply the models in the risk
assessment framework to examine the scarcity risk of the transformation paths. For a bet-
ter understanding of the underlying GVAR models, we analyze the dynamic properties of the
corresponding GVAR models via generalized impulse response functions (GIRFs), according to
Equation 3.13, whereby direct as well as indirect effects on the attributes to an innovation of
one standard deviation in a certain variable are investigated, see Table D.12 and Table D.13 for
the models on the key elements and for the industrial metals, respectively. Our analysis is based
on the 68% confidence bounds obtained by a sieve bootstrap procedure with 1000 replications
and the recent observations as input variables, as proposed in Dées et al. (2007), in line with
the GVAR models presented in Section 5.1.

Overall, the spillover effects are comparable across the GVAR model based on the different
weight matrices, representing the resource requirements of the German Energiewende, as the
scaled relations derived from the material requirements of the four transformation pathways are
similar, see Table D.12. Since the REMod − REF path represents the baseline scenario, we
focus on the results of the GVAR model based on the weight matrix REMod − REF in the
following.

Table D.12: GIRF results of the GVAR models for the key elements of the German Energiewende

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
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Ag

su
pp

ly

REMod − REF + - +
REMod − SUF + - +
REMod − P ER + - + -
REMod − UNA + - +

de
m

an
d REMod − REF + -

REMod − SUF + + -
REMod − P ER + -
REMod − UNA + + -

pr
ic

e

REMod − REF - + - - - + + - +
REMod − SUF - + + - - - + + - +
REMod − P ER - + - - - + + -
REMod − UNA - + + - - + + - +

Al

su
pp

ly

REMod − REF + + + +
REMod − SUF + + + - + +
REMod − P ER + + +
REMod − UNA + + +

de
m

an
d REMod − REF - + + - + +

REMod − SUF - + + - + + +
REMod − P ER - + + - + +
REMod − UNA - + + - + + +

pr
ic

e

REMod − REF + + - - +
REMod − SUF + + - - + +
REMod − P ER + + - - +
REMod − UNA + + - - +

Co

su
pp

ly

REMod − REF + - + + +
REMod − SUF + - + + +
REMod − P ER + - + + +
REMod − UNA + - + + +

de
m

an
d REMod − REF + + + - - + - +

REMod − SUF + + + - - + - +
REMod − P ER + + + + - - + - +
REMod − UNA + + + - - + - +

pr
ic

e REMod − REF + + - + +
REMod − SUF + + + +
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GIRF results of the GVAR models for the key elements of the German Energiewende

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
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REMod − P ER + + - + +
REMod − UNA + + + +

Cu
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REMod − REF + - - + -
REMod − SUF + - - + - +
REMod − P ER + - - + -
REMod − UNA + - - +
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d REMod − REF + + + - - -

REMod − SUF + + + - - + -
REMod − P ER + + + - - -
REMod − UNA + + + - - -
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REMod − REF - + + - +
REMod − SUF - - + + + - - +
REMod − P ER + - - + + - +
REMod − UNA - - + + + - - +

In
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REMod − REF + + - +
REMod − SUF + + - +
REMod − P ER + + - +
REMod − UNA + + - +
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REMod − SUF + + + -
REMod − P ER + + + -
REMod − UNA + + + -
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REMod − REF - + -
REMod − SUF - + -
REMod − P ER - + -
REMod − UNA - + -

Li
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REMod − REF + - + + + +
REMod − SUF + - - + + + +
REMod − P ER + - + + + +
REMod − UNA + - - + + + +
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d REMod − REF + - - + + + +

REMod − SUF + - - + + + +
REMod − P ER + - - + + + +
REMod − UNA + - - + + + +
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REMod − REF + + - + + +
REMod − SUF + + - + + + +
REMod − P ER + - + + + +
REMod − UNA + + - + + +

Ni
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ly

REMod − REF + - + -
REMod − SUF - + + - + -
REMod − P ER + + - + -
REMod − UNA - + + - + -
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d REMod − REF + + +

REMod − SUF + + + -
REMod − P ER + + +
REMod − UNA + + +

pr
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e

REMod − REF + + + + + +
REMod − SUF + + + - + + +
REMod − P ER + + + - + + +
REMod − UNA + + + - + + +

Pb

su
pp

ly

REMod − REF - + + + - +
REMod − SUF - + + - +
REMod − P ER + + - +
REMod − UNA - + + - +

de
m

an
d REMod − REF + + - + + + + + +

REMod − SUF + + - + + + + + +
REMod − P ER + - + + + - + + +
REMod − UNA + + - + + + + + +
REMod − REF + - +
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GIRF results of the GVAR models for the key elements of the German Energiewende

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
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e REMod − SUF - +
REMod − P ER - +
REMod − UNA +

Pt
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pp

ly

REMod − REF + + + + - + -
REMod − SUF + + + + - + -
REMod − P ER + + + - + -
REMod − UNA + + + - + -

de
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an
d REMod − REF + - + +

REMod − SUF + - + +
REMod − P ER + + +
REMod − UNA + - + + -

pr
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e

REMod − REF + + - +
REMod − SUF + + - +
REMod − P ER + + - +
REMod − UNA + + - - +

Sn
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pp

ly

REMod − REF + - - + +
REMod − SUF + - - - + +
REMod − P ER + - - + +
REMod − UNA + - - + +
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d REMod − REF + + - - - + -

REMod − SUF + + - - + - + -
REMod − P ER + + - - + - + -
REMod − UNA + + - - - + -
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e

REMod − REF + - - - - +
REMod − SUF + + - - - - + -
REMod − P ER + + - - - - + -
REMod − UNA + + - - - - + -

Zn
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ly

REMod − REF + +
REMod − SUF + +
REMod − P ER + +
REMod − UNA + +

de
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an
d REMod − REF + + - + +

REMod − SUF + + - + +
REMod − P ER + - + +
REMod − UNA + + - + +
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ic

e

REMod − REF + - + +
REMod − SUF + - + + +
REMod − P ER + - + + +
REMod − UNA + - + + +

This table displays the results of the GIRF analysis of the GVAR model based on the weight matrices representing the de-
pendencies between the commodities within the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA
transformation paths and estimated on annual data from 1970 to 2019. We analyze the response of the column variables to a
shock of the row variables supply (supply), demand (demand) and price (price) of silver (Ag), aluminum (Al), cobalt (Co),
copper (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn). Significant positive
(+) or negative (-) effects on the 68%- level are displayed.

In analogy to Section 5.1.2, we start with a comparison of the results of the individual VAR
models, displayed in Table D.10, to the commodity-specific results of the GVAR models, before
we analyze the spillover effects in the cross-commodity dimension in detail. Similar to the GVAR
model based on the demand weight matrix, representing the co-consumption of the commodities,
the spillover effects in the individual commodity markets change if the individual VAR models
are aggregated to the global VAR models, as they account for the interdependencies between
the commodities. While the spillover effects in the silver, and lead market coincide to the results
of the individual VAR model (and the GVAR model based on the demand weight matrix) and
neither model observes interactions in the platinum’s and zinc’s markets, the significant impacts
in the aluminum and nickel (cobalt) markets (partly) vanish once the interdependence between
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the commodities based on the German Energiewende is included. In contrast, the global models
detect the demand and price interact to each other in the copper, indium, and lithium markets.
Further, tin’s interrelation between supply and price vanish, once the models are aggregated.
However, the GVAR model including all eleven commodities indicates instead spillover effects
between tin’s demand and price.

Besides these responses in the individual markets, various spillover effects in the cross-commodity
dimension underline the connectedness of the markets. In particular, the GIRF analysis reveals
the strongest spillover effects between supply and supply, demand and demand, as well as price
and price, similar to the GVAR models in Section 5.1. Hereby, the fundamentals of aluminum
and copper, lead and zinc, as well as silver, cobalt, lithium, lead and platinum highly affect
each other. While aluminum and copper are co-consumed in several applications of electrical
conduction, automotive and aerospace industries, and lead and zinc are co-mined together from
mixed Lead-Zinc ores, the interdependencies between silver, cobalt, lithium, lead and platinum
probably originates from their common application in batteries, see Section 4.1. Moreover,
shocks to the demand variables lead to significant changes in the supply of the commodities, for
example the supply of lead responds to changes in the aluminum and tin demand. However, the
supply barely affect the demand of other commodities, indicating the influence of the demand
on commodity markets.

Table D.13: GIRF results of the GVAR models for the industrial metals in the context of the German Energiewende

Al Cu Ni Pb Sn Zn
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Al
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REMod − REF + + +
REMod − SUF + + +
REMod − P ER + + +
REMod − UNA + + +

de
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an
d REMod − REF + + + - +

REMod − SUF + + + +
REMod − P ER + + + - +
REMod − UNA + + + - +

pr
ic

e

REMod − REF + - +
REMod − SUF + - + +
REMod − P ER + - +
REMod − UNA + - +

Cu

su
pp

ly

REMod − REF - +
REMod − SUF - +
REMod − P ER - +
REMod − UNA - +

de
m

an
d REMod − REF + + + - + - + -

REMod − SUF + + + - + + - -
REMod − P ER + + + - + + - -
REMod − UNA + + + - + + - + -

pr
ic

e

REMod − REF - - + - +
REMod − SUF - - + - - +
REMod − P ER - - + - - +
REMod − UNA - + + - - +

Ni

su
pp

ly

REMod − REF + + + -
REMod − SUF + + -
REMod − P ER + + + -
REMod − UNA + + + -

de
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d REMod − REF + + -

REMod − SUF + + -
REMod − P ER + + -
REMod − UNA + + -
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e REMod − REF + + + +
REMod − SUF + + + +
REMod − P ER + + + +
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GIRF results of the GVAR models for the industrial metals in the context of the German Energiewende

Al Cu Ni Pb Sn Zn
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REMod − UNA + + + +
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REMod − REF + + + +
REMod − SUF + + + +
REMod − P ER + + + +
REMod − UNA + + + +

de
m

an
d REMod − REF + + + - +

REMod − SUF + + + - +
REMod − P ER + + + - +
REMod − UNA + + + - +

pr
ic

e

REMod − REF + +
REMod − SUF + +
REMod − P ER + + +
REMod − UNA + +

Sn

su
pp

ly

REMod − REF + - + +
REMod − SUF + + +
REMod − P ER + + +
REMod − UNA + - + +

de
m

an
d REMod − REF + + - - - +

REMod − SUF + - - +
REMod − P ER + + - - - +
REMod − UNA + - - - +
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ic

e

REMod − REF - + +
REMod − SUF + +
REMod − P ER - + +
REMod − UNA - + +

Zn

su
pp

ly

REMod − REF + +
REMod − SUF + +
REMod − P ER + - +
REMod − UNA + +

de
m

an
d REMod − REF - + +

REMod − SUF + - + +
REMod − P ER + - + +
REMod − UNA + + - + +

pr
ic

e

REMod − REF - + + +
REMod − SUF - + + +
REMod − P ER - + + +
REMod − UNA - + +

This table displays the results of the GIRF analysis of the GVAR model based on
the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transformation
paths and estimated on annual data from 1970 to 2019. We analyze the response of the
column variables to a shock of the row variables supply (supply), demand (demand)
and price (price) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn). Significant positive (+) or negative (-) effects on the 68%- level are displayed.

Further, similar to the GVAR model based on the demand weight matrix, the prices are signif-
icantly affected by the fundamentals. Hereby, the GVAR model for the eleven key resources of
the German Energiewende detects various significant responses of the prices to shocks in supply
and demand variables, whereas the GVAR model for the six industrial metals induced by the
German Energiewende only reveals the impact of demand on prices. However, several spillover
effects from prices to the supply suggest shocks to the price lead to significant changes in the
production volume, whereas the demand variables react less, indicating the demand variables
determine prices, but are affected to a lesser extent.

Overall, the results of the GVAR models based on the different weight matrices are comparable.
Hereby, the models detect various spillover effects between the commodity prices, indicating the

D.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE 245



APPENDIX D. EMPIRICAL RESULTS

framework is able to reflect the common behavior in prices. Hereby, aluminum and nickel (copper
and zinc) prices react to each other, similar to the GVAR model based on the demand weight
matrix. Moreover, silver and platinum, as well as indium and zinc (tin and lead) interact in the
models based on the key resources (industrial metals), whereas the GVAR models induced by
the German Energiewende do not confirm the interrelation between the aluminum and copper
price. However, all commodity prices are interrelated, underlining the importance of jointly
modeling commodity markets.

Besides the interdependencies between the commodities, the GVAR frameworks allow for spillover
effects from the global economy to commodity markets. Therefore, we examine the effects of
global shocks to the commodity markets, similar to the GIRF analysis of the industrial metal
markets in Section 5.1.2. In particular, we examine the impacts of a positive shock to each exoge-
nous variable on the commodity markets, using the GIRFs derived recursively, using Equation
3.17, Equation 3.19, and Equation 3.20, based on the VAR model of the exogenous variables,
world gross domestic product (GDP), U.S. dollar index (FX), and Federal Funds Effective
Rate (FFR), see Section 5.1. The resulting GIRFs of the commodity markets derived from the
GVAR model based on the key elements of the German Energiewende, and the GVAR model
based on the industrial metals are summarized in Table D.14 and Table D.15, respectively.
Table D.14: GIRF results of the GVAR models for the key elements of the German Energiewende for shocks to the exogenous
variables
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G
D

P

REMod − REF + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + +
REMod − SUF + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + +
REMod − P ER + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + +
REMod − UNA + + + + + + + + + - + + + + + + + + + + + + + + + + + + + + + +

F
X

REMod − REF - - - - - - - - + - - - - - - - - - - - - - - - - - - - - -
REMod − SUF - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - -
REMod − P ER - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - -
REMod − UNA - - - - - - - - - + - - - - - - - - - - - - - - - - - - - - - -

F
F

R

REMod − REF - + + + - + + + + + + + + + + + + + + + + - + + + + +
REMod − SUF - + + + + - + + + + + + + + + + + + + + + + - + + + + +
REMod − P ER - + + + + - + + + + + + + + + + + + + + + + + - + + + + +
REMod − UNA - + + + + - + + + + + + + + + + + + + + + + - + + + + +

This table displays the results of GIRF analysis of the GVAR model based on the weight matrices representing the de-
pendencies between the commodities within the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA
transformation path and estimated on annual data from 1970 to 2019. We analyze the response of the column variables,
supply (supply), demand (demand) and price (price) of the commodities silver (Ag), aluminum (Al), cobalt (Co), cop-
per (Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), to a shock of the row
variables world gross domestic product (GDP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR), where
significant positive (+) or negative (-) effects are displayed, based on the 68%- level.

In line with the results of the GVAR model based on the demand weight matrix, the commodity
markets are affected to a similar extent by shocks to the macroeconomic variables, indicating
global shocks lead to similar patterns in the metals markets. In particular, the markets increase
in response to an increase in the economic activity, represented by a positive shock to the world
gross domestic product, indicating a rising global demand cause rising markets. Moreover, an
appreciation of the U.S. dollar, represented by a positive shock to the U.S. dollar index, leads
to a reduction in the markets. The only exception is copper, as its production volume declines
(increases) in response to a shock to the world gross domestic product (U.S. dollar index),
similar to the results of the global vector autoregression model based on the demand weight
matrix, underling copper’s special role. In addition, a contrarian monetary policy, represented
by a positive shock to the Federal Funds Effective Rate, cause growing commodity markets, in
line with the results of Section 5.1, but contrary to the arguments of Frankel (2008). However,
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central banks rise the interest rates in periods of increasing prices to reduce the inflation, but
the prices often react with some lag, which is why the commodity markets and the interest rates
probably exhibit a common behavior in the short-term, see Schischke and Rathgeber (2023).
Table D.15: GIRF results of the GVAR models for the industrial metals in the context of the German Energiewende for
shocks to the exogenous variables
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P

REMod − REF + + + - + + + + + + + + + + + + + +
REMod − SUF + + + - + + + + + + + + + + + + + +
REMod − P ER + + + - + + + + + + + + + + + + + +
REMod − UNA + + + - + + + + + + + + + + + + + +

F
X

REMod − REF - - - + - - - - - - - - - - - -
REMod − SUF - - - + - - - - - - - - - - - -
REMod − P ER - - - + - - - - - - - - - - - -
REMod − UNA - - - + - - - - - - - - - - - -

F
F

R

REMod − REF + + + + + + - + + + + + +
REMod − SUF + + + + + - + + + + + +
REMod − P ER + + + + + - + + + + + +
REMod − UNA + + + + + - + + + + + +

This table displays the results of GIRF analysis of the GVAR model based on the
weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transforma-
tion path and estimated on annual data from 1970 to 2019. We analyze the response
of the column variables, supply (supply), demand (demand) and price (price) of
the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), to a shock of the row variables world gross domestic product (GDP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR), where significant positive
(+) or negative (-) effects are displayed, based on the 68%- level.

D.3.1.2 Time-varying Commodity Market Models

To account for the time-varying dependencies in the commodity markets, we include the MS-
GVAR models in the risk assessment framework. Hereby, we only consider the industrial metals
aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), since the data
of these metal markets is available on monthly frequency. In particular, we model the in-
terdependencies between the markets over the period from January 1995 to December 2019,
using the weight matrices in Table 4.31, Table 4.32, Table 4.33 and Table 4.34, which repre-
sent the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − PER, and REMod − UNA paths, respectively. In addition, we include the exoge-
nous variables world industrial production (IP), U.S. dollar index (FX), and Federal Funds
Effective Rate (FFR) to account for the common impact of the economy on prices.

D.3.1.2.1 Model Specification We first determine the specifications of the models via
the slightly adjusted model selection procedure of Li and Kwok (2021), described in Section
3.2.1.6, with the information criterion of Hannan and Quinn (1979). In particular, we specify
the optimal number of states, up to the predefined maximum number of states, Mmax = 3, the
optimal lag length, up to the predefined number of lags, Pmax = 2, as well as the specification
out of all considered specifications spec ∈ {MSI, MSIH, MSH, MSA, MSAH}.11 Hereby,
the model selection procedure identifies the MSH(2)-VAR(1) model, with regime-dependent
covariance matrix, but regime-invariant intercept as well as regime-invariant parameters for the

11As the models with regime-dependent exogenous variables lead to unstable MS-GVAR models, we exclude
them from the model selection procedure. However, the model selection identified the MSH-VAR model, as the
best model, in either case.
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endogenous and exogenous variables, performs best for the models based on the REMod − REF
and REMod − UNA path. In contrast, the procedure selects the MSIH(3)-VAR(1) (MSH(3)-
VAR(2)) model with three states for the REMod − SUF (REMod − PER) path. However, the
regime inferences are unstable in the models based on three regimes, which is why we apply the
MSH(2)-VAR(1) model in either case, in line with the MS-GVAR model based on the demand
weight matrix in Section 5.2.1.
Table D.16: Results of the model selection procedure for the MS-GVAR model in the context of the German Energiewende

Model Nr.
States

Nr.
Lags

MSI MSIH MSH MSA MSAH

REMod − REF
2 1 2413.82 2354.72 2349.63 2522.76 2497.44

2 2435.32 2379.05 2376.34 2677.69 2620.36

3 1 2406.31 2356.60 2357.04 2662.77 2627.78
2 2435.25 2386.36 2360.92 2919.24 2840.18

REMod − SUF
2 1 2411.37 2351.56 2346.72 2520.17 2487.48

2 2432.38 2376.66 2372.78 2672.53 2613.02

3 1 2403.27 2344.96 2355.03 2660.55 2630.05
2 2433.23 2366.50 2353.88 2916.85 2839.72

REMod − P ER
2 1 2412.05 2352.63 2347.41 2521.11 2495.27

2 2433.46 2376.88 2373.98 2672.00 2616.28

3 1 2404.63 2357.19 2358.46 2660.86 2630.69
2 2433.81 2364.53 2328.99 2918.45 2835.67

REMod − UNA
2 1 2417.35 2358.05 2353.55 2528.24 2498.22

2 2438.20 2382.27 2378.59 2677.00 2621.45

3 1 2409.35 2362.74 2362.93 2666.51 2640.36
2 2442.71 2378.85 2355.48 2923.71 2838.64

This table displays the model selection results based on the information criterion of Hannan and
Quinn (1979), proposed in Section 3.2.1.6, for the different specifications of the MS-GVAR model,
based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transformation path.

The results of the Durbin-Watson (DW) test indicate neither of the commodity-specific MSH(2)-
VAR(1) models suffers from autocorrelation, see Table D.2, indicating the lag length of one,
chosen by the model selection procedure, is feasible from a statistical point of view. Moreover,
the two states within the models enables to capture and identify calm as well as volatile periods.

D.3.1.2.2 Regime Inferences The MS-GVAR model aggregates the individual, commodity-
specific MS-VAR models to one global commodity market model, therefore, the regimes differ
between the individual commodity markets. In the following, we first focus on each commodity
market and provide the transition probabilities, i.e. the probabilities to switch from state one
to state two and vice versa, displayed in Table D.17, as well as the smoothed probabilities,
indicating in which state a commodity is located in at a specific point in time, in Figure D.14,
Figure D.15, Figure D.16, and Figure D.17,12 for the models based on the interdependencies
inferred from the REMod − REF , REMod − SUF , REMod − PER, and REMod − UNA
transformation path, respectively.

Overall, the transition probabilities as well as the regime inferences are comparable between
the models based on the different weight matrices as well as to those of the MS-GVAR model
based on the demand weight matrix, see Section 5.2.2, indicating the robustness of the MS-GVAR
framework to the weight matrix used, and underlining its ability to detect changes in the markets.
In particular, the models based on the weights representing the transformation pathways detect
the nickel market exhibits a high probability to switch its regimes, while it is more likely to stay in
the current regime for the aluminum, copper, lead, tin, and zinc market. Hereby, the MS-GVAR
models based on the weight matrices derived from the transformation paths exhibit a higher

12These figures show the returns of each individual supply, demand and price variable over the entire sample
period. Shaded areas indicate the smoothed probability to be in state two exceeds 50%, hence, it is more likely
for the commodity market to be in state two at these points in time.
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probability to stay in the second regime for the copper market, compared to the MS-GVAR
model based on the demand weight matrix. Moreover, the MS-GVAR models based on the
weight matrices derived from the transformation paths indicate the zinc market remains almost
surely in its current regime.
Table D.17: Transition probability ,atrices for the individual, commodity-specific MS-VAR models in the context of the
German Energiewende

Al Cu Ni Pb Sn Zn

REMod − REF
0.91 0.09 0.90 0.10 0.53 0.47 0.94 0.06 0.91 0.09 0.98 0.02
0.18 0.82 0.34 0.66 0.59 0.41 0.12 0.88 0.05 0.95 0.02 0.98

REMod − SUF
0.91 0.09 0.91 0.09 0.54 0.46 0.94 0.06 0.89 0.11 0.97 0.03
0.17 0.83 0.32 0.68 0.58 0.42 0.11 0.89 0.06 0.94 0.06 0.94

REMod − P ER
0.91 0.09 0.90 0.10 0.53 0.47 0.94 0.06 0.90 0.10 0.98 0.02
0.18 0.82 0.33 0.67 0.59 0.41 0.11 0.89 0.06 0.94 0.03 0.97

REMod − UNA
0.91 0.09 0.90 0.10 0.53 0.47 0.94 0.06 0.87 0.13 0.97 0.03
0.18 0.82 0.34 0.66 0.58 0.42 0.12 0.88 0.08 0.92 0.07 0.93

This table displays the transition probability matrices for the individual, commodity-specific MS-VAR
models, based on the weight matrices representing the dependencies between the commodities within
the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transformation path, of alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn).

Due to the similar transition probabilities, the regime inferences are comparable between the
MS-GVAR models based on the weights induced by the transformation pathways and the
MS-GVAR model based on the demand weight matrix, see Figure D.14, Figure D.15, Figure
D.16, and Figure D.17. However, copper exhibits slightly longer lasting periods in regime two
in the models based on the weights derived from the transformation pathways, caused by its
higher probability to stay in regime two. Moreover, tin and especially zinc switch their regimes
less often, probably caused by the smaller transition probabilities.

Overall, we observe the commodity markets remain in regime two during periods with high
fluctuations in supply, demand, and price. In addition, the distinct descriptive statistics for
each regime in Table D.18, Table D.19, Table D.20, and Table D.21, underline the markets
exhibit a higher volatility in state two, similar to the MS-GVAR model based on the demand
weight matrix, see Section 5.2.2. Moreover, the (interquartile) ranges show the markets take on
more extreme values in the second state. Therefore, the first state represents the calm and state
two the volatile period.

Figure D.14: Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − REF
path
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Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − REF path
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Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − REF path
Zn

supply demand price

These figures show the logarithmic returns of each individual supply (supply), demand (demand) and price (price)
variable of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), over the entire
sample period from January 1995 to December 2019. Shaded areas indicate the smoothed probability, derived from the
MS-GVAR model based on the REMod − REF path, to be in state one exceeds 50%, hence, it is more likely for the
individual commodity market to be in state one at these points in time.

Figure D.15: Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − SUF
path
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Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − SUF path

supply demand price
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supply demand price

Sn

supply demand price

Zn

supply demand price

These figures show the logarithmic returns of each individual supply (supply), demand (demand) and price (price)
variable of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), over the entire
sample period from January 1995 to December 2019. Shaded areas indicate the smoothed probability, derived from the
MS-GVAR model based on the REMod − SUF path, to be in state one exceeds 50%, hence, it is more likely for the
individual commodity market to be in state one at these points in time.
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Figure D.16: Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − P ER
path
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Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − P ER path
Sn

supply demand price

Zn

supply demand price

These figures show the logarithmic returns of each individual supply (supply), demand (demand) and price (price)
variable of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), over the entire
sample period from January 1995 to December 2019. Shaded areas indicate the smoothed probability, derived from the
MS-GVAR model based on the REMod − P ER path, to be in state one exceeds 50%, hence, it is more likely for the
individual commodity market to be in state one at these points in time.

Figure D.17: Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − UNA
path
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Regime inferences of the commodity markets, derived from the MS-GVAR model based on the REMod − UNA path
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These figures show the logarithmic returns of each individual supply (supply), demand (demand) and price (price)
variable of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), over the entire
sample period from January 1995 to December 2019. Shaded areas indicate the smoothed probability, derived from the
MS-GVAR model based on the REMod − UNA path, to be in state one exceeds 50%, hence, it is more likely for the
individual commodity market to be in state one at these points in time.
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Table D.18: Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR
model based on the REMod − REF path
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A
l

supply 1 -0.05 -0.03 -0.01 -0.00 -0.00 0.01 0.02 0.04 0.01 208
2 -0.10 -0.06 -0.02 0.01 0.00 0.02 0.06 0.13 0.04 92

demand 1 -0.11 -0.06 -0.02 -0.00 -0.00 0.02 0.06 0.13 0.04 208
2 -0.09 -0.07 -0.02 -0.00 0.00 0.03 0.09 0.12 0.05 92

price 1 -0.18 -0.09 -0.03 -0.00 -0.00 0.03 0.08 0.14 0.05 208
2 -0.11 -0.08 -0.04 -0.00 0.01 0.04 0.11 0.14 0.06 92

C
u

supply 1 -0.06 -0.04 -0.01 -0.00 0.00 0.01 0.04 0.07 0.02 251
2 -0.09 -0.06 -0.02 -0.00 0.00 0.02 0.06 0.09 0.04 49

demand 1 -0.12 -0.07 -0.03 -0.00 0.00 0.03 0.07 0.13 0.04 251
2 -0.17 -0.10 -0.05 -0.00 -0.00 0.04 0.10 0.16 0.07 49

price 1 -0.27 -0.08 -0.04 0.00 -0.00 0.03 0.09 0.16 0.06 251
2 -0.43 -0.15 -0.08 -0.01 0.00 0.09 0.17 0.25 0.13 49

N
i

supply 1 -0.07 -0.05 -0.01 0.00 0.00 0.02 0.05 0.08 0.03 202
2 -0.24 -0.16 -0.08 -0.03 -0.01 0.07 0.15 0.18 0.10 98

demand 1 -0.15 -0.11 -0.05 -0.00 -0.00 0.04 0.09 0.16 0.06 202
2 -0.25 -0.15 -0.07 0.01 0.00 0.07 0.17 0.27 0.11 98

price 1 -0.33 -0.15 -0.07 0.00 0.00 0.07 0.13 0.28 0.10 202
2 -0.26 -0.13 -0.07 -0.01 -0.00 0.06 0.18 0.22 0.10 98

P
b

supply 1 -0.08 -0.05 -0.02 -0.01 -0.00 0.01 0.05 0.12 0.03 200
2 -0.25 -0.13 -0.04 0.01 0.01 0.06 0.15 0.32 0.09 100

demand 1 -0.16 -0.07 -0.02 -0.00 -0.00 0.02 0.07 0.14 0.04 200
2 -0.19 -0.07 -0.03 -0.00 0.00 0.04 0.09 0.19 0.06 100

price 1 -0.16 -0.09 -0.04 0.00 0.00 0.04 0.08 0.18 0.06 200
2 -0.30 -0.19 -0.08 0.00 -0.01 0.07 0.17 0.21 0.11 100

Sn

supply 1 -0.10 -0.08 -0.03 0.00 -0.00 0.02 0.06 0.15 0.04 97
2 -0.27 -0.13 -0.03 -0.00 0.00 0.05 0.11 0.26 0.08 203

demand 1 -0.08 -0.05 -0.02 0.00 0.00 0.02 0.07 0.08 0.04 97
2 -0.25 -0.15 -0.05 0.00 -0.00 0.05 0.14 0.34 0.09 203

price 1 -0.08 -0.06 -0.03 -0.00 0.01 0.03 0.09 0.15 0.05 97
2 -0.24 -0.12 -0.04 -0.01 -0.00 0.04 0.11 0.20 0.07 203

Zn

supply 1 -0.10 -0.06 -0.02 -0.00 -0.00 0.02 0.06 0.17 0.04 180
2 -0.16 -0.05 -0.02 0.00 0.00 0.02 0.06 0.10 0.04 120

demand 1 -0.16 -0.07 -0.03 -0.00 -0.00 0.03 0.08 0.12 0.05 180
2 -0.28 -0.08 -0.03 0.01 0.00 0.04 0.08 0.23 0.06 120

price 1 -0.21 -0.09 -0.04 -0.00 -0.00 0.04 0.09 0.14 0.06 180
2 -0.41 -0.13 -0.06 0.01 0.00 0.07 0.13 0.25 0.09 120

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%, 95% quantile (Q.), median (Med.), mean
(Mean), maximum (Max.), standard deviation (SD), and number of observations (Nr. Obs.)) of the stationary, commodity-
specific variables supply (supply), demand (demand) and price (price) for the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), either in state one or in state two. Hereby, the markets are in state two if
the smoothed probability, derived from the MS-GVAR model with weight matrix representing the dependencies between
the commodities within the REMod − REF transformation path, to be in state two exceeds 50%.

Table D.19: Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR
model based on the REMod − SUF path
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supply 1 -0.05 -0.03 -0.01 -0.00 -0.00 0.01 0.02 0.04 0.01 207
2 -0.10 -0.06 -0.02 0.01 0.00 0.02 0.06 0.13 0.04 93

demand 1 -0.11 -0.06 -0.02 -0.00 -0.00 0.02 0.06 0.13 0.04 207
2 -0.09 -0.07 -0.02 -0.00 0.00 0.03 0.09 0.12 0.05 93

price 1 -0.18 -0.09 -0.03 -0.00 -0.00 0.03 0.08 0.14 0.05 207
2 -0.11 -0.08 -0.04 -0.00 0.00 0.03 0.11 0.14 0.06 93

C
u

supply 1 -0.06 -0.04 -0.01 -0.00 0.00 0.02 0.04 0.07 0.02 248
2 -0.09 -0.06 -0.02 -0.00 0.00 0.02 0.05 0.09 0.03 52

demand 1 -0.12 -0.07 -0.02 -0.00 0.00 0.03 0.07 0.13 0.04 248
2 -0.17 -0.09 -0.05 -0.00 -0.00 0.03 0.10 0.16 0.07 52

price 1 -0.27 -0.08 -0.04 0.00 0.00 0.03 0.09 0.16 0.06 248
2 -0.43 -0.15 -0.07 -0.02 -0.00 0.08 0.17 0.25 0.12 52

N
i supply 1 -0.06 -0.05 -0.01 0.00 0.00 0.02 0.06 0.08 0.03 203

2 -0.24 -0.16 -0.08 -0.03 -0.01 0.07 0.15 0.18 0.10 97
demand 1 -0.15 -0.11 -0.04 0.00 -0.00 0.05 0.09 0.16 0.06 203
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Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR model based on
the REMod − SUF path
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N
i demand 2 -0.25 -0.15 -0.07 0.01 0.00 0.07 0.17 0.27 0.11 97

price 1 -0.33 -0.16 -0.07 0.00 -0.00 0.06 0.13 0.28 0.10 203
2 -0.15 -0.13 -0.07 -0.00 0.01 0.07 0.18 0.22 0.09 97

P
b

supply 1 -0.08 -0.05 -0.02 -0.00 -0.00 0.01 0.05 0.12 0.03 201
2 -0.25 -0.13 -0.04 0.01 0.01 0.06 0.15 0.32 0.09 99

demand 1 -0.16 -0.07 -0.02 -0.00 -0.00 0.02 0.07 0.14 0.04 201
2 -0.19 -0.07 -0.03 -0.00 0.00 0.03 0.09 0.19 0.06 99

price 1 -0.16 -0.09 -0.04 0.00 0.00 0.04 0.08 0.18 0.06 201
2 -0.30 -0.19 -0.08 -0.00 -0.01 0.07 0.17 0.21 0.11 99

Sn

supply 1 -0.10 -0.08 -0.02 0.00 0.00 0.02 0.06 0.15 0.04 104
2 -0.27 -0.13 -0.04 -0.00 0.00 0.05 0.11 0.26 0.08 196

demand 1 -0.08 -0.05 -0.02 0.00 0.00 0.02 0.07 0.08 0.04 104
2 -0.25 -0.16 -0.05 0.00 -0.00 0.06 0.15 0.34 0.10 196

price 1 -0.08 -0.06 -0.03 -0.00 0.01 0.03 0.09 0.15 0.05 104
2 -0.24 -0.12 -0.04 -0.01 -0.00 0.04 0.11 0.20 0.07 196

Zn supply 1 -0.16 -0.06 -0.02 -0.00 -0.00 0.02 0.07 0.17 0.04 208
2 -0.10 -0.04 -0.02 0.00 0.00 0.02 0.05 0.07 0.03 92

Zn

demand 1 -0.16 -0.07 -0.03 -0.00 -0.00 0.03 0.08 0.12 0.04 208
2 -0.28 -0.08 -0.04 0.01 0.00 0.04 0.08 0.23 0.06 92

price 1 -0.21 -0.10 -0.05 -0.00 -0.00 0.04 0.09 0.15 0.06 208
2 -0.41 -0.13 -0.05 0.01 0.00 0.08 0.15 0.25 0.10 92

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%, 95% quantile (Q.), median (Med.), mean
(Mean), maximum (Max.), standard deviation (SD), and number of observations (Nr. Obs.)) of the stationary, commodity-
specific variables supply (supply), demand (demand) and price (price) for the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), either in state one or in state two. Hereby, the markets are in state two if
the smoothed probability, derived from the MS-GVAR model with weight matrix representing the dependencies between
the commodities within the REMod − SUF transformation path, to be in state two exceeds 50%.

Table D.20: Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR
model based on the REMod − P ER path
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supply 1 -0.05 -0.03 -0.01 -0.00 -0.00 0.01 0.02 0.04 0.01 208
2 -0.10 -0.06 -0.02 0.01 0.00 0.02 0.06 0.13 0.04 92

demand 1 -0.11 -0.06 -0.02 -0.00 -0.00 0.02 0.06 0.13 0.04 208
2 -0.09 -0.07 -0.02 -0.00 0.00 0.03 0.09 0.12 0.05 92

price 1 -0.18 -0.09 -0.03 -0.00 -0.00 0.03 0.08 0.14 0.05 208
2 -0.11 -0.08 -0.04 -0.00 0.01 0.04 0.11 0.14 0.06 92

C
u

supply 1 -0.06 -0.04 -0.01 0.00 0.00 0.02 0.04 0.07 0.02 249
2 -0.09 -0.06 -0.02 -0.00 -0.00 0.01 0.05 0.09 0.03 51

demand 1 -0.12 -0.07 -0.02 -0.00 0.00 0.03 0.07 0.13 0.04 249
2 -0.17 -0.09 -0.05 -0.01 -0.00 0.04 0.10 0.16 0.07 51

price 1 -0.27 -0.08 -0.04 0.00 0.00 0.03 0.09 0.17 0.06 249
2 -0.43 -0.15 -0.08 -0.02 -0.01 0.07 0.16 0.25 0.12 51

N
i

supply 1 -0.07 -0.05 -0.01 0.00 0.00 0.02 0.05 0.08 0.03 200
2 -0.24 -0.16 -0.08 -0.03 -0.01 0.07 0.15 0.18 0.10 100

demand 1 -0.14 -0.11 -0.04 -0.00 -0.00 0.05 0.09 0.16 0.06 200
2 -0.25 -0.15 -0.07 0.01 0.00 0.07 0.17 0.27 0.11 100

price 1 -0.33 -0.15 -0.07 0.00 0.00 0.07 0.13 0.28 0.10 200
2 -0.26 -0.13 -0.07 -0.02 -0.00 0.06 0.18 0.22 0.10 100

P
b

supply 1 -0.08 -0.05 -0.02 -0.01 -0.00 0.01 0.05 0.12 0.03 202
2 -0.25 -0.13 -0.04 0.01 0.01 0.06 0.15 0.32 0.09 98

demand 1 -0.16 -0.07 -0.02 -0.00 -0.00 0.02 0.07 0.14 0.04 202
2 -0.19 -0.07 -0.03 -0.00 0.00 0.03 0.09 0.19 0.06 98

price 1 -0.16 -0.09 -0.04 0.00 0.00 0.04 0.08 0.18 0.06 202
2 -0.30 -0.19 -0.08 -0.00 -0.01 0.06 0.17 0.21 0.11 98

Sn

supply 1 -0.10 -0.08 -0.02 0.00 0.00 0.02 0.06 0.15 0.04 103
2 -0.27 -0.13 -0.04 -0.00 0.00 0.05 0.11 0.26 0.08 197

demand 1 -0.08 -0.05 -0.02 0.00 0.00 0.02 0.07 0.08 0.04 103
2 -0.25 -0.16 -0.05 0.00 -0.00 0.06 0.15 0.34 0.10 197

price 1 -0.08 -0.06 -0.03 -0.00 0.01 0.03 0.09 0.15 0.05 103
2 -0.24 -0.12 -0.04 -0.01 -0.00 0.04 0.11 0.20 0.07 197
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Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR model based on
the REMod − P ER path
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Zn

supply 1 -0.10 -0.06 -0.02 -0.00 -0.00 0.02 0.06 0.17 0.04 183
2 -0.16 -0.05 -0.02 0.00 0.00 0.02 0.06 0.10 0.04 117

demand 1 -0.16 -0.07 -0.03 -0.00 0.00 0.03 0.08 0.12 0.05 183
2 -0.28 -0.08 -0.03 0.01 0.00 0.03 0.08 0.23 0.06 117

price 1 -0.21 -0.08 -0.04 -0.00 -0.00 0.04 0.09 0.14 0.06 183
2 -0.41 -0.13 -0.06 0.01 0.00 0.07 0.14 0.25 0.10 117

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%, 95% quantile (Q.), median (Med.), mean
(Mean), maximum (Max.), standard deviation (SD), and number of observations (Nr. Obs.)) of the stationary, commodity-
specific variables supply (supply), demand (demand) and price (price) for the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), either in state one or in state two. Hereby, the markets are in state two if
the smoothed probability, derived from the MS-GVAR model with weight matrix representing the dependencies between
the commodities within the REMod − P ER transformation path, to be in state two exceeds 50%.

Table D.21: Descriptive statistics of the commodity-specific variables based on the regime inferences of the MS-GVAR
model based on the REMod − UNA path
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supply 1 -0.05 -0.03 -0.01 -0.00 -0.00 0.01 0.02 0.04 0.01 205
2 -0.10 -0.06 -0.02 0.01 0.00 0.02 0.06 0.13 0.04 95

demand 1 -0.11 -0.06 -0.02 -0.00 -0.00 0.02 0.06 0.13 0.04 205
2 -0.09 -0.07 -0.02 -0.00 0.00 0.03 0.09 0.12 0.05 95

price 1 -0.18 -0.09 -0.03 -0.00 -0.00 0.03 0.08 0.14 0.05 205
2 -0.11 -0.08 -0.04 -0.00 0.01 0.04 0.11 0.14 0.06 95

C
u

supply 1 -0.06 -0.04 -0.01 -0.00 0.00 0.02 0.04 0.07 0.02 252
2 -0.09 -0.06 -0.02 -0.00 -0.00 0.01 0.06 0.09 0.04 48

demand 1 -0.12 -0.07 -0.03 -0.00 0.00 0.03 0.07 0.13 0.04 252
2 -0.17 -0.10 -0.05 -0.00 -0.00 0.04 0.11 0.16 0.07 48

price 1 -0.27 -0.08 -0.04 0.00 -0.00 0.03 0.09 0.16 0.06 252
2 -0.43 -0.15 -0.08 0.00 0.00 0.09 0.17 0.25 0.13 48

N
i

supply 1 -0.07 -0.05 -0.01 0.00 0.00 0.02 0.06 0.08 0.03 204
2 -0.24 -0.16 -0.08 -0.03 -0.01 0.07 0.15 0.18 0.10 96

demand 1 -0.15 -0.11 -0.04 -0.00 -0.00 0.05 0.09 0.17 0.06 204
2 -0.25 -0.15 -0.07 0.01 0.00 0.07 0.16 0.27 0.11 96

price 1 -0.33 -0.16 -0.07 0.00 -0.00 0.06 0.13 0.28 0.10 204
2 -0.15 -0.13 -0.07 -0.01 0.00 0.06 0.18 0.22 0.09 96

P
b

supply 1 -0.08 -0.05 -0.02 -0.01 -0.00 0.01 0.05 0.12 0.03 200
2 -0.25 -0.13 -0.04 0.01 0.01 0.06 0.15 0.32 0.09 100

demand 1 -0.16 -0.07 -0.02 -0.00 -0.00 0.02 0.07 0.14 0.04 200
2 -0.19 -0.07 -0.03 -0.00 0.00 0.04 0.09 0.19 0.06 100

price 1 -0.16 -0.09 -0.04 0.00 0.00 0.04 0.08 0.18 0.06 200
2 -0.30 -0.19 -0.08 0.00 -0.01 0.07 0.17 0.21 0.11 100

Sn

supply 1 -0.10 -0.07 -0.02 -0.00 0.00 0.03 0.06 0.15 0.04 115
2 -0.27 -0.14 -0.04 -0.00 0.00 0.05 0.11 0.26 0.08 185

demand 1 -0.08 -0.06 -0.02 0.00 0.00 0.02 0.08 0.13 0.04 115
2 -0.25 -0.16 -0.06 0.00 -0.00 0.06 0.15 0.34 0.10 185

price 1 -0.08 -0.05 -0.03 -0.00 0.01 0.03 0.10 0.15 0.05 115
2 -0.24 -0.12 -0.04 -0.01 -0.00 0.03 0.11 0.20 0.07 185

Zn

supply 1 -0.16 -0.06 -0.02 -0.00 -0.00 0.02 0.07 0.17 0.04 208
2 -0.10 -0.04 -0.02 0.00 0.00 0.02 0.05 0.07 0.03 92

demand 1 -0.14 -0.06 -0.03 -0.00 0.00 0.03 0.08 0.10 0.04 208
2 -0.28 -0.08 -0.04 0.01 0.00 0.04 0.09 0.23 0.07 92

price 1 -0.21 -0.10 -0.05 -0.00 -0.00 0.04 0.10 0.15 0.06 208
2 -0.41 -0.13 -0.06 0.01 0.00 0.08 0.15 0.25 0.10 92

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%, 95% quantile (Q.), median (Med.), mean
(Mean), maximum (Max.), standard deviation (SD), and number of observations (Nr. Obs.)) of the stationary, commodity-
specific variables supply (supply), demand (demand) and price (price) for the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), either in state one or in state two. Hereby, the markets are in state two if
the smoothed probability, derived from the MS-GVAR model with weight matrix representing the dependencies between
the commodities within the REMod − UNA transformation path, to be in state two exceeds 50%.
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D.3.1.2.3 Spillover Effects within and between Commodity Markets Similar to the
GVAR models based on the weight matrices derived from the transformation paths, we in-
vestigate the dynamic spillover effects of the corresponding time-varying MS-GVAR models to
provide a better understanding of the models applied in the risk assessment framework. Hereby,
we calculate the regime-dependent generalized impulse response functions (GIRFs), according
to Ehrmann et al. (2003),13 based on the 68% confidence bounds, obtained by the adjusted
bootstrap procedure of Ehrmann et al. (2001),14 see Section 3.2.4.2.2, assuming the regime-
constellation in December 2019, as we use the models to investigate the scarcity risk of the
resource requirements of the transformation pathways from 2020 to 2050.

Table D.22 displays the regime probabilities in December 2019 underlying in the MS-VAR mod-
els based on the weight matrices representing the dependencies between the commodities within
the REMod − REF , REMod − SUF , REMod − PER, and REMod − UNA transformation
paths. Overall, we observe similar results for the different models. Hereby, the regime probabil-
ities of all models indicate the aluminum, copper, and lead markets are in the first, calm state
in December 2019, while the tin market is located in its volatile state. Moreover, the regime
inferences exhibit an almost equal probability to be either in the calm or volatile state for the
nickel market. However, the models based on the REMod − REF and REMod − PER path
assign the zinc market to the volatile state, whereas the models based on the REMod − SUF
and REMod − UNA path classify zinc to the calm regime, indicating the models differ slightly,
probably caused by the lower impact of lead to the other commodities in the REMod − SUF
and REMod − UNA weight matrices, see Table 4.32 and Table 4.34.

Table D.22: Regime inference of the individual, commodity-specific MS-VAR models in December 2019

Path State Al Cu Ni Pb Sn Zn

REMod − REF
1 0.84 0.80 0.55 0.93 0.16 0.22
2 0.16 0.20 0.45 0.07 0.84 0.78

REMod − SUF
1 0.84 0.79 0.56 0.93 0.19 0.95
2 0.16 0.21 0.44 0.07 0.81 0.05

REMod − P ER
1 0.84 0.79 0.55 0.93 0.18 0.25
2 0.16 0.21 0.45 0.07 0.82 0.75

REMod − UNA
1 0.84 0.80 0.55 0.93 0.27 0.96
2 0.16 0.20 0.45 0.07 0.73 0.04

This table displays the regime inference in December 2019 underlying in
the MS-VAR models based on the weight matrices representing the de-
pendencies between the commodities aluminum (Al), copper (Cu), nickel
(Ni), lead (Pb), tin (Sn), and zinc (Zn) within the REMod − REF ,
REMod − SUF , REMod − P ER, and REMod − UNA transformation
path.

Assuming these regime probabilities, we calculate the corresponding regime-dependent general-
ized impulse response functions for each MS-GVAR model. Hereby, we shock each commodity-
specific variable by one standard deviation to analyze the direct as well as the indirect effects of
this shock to the remaining variables, in the individual, commodity-specific markets, as well as
in the cross-commodity dimension. In addition, we also investigate how shocks to the exogenous
variables affect the commodity markets, see Appendix D.3.1.2.4. Table D.23 displays the GIRF
results of the endogenous shocks, whereby we indicate significant positive, or negative, responses
of the column variables, to a shock in the row variables by a (+), or (-).

Overall, the MS-GVAR models, representing the dependencies between the commodities within
the transformation paths, detect various spillover effects within and between the commodity
markets, indicating strong interrelations between the metals. In particular, the models imply

13We calculate the generalized impulse response functions via a Monte Carlo integration, described in Section
3.2.4.2. Hereby, we draw Nhist = 500 histories, and Nshock = 500 shocks.

14In particular, we draw Nboot = 500 times Tboot = 250 residuals with replacement to generate the bootstrap
sample.
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more reactions to and from the supply and demand variables, besides the impact of prices
between the markets, compared to the MS-GVAR model based on the demand weight matrix,
indicating the weights induced by the German Energiewende better reflect the market structure.
However, the GIRFs of the MS-GVAR model based on the demand weight matrix are derived
under the assumption the commodity markets are all situated either in their calm or volatile
regime, whereas the GIRF results presented in Table D.23 assume the regime constellation
observed in December 2019. Hereby, the tin (and zinc) market is in its volatile regime, while
the regime probabilities indicate the other metal markets are in a calmer period. This mix of
calm and volatile periods between the markets may also cause the different spillover effects.

In general, the spillover effects of the MS-GVAR models based on the different weight matrices
are comparable, with only few exceptions, due to the similar scaled relations derived from
the material requirements of the four transformation pathways, see Table 4.31, Table 4.32,
Table 4.33, and Table 4.34 for the corresponding weight matrices. Therefore, we focus on the
spillover effects detected by the MS-GVAR model based on the REMod − REF path, as the
REMod − REF path represents the baseline scenario.

First of all, we examine the spillover effects within the individual industrial metal markets, fol-
lowed by an investigation of the impacts in the cross-commodity dimension. While we do not
observe any responses in the aluminum market to shocks in its own market, the other metal
markets exhibit interrelations between the fundamentals and their prices. In particular, shocks
to the individual demand and price significantly affect the supply of copper, nickel, lead, (tin),
and zinc. Moreover, changes in the lead price cause an increase in its demand, whereas a pos-
itive shock to the zinc demand (supply) lead to decreasing price (demand), which is rather
counterintuitive, as we would expect rising prices in response to a demand increase. However,
the observed reaction may be caused by unobservable, indirect effects, also captured by the
GIRF methodology. In contrast to the few responses in the individual markets observed by the
MS-GVAR model based on the demand weight matrix, the models reflecting the relations be-
tween the commodities based on the transformation paths indicate strong interrelations between
the individual supply, demand and price.
Table D.23: GIRF results of the MS-GVAR models for the industrial metals in the context of the German Energiewende
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Al

su
pp

ly

REMod − REF + - + - - - - + +
REMod − SUF + - - - - + +
REMod − P ER + - + - - - - + +
REMod − UNA + - - - - + +

de
m

an
d REMod − REF + + - + + + - + + -

REMod − SUF + + + - + + + - + + -
REMod − P ER + + - + + + - + + -
REMod − UNA + + + - + + + - + + -

pr
ic

e

REMod − REF + + + + + + + + + + -
REMod − SUF + + + + + + + + + + + + -
REMod − P ER + + + + + + + + + + + + -
REMod − UNA + + + + + + + + + + + + -

Cu

su
pp

ly

REMod − REF - + - - - + +
REMod − SUF - - + - - + +
REMod − P ER - + - - - - + +
REMod − UNA - - + - - + +

de
m

an
d REMod − REF + + - + + + - + + -

REMod − SUF + + + - + + + - + + -
REMod − P ER + + - + + + - + + -
REMod − UNA + + + - + + + - + + -

pr
ic

e REMod − REF + + + + + + + + + + + + -
REMod − SUF + + + + + + + + + + + + -
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GIRF results of the MS-GVAR models for the industrial metals in the context of the German Energiewende
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REMod − P ER + + + + - + + + + + + + + -
REMod − UNA + + + + + + + + + + + + -

Ni

su
pp

ly

REMod − REF - - + + - - - + +
REMod − SUF - - - + - - + +
REMod − P ER - - + + - - - + +
REMod − UNA - - - + - - + +

de
m

an
d REMod − REF + - + + + - + + -

REMod − SUF + + - + + + - + + -
REMod − P ER + - + + + - + + -
REMod − UNA + + - + + + - + + -

pr
ic

e

REMod − REF + + + + + - + + + + + + + + -
REMod − SUF + + + + + - + + + + + + + + -
REMod − P ER + + + + + - + + + + + + + + -
REMod − UNA + + + + + - + + + + + + + + -

Pb

su
pp

ly

REMod − REF - - + - + - + +
REMod − SUF - - - - + - + +
REMod − P ER - - + - + - + +
REMod − UNA - - - - + - + +

de
m

an
d REMod − REF + - + + - + + -

REMod − SUF + + - + + - + + -
REMod − P ER + - + + + - + + -
REMod − UNA + + - + + - + + -

pr
ic

e

REMod − REF + + + + + - + + + + + + + + -
REMod − SUF + + + + + + + + + + + + + -
REMod − P ER + + + + + - + + + + + + + + -
REMod − UNA + + + + + + + + + + + + + -

Sn

su
pp

ly

REMod − REF - - - - + + + +
REMod − SUF - - - - + + +
REMod − P ER - - + - - + + +
REMod − UNA - - - - + + +

de
m

an
d REMod − REF + - + + + + - + + -

REMod − SUF + + + - + + + + - + + -
REMod − P ER + + - + + + + - + + -
REMod − UNA + + + - + + + + - + + -

pr
ic

e

REMod − REF + + + + + + + - + + + -
REMod − SUF + + + + + + + - + + + -
REMod − P ER + + + + + + + + + - + + + -
REMod − UNA + + + + + + + - + + + -

Zn

su
pp

ly

REMod − REF - - + - - - - +
REMod − SUF - - - - - + -
REMod − P ER - - + - - - - + -
REMod − UNA - - - - - + -

de
m

an
d REMod − REF + - + + + - + + -

REMod − SUF + + + - + + + - + +
REMod − P ER + - + + + - + + -
REMod − UNA + + + - + + + - + +

pr
ic

e

REMod − REF + + + + + + + + + + + + +
REMod − SUF + + + + + + + + + + + + + +
REMod − P ER + + + + + + + + + + + + + +
REMod − UNA + + + + + + + + + + + + + +

This table displays the results of the GIRF analysis of the MS-GVAR model based on
the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transformation
paths, estimated on monthly data from 1995 to 2019. We analyze the response of the
column variables to a shock of the row variables supply (supply), demand (demand)
and price (price) of aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn). Significant positive (+) or negative (-) effects on the 68%- level are displayed.

In addition to the responses in the individual markets, shocks to the commodity markets also
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affect the other industrial metals, underlining the importance of jointly modeling commodity
markets. Overall, the GIRF analysis indicates various spillover effects between supply, demand
and price in the cross-commodity dimension. In particular, supply, demand and prices interact
with each other, similar to the results observed in Section 5.2. Hereby, positive supply shocks
lead to decreasing production volumes of aluminum, copper, and nickel, probably caused by sub-
stitution effects, whereas the supply of zinc rises. Moreover, lead and zinc demand significantly
react to demand shocks, indicating the consumption of lead and zinc depends on the demand
for the other commodities. Furthermore, the prices are interrelated. In particular, aluminum,
copper, and lead prices increase in response to increasing prices, whereas zinc’s price reduces,
similar to the GIRF results of the MS-GVAR model based on the demand weight matrix. Due to
the common behavior in the commodity prices, prices also affect the supply and demand of the
commodities, indicating strong interrelations between the markets. Hereby, the demand (sup-
ply) of all metals (except aluminum and nickel) increases in response to a positive price shock.
However, the fundamentals also affect prices. While lead and tin prices reduce in response to
an increased supply, supply shocks cause increasing copper and zinc prices, probably due to
indirect effects. Moreover, the positive reaction in aluminum’s, copper’s, and nickel’s price to
demand shocks indicate a higher demand in the metals markets lead to increasing prices. How-
ever, zinc’s price reduces in response to demand shocks, probably due to the negative reaction
of its price to increasing metal prices. Besides the impact on prices, supply and demand also
affect each other. Hereby, aluminum and lead demand decrease in response to supply shocks,
while demand shocks cause increasing (decreasing) supply of copper, lead, and zinc (nickel, and
tin). In general, the demand for one commodity more likely affects the supply of another metal
than vice versa, indicating the stronger impact of demand in commodity markets. Overall, the
spillover effects within and between the commodity markets are comparable across the models
based on the different transformation pathways. Hereby, the results underline the importance
of fundamentals on prices as well as on jointly modeling commodity markets.

D.3.1.2.4 Global Spillover Effects to Commodity Markets Besides the spillover ef-
fects within and between the commodity markets, we also examine how global shocks, partic-
ularly shocks to the global economic activity, the exchange rate and the interest rate, affect
the commodity markets under the regime constellation in December 2019. Hereby, we apply
the MSH(2)-VAR(1) model for the exogenous variables, world industrial production (IP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR), similar to Section 5.2.3.3, however,
we only use data in the period from 1995 to 2019.15

The corresponding transition probabilities in Table D.24 indicate a high probability to remain
in the current state, whereby it is more likely to stay in the second state, compared to the
model based on data from 1995 to 2020 in Section 5.2.3.3, indicating the inclusion of the onset
of the COVID-19 pandemic, and the resulting fluctuations in the economy, slightly changes
the model. Moreover, the regime inferences presented in Figure D.18 differ. While the model
based on the enlarged sample period only detects brief periods in the volatile state, the higher
probability to stay in the second regime of the model based on the reduced sample period leads
to longer periods in regime two. However, both models suggest the exogenous variables switch
their regime to state two during the financial crisis, and the European debt crisis, indicating
stressed periods cause a change in the regimes. Hereby, the distinct descriptive statistics for each
regime in Table D.25, where we assume the economy to be located either in state one or state
two, underlines that especially the Federal Funds Effective Rate exhibits more volatile periods
in state two. Overall, the MS-VAR model of the exogenous variables classifies the economy into

15The results of the Durbin-Watson (DW) test indicate the MSH(2)-VAR(1) model of the exogenous variables
in the reduced sample do not suffer from autocorrelation, see Table D.2, therefore, the lag length of one is feasible
from a statistical point of view.
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calm and volatile periods, similar to the models presented above.

As we apply the MS-GVAR models based on the dependencies induced from the transformation
paths to investigate the scarcity risks of the required resources from 2020 to 2050, we examine
how global shocks affect the commodity markets in 2019. Therefore, we assume the regime
inferences observed in December 2019, presented in Table D.26, and detect the economy is in
its calm regime, similar to the aluminum, copper, and lead (zinc) markets.
Table D.24: Transition probability matrices for the individual MS-VAR model of the exogenous variables in the period from
1995 to 2019

Exogenous variables
0.94 0.06
0.13 0.87

This table displays the transition probability matrix for the individual MS-VAR model of the exogenous variables world
industrial production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR) estimated on data in the period
from 1995 to 2019.

Figure D.18: Regime inferences of the exogenous variables in the period from 1995 to 2019

(a) IP (b) FX (c) FFR

These figures show the logarithmic returns of the exogenous variables world industrial production (IP), U.S.
dollar index (FX), and Federal Funds Effective Rate (FFR), over the entire sample period from January 1995 to
December 2019. Shaded areas indicate the smoothed probability to be in state one exceeds 50%, hence, it is more
likely for the exogenous variables to be in state one at these points in time.

Table D.25: Descriptive statistics of the exogenous variables based on the regime inferences of the MS-VAR model in the
period from 1995 to 2019
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IP 1 -0.04 -0.03 -0.01 -0.00 -0.00 0.01 0.03 0.05 0.02 215.00
2 -0.06 -0.02 -0.01 0.00 0.00 0.01 0.03 0.03 0.02 85.00

FX 1 -0.05 -0.04 -0.01 0.00 -0.00 0.01 0.03 0.05 0.02 215.00
2 -0.07 -0.04 -0.01 0.00 0.00 0.01 0.05 0.07 0.02 85.00

FFR 1 -0.15 -0.08 -0.01 0.01 0.01 0.04 0.10 0.16 0.05 215.00
2 -0.90 -0.31 -0.14 -0.01 -0.02 0.12 0.28 0.69 0.23 85.00

This table displays the descriptive statistics (minimum (Min.), 5%, 25%, 75%, 95% quan-
tile (Q.), median (Med.), mean (Mean), maximum (Max.), standard deviation (SD), and
number ob observations (Nr. Obs.)) of the stationary, exogenous variables world indus-
trial production (IP), U.S. dollar index (FX), and Federal Funds Effective Rate (FFR),
being either in state one or in state two, when assuming the markets are in state two if
the smoothed probability to be in state two exceeds 50%.

Table D.26: Regime inference of the MS-VAR models for the exogenous variables in December 2019

State exog
1 0.82
2 0.13

This table displays the regime inference in December 2019 underlying in the MS-VAR models for
the exogenous variables.
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Using this model for the economy and the associated regime inference in 2019, we disentangle
the spillover effects from the exogenous variables to the commodity markets. Overall, the GIRF
analysis in Table D.27 reveals shocks to the economy affect each commodity market to a similar
extent, in line with the results of the MS-GVAR model based on the demand weight matrix.
Hereby, the different induced weight matrices from the transformation paths lead to similar
results, indicating the robust effect from the macroeconomic variables to the commodity markets,
however the spillover effects slightly differ from the impacts observed above, as the sample period
for the models based on the weight matrices induced from the transformation paths exclude the
onset of the COVID-19 pandemic, leading to different regime inferences as well as spillover
effects.

In particular, similar to the results above, see Table 5.18, the commodity markets are negatively
affected by an increase in the world industrial production, except copper and tin demand, as
well as zinc supply and price. Hereby, indirect effects from the interest rate, which increases in
response to a global demand shock, as well as the negative impact of the lagged world industrial
production, because of the negative autocorrelation, cause the observed decrease in the markets.

Furthermore, an appreciation of the U.S. dollar, represented by a positive shock to the U.S. dollar
index, generally affects the commodity markets positively. Hereby, the prices, and ultimately,
the supply, raise in response to the demand growth caused by the stronger U.S. dollar and
the corresponding increase in the demand of consumers holding the U.S. dollar. While the
MS-GVAR model based on the demand weight matrix indicates a decrease in nickel’s, lead’s
and zinc’s demand as well as in nickel’s price in response to the exchange rate shock, the models
applied on data in the period from 1995 to 2019 detect also negative reactions in aluminum’s
price, as well as in lead’s and tin’s supply, indicating the results based on different weight
matrices as well as sample periods slightly differ. Hereby, the reduced demand for consumers
holding other currencies, for which a stronger U.S. dollar implies the metals, quoted in U.S.
dollars, become more expensive, probably cause the observed decline.
Table D.27: GIRF results of the MS-GVAR models for the industrial metals in the context of the German Energiewende
for shocks to the exogenous variables
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IP

REMod − REF - - - - + - - - - - - - - + - + - -
REMod − SUF - - - - + - - - - - - - - - - + - +
REMod − P ER - - - - + - - - - - - - - + - + - +
REMod − UNA - - - - + - - - - - - - - - - + - +

F
X

REMod − REF + + - - + + + - - - + + - + - + - +
REMod − SUF + + - + + + + - - - + + - + + + - +
REMod − P ER + + - - + + + - - - + + - + + + - +
REMod − UNA + + - + + + + - - - + + - + + + - +

F
F

R

REMod − REF - - - - - - + - + - - - - + + - + +
REMod − SUF - - - - - + + - + - - - - + + + + -
REMod − P ER - - - - + + + - + - - - - + + - + -
REMod − UNA - - - - - - + - + - - - - + + - + -

This table displays the results of GIRF analysis of the MS-GVAR model based on
the weight matrices representing the dependencies between the commodities within
the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA trans-
formation path. We analyze the response of the column variables, supply (supply),
demand (demand) and price (price) of the commodities aluminum (Al), copper (Cu),
nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), to a shock of the row variables
world industrial production (IP), U.S. dollar index (FX), and Federal Funds Effec-
tive Rate (FFR), where significant positive (+) or negative (-) effects are displayed,
based on the 68%- level.

In addition, a positive interest rate shock, representing a contrarian monetary policy, leads to
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decreasing demand and prices of aluminum, copper, and lead, underlining the theory of Frankel
(2008), since the cost of capital for holding a commodity should decrease and the demand
for commodities as an alternative asset class should increase in response to an expansionary
monetary policy. In contrast, the positive reaction of the nickel, tin and zinc price are in line
with the findings of the GVAR model as well as the studies of Hammoudeh et al. (2015), and
Schischke and Rathgeber (2023).

In general, the MS-GVAR models, reflecting the dependencies between the commodities in the
transformation paths reflect the impact of the fundamentals on prices, as well as spillover effects
between the metal markets. Moreover, the GIRF analysis of shocks to the exogenous variables
underline the commodity markets are highly affected by the economy.
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D.3.2 Robustness Analyses

The scarcity risk assessment framework is based on assumptions of a price threshold, the under-
lying scenario values, the substitutability, as well as a scaling factor for the commodity amount
required. Therefore, we assess the robustness of the framework as well as the corresponding re-
sults by calculating the scarcity risk of the resource demands of the transformation paths of the
German Energiewende under different assumptions. Hereby, we investigate to what extent our
results remain valid if the price threshold, the scenario values, the substitutability, or the scaling
factor change. In particular, we focus on one assumption each and present the corresponding
expected loss due to scarcity (ES) per commodity, path and scenario in the following.

For a comparison between the models, we restrict the commodity set to the industrial metals,
which are considered in the MS-GVAR model. Hereby, the commodity-specific results of the
probability of scarcity and expected loss due to scarcity do not change for the logistic regression
model, as spillovers between the commodity markets are not reflected. However, due to the
interdependencies in the GVAR model, we recalculate the probability of scarcity of the industrial
metals for the time-invariant analysis, see Appendix D.3.2.5. Moreover, different price thresholds
and scenario values probably lead to different probability of scarcity values for all models which
is why we recalculate the probabilities of scarcity in Appendix D.3.2.1 and Appendix D.3.2.2 for
the (MS-)GVAR model as well as the logistic regression model. In contrast, the definition of the
scaling factor, and the substitutability, only affect the exposure at scarcity, loss given scarcity,
and expected loss due to scarcity, respectively. Therefore, we only provide the commodity-
specific expected loss due to scarcity values for these robustness analyses in Appendix D.3.2.4,
and Appendix D.3.2.3, as the corresponding probability of scarcity is already presented in Section
5.3.1.

D.3.2.1 Robustness Analysis for the Threshold Price

D.3.2.1.1 Results of the Robustness Analysis for the Threshold Price of the re-
duced Sample
Table D.28: Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the
threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.42 0.02 0.00 0.06 0.00 0.00 0.29 0.08 0.00 0.04 0.06
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.94 0.06 1.00 0.01 0.02 1.00 0.98 0.41 1.00 1.00
Foc. FX 0.87 0.34 0.01 0.88 0.01 0.02 0.97 0.53 0.09 0.77 0.89
Foc. FFR 0.78 0.19 0.01 0.29 0.02 0.02 0.75 0.31 0.06 0.28 0.35
Foc. Extr. EA 1.00 1.00 0.67 1.00 0.33 0.34 1.00 1.00 0.98 1.00 1.00
Foc. Extr. FX 0.95 0.76 0.17 0.99 0.33 0.19 0.99 0.86 0.28 0.96 0.99
Foc. Extr. FFR 0.90 0.44 0.10 0.56 0.15 0.24 0.90 0.55 0.20 0.61 0.65
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.21 0.01 0.00 0.01 0.00 0.00 0.10 0.02 0.00 0.01 0.03
Q. 60% 0.94 0.38 0.02 0.38 0.02 0.04 0.94 0.50 0.08 0.42 0.43
Q. 75% 1.00 1.00 0.75 1.00 0.80 0.88 1.00 1.00 0.96 1.00 1.00

M
ea

n

Mean 1.00 0.17 0.00 0.42 0.95 0.00 0.66 0.20 0.99 0.21 0.01
Shock 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.18 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.84
Foc. FX 1.00 0.79 0.04 1.00 0.99 0.00 0.99 0.76 1.00 0.95 0.54
Foc. FFR 1.00 0.48 0.04 0.77 0.99 0.00 0.93 0.50 1.00 0.65 0.12
Foc. Extr. EA 1.00 1.00 0.84 1.00 1.00 0.02 1.00 1.00 1.00 1.00 0.99
Foc. Extr. FX 1.00 0.94 0.31 1.00 1.00 0.01 1.00 0.94 1.00 0.99 0.93
Foc. Extr. FFR 1.00 0.73 0.17 0.89 1.00 0.01 0.97 0.71 1.00 0.84 0.37
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00
Q. 40% 0.34 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.37 0.00 0.00
Q. 50% 0.92 0.08 0.00 0.10 0.76 0.00 0.21 0.09 0.86 0.05 0.00
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the threshold price for
the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
Q. 60% 1.00 0.74 0.05 0.88 1.00 0.00 0.99 0.75 1.00 0.82 0.15
Q. 75% 1.00 1.00 0.91 1.00 1.00 0.22 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.38 0.02 0.00 0.05 0.00 0.00 0.28 0.05 0.00 0.02 0.06
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.94 0.06 1.00 0.00 0.01 1.00 0.97 0.38 1.00 1.00
Foc. FX 0.85 0.31 0.00 0.89 0.01 0.01 0.99 0.49 0.08 0.77 0.90
Foc. FFR 0.75 0.17 0.01 0.27 0.01 0.01 0.75 0.28 0.06 0.25 0.34
Foc. Extr. EA 1.00 1.00 0.67 1.00 0.30 0.27 1.00 1.00 0.98 1.00 1.00
Foc. Extr. FX 0.94 0.77 0.16 0.99 0.31 0.14 1.00 0.85 0.30 0.96 0.99
Foc. Extr. FFR 0.89 0.41 0.08 0.54 0.13 0.21 0.90 0.52 0.19 0.57 0.63
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.19 0.01 0.00 0.01 0.00 0.00 0.09 0.02 0.00 0.00 0.02
Q. 60% 0.94 0.29 0.01 0.34 0.01 0.01 0.92 0.44 0.09 0.37 0.38
Q. 75% 1.00 1.00 0.69 1.00 0.75 0.80 1.00 1.00 0.97 1.00 1.00

M
ea

n

Mean 0.99 0.16 0.00 0.41 0.94 0.00 0.65 0.17 0.98 0.18 0.00
Shock 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.16 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.84
Foc. FX 1.00 0.77 0.03 1.00 0.99 0.00 0.99 0.74 1.00 0.96 0.52
Foc. FFR 1.00 0.46 0.04 0.77 0.99 0.00 0.93 0.46 1.00 0.62 0.12
Foc. Extr. EA 1.00 1.00 0.83 1.00 1.00 0.01 1.00 1.00 1.00 1.00 0.98
Foc. Extr. FX 1.00 0.94 0.28 1.00 1.00 0.00 1.00 0.94 1.00 1.00 0.93
Foc. Extr. FFR 1.00 0.72 0.15 0.89 1.00 0.00 0.98 0.67 1.00 0.83 0.36
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.37 0.00 0.00 0.00 0.11 0.00 0.01 0.00 0.38 0.00 0.00
Q. 50% 0.92 0.06 0.00 0.09 0.76 0.00 0.20 0.07 0.86 0.04 0.00
Q. 60% 1.00 0.68 0.02 0.87 1.00 0.00 0.99 0.68 1.00 0.78 0.13
Q. 75% 1.00 1.00 0.87 1.00 1.00 0.10 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.49 0.02 0.00 0.07 0.00 0.00 0.34 0.10 0.00 0.03 0.07
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.96 0.07 1.00 0.01 0.02 1.00 0.99 0.43 1.00 1.00
Foc. FX 0.89 0.37 0.01 0.90 0.01 0.02 0.99 0.59 0.08 0.79 0.90
Foc. FFR 0.82 0.23 0.01 0.31 0.02 0.02 0.80 0.34 0.07 0.31 0.35
Foc. Extr. EA 1.00 1.00 0.69 1.00 0.31 0.32 1.00 1.00 0.98 1.00 1.00
Foc. Extr. FX 0.96 0.80 0.19 0.99 0.34 0.19 1.00 0.88 0.31 0.97 0.99
Foc. Extr. FFR 0.91 0.48 0.11 0.58 0.16 0.25 0.92 0.59 0.21 0.61 0.65
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.25 0.01 0.00 0.02 0.00 0.00 0.10 0.02 0.00 0.01 0.03
Q. 60% 0.97 0.39 0.01 0.40 0.02 0.04 0.94 0.55 0.09 0.42 0.42
Q. 75% 1.00 1.00 0.76 1.00 0.76 0.87 1.00 1.00 0.97 1.00 1.00

M
ea

n

Mean 1.00 0.20 0.00 0.44 0.96 0.00 0.71 0.23 0.99 0.24 0.01
Shock 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.19 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.86
Foc. FX 1.00 0.81 0.04 1.00 1.00 0.00 1.00 0.80 1.00 0.97 0.55
Foc. FFR 1.00 0.53 0.04 0.79 0.99 0.00 0.95 0.54 1.00 0.67 0.13
Foc. Extr. EA 1.00 1.00 0.85 1.00 1.00 0.02 1.00 1.00 1.00 1.00 0.99
Foc. Extr. FX 1.00 0.95 0.31 1.00 1.00 0.01 1.00 0.95 1.00 0.99 0.93
Foc. Extr. FFR 1.00 0.76 0.19 0.90 1.00 0.01 0.98 0.75 1.00 0.86 0.38
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.33 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.37 0.00 0.00
Q. 50% 0.93 0.08 0.00 0.10 0.78 0.00 0.22 0.09 0.87 0.05 0.00
Q. 60% 1.00 0.76 0.04 0.89 1.00 0.00 0.99 0.77 1.00 0.82 0.15
Q. 75% 1.00 1.00 0.91 1.00 1.00 0.18 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.43 0.02 0.00 0.06 0.00 0.00 0.29 0.08 0.00 0.03 0.06
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.96 0.07 1.00 0.01 0.02 1.00 0.99 0.36 1.00 1.00
Foc. FX 0.87 0.31 0.01 0.89 0.02 0.01 0.99 0.55 0.07 0.78 0.90
Foc. FFR 0.78 0.18 0.01 0.29 0.01 0.01 0.76 0.31 0.06 0.28 0.33
Foc. Extr. EA 1.00 1.00 0.68 1.00 0.30 0.27 1.00 1.00 0.98 1.00 1.00
Foc. Extr. FX 0.95 0.77 0.18 0.99 0.33 0.15 1.00 0.87 0.28 0.97 0.99
Foc. Extr. FFR 0.91 0.43 0.09 0.57 0.14 0.24 0.91 0.57 0.19 0.60 0.62
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.20 0.01 0.00 0.01 0.00 0.00 0.08 0.02 0.00 0.00 0.02
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the threshold price for
the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
U

N
A

Q. 60% 0.94 0.29 0.01 0.35 0.01 0.02 0.92 0.47 0.07 0.34 0.37
Q. 75% 1.00 1.00 0.72 1.00 0.74 0.81 1.00 1.00 0.97 1.00 1.00

M
ea

n

Mean 1.00 0.17 0.00 0.44 0.96 0.00 0.66 0.20 0.99 0.21 0.01
Shock 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.19 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.85
Foc. FX 1.00 0.78 0.04 1.00 1.00 0.00 1.00 0.77 1.00 0.97 0.52
Foc. FFR 1.00 0.47 0.04 0.78 0.99 0.00 0.95 0.51 1.00 0.66 0.11
Foc. Extr. EA 1.00 1.00 0.84 1.00 1.00 0.02 1.00 1.00 1.00 1.00 0.98
Foc. Extr. FX 1.00 0.95 0.30 1.00 1.00 0.00 1.00 0.94 1.00 1.00 0.94
Foc. Extr. FFR 1.00 0.74 0.17 0.90 1.00 0.00 0.98 0.73 1.00 0.86 0.35
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.36 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.38 0.00 0.00
Q. 50% 0.92 0.06 0.00 0.09 0.76 0.00 0.20 0.08 0.85 0.04 0.00
Q. 60% 1.00 0.67 0.04 0.88 1.00 0.00 0.99 0.72 1.00 0.77 0.11
Q. 75% 1.00 1.00 0.88 1.00 1.00 0.12 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), derived from the GVAR model based
on the weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the average
price level of the previous decade (Mean). Hereby, the probability of scarcity is calculated for the scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables.
The presented results are derived under the robustness test for the threshold prices, in particular, the threshold prices are
calculated as the average commodity price of the period from 2015 to 2019.

Table D.29: Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the
threshold price for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.97 1.00 1.00 0.95 0.78 0.74
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 0.99
Foc. FX 1.00 1.00 1.00 1.00 0.99 0.99
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.02 0.12 0.00 0.00 0.00
Q. 50% 0.14 1.00 1.00 0.34 0.32 0.18
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 1.00 1.00 1.00 0.06
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 1.00 0.60
Foc. FX 1.00 1.00 1.00 1.00 1.00 0.69
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 0.87
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 0.90
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.62 0.55 0.01 0.07 0.00
Q. 50% 0.99 1.00 1.00 0.84 0.99 0.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.96 1.00 1.00 0.97 0.75 0.86
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the threshold price
for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
S

U
F

20
19

Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.02 0.12 0.00 0.00 0.00
Q. 50% 0.13 1.00 1.00 0.33 0.32 0.20
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n
Mean 1.00 1.00 1.00 1.00 1.00 0.08
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 1.00 0.71
Foc. FX 1.00 1.00 1.00 1.00 1.00 0.79
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 0.91
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 0.93
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.63 0.59 0.01 0.07 0.00
Q. 50% 0.99 1.00 1.00 0.85 1.00 0.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.98 1.00 1.00 0.96 0.76 0.78
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.98 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.02 0.14 0.00 0.00 0.00
Q. 50% 0.14 0.99 1.00 0.34 0.32 0.18
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 1.00 1.00 1.00 0.07
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 1.00 0.65
Foc. FX 1.00 1.00 1.00 1.00 1.00 0.74
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 0.89
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 0.93
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.61 0.56 0.02 0.09 0.00
Q. 50% 0.98 1.00 1.00 0.84 1.00 0.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.97 1.00 1.00 0.95 0.78 0.83
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.98 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.02 0.14 0.00 0.01 0.00
Q. 50% 0.14 0.99 1.00 0.31 0.34 0.22
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 1.00 1.00 1.00 0.06
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 1.00 0.68
Foc. FX 1.00 1.00 1.00 1.00 1.00 0.71
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 0.91
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 0.93
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the threshold price
for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
U

N
A

M
ea

n

Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.63 0.56 0.01 0.08 0.00
Q. 50% 0.99 1.00 1.00 0.82 1.00 0.01
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), derived
from the MS-GVAR model based on the weight matrices representing the depen-
dencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the
initial basis price level of 2019 or on the average price level of the previous
decade (Mean). Hereby, the probability of scarcity is calculated for the scenar-
ios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus
FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA),
Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR),
25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60%
quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables. The presented
results are derived under the robustness test for the threshold prices, in partic-
ular, the threshold prices are calculated as the average commodity price of the
period from 2015 to 2019.

Table D.30: Estimated coefficients of the logistic regression models of the robustness analysis for the threshold price for the
reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
U.S. IP -0.29
GDP 0.59 0.37
GDPc -0.48 0.62 0.95
FX -0.14 -0.67 -0.04 -0.76 -0.58 0.18
FFR -0.18 -2.47 -1.60 0.51
LIR 0.10 4.20 -0.27 0.39 0.37
CPI 0.90
MSCI -0.05
supply 0.38 -0.02
OIL 0.49 0.40 0.23 -0.32 0.48
ND -0.27
demand 0.71

This table displays the estimated coefficients of the individual logistic regression models of the commodities silver (Ag),
aluminum (Al), cobalt (Co), copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), based on the identified independent variables from the two stage model
selection. Hereby, the independent variables are U.S. industrial production (U.S. IP), world gross domestic product (GDP),
world gross domestic product per capita (GDPc), U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 10-year
U.S. Treasury rate (LIR), U.S. consumer price index (CPI), MSCI world stock index (MSCI), commodity-specific supply
(supply), West Texas Intermediate spot crude oil price (OIL), global natural disasters (ND), and commodity-specific
demand (demand). The presented results are derived under the robustness test for the threshold prices, in particular, the
threshold prices are calculated as the average commodity price of the period from 2015 to 2019.

Table D.31: Probability of scarcity per commodity derived from the logistic regression models of the robustness analysis
for the threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Mean 0.07 0.08 0.03 0.18 0.30 0.31 0.00 0.16 0.25 0.06 0.18 0.07 0.05
Shock 0.18 0.13 0.12 0.33 0.88 0.39 0.79 0.61 0.41 0.18 0.28 0.13 0.34
Extr. 0.39 0.21 0.36 0.51 0.99 0.47 1.00 0.93 0.60 0.41 0.42 0.22 0.82
Foc. EA 0.07 0.08 0.03 0.18 0.42 0.31 0.00 0.21 0.25 0.06 0.18 0.07 0.05
Foc. FX 0.07 0.08 0.03 0.21 0.45 0.32 0.00 0.28 0.25 0.10 0.21 0.07 0.05
Foc. FFR 0.07 0.08 0.03 0.20 0.71 0.31 0.00 0.37 0.25 0.06 0.18 0.07 0.08
Foc. Extr. EA 0.07 0.08 0.03 0.18 0.55 0.31 0.00 0.26 0.25 0.06 0.18 0.07 0.05
Foc. Extr. FX 0.07 0.08 0.03 0.23 0.60 0.33 0.00 0.44 0.25 0.16 0.24 0.07 0.05
Foc. Extr. FFR 0.07 0.08 0.03 0.23 0.93 0.31 0.00 0.63 0.25 0.06 0.18 0.07 0.10
Q. 25% 0.07 0.08 0.02 0.16 0.09 0.30 0.00 0.06 0.17 0.04 0.16 0.07 0.01
Q. 40% 0.07 0.08 0.02 0.17 0.16 0.31 0.00 0.09 0.20 0.04 0.17 0.07 0.03
Q. 50% 0.07 0.08 0.03 0.17 0.23 0.31 0.00 0.12 0.22 0.04 0.17 0.07 0.05
Q. 60% 0.10 0.09 0.04 0.21 0.41 0.33 0.00 0.20 0.28 0.06 0.19 0.09 0.07
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Probability of scarcity per commodity derived from the logistic regression models of the robustness analysis for the threshold
price for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Q. 75% 0.15 0.12 0.09 0.27 0.72 0.36 0.19 0.38 0.40 0.12 0.24 0.11 0.15

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), derived from the logistic regression models based on preselected determinants. Hereby, the probability of scarcity
is calculated for the scenarios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%) of the input variables. The presented results are derived under the robustness test for the threshold
prices, in particular, the threshold prices are calculated as the average commodity price of the period from 2015 to 2019.

Table D.32: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 3.81 0.19 0.00 1.69 0.00 0.00 25.33 0.11 0.00 0.32 0.46
REMod − SUF 2.57 0.13 0.00 1.22 0.00 0.00 17.12 0.08 0.00 0.22 0.47
REMod − P ER 4.33 0.17 0.00 1.44 0.00 0.00 20.04 0.11 0.00 0.31 0.38
REMod − UNA 6.07 0.22 0.00 1.60 0.00 0.00 25.36 0.06 0.00 0.24 0.49

M
ea

n REMod − REF 9.14 1.44 0.00 11.37 125.45 0.00 57.48 0.28 0.53 1.95 0.04
REMod − SUF 6.17 0.97 0.00 8.22 91.86 0.00 38.85 0.19 0.35 1.33 0.04
REMod − P ER 10.41 1.26 0.00 9.66 128.53 0.00 45.47 0.27 0.66 1.88 0.04
REMod − UNA 14.58 1.61 0.00 10.76 191.65 0.00 57.54 0.16 0.38 1.44 0.05

Sh
oc

k 20
19

REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 24.53 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.49 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 17.69 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.09 87.45 0.78 0.38 6.72 7.66

E
xt

r.
20

19

REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 9.17 7.90 19.78 27.27 1.19 0.53 87.36 1.36 0.22 9.12 7.19
REMod − SUF 6.19 5.36 13.30 19.71 0.87 0.36 59.05 0.92 0.14 6.21 7.31
REMod − P ER 10.44 6.94 14.26 23.16 1.22 0.38 69.11 1.33 0.27 8.77 5.89
REMod − UNA 14.62 8.85 20.25 25.80 1.81 0.54 87.45 0.76 0.16 6.72 7.63

M
ea

n REMod − REF 9.17 8.36 54.78 27.27 131.77 0.00 87.36 1.38 0.53 9.12 6.05
REMod − SUF 6.19 5.67 36.83 19.71 96.49 0.00 59.05 0.94 0.35 6.21 6.15
REMod − P ER 10.44 7.34 39.49 23.16 135.01 0.00 69.11 1.36 0.67 8.77 4.96
REMod − UNA 14.62 9.36 56.06 25.80 201.32 0.00 87.45 0.78 0.38 6.72 6.42

Fo
c.

F
X 20

19

REMod − REF 8.00 2.83 2.13 24.10 1.84 0.43 85.09 0.74 0.05 7.01 6.44
REMod − SUF 5.40 1.92 1.43 17.42 1.35 0.29 57.51 0.50 0.03 4.78 6.55
REMod − P ER 9.11 2.49 1.54 20.47 1.89 0.31 67.31 0.72 0.06 6.74 5.28
REMod − UNA 12.75 3.17 2.18 22.81 2.82 0.44 85.17 0.41 0.03 5.17 6.85

M
ea

n REMod − REF 9.16 6.61 12.48 27.19 131.11 0.00 86.92 1.05 0.53 8.69 3.91
REMod − SUF 6.18 4.48 8.39 19.65 96.01 0.00 58.75 0.71 0.35 5.92 3.98
REMod − P ER 10.43 5.81 8.99 23.09 134.34 0.00 68.76 1.03 0.67 8.35 3.21
REMod − UNA 14.60 7.41 12.77 25.72 200.31 0.00 87.01 0.59 0.38 6.41 4.16
REMod − REF 7.13 1.62 3.65 7.85 2.50 0.56 65.87 0.43 0.03 2.54 2.55

Fo
c.

F
F

R 20
19

REMod − SUF 4.82 1.10 2.46 5.68 1.83 0.37 44.52 0.29 0.02 1.73 2.60
REMod − P ER 8.13 1.42 2.63 6.67 2.57 0.40 52.11 0.42 0.04 2.45 2.09
REMod − UNA 11.37 1.82 3.74 7.43 3.83 0.57 65.94 0.24 0.02 1.88 2.71

M
ea

n REMod − REF 9.15 4.00 13.69 21.05 130.32 0.00 81.42 0.69 0.53 5.91 0.89
REMod − SUF 6.18 2.72 9.21 15.22 95.43 0.00 55.03 0.47 0.35 4.02 0.91
REMod − P ER 10.42 3.52 9.87 17.88 133.53 0.00 64.41 0.68 0.67 5.68 0.73
REMod − UNA 14.59 4.49 14.02 19.92 199.10 0.00 81.50 0.39 0.38 4.36 0.95

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 9.17 8.36 203.90 27.27 43.09 8.60 87.36 1.38 0.52 9.12 7.21
REMod − SUF 6.19 5.67 137.08 19.71 31.55 5.78 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 146.99 23.16 44.15 6.20 69.11 1.36 0.66 8.77 5.91
REMod − UNA 14.62 9.36 208.69 25.80 65.83 8.80 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 256.54 27.27 131.77 0.63 87.36 1.38 0.53 9.12 7.12
REMod − SUF 6.19 5.67 172.48 19.71 96.49 0.42 59.05 0.94 0.35 6.21 7.24
REMod − P ER 10.44 7.34 184.94 23.16 135.01 0.45 69.11 1.36 0.67 8.77 5.83
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
REMod − UNA 14.62 9.36 262.57 25.80 201.32 0.65 87.45 0.78 0.38 6.72 7.56

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 8.75 6.36 50.52 26.97 43.22 4.90 86.92 1.19 0.15 8.77 7.13
REMod − SUF 5.90 4.31 33.96 19.49 31.65 3.29 58.75 0.81 0.10 5.97 7.25
REMod − P ER 9.96 5.59 36.42 22.90 44.28 3.53 68.76 1.17 0.19 8.43 5.85
REMod − UNA 13.95 7.13 51.70 25.52 66.03 5.01 87.01 0.67 0.11 6.47 7.57

M
ea

n REMod − REF 9.17 7.85 93.12 27.27 131.51 0.28 87.27 1.29 0.53 9.07 6.73
REMod − SUF 6.19 5.32 62.61 19.71 96.30 0.19 58.99 0.88 0.35 6.18 6.85
REMod − P ER 10.44 6.89 67.13 23.16 134.74 0.20 69.04 1.27 0.67 8.72 5.52
REMod − UNA 14.62 8.79 95.31 25.80 200.92 0.28 87.36 0.73 0.38 6.69 7.15

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 8.24 3.64 31.04 15.16 19.77 6.03 78.36 0.77 0.11 5.53 4.71
REMod − SUF 5.56 2.47 20.87 10.96 14.47 4.05 52.97 0.52 0.07 3.77 4.79
REMod − P ER 9.39 3.19 22.38 12.88 20.25 4.35 61.99 0.75 0.13 5.32 3.87
REMod − UNA 13.14 4.07 31.77 14.35 30.20 6.17 78.44 0.43 0.08 4.08 5.01

M
ea

n REMod − REF 9.16 6.14 52.34 24.38 131.24 0.15 85.00 0.98 0.53 7.70 2.68
REMod − SUF 6.18 4.16 35.19 17.62 96.10 0.10 57.45 0.67 0.35 5.25 2.73
REMod − P ER 10.43 5.39 37.73 20.70 134.47 0.11 67.24 0.97 0.67 7.41 2.20
REMod − UNA 14.60 6.87 53.57 23.07 200.51 0.15 85.09 0.55 0.38 5.68 2.85

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 3.12 0.00 0.00 0.00 14.63 0.00 0.26 0.00 0.20 0.00 0.00
REMod − SUF 2.10 0.00 0.00 0.00 10.71 0.00 0.18 0.00 0.13 0.00 0.00
REMod − P ER 3.55 0.00 0.00 0.00 14.99 0.00 0.21 0.00 0.25 0.00 0.00
REMod − UNA 4.97 0.00 0.00 0.00 22.35 0.00 0.26 0.00 0.14 0.00 0.00

Q
.5

0%
20

19

REMod − REF 1.91 0.07 0.00 0.27 0.00 0.00 9.00 0.03 0.00 0.06 0.19
REMod − SUF 1.29 0.05 0.00 0.20 0.00 0.00 6.08 0.02 0.00 0.04 0.20
REMod − P ER 2.17 0.06 0.00 0.23 0.00 0.00 7.12 0.03 0.00 0.06 0.16
REMod − UNA 3.04 0.07 0.00 0.26 0.00 0.00 9.01 0.02 0.00 0.05 0.21

M
ea

n REMod − REF 8.43 0.66 0.00 2.73 99.49 0.00 18.78 0.12 0.46 0.47 0.01
REMod − SUF 5.69 0.45 0.00 1.97 72.85 0.00 12.70 0.08 0.30 0.32 0.01
REMod − P ER 9.60 0.58 0.00 2.32 101.93 0.00 14.86 0.12 0.57 0.46 0.01
REMod − UNA 13.44 0.74 0.00 2.58 151.99 0.00 18.80 0.07 0.33 0.35 0.02

Q
.6

0%
20

19

REMod − REF 8.67 3.14 4.56 10.39 2.50 1.01 82.38 0.69 0.05 3.86 3.12
REMod − SUF 5.85 2.13 3.07 7.51 1.83 0.68 55.68 0.47 0.03 2.63 3.17
REMod − P ER 9.87 2.75 3.29 8.82 2.57 0.73 65.17 0.68 0.06 3.71 2.56
REMod − UNA 13.82 3.51 4.67 9.83 3.83 1.03 82.46 0.39 0.03 2.84 3.32

M
ea

n REMod − REF 9.17 6.15 14.00 23.97 131.51 0.03 86.66 1.03 0.53 7.47 1.07
REMod − SUF 6.19 4.17 9.41 17.32 96.30 0.02 58.58 0.70 0.35 5.09 1.09
REMod − P ER 10.44 5.40 10.09 20.36 134.74 0.02 68.55 1.02 0.67 7.18 0.88
REMod − UNA 14.62 6.89 14.33 22.68 200.92 0.03 86.75 0.58 0.38 5.51 1.14

Q
.7

5%
20

19

REMod − REF 9.17 8.36 228.24 27.27 105.28 22.33 87.36 1.38 0.52 9.12 7.21
REMod − SUF 6.19 5.67 153.45 19.71 77.10 15.01 59.05 0.94 0.34 6.21 7.33
REMod − P ER 10.44 7.34 164.54 23.16 107.88 16.10 69.11 1.36 0.65 8.77 5.91
REMod − UNA 14.62 9.36 233.60 25.80 160.85 22.85 87.45 0.78 0.37 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 277.54 27.27 131.77 5.63 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 186.59 19.71 96.49 3.78 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 200.08 23.16 135.01 4.06 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 284.06 25.80 201.32 5.76 87.45 0.78 0.38 6.72 7.66

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). In particular, the results are derived under
the robustness test for the threshold prices, in particular, the threshold prices are calculated as the average commodity
price of the period from 2015 to 2019.
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Table D.33: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the threshold price for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n 20
19

REMod − REF 8.14 27.27 87.36 1.32 7.11 5.33
REMod − SUF 5.52 19.71 59.05 0.89 4.84 5.42
REMod − P ER 7.15 23.16 69.11 1.29 6.84 4.37
REMod − UNA 9.12 25.80 87.45 0.74 5.24 5.67

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 0.40
REMod − SUF 5.67 19.71 59.05 0.94 6.21 0.41
REMod − P ER 7.34 23.16 69.11 1.36 8.77 0.33
REMod − UNA 9.36 25.80 87.45 0.78 6.72 0.43

Sh
oc

k 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

E
xt

r.
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 8.36 27.27 87.36 1.38 9.01 7.17
REMod − SUF 5.67 19.71 59.05 0.94 6.14 7.29
REMod − P ER 7.34 23.16 69.11 1.36 8.66 5.88
REMod − UNA 9.36 25.80 87.45 0.78 6.64 7.61

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 4.30
REMod − SUF 5.67 19.71 59.05 0.94 6.21 4.37
REMod − P ER 7.34 23.16 69.11 1.36 8.77 3.52
REMod − UNA 9.36 25.80 87.45 0.78 6.72 4.56

Fo
c.

F
X 20

19

REMod − REF 8.36 27.27 87.36 1.38 9.01 7.11
REMod − SUF 5.67 19.71 59.05 0.94 6.14 7.23
REMod − P ER 7.34 23.16 69.11 1.36 8.66 5.83
REMod − UNA 9.36 25.80 87.45 0.78 6.64 7.55

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 4.95
REMod − SUF 5.67 19.71 59.05 0.94 6.21 5.03
REMod − P ER 7.34 23.16 69.11 1.36 8.77 4.05
REMod − UNA 9.36 25.80 87.45 0.78 6.72 5.25

Fo
c.

F
F

R 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 6.27
REMod − SUF 5.67 19.71 59.05 0.94 6.21 6.38
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.14
REMod − UNA 9.36 25.80 87.45 0.78 6.72 6.66

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 6.50
REMod − SUF 5.67 19.71 59.05 0.94 6.21 6.61
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.33
REMod − UNA 9.36 25.80 87.45 0.78 6.72 6.91

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
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Al Cu Ni Pb Sn Zn
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19
REMod − REF 0.00 0.65 10.83 0.00 0.04 0.00
REMod − SUF 0.00 0.47 7.32 0.00 0.02 0.00
REMod − P ER 0.00 0.56 8.57 0.00 0.04 0.00
REMod − UNA 0.00 0.62 10.84 0.00 0.03 0.00

M
ea

n REMod − REF 0.00 16.85 47.70 0.02 0.64 0.00
REMod − SUF 0.00 12.18 32.24 0.01 0.43 0.00
REMod − P ER 0.00 14.31 37.73 0.02 0.61 0.00
REMod − UNA 0.00 15.95 47.75 0.01 0.47 0.00

Q
.5

0%
20

19

REMod − REF 1.19 27.16 87.36 0.47 2.90 1.30
REMod − SUF 0.80 19.63 59.05 0.32 1.97 1.32
REMod − P ER 1.04 23.07 69.11 0.46 2.79 1.06
REMod − UNA 1.33 25.70 87.45 0.27 2.14 1.38

M
ea

n REMod − REF 8.24 27.27 87.36 1.16 9.01 0.00
REMod − SUF 5.59 19.71 59.05 0.79 6.14 0.00
REMod − P ER 7.24 23.16 69.11 1.14 8.66 0.00
REMod − UNA 9.23 25.80 87.45 0.65 6.64 0.00

Q
.6

0%
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.7

5%
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

This table displays the expected loss due to scarcity for the commodities aluminum (Al), copper (Cu), nickel (Ni),
lead (Pb), tin (Sn), and zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA),
as well as per scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%)) for the input variables. Hereby, the values are derived from the MS-GVAR model based on the
weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean). In particular, the results are derived under the robustness test for the
threshold prices, in particular, the threshold prices are calculated as the average commodity price of the period from 2015
to 2019.

Table D.34: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models of the robustness analysis for the threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n

REMod − REF 0.67 0.68 9.31 5.03 43.17 41.38 0.01 2.98 21.59 0.09 0.10 0.67 0.39
REMod − SUF 0.45 0.46 6.26 3.64 30.86 30.30 0.01 2.12 14.59 0.06 0.06 0.46 0.40
REMod − P ER 0.76 0.59 6.71 4.28 41.58 42.40 0.01 2.76 17.08 0.09 0.12 0.64 0.32
REMod − UNA 1.07 0.76 9.52 4.76 20.58 63.22 0.01 1.28 21.61 0.05 0.07 0.49 0.42
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

Sh
oc

k

REMod − REF 1.68 1.12 35.94 8.91 124.58 51.27 19.96 11.33 36.17 0.25 0.15 1.18 2.44
REMod − SUF 1.14 0.76 24.17 6.44 89.05 37.54 13.42 8.06 24.45 0.17 0.10 0.80 2.48
REMod − P ER 1.92 0.99 25.91 7.57 119.98 52.53 14.39 10.48 28.62 0.24 0.19 1.13 2.00
REMod − UNA 2.68 1.26 36.79 8.43 59.40 78.33 20.42 4.85 36.21 0.14 0.11 0.87 2.59

E
xt

r.

REMod − REF 3.58 1.80 110.33 13.91 140.55 61.91 25.23 17.18 52.72 0.56 0.22 1.98 5.91
REMod − SUF 2.41 1.22 74.17 10.05 100.46 45.33 16.96 12.22 35.63 0.38 0.15 1.35 6.01
REMod − P ER 4.07 1.58 79.53 11.81 135.35 63.43 18.20 15.90 41.70 0.55 0.28 1.91 4.84
REMod − UNA 5.70 2.01 112.92 13.16 67.01 94.58 25.82 7.36 52.77 0.32 0.16 1.46 6.27

Fo
c.

E
A

REMod − REF 0.67 0.68 9.31 5.03 59.55 41.38 0.01 3.84 21.59 0.09 0.10 0.67 0.39
REMod − SUF 0.45 0.46 6.26 3.64 42.57 30.30 0.01 2.73 14.59 0.06 0.06 0.46 0.40
REMod − P ER 0.76 0.59 6.71 4.28 57.35 42.40 0.01 3.56 17.08 0.09 0.12 0.64 0.32
REMod − UNA 1.07 0.76 9.52 4.76 28.39 63.22 0.01 1.65 21.61 0.05 0.07 0.49 0.42

Fo
c.

F
X

REMod − REF 0.67 0.68 9.31 5.60 63.21 42.45 0.01 5.14 21.59 0.14 0.11 0.67 0.39
REMod − SUF 0.45 0.46 6.26 4.05 45.18 31.09 0.01 3.65 14.59 0.10 0.07 0.46 0.40
REMod − P ER 0.76 0.59 6.71 4.75 60.87 43.50 0.01 4.75 17.08 0.14 0.14 0.64 0.32
REMod − UNA 1.07 0.76 9.52 5.30 30.14 64.86 0.01 2.20 21.61 0.08 0.08 0.49 0.42

Fo
c.

F
F

R REMod − REF 0.67 0.68 9.31 5.57 99.94 41.38 0.01 6.76 21.59 0.09 0.10 0.67 0.54
REMod − SUF 0.45 0.46 6.26 4.02 71.44 30.30 0.01 4.81 14.59 0.06 0.06 0.46 0.55
REMod − P ER 0.76 0.59 6.71 4.73 96.25 42.40 0.01 6.26 17.08 0.09 0.12 0.64 0.45
REMod − UNA 1.07 0.76 9.52 5.27 47.65 63.22 0.01 2.90 21.61 0.05 0.07 0.49 0.58

Fo
c.

E
xt

r.
E

A REMod − REF 0.67 0.68 9.31 5.03 77.27 41.38 0.01 4.88 21.59 0.09 0.10 0.67 0.39
REMod − SUF 0.45 0.46 6.26 3.64 55.23 30.30 0.01 3.47 14.59 0.06 0.06 0.46 0.40
REMod − P ER 0.76 0.59 6.71 4.28 74.41 42.40 0.01 4.52 17.08 0.09 0.12 0.64 0.32
REMod − UNA 1.07 0.76 9.52 4.76 36.84 63.22 0.01 2.09 21.61 0.05 0.07 0.49 0.42

Fo
c.

E
xt

r.
F

X REMod − REF 0.67 0.68 9.31 6.21 84.56 43.54 0.01 8.05 21.59 0.23 0.13 0.67 0.39
REMod − SUF 0.45 0.46 6.26 4.49 60.44 31.88 0.01 5.73 14.59 0.15 0.08 0.46 0.40
REMod − P ER 0.76 0.59 6.71 5.27 81.43 44.61 0.01 7.45 17.08 0.22 0.16 0.64 0.32
REMod − UNA 1.07 0.76 9.52 5.87 40.32 66.52 0.01 3.45 21.61 0.13 0.09 0.49 0.42

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.67 0.68 9.31 6.14 131.64 41.38 0.01 11.73 21.59 0.09 0.10 0.67 0.75

REMod − SUF 0.45 0.46 6.26 4.44 94.09 30.30 0.01 8.34 14.59 0.06 0.06 0.46 0.76
REMod − P ER 0.76 0.59 6.71 5.22 126.77 42.40 0.01 10.86 17.08 0.09 0.12 0.64 0.61
REMod − UNA 1.07 0.76 9.52 5.81 62.76 63.22 0.01 5.02 21.61 0.05 0.07 0.49 0.79

Q
.2

5%

REMod − REF 0.61 0.64 5.36 4.29 13.37 40.10 0.00 1.13 15.01 0.05 0.09 0.63 0.09
REMod − SUF 0.41 0.43 3.60 3.10 9.56 29.36 0.00 0.80 10.15 0.03 0.06 0.43 0.09
REMod − P ER 0.70 0.56 3.86 3.65 12.87 41.09 0.00 1.05 11.88 0.05 0.11 0.61 0.07
REMod − UNA 0.98 0.72 5.48 4.06 6.37 61.26 0.00 0.48 15.03 0.03 0.06 0.47 0.09

Q
.4

0%

REMod − REF 0.63 0.65 6.76 4.51 22.99 40.31 0.00 1.67 17.41 0.05 0.09 0.64 0.20
REMod − SUF 0.42 0.44 4.55 3.26 16.44 29.52 0.00 1.19 11.77 0.04 0.06 0.44 0.20
REMod − P ER 0.71 0.57 4.88 3.83 22.14 41.30 0.00 1.55 13.77 0.05 0.11 0.62 0.16
REMod − UNA 1.00 0.73 6.92 4.27 10.96 61.59 0.00 0.72 17.43 0.03 0.06 0.47 0.21

Q
.5

0%

REMod − REF 0.63 0.65 7.90 4.66 32.10 40.45 0.00 2.16 19.17 0.06 0.09 0.65 0.33
REMod − SUF 0.43 0.44 5.31 3.37 22.95 29.62 0.00 1.53 12.95 0.04 0.06 0.44 0.34
REMod − P ER 0.72 0.57 5.69 3.96 30.92 41.45 0.00 1.99 15.16 0.06 0.11 0.62 0.27
REMod − UNA 1.01 0.73 8.08 4.41 15.31 61.80 0.00 0.92 19.18 0.03 0.06 0.48 0.35

Q
.6

0%

REMod − REF 0.88 0.79 13.39 5.63 58.60 43.38 0.01 3.65 24.87 0.09 0.10 0.78 0.54
REMod − SUF 0.59 0.53 9.00 4.07 41.89 31.77 0.01 2.59 16.81 0.06 0.07 0.53 0.55
REMod − P ER 1.00 0.69 9.65 4.78 56.43 44.45 0.01 3.38 19.67 0.09 0.13 0.75 0.44
REMod − UNA 1.40 0.88 13.70 5.33 27.94 66.28 0.01 1.56 24.89 0.05 0.07 0.57 0.57

Q
.7

5%

REMod − REF 1.40 1.03 28.78 7.36 102.71 47.97 4.87 7.11 35.06 0.17 0.13 1.02 1.06
REMod − SUF 0.94 0.70 19.35 5.32 73.42 35.13 3.27 5.06 23.70 0.11 0.08 0.69 1.08
REMod − P ER 1.59 0.91 20.75 6.25 98.91 49.15 3.51 6.58 27.73 0.16 0.16 0.98 0.87
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the threshold price for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
REMod − UNA 2.23 1.16 29.46 6.96 48.97 73.29 4.98 3.05 35.09 0.09 0.09 0.75 1.13

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for the
threshold prices. The threshold prices are calculated as the average commodity price of the period from 2015 to 2019.
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D.3.2.1.2 Results of the Robustness Analysis for the Threshold Price of the en-
larged Sample
Table D.35: Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the
threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.00 0.00 0.00 0.01 0.00 0.99 0.00 0.15 0.00 0.04 0.47
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.97 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.35 0.47 0.10 0.97 0.00 1.00 0.66 1.00 0.00 1.00 1.00
Foc. FX 0.18 0.07 0.02 0.47 0.00 1.00 0.23 0.68 0.00 0.79 0.99
Foc. FFR 0.11 0.04 0.02 0.08 0.00 1.00 0.03 0.42 0.00 0.29 0.81
Foc. Extr. EA 0.85 0.97 0.76 1.00 0.03 1.00 0.97 1.00 0.23 1.00 1.00
Foc. Extr. FX 0.54 0.48 0.23 0.93 0.01 1.00 0.80 0.91 0.02 0.96 1.00
Foc. Extr. FFR 0.38 0.20 0.13 0.28 0.01 1.00 0.23 0.66 0.01 0.62 0.92
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.05 0.00 0.01 0.19
Q. 60% 0.23 0.10 0.02 0.11 0.00 1.00 0.07 0.65 0.00 0.44 0.91
Q. 75% 0.99 0.99 0.84 1.00 0.17 1.00 1.00 1.00 0.15 1.00 1.00

M
ea

n

Mean 0.57 0.02 0.00 0.08 0.00 0.00 0.00 0.31 0.03 0.22 0.10
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.92 0.29 1.00 0.26 0.18 0.84 1.00 0.87 1.00 1.00
Foc. FX 0.93 0.30 0.06 0.92 0.32 0.13 0.42 0.88 0.17 0.96 0.95
Foc. FFR 0.86 0.17 0.07 0.33 0.17 0.16 0.08 0.64 0.15 0.66 0.44
Foc. Extr. EA 1.00 1.00 0.90 1.00 0.80 0.72 0.99 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.97 0.75 0.39 0.99 0.77 0.48 0.88 0.97 0.49 1.00 0.99
Foc. Extr. FFR 0.95 0.41 0.24 0.61 0.44 0.61 0.35 0.81 0.35 0.86 0.73
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.31 0.01 0.00 0.02 0.00 0.00 0.00 0.15 0.01 0.06 0.04
Q. 60% 0.97 0.33 0.08 0.45 0.25 0.24 0.16 0.85 0.24 0.83 0.53
Q. 75% 1.00 1.00 0.96 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.00 0.00 0.00 0.01 0.00 0.99 0.00 0.11 0.00 0.02 0.44
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.98 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.31 0.44 0.10 0.96 0.00 1.00 0.63 1.00 0.00 1.00 1.00
Foc. FX 0.15 0.04 0.01 0.45 0.00 1.00 0.17 0.65 0.00 0.78 0.99
Foc. FFR 0.10 0.04 0.02 0.07 0.00 1.00 0.02 0.38 0.00 0.27 0.79
Foc. Extr. EA 0.85 0.96 0.75 1.00 0.03 1.00 0.96 1.00 0.21 1.00 1.00
Foc. Extr. FX 0.51 0.44 0.21 0.93 0.01 1.00 0.81 0.92 0.02 0.97 1.00
Foc. Extr. FFR 0.35 0.19 0.11 0.26 0.00 1.00 0.20 0.63 0.01 0.58 0.92
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.04 0.00 0.00 0.17
Q. 60% 0.19 0.06 0.01 0.08 0.00 1.00 0.04 0.59 0.00 0.38 0.89
Q. 75% 0.98 0.98 0.79 1.00 0.11 1.00 1.00 1.00 0.14 1.00 1.00

M
ea

n

Mean 0.55 0.02 0.00 0.07 0.00 0.00 0.00 0.27 0.02 0.19 0.10
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.91 0.28 1.00 0.21 0.12 0.83 1.00 0.86 1.00 1.00
Foc. FX 0.92 0.26 0.05 0.92 0.29 0.09 0.39 0.87 0.18 0.97 0.94
Foc. FFR 0.85 0.16 0.05 0.32 0.14 0.13 0.06 0.59 0.14 0.64 0.41
Foc. Extr. EA 1.00 1.00 0.89 1.00 0.77 0.67 0.99 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.97 0.73 0.36 0.99 0.76 0.41 0.89 0.96 0.49 1.00 0.99
Foc. Extr. FFR 0.93 0.38 0.20 0.59 0.42 0.60 0.32 0.78 0.35 0.84 0.69
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.31 0.00 0.00 0.01 0.00 0.00 0.00 0.14 0.01 0.04 0.04
Q. 60% 0.97 0.25 0.05 0.40 0.20 0.12 0.09 0.83 0.23 0.80 0.47
Q. 75% 1.00 1.00 0.94 1.00 0.99 0.98 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.01 0.00 0.00 0.01 0.00 0.99 0.00 0.18 0.00 0.04 0.47
Shock 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 0.97 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.42 0.50 0.12 0.98 0.00 1.00 0.68 1.00 0.00 1.00 1.00
Foc. FX 0.23 0.07 0.02 0.49 0.00 1.00 0.23 0.73 0.00 0.81 1.00
Foc. FFR 0.18 0.05 0.03 0.10 0.00 1.00 0.04 0.47 0.00 0.32 0.80
Foc. Extr. EA 0.89 0.97 0.77 1.00 0.03 1.00 0.97 1.00 0.22 1.00 1.00
Foc. Extr. FX 0.58 0.49 0.24 0.94 0.01 1.00 0.83 0.93 0.02 0.97 1.00
Foc. Extr. FFR 0.44 0.23 0.14 0.30 0.00 1.00 0.23 0.70 0.01 0.62 0.92
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the threshold price for
the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
P

E
R

20
19

Q. 40% 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.06 0.00 0.01 0.17
Q. 60% 0.33 0.11 0.02 0.11 0.00 1.00 0.06 0.69 0.00 0.44 0.90
Q. 75% 1.00 0.99 0.84 1.00 0.14 1.00 1.00 1.00 0.15 1.00 1.00

M
ea

n

Mean 0.64 0.02 0.00 0.09 0.00 0.00 0.00 0.36 0.03 0.25 0.12
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.94 0.30 1.00 0.25 0.18 0.86 1.00 0.88 1.00 1.00
Foc. FX 0.94 0.32 0.07 0.93 0.33 0.13 0.45 0.91 0.18 0.97 0.94
Foc. FFR 0.88 0.20 0.07 0.36 0.18 0.18 0.07 0.67 0.16 0.69 0.43
Foc. Extr. EA 1.00 1.00 0.91 1.00 0.82 0.72 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.98 0.77 0.40 0.99 0.80 0.48 0.90 0.97 0.50 1.00 0.99
Foc. Extr. FFR 0.95 0.45 0.26 0.63 0.45 0.66 0.36 0.83 0.37 0.87 0.71
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.35 0.00 0.00 0.02 0.00 0.00 0.00 0.16 0.01 0.06 0.04
Q. 60% 0.99 0.35 0.08 0.47 0.24 0.20 0.14 0.88 0.26 0.83 0.52
Q. 75% 1.00 1.00 0.96 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.00 0.00 0.00 0.01 0.00 0.99 0.00 0.15 0.00 0.03 0.44
Shock 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.97 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.36 0.46 0.12 0.97 0.00 1.00 0.65 1.00 0.00 1.00 1.00
Foc. FX 0.18 0.05 0.02 0.47 0.00 1.00 0.20 0.71 0.00 0.79 0.99
Foc. FFR 0.12 0.04 0.02 0.08 0.00 1.00 0.02 0.43 0.00 0.29 0.78
Foc. Extr. EA 0.87 0.96 0.77 1.00 0.03 1.00 0.97 1.00 0.21 1.00 1.00
Foc. Extr. FX 0.55 0.45 0.24 0.94 0.01 1.00 0.83 0.92 0.02 0.97 1.00
Foc. Extr. FFR 0.38 0.19 0.12 0.26 0.00 1.00 0.22 0.68 0.02 0.61 0.92
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.05 0.00 0.00 0.15
Q. 60% 0.19 0.07 0.01 0.09 0.00 1.00 0.05 0.63 0.00 0.37 0.86
Q. 75% 0.99 0.98 0.81 1.00 0.10 1.00 1.00 1.00 0.11 1.00 1.00

M
ea

n

Mean 0.58 0.02 0.00 0.08 0.00 0.00 0.00 0.32 0.02 0.23 0.09
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 0.93 0.30 1.00 0.24 0.14 0.85 1.00 0.88 1.00 1.00
Foc. FX 0.92 0.28 0.06 0.92 0.32 0.10 0.42 0.89 0.17 0.97 0.93
Foc. FFR 0.86 0.16 0.07 0.34 0.17 0.15 0.07 0.66 0.14 0.68 0.42
Foc. Extr. EA 1.00 1.00 0.92 1.00 0.80 0.67 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.97 0.74 0.38 0.99 0.79 0.43 0.91 0.97 0.46 1.00 0.99
Foc. Extr. FFR 0.95 0.40 0.24 0.61 0.41 0.64 0.34 0.83 0.33 0.86 0.70
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.30 0.00 0.00 0.02 0.00 0.00 0.00 0.14 0.01 0.04 0.03
Q. 60% 0.97 0.25 0.06 0.41 0.19 0.13 0.09 0.84 0.21 0.79 0.44
Q. 75% 1.00 1.00 0.94 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), derived from the GVAR model based
on the weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the average
price level of the previous decade (Mean). Hereby, the probability of scarcity is calculated for the scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables.
The presented results are derived under the robustness test for the threshold prices, in particular, the threshold prices are
calculated as the average commodity price of the period from 1995 to 2019.

Table D.36: Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the
threshold price for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.13 0.93 0.02 1.00 0.80 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.91 1.00 0.53 1.00 0.99 1.00
Foc. FX 1.00 1.00 0.81 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.98 1.00 0.85 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 0.97 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00

278 D.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE



APPENDIX D. EMPIRICAL RESULTS

Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the threshold price
for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.06
Q. 50% 0.00 0.16 0.00 0.62 0.34 1.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n
Mean 0.95 1.00 0.20 1.00 1.00 0.93
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.87 1.00 1.00 1.00
Foc. FX 1.00 1.00 0.96 1.00 1.00 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 0.96 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.04 0.00 0.03 0.07 0.00
Q. 50% 0.10 1.00 0.02 1.00 1.00 0.34
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.12 0.94 0.02 1.00 0.77 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.92 1.00 0.55 1.00 0.99 1.00
Foc. FX 0.99 1.00 0.74 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.99 1.00 0.89 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 0.94 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.06
Q. 50% 0.00 0.13 0.00 0.65 0.35 1.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.91 1.00 0.17 1.00 1.00 0.96
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.88 1.00 1.00 1.00
Foc. FX 1.00 1.00 0.94 1.00 1.00 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 0.97 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 0.98 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.03 0.00 0.04 0.08 0.00
Q. 50% 0.10 1.00 0.01 1.00 1.00 0.40
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.13 0.94 0.02 1.00 0.79 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.92 1.00 0.55 1.00 0.99 1.00
Foc. FX 1.00 1.00 0.84 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.98 1.00 0.87 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 0.97 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.06
Q. 50% 0.00 0.15 0.00 0.63 0.36 1.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.95 1.00 0.22 1.00 1.00 0.95
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.90 1.00 1.00 1.00
Foc. FX 1.00 1.00 0.97 1.00 1.00 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 0.97 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the threshold price
for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n

Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.03 0.00 0.04 0.09 0.00
Q. 50% 0.09 1.00 0.02 1.00 1.00 0.33
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.12 0.93 0.02 1.00 0.81 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.92 1.00 0.54 1.00 0.99 1.00
Foc. FX 1.00 1.00 0.84 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.99 1.00 0.86 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 0.97 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.01 0.09
Q. 50% 0.00 0.17 0.00 0.61 0.36 1.00
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.93 1.00 0.20 1.00 1.00 0.95
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.88 1.00 1.00 1.00
Foc. FX 1.00 1.00 0.97 1.00 1.00 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 0.97 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 0.99 1.00 1.00 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.04 0.00 0.03 0.10 0.00
Q. 50% 0.09 1.00 0.01 1.00 1.00 0.39
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin
(Sn), and zinc (Zn), derived from the MS-GVAR model based on the weight matrices representing the dependencies between
the commodities within the REMod − REF , REMod − SUF , REMod − P ER, and REMod − UNA transformation path
as well as on the initial basis price level of 2019 or on the average price level of the previous decade (Mean). Hereby, the
probability of scarcity is calculated for the scenarios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA),
Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX),
Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60%
quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables. The presented results are derived under the robustness
test for the threshold prices, in particular, the threshold prices are calculated as the average commodity price of the period
from 1995 to 2019.

Table D.37: Estimated coefficients of the logistic regression models of the robustness analysis for the threshold price for the
enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
U.S. IP -0.29
GDP 0.90 0.90
GDPc -0.49 0.75 0.95
FX 0.15 0.14 -0.14 0.14 -0.65 -0.02
FFR -0.24 -0.93 -0.93 2.14
LIR 0.10 0.59 -0.02 0.87 0.37
CPI 0.08
MSCI -0.21
supply 2.89 -0.02
OIL 0.31 0.31 0.34 0.40 0.48
ND -0.27
demand 1.74

This table displays the estimated coefficients of the individual logistic regression models of the commodities silver (Ag),
aluminum (Al), cobalt (Co), copper (Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni),
lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), based on the identified independent variables from the two stage model
selection. Hereby, the independent variables are U.S. industrial production (U.S. IP), world gross domestic product (GDP),
world gross domestic product per capita (GDPc), U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 10-year
U.S. Treasury rate (LIR), U.S. consumer price index (CPI), MSCI world stock index (MSCI), commodity-specific supply
(supply), West Texas Intermediate spot crude oil price (OIL), global natural disasters (ND), and commodity-specific
demand (demand). The presented results are derived under the robustness test for the threshold prices, in particular, the
threshold prices are calculated as the average commodity price of the period from 1995 to 2019.
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Table D.38: Probability of scarcity per commodity derived from the logistic regression models of the robustness analysis
for the threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Mean 0.04 0.06 0.04 0.08 0.01 0.08 0.05 0.01 0.04 0.06 0.09 0.09 0.06
Shock 0.08 0.12 0.15 0.15 0.05 0.11 0.14 0.05 0.74 0.28 0.13 0.13 0.89
Extr. 0.15 0.21 0.39 0.25 0.24 0.17 0.32 0.24 0.99 0.71 0.18 0.20 1.00
Foc. EA 0.04 0.06 0.04 0.08 0.02 0.08 0.05 0.02 0.04 0.06 0.09 0.09 0.06
Foc. FX 0.04 0.06 0.04 0.09 0.01 0.09 0.05 0.01 0.04 0.09 0.09 0.09 0.06
Foc. FFR 0.04 0.06 0.04 0.10 0.02 0.08 0.05 0.02 0.04 0.06 0.09 0.09 0.34
Foc. Extr. EA 0.04 0.06 0.04 0.08 0.04 0.08 0.05 0.04 0.04 0.06 0.09 0.09 0.06
Foc. Extr. FX 0.04 0.06 0.04 0.10 0.01 0.09 0.05 0.01 0.04 0.14 0.09 0.09 0.06
Foc. Extr. FFR 0.04 0.06 0.04 0.13 0.06 0.08 0.05 0.06 0.04 0.06 0.09 0.09 0.79
Q. 25% 0.03 0.04 0.02 0.06 0.00 0.07 0.03 0.00 0.00 0.03 0.08 0.07 0.00
Q. 40% 0.04 0.05 0.03 0.08 0.01 0.07 0.03 0.01 0.04 0.03 0.09 0.08 0.03
Q. 50% 0.04 0.05 0.04 0.08 0.01 0.08 0.04 0.01 0.07 0.05 0.09 0.09 0.06
Q. 60% 0.05 0.07 0.05 0.10 0.01 0.09 0.06 0.01 0.08 0.08 0.10 0.10 0.14
Q. 75% 0.06 0.09 0.10 0.12 0.03 0.10 0.12 0.03 0.13 0.21 0.11 0.12 0.43

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), derived from the logistic regression models based on preselected determinants. Hereby, the probability of scarcity
is calculated for the scenarios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%) of the input variables. The presented results are derived under the robustness test for the threshold
prices, in particular, the threshold prices are calculated as the average commodity price of the period from 1995 to 2019.

Table D.39: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.04 0.03 0.00 0.30 0.00 24.90 0.17 0.21 0.00 0.33 3.39
REMod − SUF 0.02 0.02 0.00 0.22 0.00 16.74 0.12 0.14 0.00 0.22 3.45
REMod − P ER 0.04 0.02 0.00 0.25 0.00 17.96 0.14 0.21 0.00 0.32 2.78
REMod − UNA 0.06 0.03 0.00 0.28 0.00 25.48 0.17 0.12 0.00 0.24 3.60

M
ea

n REMod − REF 5.21 0.15 0.61 2.10 0.26 0.08 0.17 0.43 0.01 2.04 0.74
REMod − SUF 3.52 0.10 0.41 1.52 0.19 0.05 0.12 0.29 0.01 1.39 0.76
REMod − P ER 5.93 0.13 0.44 1.78 0.27 0.05 0.14 0.43 0.02 1.96 0.61
REMod − UNA 8.30 0.17 0.62 1.99 0.40 0.08 0.17 0.24 0.01 1.51 0.79

Sh
oc

k 20
19

REMod − REF 9.17 8.36 304.32 27.27 126.10 25.23 87.36 1.38 0.52 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 92.34 16.96 59.05 0.94 0.34 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 129.21 18.20 69.11 1.36 0.65 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 192.66 25.82 87.45 0.78 0.37 6.72 7.66
REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21

M
ea

n REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

E
xt

r.
20

19

REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 3.20 3.91 31.35 26.42 0.00 25.23 57.40 1.38 0.00 9.12 7.21
REMod − SUF 2.16 2.65 21.07 19.10 0.00 16.96 38.80 0.94 0.00 6.21 7.33
REMod − P ER 3.64 3.43 22.60 22.44 0.00 18.20 45.40 1.36 0.00 8.77 5.91
REMod − UNA 5.10 4.38 32.08 25.00 0.00 25.82 57.45 0.78 0.00 6.72 7.66

M
ea

n REMod − REF 9.17 7.67 88.56 27.27 34.13 4.52 73.38 1.38 0.46 9.12 7.19
REMod − SUF 6.19 5.20 59.54 19.71 24.99 3.04 49.60 0.94 0.31 6.21 7.32
REMod − P ER 10.44 6.73 63.84 23.16 34.97 3.26 58.05 1.36 0.58 8.77 5.90
REMod − UNA 14.62 8.59 90.64 25.80 52.14 4.62 73.46 0.78 0.33 6.72 7.64

Fo
c.

F
X

20
19

REMod − REF 1.60 0.55 4.87 12.79 0.00 25.18 19.83 0.95 0.00 7.16 7.16
REMod − SUF 1.08 0.37 3.27 9.24 0.00 16.93 13.40 0.64 0.00 4.88 7.28
REMod − P ER 1.83 0.48 3.51 10.86 0.00 18.16 15.69 0.93 0.00 6.89 5.87
REMod − UNA 2.56 0.62 4.98 12.10 0.00 25.77 19.85 0.53 0.00 5.29 7.60
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

Fo
c.

F
X

M
ea

n REMod − REF 8.49 2.48 19.48 25.06 42.30 3.28 36.43 1.22 0.09 8.73 6.82
REMod − SUF 5.73 1.68 13.09 18.11 30.97 2.21 24.62 0.83 0.06 5.95 6.93
REMod − P ER 9.67 2.18 14.04 21.28 43.34 2.37 28.82 1.20 0.12 8.40 5.59
REMod − UNA 13.54 2.78 19.93 23.71 64.62 3.36 36.47 0.68 0.07 6.44 7.24

Fo
c.

F
F

R 20
19

REMod − REF 1.05 0.36 5.78 2.24 0.00 25.16 2.80 0.59 0.00 2.65 5.88
REMod − SUF 0.71 0.24 3.89 1.62 0.00 16.91 1.89 0.40 0.00 1.81 5.97
REMod − P ER 1.20 0.32 4.17 1.90 0.00 18.14 2.21 0.58 0.00 2.55 4.82
REMod − UNA 1.68 0.40 5.92 2.12 0.00 25.74 2.80 0.33 0.00 1.96 6.24

M
ea

n REMod − REF 7.85 1.45 21.00 8.97 22.93 3.94 6.90 0.89 0.08 6.02 3.20
REMod − SUF 5.30 0.99 14.12 6.48 16.79 2.65 4.66 0.60 0.05 4.10 3.25
REMod − P ER 8.94 1.28 15.14 7.62 23.49 2.84 5.46 0.87 0.10 5.79 2.62
REMod − UNA 12.51 1.63 21.49 8.49 35.03 4.03 6.91 0.50 0.06 4.44 3.40

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 7.83 8.09 232.50 27.24 3.95 25.23 84.65 1.38 0.12 9.12 7.21
REMod − SUF 5.29 5.48 156.31 19.69 2.89 16.96 57.22 0.94 0.08 6.21 7.33
REMod − P ER 8.92 7.10 167.61 23.14 4.05 18.20 66.96 1.36 0.15 8.77 5.91
REMod − UNA 12.48 9.05 237.96 25.78 6.04 25.82 84.74 0.78 0.09 6.72 7.66

M
ea

n REMod − REF 9.17 8.35 275.41 27.27 105.68 18.27 86.66 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.66 185.16 19.71 77.38 12.28 58.58 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.33 198.54 23.16 108.28 13.17 68.55 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.35 281.88 25.80 161.46 18.69 86.75 0.78 0.38 6.72 7.66

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 4.92 3.98 71.21 25.44 1.45 25.21 69.98 1.26 0.01 8.78 7.20
REMod − SUF 3.32 2.70 47.88 18.39 1.06 16.95 47.30 0.86 0.01 5.98 7.32
REMod − P ER 5.61 3.49 51.34 21.61 1.49 18.18 55.35 1.24 0.01 8.44 5.90
REMod − UNA 7.85 4.46 72.88 24.07 2.21 25.79 70.05 0.71 0.01 6.48 7.65

M
ea

n REMod − REF 8.94 6.25 118.08 27.10 101.20 12.11 76.88 1.34 0.26 9.08 7.15
REMod − SUF 6.03 4.23 79.38 19.59 74.10 8.14 51.96 0.91 0.17 6.19 7.27
REMod − P ER 10.18 5.48 85.12 23.02 103.69 8.73 60.81 1.31 0.33 8.73 5.86
REMod − UNA 14.25 6.99 120.85 25.65 154.61 12.39 76.95 0.75 0.19 6.70 7.60

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 3.44 1.67 38.65 7.55 1.32 25.23 20.44 0.91 0.01 5.62 6.67
REMod − SUF 2.32 1.13 25.98 5.46 0.96 16.96 13.82 0.62 0.00 3.83 6.78
REMod − P ER 3.92 1.47 27.86 6.42 1.35 18.20 16.17 0.89 0.01 5.40 5.47
REMod − UNA 5.48 1.87 39.56 7.15 2.01 25.82 20.46 0.51 0.00 4.14 7.08

M
ea

n REMod − REF 8.70 3.40 72.43 16.58 58.11 15.37 30.84 1.13 0.19 7.82 5.25
REMod − SUF 5.87 2.31 48.69 11.98 42.55 10.33 20.84 0.77 0.12 5.33 5.34
REMod − P ER 9.91 2.99 52.21 14.08 59.54 11.08 24.39 1.11 0.23 7.52 4.30
REMod − UNA 13.87 3.81 74.13 15.69 88.78 15.72 30.87 0.63 0.13 5.77 5.57

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.00 0.01
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.01
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.96 0.00 0.00 0.00 0.00 0.01
REMod − UNA 0.00 0.00 0.00 0.00 0.00 1.37 0.00 0.00 0.00 0.00 0.02

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.02 0.00 0.00 0.00 0.00 20.94 0.09 0.07 0.00 0.06 1.34
REMod − SUF 0.01 0.00 0.00 0.00 0.00 14.08 0.06 0.05 0.00 0.04 1.36
REMod − P ER 0.02 0.00 0.00 0.00 0.00 15.10 0.07 0.07 0.00 0.06 1.10
REMod − UNA 0.03 0.00 0.00 0.00 0.00 21.43 0.09 0.04 0.00 0.05 1.42

M
ea

n REMod − REF 2.82 0.05 0.00 0.44 0.00 0.03 0.09 0.21 0.01 0.50 0.27
REMod − SUF 1.90 0.03 0.00 0.32 0.00 0.02 0.06 0.14 0.00 0.34 0.28
REMod − P ER 3.21 0.04 0.00 0.37 0.00 0.02 0.07 0.21 0.01 0.48 0.22
REMod − UNA 4.49 0.06 0.00 0.41 0.00 0.03 0.09 0.12 0.00 0.37 0.29

Q
.6

0%
20

19

REMod − REF 2.15 0.82 6.39 2.97 0.00 25.23 5.94 0.90 0.00 3.99 6.59
REMod − SUF 1.45 0.56 4.30 2.15 0.00 16.96 4.02 0.61 0.00 2.72 6.70
REMod − P ER 2.44 0.72 4.61 2.52 0.00 18.20 4.70 0.89 0.00 3.84 5.40
REMod − UNA 3.42 0.92 6.54 2.81 0.00 25.82 5.95 0.51 0.00 2.95 7.00

M
ea

n REMod − REF 8.92 2.80 24.65 12.22 32.42 5.95 13.72 1.18 0.13 7.54 3.81
REMod − SUF 6.02 1.90 16.57 8.83 23.74 4.00 9.27 0.80 0.09 5.14 3.87
REMod − P ER 10.16 2.46 17.77 10.38 33.21 4.29 10.85 1.16 0.16 7.25 3.12
REMod − UNA 14.22 3.14 25.23 11.56 49.52 6.09 13.73 0.66 0.09 5.56 4.04

20
19 REMod − REF 9.09 8.30 255.93 27.27 21.87 25.23 87.19 1.38 0.08 9.12 7.21

REMod − SUF 6.13 5.63 172.07 19.71 16.02 16.96 58.93 0.94 0.05 6.21 7.33
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APPENDIX D. EMPIRICAL RESULTS

Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

Q
.7

5%

REMod − P ER 10.35 7.29 184.50 23.16 22.41 18.20 68.97 1.36 0.10 8.77 5.91
REMod − UNA 14.49 9.30 261.95 25.80 33.42 25.82 87.27 0.78 0.06 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 292.15 27.27 130.72 25.06 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 196.41 19.71 95.72 16.84 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 210.61 23.16 133.93 18.07 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 299.01 25.80 199.71 25.64 87.45 0.78 0.38 6.72 7.66

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). In particular, the results are derived under
the robustness test for the threshold prices, in particular, the threshold prices are calculated as the average commodity
price of the period from 1995 to 2019.

Table D.40: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n 20
19

REMod − REF 1.07 25.41 1.40 1.38 7.31 7.21
REMod − SUF 0.73 18.37 0.94 0.94 4.98 7.33
REMod − P ER 0.94 21.58 1.11 1.36 7.03 5.91
REMod − UNA 1.20 24.05 1.40 0.78 5.39 7.66

M
ea

n REMod − REF 7.91 27.27 17.82 1.38 9.12 6.70
REMod − SUF 5.36 19.71 12.05 0.94 6.21 6.82
REMod − P ER 6.94 23.16 14.10 1.36 8.77 5.50
REMod − UNA 8.86 25.80 17.84 0.78 6.72 7.12

Sh
oc

k 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

E
xt

r.
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 7.61 27.27 46.48 1.38 9.02 7.21
REMod − SUF 5.16 19.71 31.41 0.94 6.15 7.33
REMod − P ER 6.68 23.16 36.76 1.36 8.68 5.91
REMod − UNA 8.52 25.80 46.52 0.78 6.66 7.66

M
ea

n REMod − REF 8.36 27.27 75.65 1.38 9.12 7.21
REMod − SUF 5.67 19.71 51.14 0.94 6.21 7.33
REMod − P ER 7.34 23.16 59.85 1.36 8.77 5.91
REMod − UNA 9.36 25.80 75.73 0.78 6.72 7.66

Fo
c.

F
X 20

19

REMod − REF 8.34 27.27 71.11 1.38 9.01 7.21
REMod − SUF 5.66 19.71 48.07 0.94 6.14 7.33
REMod − P ER 7.33 23.16 56.25 1.36 8.66 5.91
REMod − UNA 9.34 25.80 71.18 0.78 6.64 7.66

M
ea

n REMod − REF 8.36 27.27 84.04 1.38 9.12 7.21
REMod − SUF 5.67 19.71 56.80 0.94 6.21 7.33
REMod − P ER 7.34 23.16 66.48 1.36 8.77 5.91
REMod − UNA 9.36 25.80 84.12 0.78 6.72 7.66
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

Fo
c.

F
F

R 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
xt

r.
E

A
20

19
REMod − REF 8.21 27.27 74.61 1.38 9.08 7.21
REMod − SUF 5.57 19.71 50.43 0.94 6.19 7.33
REMod − P ER 7.21 23.16 59.02 1.36 8.73 5.91
REMod − UNA 9.20 25.80 74.68 0.78 6.70 7.66

M
ea

n REMod − REF 8.36 27.27 84.04 1.38 9.12 7.21
REMod − SUF 5.67 19.71 56.80 0.94 6.21 7.33
REMod − P ER 7.34 23.16 66.48 1.36 8.77 5.91
REMod − UNA 9.36 25.80 84.12 0.78 6.72 7.66

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 8.34 27.27 84.39 1.38 9.08 7.21
REMod − SUF 5.66 19.71 57.04 0.94 6.19 7.33
REMod − P ER 7.33 23.16 66.76 1.36 8.73 5.91
REMod − UNA 9.34 25.80 84.47 0.78 6.70 7.66

M
ea

n REMod − REF 8.36 27.27 87.01 1.38 9.12 7.21
REMod − SUF 5.67 19.71 58.81 0.94 6.21 7.33
REMod − P ER 7.34 23.16 68.83 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.10 0.78 6.72 7.66

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.01 0.04 0.42
REMod − SUF 0.00 0.00 0.00 0.00 0.02 0.43
REMod − P ER 0.00 0.00 0.00 0.01 0.04 0.34
REMod − UNA 0.00 0.00 0.00 0.00 0.03 0.44

M
ea

n REMod − REF 0.00 1.09 0.00 0.04 0.66 0.00
REMod − SUF 0.00 0.79 0.00 0.03 0.45 0.00
REMod − P ER 0.00 0.93 0.00 0.04 0.63 0.00
REMod − UNA 0.00 1.03 0.00 0.02 0.48 0.00

Q
.5

0%
20

19

REMod − REF 0.00 4.25 0.00 0.86 3.08 7.21
REMod − SUF 0.00 3.07 0.00 0.58 2.10 7.33
REMod − P ER 0.00 3.61 0.00 0.84 2.96 5.91
REMod − UNA 0.00 4.03 0.00 0.48 2.27 7.66

M
ea

n REMod − REF 0.80 27.27 1.40 1.38 9.12 2.44
REMod − SUF 0.54 19.71 0.94 0.94 6.21 2.48
REMod − P ER 0.70 23.16 1.11 1.36 8.77 2.00
REMod − UNA 0.90 25.80 1.40 0.78 6.72 2.59

Q
.6

0%
20

19

REMod − REF 8.36 27.27 87.19 1.38 9.12 7.21
REMod − SUF 5.67 19.71 58.93 0.94 6.21 7.33
REMod − P ER 7.34 23.16 68.97 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.27 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.7

5% 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

This table displays the expected loss due to scarcity for the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER
and REMod − UNA), as well as per scenario (Mean (Mean), Shock
(Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme
FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quan-
tile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile
(Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values
are derived from the MS-GVAR model based on the weight matrices represent-
ing the dependencies between the commodities within the REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA transformation path
as well as on the initial basis price level of 2019 or on the average price level of
the previous decade (Mean). In particular, the results are derived under the
robustness test for the threshold prices, in particular, the threshold prices are
calculated as the average commodity price of the period from 1995 to 2019.

Table D.41: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models of the robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n

REMod − REF 0.38 0.50 13.23 2.31 1.48 10.26 1.29 0.19 3.38 0.08 0.05 0.78 0.46
REMod − SUF 0.26 0.34 8.90 1.67 1.06 7.51 0.86 0.14 2.29 0.06 0.03 0.53 0.47
REMod − P ER 0.44 0.44 9.54 1.96 1.42 10.51 0.93 0.18 2.67 0.08 0.06 0.75 0.38
REMod − UNA 0.61 0.56 13.54 2.19 0.70 15.67 1.32 0.08 3.38 0.05 0.03 0.57 0.49

Sh
oc

k

REMod − REF 0.74 0.96 44.72 4.07 7.70 15.11 3.49 1.01 64.54 0.39 0.07 1.20 6.39
REMod − SUF 0.50 0.65 30.06 2.94 5.51 11.06 2.35 0.72 43.62 0.27 0.04 0.82 6.49
REMod − P ER 0.85 0.84 32.24 3.46 7.42 15.48 2.52 0.93 51.06 0.39 0.09 1.15 5.24
REMod − UNA 1.19 1.08 45.77 3.85 3.67 23.09 3.57 0.43 64.60 0.22 0.05 0.88 6.78

E
xt

r.

REMod − REF 1.38 1.75 120.19 6.80 33.85 21.84 8.19 4.42 86.92 0.98 0.10 1.80 7.20
REMod − SUF 0.93 1.18 80.80 4.92 24.19 15.99 5.51 3.14 58.75 0.67 0.06 1.22 7.32
REMod − P ER 1.58 1.53 86.64 5.78 32.60 22.38 5.91 4.09 68.76 0.97 0.12 1.73 5.90
REMod − UNA 2.21 1.96 123.01 6.44 16.14 33.37 8.38 1.89 87.01 0.55 0.07 1.33 7.65

Fo
c.

E
A

REMod − REF 0.38 0.50 13.23 2.31 2.99 10.26 1.29 0.39 3.38 0.08 0.05 0.78 0.46
REMod − SUF 0.26 0.34 8.90 1.67 2.14 7.51 0.86 0.28 2.29 0.06 0.03 0.53 0.47
REMod − P ER 0.44 0.44 9.54 1.96 2.88 10.51 0.93 0.36 2.67 0.08 0.06 0.75 0.38
REMod − UNA 0.61 0.56 13.54 2.19 1.43 15.67 1.32 0.17 3.38 0.05 0.03 0.57 0.49

Fo
c.

F
X

REMod − REF 0.38 0.50 13.23 2.56 1.63 11.25 1.29 0.21 3.38 0.13 0.05 0.78 0.46
REMod − SUF 0.26 0.34 8.90 1.85 1.17 8.24 0.86 0.15 2.29 0.09 0.03 0.53 0.47
REMod − P ER 0.44 0.44 9.54 2.17 1.57 11.53 0.93 0.20 2.67 0.13 0.06 0.75 0.38
REMod − UNA 0.61 0.56 13.54 2.42 0.78 17.19 1.32 0.09 3.38 0.07 0.03 0.57 0.49

Fo
c.

F
F

R REMod − REF 0.38 0.50 13.23 2.83 3.51 10.26 1.29 0.46 3.38 0.08 0.05 0.78 2.43
REMod − SUF 0.26 0.34 8.90 2.04 2.51 7.51 0.86 0.33 2.29 0.06 0.03 0.53 2.48
REMod − P ER 0.44 0.44 9.54 2.40 3.38 10.51 0.93 0.42 2.67 0.08 0.06 0.75 2.00
REMod − UNA 0.61 0.56 13.54 2.67 1.67 15.67 1.32 0.20 3.38 0.05 0.03 0.57 2.59

Fo
c.

E
xt

r.
E

A REMod − REF 0.38 0.50 13.23 2.31 6.00 10.26 1.29 0.78 3.38 0.08 0.05 0.78 0.46
REMod − SUF 0.26 0.34 8.90 1.67 4.29 7.51 0.86 0.56 2.29 0.06 0.03 0.53 0.47
REMod − P ER 0.44 0.44 9.54 1.96 5.78 10.51 0.93 0.73 2.67 0.08 0.06 0.75 0.38
REMod − UNA 0.61 0.56 13.54 2.19 2.86 15.67 1.32 0.34 3.38 0.05 0.03 0.57 0.49

Fo
c.

E
xt

r.
F

X REMod − REF 0.38 0.50 13.23 2.83 1.80 12.33 1.29 0.23 3.38 0.19 0.05 0.78 0.46
REMod − SUF 0.26 0.34 8.90 2.04 1.29 9.03 0.86 0.17 2.29 0.13 0.03 0.53 0.47
REMod − P ER 0.44 0.44 9.54 2.40 1.73 12.64 0.93 0.22 2.67 0.19 0.06 0.75 0.38
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the threshold price for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
REMod − UNA 0.61 0.56 13.54 2.67 0.86 18.84 1.32 0.10 3.38 0.11 0.04 0.57 0.49

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.38 0.50 13.23 3.44 8.16 10.26 1.29 1.07 3.38 0.08 0.05 0.78 5.72

REMod − SUF 0.26 0.34 8.90 2.49 5.84 7.51 0.86 0.76 2.29 0.06 0.03 0.53 5.81
REMod − P ER 0.44 0.44 9.54 2.92 7.86 10.51 0.93 0.99 2.67 0.08 0.06 0.75 4.69
REMod − UNA 0.61 0.56 13.54 3.26 3.89 15.67 1.32 0.46 3.38 0.05 0.03 0.57 6.07

Q
.2

5%

REMod − REF 0.30 0.37 6.48 1.74 0.57 8.92 0.78 0.07 0.33 0.04 0.04 0.66 0.03
REMod − SUF 0.20 0.25 4.36 1.25 0.41 6.53 0.53 0.05 0.23 0.02 0.03 0.45 0.03
REMod − P ER 0.34 0.32 4.67 1.47 0.55 9.14 0.56 0.07 0.26 0.04 0.05 0.63 0.02
REMod − UNA 0.47 0.41 6.64 1.64 0.27 13.62 0.80 0.03 0.34 0.02 0.03 0.49 0.03

Q
.4

0%

REMod − REF 0.34 0.42 9.59 2.11 0.98 9.87 0.85 0.13 3.43 0.04 0.05 0.75 0.20
REMod − SUF 0.23 0.29 6.45 1.53 0.70 7.22 0.57 0.09 2.32 0.03 0.03 0.51 0.20
REMod − P ER 0.39 0.37 6.91 1.79 0.94 10.11 0.61 0.12 2.71 0.04 0.06 0.72 0.16
REMod − UNA 0.54 0.47 9.81 2.00 0.47 15.07 0.87 0.05 3.43 0.02 0.03 0.55 0.21

Q
.5

0%

REMod − REF 0.36 0.45 11.45 2.31 1.22 10.36 1.10 0.16 6.27 0.06 0.05 0.80 0.44
REMod − SUF 0.25 0.30 7.70 1.67 0.87 7.59 0.74 0.11 4.24 0.04 0.03 0.55 0.45
REMod − P ER 0.41 0.39 8.25 1.96 1.17 10.62 0.79 0.15 4.96 0.06 0.06 0.77 0.36
REMod − UNA 0.58 0.50 11.71 2.18 0.58 15.83 1.13 0.07 6.28 0.04 0.04 0.59 0.47

Q
.6

0%

REMod − REF 0.44 0.55 16.59 2.62 1.81 11.32 1.61 0.24 7.28 0.11 0.05 0.91 1.02
REMod − SUF 0.30 0.37 11.16 1.89 1.29 8.29 1.08 0.17 4.92 0.08 0.04 0.62 1.04
REMod − P ER 0.50 0.48 11.96 2.22 1.74 11.60 1.16 0.22 5.76 0.11 0.07 0.87 0.84
REMod − UNA 0.70 0.61 16.98 2.47 0.86 17.29 1.65 0.10 7.28 0.06 0.04 0.67 1.08

Q
.7

5%

REMod − REF 0.58 0.75 29.27 3.20 3.63 12.91 2.91 0.47 11.09 0.29 0.06 1.05 3.11
REMod − SUF 0.39 0.51 19.68 2.32 2.59 9.45 1.95 0.34 7.50 0.20 0.04 0.71 3.16
REMod − P ER 0.66 0.66 21.10 2.72 3.50 13.22 2.10 0.44 8.77 0.28 0.08 1.01 2.55
REMod − UNA 0.92 0.84 29.96 3.03 1.73 19.72 2.97 0.20 11.10 0.16 0.04 0.77 3.30

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for the
threshold prices, in particular, the threshold prices are calculated as the average commodity price of the period from 1995
to 2019.
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APPENDIX D. EMPIRICAL RESULTS

D.3.2.2 Robustness Analysis for the Scenario Values

D.3.2.2.1 Results of the Robustness Analysis for the Scenario Values of the re-
duced Sample
Table D.42: Scenario values for the input variables of the robustness analysis for the scenario values for the reduced sample
period from 2015 to 2019

M
ea

n

Sh
oc

k

E
xt

r.

Fo
c.

E
A

Fo
c.

F
X

Fo
c.

F
F

R

Fo
c.

E
xt

r.
E

A

Fo
c.

E
xt

r.
F

X

Fo
c.

E
xt

r.
F

F
R

Q
.2

5%

Q
.4

0%

Q
.5

0%

Q
.6

0%

Q
.7

5%

G
VA

R

A
g supply -0.62 0.47 1.55 -0.62 -0.62 -0.62 -0.62 -0.62 -0.62 -0.95 -0.66 -0.46 -0.25 0.06

demand -0.05 1.13 2.32 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.71 -0.57 -0.47 -0.13 0.38
price -0.29 0.12 0.53 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.47 -0.30 -0.19 -0.13 -0.05

A
l supply -0.14 0.52 1.18 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.60 -0.41 -0.29 0.02 0.49

demand 0.08 1.43 2.77 0.08 0.08 0.08 0.08 0.08 0.08 -0.70 -0.56 -0.47 0.07 0.87
price -0.16 0.61 1.38 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.72 -0.47 -0.30 -0.09 0.24

C
o supply -0.63 1.56 3.74 -0.63 -0.63 -0.63 -0.63 -0.63 -0.63 -0.31 -0.07 0.10 0.19 0.33

demand 0.40 2.24 4.08 0.40 0.40 0.40 0.40 0.40 0.40 -0.81 -0.18 0.23 0.28 0.35
price -0.06 1.30 2.65 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.35 -0.31 -0.28 0.05 0.54

C
u supply -0.15 0.63 1.41 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.83 -0.44 -0.18 0.05 0.39

demand 0.22 1.25 2.27 0.22 0.22 0.22 0.22 0.22 0.22 -0.19 -0.10 -0.03 0.00 0.06
price -0.24 0.53 1.31 -0.24 -0.24 -0.24 -0.24 -0.24 -0.24 -0.66 -0.56 -0.49 -0.24 0.12

In

supply -0.16 0.60 1.36 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.83 -0.38 -0.08 -0.06 -0.02
demand -0.17 0.30 0.78 -0.17 -0.17 -0.17 -0.17 -0.17 -0.17 -0.31 -0.24 -0.19 -0.19 -0.18
price -0.64 0.27 1.18 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -1.13 -1.05 -0.99 -0.66 -0.16

Li

supply 0.46 1.85 3.23 0.46 0.46 0.46 0.46 0.46 0.46 -0.19 -0.19 -0.19 -0.11 0.02
demand 0.12 0.97 1.82 0.12 0.12 0.12 0.12 0.12 0.12 -0.41 -0.16 -0.00 0.02 0.05
price 0.60 3.00 5.40 0.60 0.60 0.60 0.60 0.60 0.60 -0.10 0.20 0.39 0.88 1.62

N
i supply -0.09 0.76 1.61 -0.09 -0.09 -0.09 -0.09 -0.09 -0.09 -0.63 -0.23 0.04 0.26 0.58

demand -0.03 1.05 2.14 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.48 0.08 0.45 0.49 0.55
price -0.25 0.59 1.42 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.85 -0.28 0.10 0.13 0.17

P
b

supply -0.66 0.25 1.15 -0.66 -0.66 -0.66 -0.66 -0.66 -0.66 -1.06 -0.82 -0.65 -0.48 -0.21
demand 0.30 1.83 3.36 0.30 0.30 0.30 0.30 0.30 0.30 -0.92 -0.32 0.09 0.46 1.02
price -0.20 0.45 1.10 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.66 -0.45 -0.30 -0.17 0.03

P
t supply -0.18 1.50 3.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.18 -0.75 -0.42 -0.21 0.04 0.43

demand 0.02 0.83 1.64 0.02 0.02 0.02 0.02 0.02 0.02 -0.53 -0.11 0.18 0.31 0.50
price -0.64 -0.14 0.35 -0.64 -0.64 -0.64 -0.64 -0.64 -0.64 -0.55 -0.51 -0.49 -0.44 -0.38

Sn

supply 0.03 0.78 1.52 0.03 0.03 0.03 0.03 0.03 0.03 -0.20 0.01 0.14 0.17 0.21
demand 0.32 1.22 2.12 0.32 0.32 0.32 0.32 0.32 0.32 -0.00 0.09 0.16 0.18 0.21
price -0.29 0.49 1.28 -0.29 -0.29 -0.29 -0.29 -0.29 -0.29 -0.50 -0.28 -0.13 0.06 0.35

Zn

supply -0.85 -0.21 0.44 -0.85 -0.85 -0.85 -0.85 -0.85 -0.85 -1.05 -0.90 -0.81 -0.70 -0.55
demand 0.18 1.93 3.69 0.18 0.18 0.18 0.18 0.18 0.18 -1.22 -0.27 0.36 0.40 0.47
price -0.04 0.68 1.40 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.61 -0.32 -0.13 -0.02 0.15

ex
og

GDP -0.86 -0.01 0.84 -0.01 -0.86 -0.86 0.84 -0.86 -0.86 -0.96 -0.92 -0.90 -0.60 -0.15
FX 0.47 1.38 2.29 0.47 1.38 0.47 0.47 2.29 0.47 0.02 0.08 0.13 0.30 0.56
FFR 1.20 1.88 2.57 1.20 1.20 1.88 1.20 1.20 2.57 0.76 0.99 1.14 1.37 1.73

lo
g.

R
eg

.

U.S. IP -0.48 0.04 0.56 -0.48 -0.48 -0.48 -0.48 -0.48 -0.48 -0.84 -0.73 -0.65 -0.46 -0.17
GDPc -0.82 0.06 0.93 -0.82 -0.82 -0.82 -0.82 -0.82 -0.82 -0.90 -0.87 -0.86 -0.55 -0.08
LIR -0.06 1.55 3.16 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.97 -0.87 -0.80 0.16 1.61
CPI 1.05 3.69 6.33 1.05 1.05 1.05 1.05 1.05 1.05 -0.22 -0.07 0.03 0.16 0.35
MSCI -0.11 0.37 0.86 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.34 -0.30 -0.28 -0.11 0.14
OIL -0.57 0.71 1.99 -0.57 -0.57 -0.57 -0.57 -0.57 -0.57 -0.69 -0.67 -0.65 -0.23 0.39
ND -0.04 1.07 2.19 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -1.12 -0.49 -0.06 0.30 0.84

M
S-

G
VA

R

A
l supply -0.01 1.19 2.39 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.63 -0.41 -0.21 0.25 0.71

demand 0.01 0.93 1.84 0.01 0.01 0.01 0.01 0.01 0.01 -0.57 -0.24 -0.08 0.09 0.58
price 0.08 0.94 1.80 0.08 0.08 0.08 0.08 0.08 0.08 -0.46 -0.18 -0.03 0.15 0.60

C
u supply -0.07 0.91 1.88 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.53 -0.20 -0.06 0.11 0.42

demand -0.03 1.28 2.59 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.81 -0.18 -0.01 0.41 0.75
price 0.04 0.73 1.42 0.04 0.04 0.04 0.04 0.04 0.04 -0.49 -0.36 -0.01 0.23 0.46

N
i supply 0.03 1.20 2.37 0.03 0.03 0.03 0.03 0.03 0.03 -0.82 -0.12 0.11 0.30 0.77

demand 0.06 1.08 2.10 0.06 0.06 0.06 0.06 0.06 0.06 -0.72 -0.08 0.20 0.38 0.72
price 0.09 1.00 1.92 0.09 0.09 0.09 0.09 0.09 0.09 -0.72 -0.19 0.02 0.07 0.85

P
b

supply -0.05 0.48 1.01 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.39 -0.20 -0.03 0.06 0.23
demand -0.01 0.89 1.80 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.51 -0.20 0.04 0.22 0.53
price -0.03 0.78 1.58 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.54 -0.32 -0.03 0.21 0.50

Sn

supply -0.07 1.13 2.32 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.59 -0.32 -0.14 0.08 0.58
demand -0.03 1.15 2.33 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.62 -0.31 -0.13 0.10 0.67
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Scenario values for the input variables of the robustness analysis for the scenario values for the reduced sample period from
2015 to 2019
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Q
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Q
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0%

Q
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0%

Q
.7

5%

M
S-

G
VA

R

price -0.00 0.67 1.34 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.48 -0.19 0.07 0.23 0.54

Zn

supply -0.07 0.80 1.66 -0.07 -0.07 -0.07 -0.07 -0.07 -0.07 -0.65 -0.16 0.00 0.15 0.45
demand -0.02 0.93 1.88 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.59 -0.26 -0.09 0.10 0.61
price 0.07 0.89 1.71 0.07 0.07 0.07 0.07 0.07 0.07 -0.65 -0.22 0.18 0.41 0.65

ex
og

IP 0.33 0.98 1.63 0.33 0.33 0.98 0.33 0.33 1.63 -0.04 0.11 0.17 0.34 0.61
FX -0.03 0.74 1.51 -0.03 0.74 -0.03 -0.03 1.51 -0.03 -0.45 -0.16 -0.00 0.16 0.51
FFR -0.00 1.06 2.12 1.06 -0.00 -0.00 2.12 -0.00 -0.00 -0.69 -0.33 0.01 0.25 0.53

This table displays the scenario values of the (potential) input variables under the different scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%). Hereby, the endogenous
as well as exogenous variables of the annual (monthly) (MS-)GVAR model as well as the commodity-specific determinants
of the logistic regression model are displayed. In particular, we report the scenario values of supply (supply), demand
(demand), and price (price) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In),
lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), as well as U.S. industrial production (U.S. IP),
world industrial production (IP), world gross domestic product (GDP), world gross domestic product per capita (GDPc),
U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 10-year U.S. Treasury rate (LIR), U.S. consumer price in-
dex (CPI), MSCI world stock index (MSCI), West Texas Intermediate spot crude oil price (OIL), and global natural
disasters (ND). Hereby, the values are derived under the robustness test for the scenario values, they are calculated using
data in the period from 2015 to 2019.

Table D.43: Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the scenario
values for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.00 0.00 0.01 0.00 0.00 0.18 0.00 0.05 0.00 0.00 0.18
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.78 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.01 0.15 0.15 0.23 0.00 0.77 0.46 0.56 0.00 0.54 0.98
Foc. FX 0.01 0.06 0.07 0.12 0.00 0.64 0.27 0.31 0.00 0.20 0.92
Foc. FFR 0.00 0.02 0.04 0.01 0.00 0.50 0.02 0.13 0.00 0.01 0.33
Foc. Extr. EA 0.23 0.88 0.79 0.96 0.03 0.97 0.94 0.98 0.06 0.98 1.00
Foc. Extr. FX 0.15 0.41 0.36 0.72 0.04 0.87 0.79 0.72 0.02 0.73 0.99
Foc. Extr. FFR 0.02 0.06 0.09 0.04 0.00 0.73 0.08 0.24 0.00 0.06 0.53
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.04
Q. 60% 0.00 0.04 0.06 0.02 0.00 0.76 0.06 0.22 0.00 0.05 0.60
Q. 75% 0.52 0.99 0.93 0.98 0.12 1.00 1.00 1.00 0.04 1.00 1.00

M
ea

n

Mean 0.01 0.01 0.02 0.01 0.02 0.00 0.00 0.10 0.01 0.01 0.05
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.17 0.52 0.31 0.72 0.19 0.01 0.65 0.80 0.06 0.81 0.89
Foc. FX 0.17 0.19 0.15 0.36 0.34 0.02 0.43 0.46 0.06 0.42 0.74
Foc. FFR 0.06 0.06 0.06 0.04 0.12 0.01 0.05 0.22 0.03 0.04 0.16
Foc. Extr. EA 0.70 0.98 0.93 0.99 0.72 0.20 0.98 1.00 0.76 1.00 0.99
Foc. Extr. FX 0.47 0.62 0.50 0.89 0.75 0.19 0.86 0.82 0.18 0.85 0.96
Foc. Extr. FFR 0.16 0.16 0.17 0.10 0.26 0.05 0.15 0.33 0.06 0.14 0.30
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01
Q. 60% 0.10 0.15 0.13 0.07 0.16 0.01 0.13 0.35 0.04 0.13 0.25
Q. 75% 0.97 1.00 0.99 1.00 0.98 0.77 1.00 1.00 0.74 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.04 0.00 0.00 0.16
Shock 0.99 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.77 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.00 0.14 0.13 0.20 0.00 0.81 0.47 0.53 0.00 0.52 0.98
Foc. FX 0.00 0.04 0.07 0.10 0.00 0.66 0.26 0.28 0.00 0.20 0.92
Foc. FFR 0.00 0.02 0.04 0.00 0.00 0.55 0.01 0.11 0.00 0.01 0.33
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the scenario values for
the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
S

U
F

20
19

Foc. Extr. EA 0.22 0.90 0.79 0.97 0.02 0.97 0.95 0.97 0.05 0.98 1.00
Foc. Extr. FX 0.13 0.39 0.34 0.74 0.03 0.87 0.81 0.71 0.01 0.74 0.99
Foc. Extr. FFR 0.02 0.05 0.08 0.03 0.00 0.78 0.07 0.22 0.00 0.06 0.53
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.05
Q. 60% 0.00 0.03 0.04 0.01 0.00 0.77 0.03 0.17 0.00 0.03 0.56
Q. 75% 0.45 0.99 0.89 0.97 0.07 1.00 0.99 1.00 0.03 1.00 1.00

M
ea

n

Mean 0.00 0.01 0.02 0.00 0.02 0.00 0.00 0.09 0.00 0.00 0.06
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.16 0.52 0.33 0.72 0.17 0.00 0.66 0.78 0.06 0.80 0.90
Foc. FX 0.15 0.17 0.14 0.34 0.33 0.01 0.42 0.43 0.05 0.40 0.72
Foc. FFR 0.05 0.05 0.06 0.03 0.11 0.00 0.03 0.19 0.02 0.04 0.15
Foc. Extr. EA 0.69 0.98 0.92 0.99 0.71 0.16 0.98 0.99 0.74 1.00 0.99
Foc. Extr. FX 0.47 0.61 0.48 0.89 0.75 0.16 0.88 0.81 0.18 0.85 0.96
Foc. Extr. FFR 0.15 0.14 0.15 0.10 0.25 0.05 0.13 0.31 0.06 0.14 0.28
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Q. 60% 0.08 0.11 0.11 0.06 0.13 0.00 0.10 0.32 0.03 0.10 0.23
Q. 75% 0.96 1.00 0.99 1.00 0.97 0.65 1.00 1.00 0.71 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.00 0.00 0.01 0.00 0.00 0.22 0.00 0.05 0.00 0.00 0.18
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.80 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.01 0.17 0.15 0.24 0.00 0.79 0.49 0.58 0.00 0.55 0.99
Foc. FX 0.01 0.06 0.07 0.11 0.00 0.66 0.30 0.33 0.00 0.22 0.90
Foc. FFR 0.00 0.02 0.04 0.01 0.00 0.55 0.02 0.14 0.00 0.02 0.34
Foc. Extr. EA 0.24 0.90 0.81 0.96 0.03 0.97 0.94 0.98 0.06 0.99 1.00
Foc. Extr. FX 0.17 0.42 0.36 0.72 0.05 0.88 0.82 0.75 0.02 0.74 0.99
Foc. Extr. FFR 0.03 0.07 0.10 0.04 0.00 0.75 0.09 0.25 0.00 0.07 0.51
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.04
Q. 60% 0.01 0.05 0.05 0.02 0.00 0.77 0.05 0.23 0.00 0.04 0.57
Q. 75% 0.61 0.99 0.92 0.98 0.10 1.00 1.00 1.00 0.04 1.00 1.00

M
ea

n

Mean 0.01 0.02 0.02 0.01 0.02 0.00 0.00 0.11 0.01 0.01 0.05
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.19 0.54 0.32 0.73 0.20 0.01 0.67 0.81 0.07 0.83 0.90
Foc. FX 0.17 0.20 0.17 0.37 0.37 0.02 0.46 0.50 0.06 0.43 0.73
Foc. FFR 0.06 0.06 0.07 0.04 0.13 0.01 0.04 0.22 0.03 0.04 0.16
Foc. Extr. EA 0.69 0.98 0.92 1.00 0.73 0.19 0.98 1.00 0.76 1.00 0.99
Foc. Extr. FX 0.49 0.64 0.51 0.89 0.78 0.18 0.89 0.83 0.18 0.84 0.96
Foc. Extr. FFR 0.17 0.16 0.18 0.11 0.27 0.06 0.16 0.35 0.07 0.14 0.30
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.01
Q. 60% 0.12 0.15 0.13 0.08 0.16 0.01 0.11 0.37 0.04 0.14 0.26
Q. 75% 0.99 1.00 0.99 1.00 0.98 0.73 1.00 1.00 0.74 1.00 1.00

R
E

M
o
d

−
U

N
A 20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.06 0.00 0.00 0.16
Shock 0.99 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.77 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.01 0.16 0.16 0.23 0.00 0.82 0.49 0.58 0.00 0.55 0.99
Foc. FX 0.01 0.05 0.08 0.10 0.00 0.68 0.28 0.32 0.00 0.21 0.91
Foc. FFR 0.00 0.02 0.04 0.01 0.00 0.58 0.02 0.13 0.00 0.02 0.33
Foc. Extr. EA 0.24 0.90 0.80 0.97 0.02 0.98 0.95 0.98 0.06 0.99 1.00
Foc. Extr. FX 0.16 0.39 0.35 0.73 0.04 0.88 0.82 0.75 0.02 0.74 0.99
Foc. Extr. FFR 0.02 0.06 0.09 0.03 0.00 0.79 0.08 0.24 0.00 0.07 0.52
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.04
Q. 60% 0.00 0.04 0.05 0.02 0.00 0.78 0.04 0.22 0.00 0.04 0.58
Q. 75% 0.51 0.99 0.90 0.98 0.09 1.00 1.00 1.00 0.04 1.00 1.00

M
ea

n

Mean 0.01 0.01 0.02 0.01 0.03 0.00 0.00 0.10 0.01 0.01 0.05
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.18 0.55 0.35 0.74 0.21 0.01 0.68 0.83 0.07 0.84 0.90
Foc. FX 0.16 0.17 0.16 0.36 0.37 0.01 0.44 0.48 0.06 0.42 0.74
Foc. FFR 0.06 0.06 0.08 0.03 0.13 0.00 0.04 0.21 0.03 0.04 0.15
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APPENDIX D. EMPIRICAL RESULTS

Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the scenario values for
the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
U

N
A

M
ea

n
Foc. Extr. EA 0.71 0.99 0.94 1.00 0.73 0.16 0.98 1.00 0.77 1.00 0.99
Foc. Extr. FX 0.48 0.62 0.50 0.90 0.78 0.19 0.89 0.82 0.18 0.85 0.96
Foc. Extr. FFR 0.16 0.15 0.17 0.11 0.26 0.06 0.15 0.34 0.06 0.15 0.28
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01
Q. 60% 0.08 0.12 0.13 0.06 0.15 0.00 0.11 0.36 0.03 0.13 0.23
Q. 75% 0.97 1.00 0.99 1.00 0.97 0.69 1.00 1.00 0.70 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), derived from the GVAR model based
on the weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the average
price level of the previous decade (Mean). Hereby, the probability of scarcity is calculated for the scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables.
The presented results are derived under the robustness test for the scenario values, in particular, the scenario values are
calculated based on data in the period from 2015 to 2019.

Table D.44: Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the
scenario values for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 1.00 0.96 0.81 1.00 0.30 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.87 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.83 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.98 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.95 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.96 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.06
Q. 50% 0.13 0.06 0.12 0.90 0.04 1.00
Q. 60% 1.00 1.00 1.00 1.00 0.97 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 0.99 1.00 0.90 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.01 0.00 0.04 0.00 0.00
Q. 50% 0.97 0.93 0.54 1.00 0.35 0.60
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 1.00 0.97 0.80 1.00 0.29 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.85 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.80 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.95 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.94 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.09
Q. 50% 0.12 0.07 0.11 0.91 0.03 1.00
Q. 60% 1.00 1.00 1.00 1.00 0.96 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the scenario values
for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
S

U
F

Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 1.00 1.00 0.86 0.99
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.01 0.00 0.05 0.00 0.00
Q. 50% 0.94 0.94 0.54 1.00 0.36 0.67
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 1.00 0.97 0.87 1.00 0.28 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.85 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.83 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.98 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.95 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.96 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.07
Q. 50% 0.13 0.07 0.14 0.91 0.04 1.00
Q. 60% 1.00 1.00 1.00 1.00 0.97 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 1.00 1.00 0.86 0.99
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.01 0.00 0.04 0.00 0.00
Q. 50% 0.97 0.95 0.61 1.00 0.36 0.64
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 1.00 0.96 0.82 1.00 0.31 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.85 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.84 1.00
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.94 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.95 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.01 0.00 0.12
Q. 50% 0.12 0.08 0.12 0.90 0.04 1.00
Q. 60% 1.00 1.00 1.00 1.00 0.97 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 1.00 1.00 1.00 1.00 0.89 1.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FX 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.01 0.00 0.04 0.00 0.00
Q. 50% 0.95 0.92 0.59 1.00 0.39 0.67
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the scenario values
for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), derived
from the MS-GVAR model based on the weight matrices representing the depen-
dencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the
initial basis price level of 2019 or on the average price level of the previous
decade (Mean). Hereby, the probability of scarcity is calculated for the scenar-
ios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus
FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA),
Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR),
25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60%
quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables. The presented
results are derived under the robustness test for the scenario values, in particu-
lar, the scenario values are calculated based on data in the period from 2015 to
2019.

Table D.45: Probability of scarcity per commodity derived from the logistic regression models of the robustness analysis
for the scenario values for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Mean 0.03 0.05 0.07 0.05 0.02 0.10 0.05 0.02 0.05 0.06 0.03 0.02 0.12
Shock 0.05 0.09 0.51 0.07 0.07 0.17 0.07 0.07 0.23 0.18 0.08 0.03 0.94
Extr. 0.07 0.18 0.94 0.09 0.25 0.29 0.10 0.25 0.61 0.41 0.19 0.04 1.00
Foc. EA 0.03 0.05 0.07 0.05 0.03 0.10 0.05 0.03 0.05 0.06 0.03 0.02 0.12
Foc. FX 0.03 0.05 0.07 0.05 0.02 0.13 0.05 0.02 0.05 0.10 0.04 0.02 0.12
Foc. FFR 0.03 0.05 0.07 0.05 0.03 0.10 0.05 0.03 0.05 0.06 0.03 0.02 0.31
Foc. Extr. EA 0.03 0.05 0.07 0.05 0.07 0.10 0.05 0.07 0.05 0.06 0.03 0.02 0.12
Foc. Extr. FX 0.03 0.05 0.07 0.05 0.02 0.16 0.05 0.02 0.05 0.16 0.05 0.02 0.12
Foc. Extr. FFR 0.03 0.05 0.07 0.06 0.05 0.10 0.05 0.05 0.05 0.06 0.03 0.02 0.59
Q. 25% 0.03 0.04 0.01 0.04 0.01 0.08 0.04 0.01 0.02 0.04 0.02 0.02 0.01
Q. 40% 0.03 0.04 0.03 0.04 0.01 0.08 0.04 0.01 0.03 0.04 0.02 0.02 0.02
Q. 50% 0.03 0.04 0.04 0.04 0.01 0.09 0.04 0.01 0.05 0.04 0.02 0.02 0.05
Q. 60% 0.04 0.06 0.12 0.05 0.02 0.10 0.04 0.02 0.09 0.06 0.03 0.02 0.23
Q. 75% 0.04 0.08 0.45 0.06 0.05 0.13 0.04 0.05 0.19 0.12 0.05 0.02 0.77

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), derived from the logistic regression models based on preselected covariates. Hereby, the probability of scarcity
is calculated for the scenarios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%) of the input variables. The presented results are derived under the robustness test for the scenario values,
in particular, the scenario values are calculated based on data in the period from 2015 to 2019.

Table D.46: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.03 1.83 0.00 0.00 4.64 0.09 0.07 0.00 0.03 1.28
REMod − SUF 0.00 0.02 1.23 0.00 0.00 3.12 0.06 0.05 0.00 0.02 1.30
REMod − P ER 0.00 0.02 1.32 0.00 0.00 3.35 0.07 0.07 0.00 0.03 1.05
REMod − UNA 0.00 0.03 1.87 0.00 0.00 4.75 0.09 0.04 0.00 0.02 1.36

M
ea

n REMod − REF 0.08 0.12 5.78 0.22 3.16 0.00 0.35 0.14 0.00 0.05 0.35
REMod − SUF 0.06 0.08 3.89 0.16 2.32 0.00 0.24 0.09 0.00 0.04 0.35
REMod − P ER 0.09 0.10 4.17 0.19 3.24 0.00 0.28 0.14 0.01 0.05 0.28
REMod − UNA 0.13 0.13 5.92 0.21 4.83 0.00 0.35 0.08 0.00 0.04 0.37

Sh
oc

k 20
19

REMod − REF 9.15 8.36 304.32 27.27 127.16 25.23 87.36 1.38 0.42 9.12 7.21
REMod − SUF 6.18 5.67 204.60 19.71 93.11 16.96 59.05 0.94 0.28 6.21 7.33
REMod − P ER 10.42 7.34 219.38 23.16 130.29 18.20 69.11 1.36 0.53 8.77 5.91
REMod − UNA 14.59 9.36 311.47 25.80 194.27 25.82 87.45 0.78 0.30 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

E
xt

r.
20

19

REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 0.06 1.29 44.74 6.22 0.13 19.35 40.62 0.77 0.00 4.91 7.10
REMod − SUF 0.04 0.87 30.08 4.49 0.10 13.01 27.46 0.52 0.00 3.35 7.22
REMod − P ER 0.07 1.13 32.25 5.28 0.14 13.96 32.13 0.76 0.00 4.72 5.82
REMod − UNA 0.10 1.44 45.79 5.88 0.20 19.80 40.66 0.43 0.00 3.62 7.54

M
ea

n REMod − REF 1.59 4.33 95.56 19.77 25.43 0.23 56.61 1.11 0.03 7.43 6.43
REMod − SUF 1.07 2.94 64.24 14.29 18.62 0.15 38.26 0.76 0.02 5.06 6.54
REMod − P ER 1.81 3.80 68.89 16.79 26.06 0.16 44.78 1.09 0.04 7.14 5.27
REMod − UNA 2.53 4.85 97.80 18.71 38.85 0.23 56.67 0.62 0.02 5.48 6.83

Fo
c.

F
X 20

19

REMod − REF 0.06 0.51 22.22 3.19 0.13 16.20 23.85 0.43 0.00 1.85 6.60
REMod − SUF 0.04 0.35 14.94 2.31 0.10 10.89 16.12 0.29 0.00 1.26 6.71
REMod − P ER 0.07 0.45 16.01 2.71 0.14 11.68 18.87 0.42 0.00 1.78 5.41
REMod − UNA 0.10 0.57 22.74 3.02 0.20 16.57 23.87 0.24 0.00 1.37 7.01

M
ea

n REMod − REF 1.54 1.56 46.26 9.79 44.93 0.58 37.22 0.63 0.03 3.78 5.31
REMod − SUF 1.04 1.06 31.10 7.08 32.90 0.39 25.15 0.43 0.02 2.58 5.40
REMod − P ER 1.75 1.37 33.35 8.31 46.04 0.42 29.44 0.62 0.04 3.64 4.36
REMod − UNA 2.46 1.75 47.34 9.26 68.65 0.59 37.25 0.36 0.02 2.79 5.64

Fo
c.

F
F

R 20
19

REMod − REF 0.04 0.17 12.17 0.19 0.00 12.54 1.92 0.19 0.00 0.13 2.41
REMod − SUF 0.02 0.11 8.18 0.14 0.00 8.43 1.30 0.13 0.00 0.09 2.46
REMod − P ER 0.04 0.15 8.78 0.16 0.00 9.04 1.52 0.18 0.00 0.12 1.98
REMod − UNA 0.06 0.19 12.46 0.18 0.00 12.83 1.92 0.10 0.00 0.09 2.57

M
ea

n REMod − REF 0.60 0.48 19.17 1.09 16.47 0.18 4.02 0.30 0.01 0.38 1.15
REMod − SUF 0.40 0.33 12.89 0.79 12.06 0.12 2.72 0.20 0.01 0.26 1.17
REMod − P ER 0.68 0.43 13.82 0.93 16.88 0.13 3.18 0.29 0.02 0.37 0.95
REMod − UNA 0.95 0.54 19.62 1.03 25.16 0.18 4.02 0.17 0.01 0.28 1.23

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 2.07 7.40 240.72 26.31 3.43 24.48 82.12 1.35 0.03 8.95 7.21
REMod − SUF 1.40 5.02 161.84 19.02 2.51 16.45 55.51 0.92 0.02 6.10 7.33
REMod − P ER 2.36 6.50 173.53 22.35 3.51 17.65 64.96 1.33 0.04 8.61 5.91
REMod − UNA 3.30 8.29 246.37 24.90 5.23 25.04 82.20 0.76 0.02 6.60 7.66

M
ea

n REMod − REF 6.40 8.21 282.41 27.10 95.14 4.95 85.26 1.38 0.41 9.10 7.14
REMod − SUF 4.32 5.57 189.87 19.59 69.67 3.32 57.63 0.94 0.27 6.20 7.26
REMod − P ER 7.29 7.21 203.59 23.02 97.48 3.57 67.45 1.36 0.51 8.75 5.85
REMod − UNA 10.20 9.20 289.04 25.65 145.35 5.06 85.35 0.77 0.29 6.71 7.58

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 1.36 3.45 109.86 19.71 5.67 21.88 69.10 0.99 0.01 6.62 7.14
REMod − SUF 0.92 2.34 73.86 14.25 4.15 14.71 46.71 0.68 0.01 4.51 7.26
REMod − P ER 1.55 3.03 79.20 16.74 5.81 15.78 54.66 0.98 0.01 6.36 5.85
REMod − UNA 2.16 3.87 112.44 18.65 8.66 22.38 69.17 0.56 0.01 4.88 7.58

M
ea

n REMod − REF 4.35 5.18 151.25 24.24 98.43 4.90 74.87 1.14 0.09 7.75 6.91
REMod − SUF 2.93 3.51 101.69 17.52 72.08 3.29 50.60 0.77 0.06 5.28 7.03
REMod − P ER 4.95 4.54 109.03 20.59 100.85 3.53 59.22 1.12 0.12 7.45 5.67
REMod − UNA 6.93 5.80 154.80 22.94 150.38 5.01 74.94 0.64 0.07 5.72 7.34

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 0.16 0.54 28.00 1.06 0.66 18.50 7.25 0.33 0.00 0.59 3.81
REMod − SUF 0.11 0.36 18.82 0.77 0.48 12.43 4.90 0.23 0.00 0.40 3.88
REMod − P ER 0.18 0.47 20.18 0.90 0.68 13.34 5.74 0.33 0.00 0.57 3.13
REMod − UNA 0.25 0.60 28.66 1.01 1.01 18.92 7.26 0.19 0.00 0.44 4.05

M
ea

n REMod − REF 1.44 1.31 52.34 2.84 34.26 1.34 13.10 0.45 0.03 1.29 2.13
REMod − SUF 0.97 0.89 35.19 2.05 25.09 0.90 8.86 0.31 0.02 0.88 2.16
REMod − P ER 1.64 1.15 37.73 2.41 35.10 0.96 10.37 0.45 0.04 1.24 1.74
REMod − UNA 2.30 1.47 53.57 2.68 52.34 1.37 13.12 0.26 0.02 0.95 2.26

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0% 20
19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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APPENDIX D. EMPIRICAL RESULTS

Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.01 0.00 0.00 0.28
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00 0.00 0.00 0.29
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.01 0.00 0.00 0.23
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.30

M
ea

n REMod − REF 0.01 0.01 0.61 0.00 0.13 0.00 0.00 0.03 0.00 0.00 0.07
REMod − SUF 0.01 0.01 0.41 0.00 0.10 0.00 0.00 0.02 0.00 0.00 0.07
REMod − P ER 0.01 0.01 0.44 0.00 0.14 0.00 0.00 0.03 0.00 0.00 0.06
REMod − UNA 0.01 0.01 0.62 0.00 0.20 0.00 0.00 0.01 0.00 0.00 0.08

Q
.6

0%
20

19

REMod − REF 0.04 0.30 18.26 0.41 0.13 19.25 5.59 0.30 0.00 0.42 4.36
REMod − SUF 0.02 0.20 12.28 0.30 0.10 12.94 3.78 0.20 0.00 0.29 4.44
REMod − P ER 0.04 0.26 13.16 0.35 0.14 13.88 4.42 0.30 0.00 0.40 3.58
REMod − UNA 0.06 0.34 18.69 0.39 0.20 19.70 5.60 0.17 0.00 0.31 4.63

M
ea

n REMod − REF 0.90 1.23 38.95 1.91 21.35 0.20 11.36 0.49 0.02 1.22 1.82
REMod − SUF 0.61 0.83 26.19 1.38 15.63 0.14 7.68 0.33 0.01 0.83 1.85
REMod − P ER 1.02 1.08 28.08 1.62 21.87 0.15 8.98 0.48 0.02 1.17 1.49
REMod − UNA 1.43 1.38 39.87 1.81 32.61 0.21 11.37 0.27 0.01 0.90 1.93

Q
.7

5%
20

19

REMod − REF 4.74 8.27 283.02 26.69 16.34 25.23 87.19 1.38 0.02 9.11 7.21
REMod − SUF 3.20 5.61 190.28 19.29 11.96 16.96 58.93 0.94 0.01 6.20 7.33
REMod − P ER 5.40 7.26 204.03 22.67 16.74 18.20 68.97 1.36 0.02 8.76 5.91
REMod − UNA 7.56 9.26 289.67 25.26 24.96 25.82 87.27 0.78 0.01 6.72 7.66

M
ea

n REMod − REF 8.89 8.36 301.28 27.27 129.00 19.43 87.36 1.38 0.40 9.12 7.21
REMod − SUF 6.00 5.67 202.55 19.71 94.46 13.06 59.05 0.94 0.26 6.21 7.33
REMod − P ER 10.12 7.34 217.19 23.16 132.18 14.01 69.11 1.36 0.50 8.77 5.91
REMod − UNA 14.17 9.36 308.36 25.80 197.09 19.88 87.45 0.78 0.28 6.72 7.66

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). Hereby, the results are derived under the
robustness test for the scenario values, in particular, the scenario values are calculated based on data in the period from
2015 to 2019.

Table D.47: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n 20
19

REMod − REF 8.36 26.29 70.59 1.38 2.72 7.21
REMod − SUF 5.67 19.00 47.71 0.94 1.85 7.33
REMod − P ER 7.34 22.33 55.84 1.36 2.61 5.91
REMod − UNA 9.36 24.87 70.66 0.78 2.00 7.66

M
ea

n REMod − REF 8.36 27.27 86.84 1.38 8.17 7.18
REMod − SUF 5.67 19.71 58.69 0.94 5.56 7.30
REMod − P ER 7.34 23.16 68.69 1.36 7.85 5.89
REMod − UNA 9.36 25.80 86.92 0.78 6.02 7.63

Sh
oc

k 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

E
xt

r.
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66
REMod − REF 8.36 27.21 87.19 1.38 7.89 7.21
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APPENDIX D. EMPIRICAL RESULTS

Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

Fo
c.

E
A 20

19

REMod − SUF 5.67 19.67 58.93 0.94 5.38 7.33
REMod − P ER 7.34 23.11 68.97 1.36 7.59 5.91
REMod − UNA 9.36 25.75 87.27 0.78 5.82 7.66

M
ea

n REMod − REF 8.36 27.27 87.19 1.38 9.01 7.21
REMod − SUF 5.67 19.71 58.93 0.94 6.14 7.33
REMod − P ER 7.34 23.16 68.97 1.36 8.66 5.91
REMod − UNA 9.36 25.80 87.27 0.78 6.64 7.66

Fo
c.

F
X 20

19
REMod − REF 8.36 27.27 87.19 1.38 7.55 7.21
REMod − SUF 5.67 19.71 58.93 0.94 5.14 7.33
REMod − P ER 7.34 23.16 68.97 1.36 7.26 5.91
REMod − UNA 9.36 25.80 87.27 0.78 5.57 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.02 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.15 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.68 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.66 7.66

Fo
c.

F
F

R 20
19

REMod − REF 8.36 27.27 87.36 1.38 8.97 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.11 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.63 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.62 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 8.36 27.27 87.19 1.38 8.66 7.21
REMod − SUF 5.67 19.71 58.93 0.94 5.90 7.33
REMod − P ER 7.34 23.16 68.97 1.36 8.33 5.91
REMod − UNA 9.36 25.80 87.27 0.78 6.39 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.06 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.17 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.71 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.68 7.66

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 8.36 27.27 87.36 1.38 8.79 7.21
REMod − SUF 5.67 19.71 59.05 0.94 5.99 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.45 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.48 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.06 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.17 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.71 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.68 7.66

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 8.36 27.27 87.36 1.38 9.06 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.17 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.71 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.68 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.01 0.00 0.45
REMod − SUF 0.00 0.00 0.00 0.01 0.00 0.45
REMod − P ER 0.00 0.00 0.00 0.01 0.00 0.37
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.47

M
ea

n REMod − REF 0.00 0.22 0.00 0.06 0.04 0.00
REMod − SUF 0.00 0.16 0.00 0.04 0.02 0.00
REMod − P ER 0.00 0.19 0.00 0.06 0.04 0.00
REMod − UNA 0.00 0.21 0.00 0.03 0.03 0.00

Q
.5

0% 20
19

REMod − REF 1.09 1.75 10.83 1.25 0.36 7.21
REMod − SUF 0.74 1.26 7.32 0.85 0.25 7.33
REMod − P ER 0.95 1.48 8.57 1.23 0.35 5.91
REMod − UNA 1.22 1.65 10.84 0.70 0.27 7.66

M
ea

n REMod − REF 8.08 25.36 47.17 1.38 3.23 4.31
REMod − SUF 5.48 18.33 31.89 0.94 2.20 4.38
REMod − P ER 7.09 21.54 37.32 1.36 3.10 3.53
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APPENDIX D. EMPIRICAL RESULTS

Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn
REMod − UNA 9.05 24.00 47.22 0.78 2.38 4.58

Q
.6

0%
20

19

REMod − REF 8.36 27.27 87.36 1.38 8.82 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.01 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.49 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.51 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.7

5%
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

This table displays the expected loss due to scarcity for the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), per path
(REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as
well as per scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus
EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quan-
tile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input vari-
ables. Hereby, the values are derived from the MS-GVAR model based on the
weight matrices representing the dependencies between the commodities within
the REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean). Hereby, the results are de-
rived under the robustness test for the scenario values, in particular, the scenario
values are calculated based on data in the period from 2015 to 2019.

Table D.48: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models of the robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n

REMod − REF 0.30 0.39 20.31 1.26 2.16 12.84 1.19 0.28 4.52 0.09 0.02 0.17 0.86
REMod − SUF 0.20 0.26 13.65 0.91 1.55 9.40 0.80 0.20 3.06 0.06 0.01 0.11 0.87
REMod − P ER 0.34 0.34 14.64 1.07 2.08 13.16 0.86 0.26 3.58 0.09 0.02 0.16 0.70
REMod − UNA 0.47 0.44 20.79 1.20 1.03 19.62 1.22 0.12 4.53 0.05 0.01 0.12 0.91

Sh
oc

k

REMod − REF 0.42 0.79 154.17 1.81 9.51 23.01 1.75 1.24 19.87 0.25 0.04 0.25 6.77
REMod − SUF 0.28 0.53 103.65 1.31 6.80 16.85 1.18 0.88 13.43 0.17 0.03 0.17 6.89
REMod − P ER 0.48 0.69 111.14 1.53 9.16 23.58 1.26 1.15 15.72 0.24 0.05 0.24 5.55
REMod − UNA 0.67 0.88 157.79 1.71 4.53 35.16 1.79 0.53 19.89 0.14 0.03 0.18 7.19

E
xt

r.

REMod − REF 0.60 1.51 284.99 2.56 35.46 38.62 2.55 4.63 53.61 0.56 0.10 0.36 7.20
REMod − SUF 0.40 1.02 191.60 1.85 25.35 28.28 1.71 3.29 36.23 0.38 0.07 0.24 7.33
REMod − P ER 0.68 1.32 205.45 2.17 34.15 39.57 1.84 4.29 42.40 0.55 0.13 0.34 5.91
REMod − UNA 0.96 1.69 291.69 2.42 16.91 59.01 2.61 1.98 53.66 0.32 0.07 0.26 7.65

Fo
c.

E
A

REMod − REF 0.30 0.39 20.31 1.26 4.58 12.84 1.19 0.60 4.52 0.09 0.02 0.17 0.86
REMod − SUF 0.20 0.26 13.65 0.91 3.27 9.40 0.80 0.43 3.06 0.06 0.01 0.11 0.87
REMod − P ER 0.34 0.34 14.64 1.07 4.41 13.16 0.86 0.55 3.58 0.09 0.02 0.16 0.70
REMod − UNA 0.47 0.44 20.79 1.20 2.18 19.62 1.22 0.26 4.53 0.05 0.01 0.12 0.91

Fo
c.

F
X

REMod − REF 0.30 0.39 20.31 1.29 2.45 16.56 1.19 0.32 4.52 0.14 0.02 0.17 0.86
REMod − SUF 0.20 0.26 13.65 0.93 1.75 12.13 0.80 0.23 3.06 0.10 0.01 0.11 0.87
REMod − P ER 0.34 0.34 14.64 1.10 2.36 16.97 0.86 0.30 3.58 0.14 0.03 0.16 0.70
REMod − UNA 0.47 0.44 20.79 1.22 1.17 25.30 1.22 0.14 4.53 0.08 0.01 0.12 0.91
REMod − REF 0.30 0.39 20.31 1.44 4.05 12.84 1.19 0.53 4.52 0.09 0.02 0.17 2.21
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the scenario values for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

Fo
c.

F
F

R REMod − SUF 0.20 0.26 13.65 1.04 2.89 9.40 0.80 0.38 3.06 0.06 0.01 0.11 2.25
REMod − P ER 0.34 0.34 14.64 1.22 3.90 13.16 0.86 0.49 3.58 0.09 0.02 0.16 1.81
REMod − UNA 0.47 0.44 20.79 1.36 1.93 19.62 1.22 0.23 4.53 0.05 0.01 0.12 2.35

Fo
c.

E
xt

r.
E

A REMod − REF 0.30 0.39 20.31 1.26 9.51 12.84 1.19 1.24 4.52 0.09 0.02 0.17 0.86
REMod − SUF 0.20 0.26 13.65 0.91 6.80 9.40 0.80 0.88 3.06 0.06 0.01 0.11 0.87
REMod − P ER 0.34 0.34 14.64 1.07 9.15 13.16 0.86 1.15 3.58 0.09 0.02 0.16 0.70
REMod − UNA 0.47 0.44 20.79 1.20 4.53 19.62 1.22 0.53 4.53 0.05 0.01 0.12 0.91

Fo
c.

E
xt

r.
F

X REMod − REF 0.30 0.39 20.31 1.32 2.77 21.17 1.19 0.36 4.52 0.23 0.03 0.17 0.86
REMod − SUF 0.20 0.26 13.65 0.95 1.98 15.50 0.80 0.26 3.06 0.15 0.02 0.11 0.87
REMod − P ER 0.34 0.34 14.64 1.12 2.67 21.69 0.86 0.34 3.58 0.22 0.03 0.16 0.70
REMod − UNA 0.47 0.44 20.79 1.25 1.32 32.34 1.22 0.16 4.53 0.13 0.02 0.12 0.91

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.30 0.39 20.31 1.64 7.50 12.84 1.19 0.98 4.52 0.09 0.02 0.17 4.27

REMod − SUF 0.20 0.26 13.65 1.19 5.36 9.40 0.80 0.70 3.06 0.06 0.01 0.11 4.34
REMod − P ER 0.34 0.34 14.64 1.40 7.22 13.16 0.86 0.91 3.58 0.09 0.02 0.16 3.50
REMod − UNA 0.47 0.44 20.79 1.56 3.57 19.62 1.22 0.42 4.53 0.05 0.01 0.12 4.53

Q
.2

5%

REMod − REF 0.29 0.35 4.34 1.13 1.25 10.92 0.99 0.16 1.65 0.05 0.01 0.15 0.04
REMod − SUF 0.19 0.24 2.92 0.82 0.89 8.00 0.66 0.12 1.11 0.03 0.01 0.10 0.04
REMod − P ER 0.33 0.31 3.13 0.96 1.21 11.19 0.71 0.15 1.30 0.05 0.02 0.15 0.03
REMod − UNA 0.46 0.39 4.44 1.07 0.60 16.68 1.01 0.07 1.65 0.03 0.01 0.11 0.05

Q
.4

0%

REMod − REF 0.29 0.36 7.85 1.18 1.60 11.19 1.01 0.21 2.96 0.05 0.01 0.17 0.16
REMod − SUF 0.19 0.24 5.28 0.86 1.15 8.19 0.68 0.15 2.00 0.04 0.01 0.11 0.17
REMod − P ER 0.33 0.32 5.66 1.01 1.54 11.47 0.73 0.19 2.34 0.05 0.02 0.16 0.13
REMod − UNA 0.46 0.40 8.04 1.12 0.76 17.10 1.03 0.09 2.96 0.03 0.01 0.12 0.17

Q
.5

0%

REMod − REF 0.29 0.37 11.60 1.22 1.89 11.38 1.02 0.25 4.35 0.06 0.01 0.18 0.40
REMod − SUF 0.20 0.25 7.80 0.88 1.35 8.33 0.69 0.18 2.94 0.04 0.01 0.12 0.40
REMod − P ER 0.33 0.32 8.36 1.04 1.82 11.66 0.74 0.23 3.44 0.06 0.02 0.17 0.32
REMod − UNA 0.46 0.41 11.88 1.16 0.90 17.38 1.05 0.11 4.35 0.03 0.01 0.13 0.42

Q
.6

0%

REMod − REF 0.33 0.47 35.53 1.37 3.14 13.40 1.04 0.41 7.58 0.09 0.02 0.18 1.64
REMod − SUF 0.22 0.32 23.88 0.99 2.24 9.81 0.70 0.29 5.12 0.06 0.01 0.12 1.67
REMod − P ER 0.37 0.41 25.61 1.17 3.02 13.73 0.75 0.38 5.99 0.09 0.02 0.17 1.35
REMod − UNA 0.52 0.53 36.36 1.30 1.50 20.47 1.07 0.18 7.59 0.05 0.01 0.13 1.74

Q
.7

5%

REMod − REF 0.39 0.69 135.69 1.64 6.63 17.03 1.07 0.87 16.46 0.17 0.03 0.19 5.56
REMod − SUF 0.26 0.46 91.23 1.18 4.74 12.47 0.72 0.62 11.12 0.11 0.02 0.13 5.65
REMod − P ER 0.45 0.60 97.82 1.39 6.38 17.45 0.77 0.80 13.02 0.16 0.03 0.18 4.56
REMod − UNA 0.62 0.77 138.88 1.55 3.16 26.02 1.10 0.37 16.47 0.09 0.02 0.14 5.91

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for the
scenario values, in particular, the scenario values are calculated based on data in the period from 2015 to 2019.

D.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE 297



APPENDIX D. EMPIRICAL RESULTS

D.3.2.2.2 Results of the Robustness Analysis for the Scenario Values of the en-
larged Sample
Table D.49: Scenario values for the input variables of the robustness analysis for the scenario values for the enlarged sample
period from 1995 to 2019

M
ea

n

Sh
oc

k

E
xt

r.

Fo
c.

E
A

Fo
c.

F
X

Fo
c.

F
F

R

Fo
c.

E
xt

r.
E

A

Fo
c.

E
xt

r.
F

X

Fo
c.

E
xt

r.
F

F
R

Q
.2

5%

Q
.4

0%

Q
.5

0%

Q
.6

0%

Q
.7

5%

G
VA

R

A
g supply 0.11 0.97 1.82 0.11 0.11 0.11 0.11 0.11 0.11 -0.42 0.06 0.30 0.50 0.54

demand 0.01 0.88 1.75 0.01 0.01 0.01 0.01 0.01 0.01 -0.56 -0.17 -0.04 0.30 0.47
price -0.00 0.74 1.47 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.38 -0.24 -0.17 0.04 0.25

A
l supply 0.19 0.97 1.75 0.19 0.19 0.19 0.19 0.19 0.19 -0.18 0.09 0.23 0.37 0.55

demand -0.15 0.80 1.75 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.63 -0.37 -0.15 0.08 0.55
price -0.08 0.79 1.65 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.59 -0.27 -0.05 0.19 0.41

C
o supply 0.18 1.26 2.34 0.18 0.18 0.18 0.18 0.18 0.18 0.07 0.14 0.33 0.38 0.51

demand 0.02 1.00 1.98 0.02 0.02 0.02 0.02 0.02 0.02 -0.40 -0.26 -0.08 0.14 0.29
price -0.14 0.81 1.76 -0.14 -0.14 -0.14 -0.14 -0.14 -0.14 -0.56 -0.36 -0.29 -0.11 0.31

C
u supply 0.17 1.06 1.96 0.17 0.17 0.17 0.17 0.17 0.17 -0.62 -0.17 0.18 0.39 0.83

demand -0.13 0.76 1.64 -0.13 -0.13 -0.13 -0.13 -0.13 -0.13 -0.43 -0.21 -0.11 -0.06 0.18
price 0.04 1.06 2.07 0.04 0.04 0.04 0.04 0.04 0.04 -0.58 -0.37 -0.18 0.12 0.55

In

supply 0.10 0.92 1.73 0.10 0.10 0.10 0.10 0.10 0.10 -0.30 -0.17 -0.05 0.02 0.14
demand -0.02 0.35 0.72 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.31 -0.12 -0.11 0.03 0.22
price -0.01 1.08 2.17 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.78 -0.46 -0.28 -0.13 0.42

Li

supply 0.12 0.82 1.52 0.12 0.12 0.12 0.12 0.12 0.12 -0.19 -0.10 -0.04 0.03 0.31
demand -0.01 1.14 2.29 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.41 -0.13 -0.01 0.06 0.33
price -0.25 1.00 2.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.68 -0.35 -0.31 -0.30 0.03

N
i supply 0.13 1.20 2.27 0.13 0.13 0.13 0.13 0.13 0.13 -0.40 -0.02 0.17 0.49 0.69

demand -0.03 0.79 1.60 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.48 -0.14 0.00 0.17 0.55
price -0.00 1.06 2.12 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.85 -0.13 0.12 0.30 0.80

P
b

supply 0.27 1.40 2.53 0.27 0.27 0.27 0.27 0.27 0.27 -0.60 -0.14 0.28 0.64 1.12
demand 0.01 0.91 1.81 0.01 0.01 0.01 0.01 0.01 0.01 -0.83 -0.18 0.04 0.24 0.63
price -0.00 1.03 2.06 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.67 -0.33 -0.20 0.07 0.41

P
t supply -0.08 1.09 2.26 -0.08 -0.08 -0.08 -0.08 -0.08 -0.08 -0.46 -0.17 0.13 0.27 0.43

demand -0.06 1.18 2.43 -0.06 -0.06 -0.06 -0.06 -0.06 -0.06 -0.88 -0.18 0.18 0.26 0.67
price -0.04 0.72 1.48 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.49 -0.34 -0.21 -0.04 0.46

Sn

supply 0.20 1.34 2.47 0.20 0.20 0.20 0.20 0.20 0.20 -0.63 -0.17 0.14 0.46 1.14
demand 0.06 0.85 1.64 0.06 0.06 0.06 0.06 0.06 0.06 -0.40 -0.04 0.12 0.18 0.34
price 0.07 1.08 2.09 0.07 0.07 0.07 0.07 0.07 0.07 -0.55 -0.23 -0.13 0.20 0.62

Zn

supply 0.20 1.25 2.30 0.20 0.20 0.20 0.20 0.20 0.20 -0.42 -0.06 -0.04 0.35 0.75
demand -0.05 0.95 1.95 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.66 -0.33 0.09 0.16 0.58
price -0.02 0.98 1.98 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.63 -0.19 -0.11 0.01 0.31

ex
og

GDP -0.40 0.48 1.36 -0.40 -0.40 -0.40 -0.40 -0.40 -0.40 -0.90 -0.72 -0.55 -0.13 0.38
FX 0.09 0.91 1.74 0.09 0.91 0.09 0.09 1.74 0.09 -0.39 0.02 0.15 0.22 0.56
FFR -0.00 1.30 2.60 -0.00 -0.00 1.30 -0.00 -0.00 2.60 -0.43 -0.03 0.10 0.35 0.64

lo
g.

R
eg

.

U.S. IP -0.11 0.83 1.77 -0.11 -0.11 -0.11 -0.11 -0.11 -0.11 -0.42 0.02 0.14 0.24 0.42
GDPc -0.36 0.54 1.44 -0.36 -0.36 -0.36 -0.36 -0.36 -0.36 -0.86 -0.68 -0.53 -0.07 0.45
LIR -0.15 0.94 2.04 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.80 -0.48 -0.06 0.08 0.60
CPI 0.03 1.43 2.82 0.03 0.03 0.03 0.03 0.03 0.03 -0.24 -0.14 -0.04 0.01 0.15
MSCI -0.10 0.83 1.77 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.37 0.10 0.14 0.45 0.59
OIL -0.04 0.92 1.87 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 -0.48 -0.12 0.12 0.41 0.68
ND -0.10 0.68 1.47 -0.10 -0.10 -0.10 -0.10 -0.10 -0.10 -0.72 -0.38 -0.14 0.01 0.61

M
S-

G
VA

R

A
l supply 0.00 1.02 2.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.46 -0.16 0.02 0.18 0.42

demand 0.01 0.98 1.95 0.01 0.01 0.01 0.01 0.01 0.01 -0.58 -0.30 -0.03 0.18 0.58
price 0.01 1.01 2.01 0.01 0.01 0.01 0.01 0.01 0.01 -0.63 -0.25 -0.03 0.21 0.65

C
u supply -0.01 0.99 1.99 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.59 -0.27 -0.04 0.18 0.59

demand 0.01 1.02 2.03 0.01 0.01 0.01 0.01 0.01 0.01 -0.61 -0.23 0.00 0.24 0.69
price 0.00 1.02 2.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.54 -0.27 0.01 0.24 0.60

N
i supply -0.01 0.98 1.97 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.48 -0.15 0.02 0.21 0.50

demand 0.00 1.01 2.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.66 -0.21 0.02 0.26 0.64
price 0.01 1.00 1.99 0.01 0.01 0.01 0.01 0.01 0.01 -0.72 -0.27 0.01 0.24 0.65

P
b

supply -0.00 1.01 2.02 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.51 -0.21 -0.10 0.07 0.40
demand 0.00 1.02 2.03 0.00 0.00 0.00 0.00 0.00 0.00 -0.54 -0.24 -0.03 0.14 0.51
price -0.00 1.00 2.01 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.59 -0.21 0.00 0.25 0.61

Sn

supply -0.00 1.02 2.03 -0.00 -0.00 -0.00 -0.00 -0.00 -0.00 -0.49 -0.19 -0.02 0.19 0.53
demand 0.00 1.02 2.04 0.00 0.00 0.00 0.00 0.00 0.00 -0.55 -0.21 0.03 0.14 0.56
price 0.00 0.99 1.98 0.00 0.00 0.00 0.00 0.00 0.00 -0.55 -0.28 -0.11 0.16 0.55

Zn

supply -0.01 1.00 2.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.57 -0.22 -0.04 0.15 0.54
demand 0.01 1.00 2.00 0.01 0.01 0.01 0.01 0.01 0.01 -0.61 -0.20 0.03 0.21 0.66
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Scenario values for the input variables of the robustness analysis for the scenario values for the enlarged sample period from
1995 to 2019

M
ea

n

Sh
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E
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Fo
c.

E
A

Fo
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F
X

Fo
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F
F

R

Fo
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E
xt

r.
E

A

Fo
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E
xt

r.
F

X

Fo
c.

E
xt

r.
F

F
R

Q
.2

5%

Q
.4

0%

Q
.5

0%

Q
.6

0%

Q
.7

5%

M
S-

G
VA

R price 0.01 1.02 2.03 0.01 0.01 0.01 0.01 0.01 0.01 -0.64 -0.29 0.05 0.30 0.65

ex
og

IP -0.00 1.02 2.04 -0.00 -0.00 1.02 -0.00 -0.00 2.04 -0.23 -0.04 0.06 0.11 0.36
FX 0.01 1.01 2.01 0.01 1.01 0.01 0.01 2.01 0.01 -0.61 -0.17 0.02 0.23 0.62
FFR 0.01 1.01 2.01 1.01 0.01 0.01 2.01 0.01 0.01 -0.62 -0.27 -0.11 0.23 0.73

This table displays the scenario values of the (potential) input variables under the different scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%). Hereby, the endogenous
as well as exogenous variables of the annual (monthly) (MS-)GVAR model as well as the commodity-specific determinants
of the logistic regression model are displayed. In particular, we report the scenario values of supply (supply), demand
(demand), and price (price) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu), indium (In),
lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), as well as U.S. industrial production (U.S. IP),
world industrial production (IP), world gross domestic product (GDP), world gross domestic product per capita (GDPc),
U.S. dollar index (FX), Federal Funds Effective Rate (FFR), 10-year U.S. Treasury rate (LIR), U.S. consumer price in-
dex (CPI), MSCI world stock index (MSCI), West Texas Intermediate spot crude oil price (OIL), and global natural
disasters (ND). Hereby, the values are derived under the robustness test for the scenario values, they are calculated using
data in the period from 1995 to 2019.

Table D.50: Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the scenario
values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.90 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.00 0.44 0.22 0.51 0.00 0.62 0.72 0.80 0.00 0.87 1.00
Foc. FX 0.00 0.02 0.01 0.05 0.00 0.39 0.22 0.31 0.00 0.18 0.98
Foc. FFR 0.00 0.02 0.03 0.00 0.00 0.68 0.02 0.18 0.00 0.03 0.56
Foc. Extr. EA 0.30 0.93 0.83 0.96 0.04 0.94 0.97 0.98 0.14 0.99 1.00
Foc. Extr. FX 0.07 0.47 0.32 0.76 0.01 0.80 0.86 0.81 0.00 0.81 1.00
Foc. Extr. FFR 0.07 0.23 0.26 0.11 0.01 0.94 0.34 0.54 0.00 0.30 0.86
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Q. 60% 0.00 0.24 0.12 0.09 0.00 0.97 0.44 0.82 0.00 0.44 1.00
Q. 75% 0.89 1.00 1.00 1.00 0.41 1.00 1.00 1.00 0.27 1.00 1.00

M
ea

n

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.21 0.83 0.52 0.91 0.14 0.00 0.90 0.98 0.20 0.99 0.92
Foc. FX 0.04 0.16 0.07 0.42 0.14 0.00 0.48 0.62 0.01 0.55 0.77
Foc. FFR 0.06 0.12 0.08 0.05 0.11 0.00 0.07 0.36 0.02 0.10 0.20
Foc. Extr. EA 0.78 0.99 0.93 0.99 0.69 0.16 0.99 1.00 0.87 1.00 0.99
Foc. Extr. FX 0.48 0.72 0.52 0.94 0.75 0.08 0.92 0.90 0.19 0.93 0.97
Foc. Extr. FFR 0.41 0.47 0.43 0.29 0.50 0.16 0.49 0.71 0.16 0.53 0.61
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 60% 0.36 0.81 0.38 0.63 0.32 0.02 0.81 0.99 0.05 0.96 0.95
Q. 75% 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Shock 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.90 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.00 0.43 0.22 0.50 0.00 0.56 0.72 0.81 0.00 0.87 1.00
Foc. FX 0.00 0.01 0.01 0.05 0.00 0.33 0.16 0.30 0.00 0.20 0.98
Foc. FFR 0.00 0.01 0.02 0.00 0.00 0.69 0.01 0.17 0.00 0.02 0.56
Foc. Extr. EA 0.29 0.93 0.83 0.96 0.04 0.92 0.97 0.98 0.15 0.99 1.00
Foc. Extr. FX 0.06 0.44 0.31 0.76 0.01 0.75 0.87 0.81 0.00 0.84 1.00
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the scenario values for
the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
S

U
F

20
19

Foc. Extr. FFR 0.06 0.21 0.21 0.12 0.01 0.96 0.31 0.53 0.00 0.30 0.86
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Q. 60% 0.00 0.15 0.06 0.06 0.00 0.94 0.29 0.78 0.00 0.40 1.00
Q. 75% 0.84 1.00 1.00 1.00 0.33 1.00 1.00 1.00 0.25 1.00 1.00

M
ea

n

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.19 0.83 0.52 0.92 0.13 0.00 0.89 0.98 0.20 0.99 0.92
Foc. FX 0.04 0.14 0.05 0.41 0.15 0.00 0.44 0.61 0.01 0.58 0.77
Foc. FFR 0.04 0.10 0.06 0.04 0.10 0.00 0.04 0.34 0.02 0.09 0.20
Foc. Extr. EA 0.77 0.99 0.93 1.00 0.69 0.11 0.99 1.00 0.88 1.00 0.99
Foc. Extr. FX 0.46 0.71 0.50 0.93 0.77 0.04 0.94 0.91 0.20 0.94 0.97
Foc. Extr. FFR 0.39 0.45 0.41 0.30 0.47 0.13 0.44 0.70 0.16 0.50 0.61
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 60% 0.29 0.73 0.28 0.59 0.27 0.01 0.71 0.99 0.05 0.94 0.93
Q. 75% 1.00 1.00 1.00 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03
Shock 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.91 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.00 0.44 0.21 0.52 0.00 0.62 0.73 0.81 0.00 0.87 1.00
Foc. FX 0.00 0.02 0.01 0.06 0.00 0.38 0.21 0.34 0.00 0.21 0.99
Foc. FFR 0.00 0.03 0.02 0.01 0.00 0.72 0.01 0.20 0.00 0.03 0.56
Foc. Extr. EA 0.32 0.93 0.83 0.96 0.03 0.94 0.98 0.98 0.15 1.00 1.00
Foc. Extr. FX 0.08 0.48 0.33 0.78 0.01 0.78 0.88 0.82 0.00 0.82 1.00
Foc. Extr. FFR 0.09 0.25 0.28 0.13 0.01 0.95 0.33 0.56 0.00 0.31 0.87
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Q. 60% 0.02 0.25 0.10 0.09 0.00 0.97 0.38 0.85 0.00 0.45 1.00
Q. 75% 0.92 1.00 1.00 1.00 0.35 1.00 1.00 1.00 0.27 1.00 1.00

M
ea

n

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.24 0.83 0.52 0.91 0.12 0.00 0.90 0.98 0.20 0.99 0.92
Foc. FX 0.06 0.17 0.06 0.42 0.16 0.00 0.49 0.66 0.01 0.57 0.76
Foc. FFR 0.08 0.13 0.08 0.05 0.11 0.00 0.05 0.39 0.02 0.10 0.21
Foc. Extr. EA 0.79 0.99 0.94 0.99 0.68 0.15 0.99 1.00 0.87 1.00 0.99
Foc. Extr. FX 0.51 0.73 0.53 0.93 0.77 0.07 0.94 0.92 0.19 0.94 0.97
Foc. Extr. FFR 0.44 0.50 0.46 0.32 0.49 0.15 0.48 0.72 0.17 0.53 0.60
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 60% 0.45 0.82 0.37 0.64 0.28 0.02 0.78 0.99 0.05 0.95 0.94
Q. 75% 1.00 1.00 1.00 1.00 1.00 0.88 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
Shock 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 0.88 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.00 0.42 0.22 0.50 0.00 0.56 0.73 0.80 0.00 0.86 1.00
Foc. FX 0.00 0.01 0.01 0.05 0.00 0.34 0.19 0.31 0.00 0.18 0.98
Foc. FFR 0.00 0.02 0.03 0.01 0.00 0.71 0.01 0.17 0.00 0.02 0.54
Foc. Extr. EA 0.31 0.92 0.84 0.96 0.04 0.92 0.97 0.97 0.15 0.99 1.00
Foc. Extr. FX 0.07 0.45 0.31 0.77 0.01 0.74 0.88 0.82 0.00 0.82 1.00
Foc. Extr. FFR 0.07 0.21 0.26 0.12 0.01 0.95 0.33 0.54 0.00 0.30 0.85
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
Q. 60% 0.00 0.18 0.08 0.07 0.00 0.94 0.33 0.79 0.00 0.40 1.00
Q. 75% 0.86 1.00 1.00 1.00 0.32 1.00 1.00 1.00 0.22 1.00 1.00

M
ea

n

Mean 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Shock 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.22 0.83 0.52 0.92 0.13 0.00 0.90 0.98 0.20 0.99 0.93
Foc. FX 0.04 0.14 0.06 0.40 0.16 0.00 0.46 0.62 0.01 0.55 0.76
Foc. FFR 0.05 0.09 0.08 0.04 0.10 0.00 0.04 0.35 0.02 0.09 0.18
Foc. Extr. EA 0.79 0.99 0.94 1.00 0.69 0.11 0.99 1.00 0.88 1.00 0.99
Foc. Extr. FX 0.48 0.72 0.52 0.94 0.78 0.05 0.94 0.91 0.17 0.94 0.97
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the scenario values for
the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

R
E

M
o
d

−
U

N
A

M
ea

n

Foc. Extr. FFR 0.40 0.45 0.44 0.30 0.47 0.14 0.46 0.72 0.15 0.52 0.58
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Q. 60% 0.32 0.74 0.32 0.59 0.25 0.01 0.74 0.99 0.04 0.92 0.92
Q. 75% 1.00 1.00 1.00 1.00 1.00 0.82 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper (Cu),
indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), derived from the GVAR model based
on the weight matrices representing the dependencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the initial basis price level of 2019 or on the average
price level of the previous decade (Mean). Hereby, the probability of scarcity is calculated for the scenarios Mean (Mean),
Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%),
40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables.
The presented results are derived under the robustness test for the scenario values, in particular, the scenario values are
calculated based on data in the period from 1995 to 2019.

Table D.51: Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the
scenario values for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.00 0.00 0.00 0.02 0.00 0.46
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.13 0.00 0.15 0.43 0.20 0.98
Foc. FX 0.78 0.19 0.49 0.72 0.32 0.98
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 0.72 0.14 0.65 0.80 0.66 1.00
Foc. Extr. FX 0.99 0.74 0.88 0.93 0.75 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.08 0.00 0.83
Q. 60% 1.00 0.51 0.89 1.00 0.63 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.00 0.00 0.00 0.13 0.06 0.01
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.69 0.16 0.42 0.80 0.67 0.47
Foc. FX 0.98 0.71 0.78 0.92 0.77 0.62
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.95 0.60 0.83 0.95 0.91 0.84
Foc. Extr. FX 1.00 0.93 0.96 0.99 0.95 0.88
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.05 0.04 0.02 0.36 0.09 0.04
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.00 0.00 0.00 0.02 0.00 0.48
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.13 0.00 0.18 0.45 0.20 0.99
Foc. FX 0.63 0.20 0.41 0.82 0.36 0.99
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 0.79 0.17 0.71 0.80 0.65 1.00
Foc. Extr. FX 0.98 0.72 0.83 0.96 0.76 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.10 0.00 0.89
Q. 60% 1.00 0.49 0.85 1.00 0.62 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the scenario values
for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
S

U
F

Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.00 0.01 0.00 0.13 0.04 0.01
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.74 0.17 0.48 0.81 0.67 0.56
Foc. FX 0.97 0.69 0.72 0.95 0.76 0.70
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.97 0.58 0.86 0.95 0.91 0.88
Foc. Extr. FX 1.00 0.93 0.93 1.00 0.92 0.90
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.06 0.05 0.01 0.35 0.10 0.04
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.00 0.00 0.00 0.02 0.00 0.45
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.12 0.00 0.15 0.42 0.19 0.98
Foc. FX 0.79 0.21 0.50 0.72 0.38 0.99
Foc. FFR 1.00 1.00 1.00 1.00 0.98 1.00
Foc. Extr. EA 0.72 0.14 0.65 0.80 0.66 1.00
Foc. Extr. FX 0.98 0.75 0.89 0.93 0.78 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.09 0.00 0.86
Q. 60% 0.99 0.54 0.90 1.00 0.65 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.00 0.01 0.00 0.13 0.05 0.01
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.69 0.15 0.41 0.80 0.69 0.51
Foc. FX 0.98 0.73 0.79 0.92 0.80 0.67
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.95 0.57 0.84 0.95 0.91 0.86
Foc. Extr. FX 1.00 0.93 0.96 0.98 0.93 0.91
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.05 0.04 0.02 0.35 0.09 0.05
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.00 0.00 0.00 0.02 0.00 0.44
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.11 0.00 0.16 0.44 0.18 0.99
Foc. FX 0.77 0.18 0.50 0.75 0.34 0.99
Foc. FFR 1.00 1.00 1.00 1.00 0.99 1.00
Foc. Extr. EA 0.75 0.15 0.66 0.80 0.59 1.00
Foc. Extr. FX 0.99 0.73 0.90 0.94 0.74 1.00
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.00 0.00 0.00 0.08 0.01 0.87
Q. 60% 1.00 0.47 0.90 1.00 0.61 1.00
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.00 0.00 0.00 0.12 0.05 0.01
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.70 0.17 0.44 0.79 0.63 0.49
Foc. FX 0.98 0.70 0.79 0.93 0.75 0.61
Foc. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. EA 0.96 0.57 0.83 0.95 0.88 0.85
Foc. Extr. FX 1.00 0.91 0.96 0.99 0.93 0.90
Foc. Extr. FFR 1.00 1.00 1.00 1.00 1.00 1.00
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.05 0.05 0.01 0.34 0.11 0.04
Q. 60% 1.00 1.00 1.00 1.00 1.00 1.00
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Probability of scarcity per commodity derived from the MS-GVAR models of the robustness analysis for the scenario values
for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), derived
from the MS-GVAR model based on the weight matrices representing the depen-
dencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the
initial basis price level of 2019 or on the average price level of the previous
decade (Mean). Hereby, the probability of scarcity is calculated for the scenar-
ios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus
FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA),
Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR),
25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60%
quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables. The presented
results are derived under the robustness test for the scenario values, in particu-
lar, the scenario values are calculated based on data in the period from 1995 to
2019.

Table D.52: Probability of scarcity per commodity derived from the logistic regression models of the robustness analysis
for the scenario values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
Mean 0.04 0.06 0.08 0.04 0.01 0.10 0.04 0.01 0.07 0.05 0.03 0.02 0.01
Shock 0.05 0.14 0.41 0.06 0.06 0.16 0.05 0.06 0.31 0.12 0.07 0.03 0.53
Extr. 0.07 0.28 0.84 0.09 0.34 0.25 0.06 0.34 0.74 0.24 0.15 0.06 0.99
Foc. EA 0.04 0.06 0.08 0.04 0.02 0.10 0.04 0.02 0.07 0.05 0.03 0.02 0.01
Foc. FX 0.04 0.06 0.08 0.04 0.01 0.13 0.04 0.01 0.07 0.08 0.04 0.02 0.01
Foc. FFR 0.04 0.06 0.08 0.05 0.02 0.10 0.04 0.02 0.07 0.05 0.03 0.02 0.11
Foc. Extr. EA 0.04 0.06 0.08 0.04 0.03 0.10 0.04 0.03 0.07 0.05 0.03 0.02 0.01
Foc. Extr. FX 0.04 0.06 0.08 0.04 0.01 0.16 0.04 0.01 0.07 0.12 0.06 0.02 0.01
Foc. Extr. FFR 0.04 0.06 0.08 0.07 0.08 0.10 0.04 0.08 0.07 0.05 0.03 0.02 0.53
Q. 25% 0.03 0.04 0.02 0.03 0.00 0.08 0.04 0.00 0.03 0.03 0.02 0.01 0.00
Q. 40% 0.04 0.05 0.04 0.04 0.01 0.10 0.04 0.01 0.05 0.04 0.03 0.02 0.01
Q. 50% 0.04 0.06 0.08 0.04 0.01 0.11 0.04 0.01 0.07 0.05 0.04 0.02 0.02
Q. 60% 0.04 0.09 0.12 0.05 0.01 0.12 0.04 0.01 0.11 0.06 0.04 0.02 0.04
Q. 75% 0.05 0.13 0.32 0.05 0.03 0.14 0.04 0.03 0.17 0.09 0.06 0.03 0.14

This table displays the probability of scarcity (PS) of the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), derived from the logistic regression models based on preselected covariates. Hereby, the probability of scarcity
is calculated for the scenarios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX),
Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75%
quantile (Q. 75%) of the input variables. The presented results are derived under the robustness test for the scenario values,
in particular, the scenario values are calculated based on data in the period from 1995 to 2019.

Table D.53: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sh
oc

k 20
19

REMod − REF 9.17 8.36 304.32 27.27 126.24 25.23 87.36 1.38 0.48 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 92.44 16.96 59.05 0.94 0.32 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 129.34 18.20 69.11 1.36 0.60 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 192.86 25.82 87.45 0.78 0.34 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

E
xt

r.
20

19

REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 25.23 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 16.96 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 18.20 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 25.82 87.45 0.78 0.38 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 0.03 3.65 66.95 13.85 0.00 15.72 63.16 1.11 0.00 7.90 7.20
REMod − SUF 0.02 2.48 45.01 10.01 0.00 10.57 42.69 0.76 0.00 5.38 7.32
REMod − P ER 0.03 3.21 48.26 11.76 0.00 11.34 49.96 1.09 0.00 7.60 5.90
REMod − UNA 0.04 4.09 68.52 13.11 0.00 16.08 63.22 0.63 0.00 5.83 7.65

M
ea

n REMod − REF 1.96 6.97 159.16 24.79 18.05 0.05 78.80 1.35 0.11 9.00 6.65
REMod − SUF 1.32 4.73 107.00 17.92 13.22 0.03 53.26 0.92 0.07 6.13 6.76
REMod − P ER 2.24 6.12 114.74 21.05 18.50 0.04 62.33 1.33 0.14 8.65 5.45
REMod − UNA 3.13 7.81 162.90 23.45 27.58 0.05 78.88 0.76 0.08 6.64 7.06

Fo
c.

F
X 20

19

REMod − REF 0.00 0.14 3.96 1.47 0.00 9.92 18.87 0.43 0.00 1.66 7.09
REMod − SUF 0.00 0.10 2.66 1.06 0.00 6.67 12.75 0.29 0.00 1.13 7.21
REMod − P ER 0.00 0.12 2.85 1.25 0.00 7.15 14.93 0.42 0.00 1.60 5.81
REMod − UNA 0.00 0.16 4.05 1.39 0.00 10.15 18.89 0.24 0.00 1.22 7.53

M
ea

n REMod − REF 0.38 1.37 20.09 11.48 18.45 0.10 41.58 0.85 0.01 4.99 5.57
REMod − SUF 0.25 0.93 13.50 8.30 13.51 0.07 28.11 0.58 0.00 3.40 5.66
REMod − P ER 0.43 1.20 14.48 9.75 18.90 0.07 32.89 0.84 0.01 4.79 4.56
REMod − UNA 0.60 1.54 20.56 10.86 28.18 0.10 41.62 0.48 0.01 3.68 5.91

Fo
c.

F
F

R 20
19

REMod − REF 0.01 0.18 8.83 0.11 0.00 17.13 1.57 0.26 0.00 0.24 4.07
REMod − SUF 0.01 0.12 5.93 0.08 0.00 11.52 1.06 0.17 0.00 0.16 4.13
REMod − P ER 0.01 0.15 6.36 0.09 0.00 12.36 1.24 0.25 0.00 0.23 3.33
REMod − UNA 0.01 0.20 9.03 0.10 0.00 17.53 1.57 0.14 0.00 0.17 4.32

M
ea

n REMod − REF 0.50 0.99 25.26 1.25 14.89 0.03 5.77 0.49 0.01 0.91 1.44
REMod − SUF 0.34 0.67 16.98 0.91 10.90 0.02 3.90 0.34 0.01 0.62 1.47
REMod − P ER 0.57 0.87 18.21 1.07 15.26 0.02 4.56 0.49 0.01 0.88 1.18
REMod − UNA 0.80 1.11 25.85 1.19 22.75 0.03 5.77 0.28 0.01 0.67 1.53

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 2.76 7.77 252.89 26.12 4.61 23.82 85.09 1.35 0.08 9.04 7.21
REMod − SUF 1.86 5.27 170.02 18.88 3.38 16.01 57.51 0.92 0.05 6.16 7.33
REMod − P ER 3.14 6.82 182.31 22.19 4.73 17.18 67.31 1.33 0.10 8.70 5.91
REMod − UNA 4.40 8.70 258.83 24.72 7.05 24.37 85.17 0.76 0.06 6.67 7.66

M
ea

n REMod − REF 7.14 8.29 284.24 27.13 90.92 4.11 86.57 1.38 0.47 9.12 7.14
REMod − SUF 4.82 5.62 191.09 19.61 66.58 2.77 58.52 0.94 0.31 6.21 7.26
REMod − P ER 8.14 7.28 204.90 23.04 93.16 2.97 68.48 1.36 0.58 8.77 5.86
REMod − UNA 11.39 9.29 290.91 25.67 138.91 4.21 86.66 0.78 0.33 6.72 7.59

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 0.69 3.91 97.38 20.83 1.32 20.14 75.30 1.13 0.00 7.37 7.19
REMod − SUF 0.46 2.65 65.47 15.06 0.96 13.54 50.90 0.77 0.00 5.02 7.32
REMod − P ER 0.78 3.43 70.20 17.69 1.35 14.52 59.57 1.11 0.00 7.09 5.90
REMod − UNA 1.10 4.38 99.67 19.71 2.01 20.60 75.38 0.63 0.00 5.44 7.64

M
ea

n REMod − REF 4.40 5.99 157.94 25.52 98.70 2.09 80.63 1.25 0.10 8.48 6.97
REMod − SUF 2.97 4.06 106.19 18.45 72.27 1.41 54.50 0.85 0.07 5.78 7.09
REMod − P ER 5.01 5.26 113.86 21.68 101.12 1.51 63.79 1.22 0.13 8.15 5.72
REMod − UNA 7.02 6.71 161.65 24.15 150.79 2.14 80.71 0.70 0.07 6.25 7.40

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 0.66 1.94 79.43 3.11 1.71 23.72 29.96 0.75 0.00 2.73 6.19
REMod − SUF 0.45 1.32 53.40 2.25 1.25 15.95 20.25 0.51 0.00 1.86 6.29
REMod − P ER 0.75 1.70 57.26 2.64 1.76 17.10 23.70 0.73 0.00 2.63 5.07
REMod − UNA 1.05 2.17 81.29 2.94 2.62 24.27 29.99 0.42 0.00 2.02 6.57

M
ea

n REMod − REF 3.74 3.90 131.16 7.91 65.62 3.96 42.54 0.98 0.08 4.82 4.41
REMod − SUF 2.53 2.65 88.18 5.72 48.05 2.66 28.76 0.66 0.06 3.29 4.49
REMod − P ER 4.26 3.43 94.55 6.72 67.24 2.86 33.66 0.96 0.11 4.64 3.62
REMod − UNA 5.96 4.37 134.24 7.48 100.26 4.05 42.59 0.55 0.06 3.56 4.69

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0% 20
19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

304 D.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE



APPENDIX D. EMPIRICAL RESULTS

Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.6

0%
20

19

REMod − REF 0.03 2.00 38.04 2.40 0.00 24.50 38.35 1.14 0.00 4.04 7.21
REMod − SUF 0.02 1.35 25.57 1.73 0.00 16.47 25.92 0.78 0.00 2.75 7.33
REMod − P ER 0.03 1.75 27.42 2.04 0.00 17.67 30.34 1.12 0.00 3.88 5.91
REMod − UNA 0.04 2.24 38.93 2.27 0.00 25.07 38.39 0.64 0.00 2.98 7.66

M
ea

n REMod − REF 3.29 6.81 115.03 17.10 42.56 0.58 71.02 1.37 0.03 8.71 6.86
REMod − SUF 2.22 4.61 77.34 12.36 31.17 0.39 48.01 0.93 0.02 5.94 6.98
REMod − P ER 3.75 5.97 82.93 14.52 43.61 0.42 56.18 1.35 0.03 8.38 5.63
REMod − UNA 5.25 7.62 117.74 16.18 65.03 0.59 71.09 0.77 0.02 6.43 7.29

Q
.7

5%
20

19

REMod − REF 8.19 8.36 304.02 27.27 54.29 25.23 87.36 1.38 0.14 9.12 7.21
REMod − SUF 5.53 5.67 204.39 19.71 39.75 16.96 59.05 0.94 0.09 6.21 7.33
REMod − P ER 9.33 7.34 219.16 23.16 55.63 18.20 69.11 1.36 0.18 8.77 5.91
REMod − UNA 13.06 9.36 311.16 25.80 82.94 25.82 87.45 0.78 0.10 6.72 7.66

M
ea

n REMod − REF 9.17 8.36 304.32 27.27 131.77 22.58 87.36 1.38 0.53 9.12 7.21
REMod − SUF 6.19 5.67 204.60 19.71 96.49 15.18 59.05 0.94 0.35 6.21 7.33
REMod − P ER 10.44 7.34 219.38 23.16 135.01 16.29 69.11 1.36 0.67 8.77 5.91
REMod − UNA 14.62 9.36 311.47 25.80 201.32 23.11 87.45 0.78 0.38 6.72 7.66

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). Hereby, the results are derived under the
robustness test for the scenario values, in particular, the scenario values are calculated based on data in the period from
1995 to 2019.

Table D.54: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.00 0.00 0.03 0.00 3.33
REMod − SUF 0.00 0.00 0.00 0.02 0.00 3.39
REMod − P ER 0.00 0.00 0.00 0.03 0.00 2.73
REMod − UNA 0.00 0.00 0.00 0.02 0.00 3.54

M
ea

n REMod − REF 0.02 0.11 0.17 0.18 0.51 0.04
REMod − SUF 0.01 0.08 0.12 0.12 0.35 0.04
REMod − P ER 0.01 0.09 0.14 0.17 0.49 0.04
REMod − UNA 0.02 0.10 0.17 0.10 0.38 0.05

Sh
oc

k 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

E
xt

r.
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66
REMod − REF 1.07 0.05 13.28 0.60 1.84 7.06
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

Fo
c.

E
A 20

19

REMod − SUF 0.73 0.04 8.98 0.41 1.25 7.18
REMod − P ER 0.94 0.05 10.50 0.59 1.77 5.79
REMod − UNA 1.20 0.05 13.29 0.34 1.36 7.50

M
ea

n REMod − REF 5.74 4.42 36.34 1.10 6.09 3.42
REMod − SUF 3.89 3.19 24.56 0.75 4.15 3.47
REMod − P ER 5.04 3.75 28.75 1.08 5.86 2.80
REMod − UNA 6.42 4.18 36.38 0.62 4.49 3.63

Fo
c.

F
X 20

19
REMod − REF 6.49 5.13 43.16 1.00 2.92 7.09
REMod − SUF 4.40 3.71 29.17 0.68 1.99 7.21
REMod − P ER 5.70 4.35 34.14 0.98 2.81 5.82
REMod − UNA 7.27 4.85 43.20 0.56 2.15 7.53

M
ea

n REMod − REF 8.19 19.31 68.32 1.27 7.06 4.44
REMod − SUF 5.55 13.95 46.18 0.86 4.81 4.52
REMod − P ER 7.19 16.40 54.04 1.25 6.78 3.64
REMod − UNA 9.18 18.27 68.38 0.71 5.20 4.72

Fo
c.

F
F

R 20
19

REMod − REF 8.36 27.27 87.36 1.38 8.99 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.12 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.64 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.63 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 6.05 3.93 56.44 1.11 5.98 7.21
REMod − SUF 4.10 2.84 38.15 0.76 4.07 7.33
REMod − P ER 5.31 3.33 44.64 1.09 5.75 5.91
REMod − UNA 6.78 3.72 56.49 0.62 4.41 7.66

M
ea

n REMod − REF 7.96 16.25 72.33 1.31 8.30 6.06
REMod − SUF 5.40 11.75 48.89 0.89 5.65 6.16
REMod − P ER 6.99 13.80 57.22 1.29 7.98 4.97
REMod − UNA 8.91 15.38 72.41 0.74 6.12 6.43

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 8.28 20.29 76.53 1.28 6.80 7.19
REMod − SUF 5.61 14.66 51.73 0.87 4.63 7.32
REMod − P ER 7.27 17.23 60.54 1.26 6.54 5.90
REMod − UNA 9.27 19.20 76.60 0.72 5.02 7.64

M
ea

n REMod − REF 8.34 25.30 83.69 1.36 8.62 6.34
REMod − SUF 5.66 18.29 56.57 0.93 5.87 6.45
REMod − P ER 7.33 21.49 66.20 1.34 8.29 5.20
REMod − UNA 9.34 23.94 83.77 0.77 6.36 6.74

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 8.36 27.27 87.36 1.38 9.08 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.19 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.73 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.70 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0% 20
19

REMod − REF 0.00 0.00 0.00 0.11 0.04 5.95
REMod − SUF 0.00 0.00 0.00 0.07 0.02 6.06
REMod − P ER 0.00 0.00 0.00 0.11 0.04 4.88
REMod − UNA 0.00 0.00 0.00 0.06 0.03 6.32

M
ea

n REMod − REF 0.43 1.09 1.57 0.49 0.78 0.30
REMod − SUF 0.29 0.79 1.06 0.33 0.53 0.31
REMod − P ER 0.38 0.93 1.24 0.48 0.75 0.25
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn
REMod − UNA 0.49 1.03 1.57 0.28 0.58 0.32

Q
.6

0%
20

19

REMod − REF 8.33 13.80 77.75 1.38 5.76 7.21
REMod − SUF 5.65 9.97 52.55 0.94 3.92 7.33
REMod − P ER 7.31 11.72 61.51 1.36 5.54 5.91
REMod − UNA 9.33 13.06 77.83 0.78 4.25 7.66

M
ea

n REMod − REF 8.36 27.27 87.19 1.38 9.12 7.18
REMod − SUF 5.67 19.71 58.93 0.94 6.21 7.30
REMod − P ER 7.34 23.16 68.97 1.36 8.77 5.89
REMod − UNA 9.36 25.80 87.27 0.78 6.72 7.63

Q
.7

5%
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

This table displays the expected loss due to scarcity for the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and zinc (Zn), per path
(REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as
well as per scenario (Mean (Mean), Shock (Shock), Extreme (Extr.), Focus
EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme
EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR
(Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quan-
tile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input vari-
ables. Hereby, the values are derived from the MS-GVAR model based on the
weight matrices representing the dependencies between the commodities within
the REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or on the
average price level of the previous decade (Mean). Hereby, the results are de-
rived under the robustness test for the scenario values, in particular, the scenario
values are calculated based on data in the period from 1995 to 2019.

Table D.55: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models of the robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n

REMod − REF 0.35 0.54 24.58 1.08 1.02 13.32 1.02 0.13 5.87 0.07 0.02 0.19 0.09
REMod − SUF 0.23 0.36 16.52 0.78 0.73 9.76 0.69 0.10 3.97 0.05 0.01 0.13 0.09
REMod − P ER 0.40 0.47 17.72 0.92 0.99 13.65 0.74 0.12 4.65 0.07 0.02 0.18 0.07
REMod − UNA 0.55 0.60 25.16 1.03 0.49 20.35 1.05 0.06 5.88 0.04 0.01 0.14 0.09

Sh
oc

k

REMod − REF 0.47 1.17 124.03 1.65 8.15 21.47 1.26 1.06 27.41 0.16 0.04 0.31 3.79
REMod − SUF 0.32 0.79 83.39 1.20 5.82 15.72 0.85 0.76 18.53 0.11 0.03 0.21 3.85
REMod − P ER 0.54 1.03 89.41 1.41 7.85 22.00 0.91 0.98 21.68 0.16 0.05 0.30 3.10
REMod − UNA 0.75 1.31 126.95 1.57 3.88 32.80 1.29 0.46 27.43 0.09 0.03 0.23 4.02

E
xt

r.

REMod − REF 0.63 2.33 256.67 2.50 47.93 33.20 1.54 6.26 64.96 0.34 0.08 0.53 7.14
REMod − SUF 0.43 1.58 172.56 1.81 34.26 24.31 1.04 4.45 43.91 0.23 0.05 0.36 7.26
REMod − P ER 0.72 2.05 185.03 2.12 46.15 34.02 1.11 5.79 51.38 0.33 0.10 0.51 5.85
REMod − UNA 1.01 2.61 262.70 2.36 22.85 50.72 1.58 2.68 65.02 0.19 0.06 0.39 7.58

Fo
c.

E
A

REMod − REF 0.35 0.54 24.58 1.08 2.25 13.32 1.02 0.29 5.87 0.07 0.02 0.19 0.09
REMod − SUF 0.23 0.36 16.52 0.78 1.61 9.76 0.69 0.21 3.97 0.05 0.01 0.13 0.09
REMod − P ER 0.40 0.47 17.72 0.92 2.16 13.65 0.74 0.27 4.65 0.07 0.02 0.18 0.07
REMod − UNA 0.55 0.60 25.16 1.03 1.07 20.35 1.05 0.13 5.88 0.04 0.01 0.14 0.09

Fo
c.

F
X

REMod − REF 0.35 0.54 24.58 1.11 1.15 16.78 1.02 0.15 5.87 0.11 0.02 0.19 0.09
REMod − SUF 0.23 0.36 16.52 0.80 0.82 12.28 0.69 0.11 3.97 0.07 0.02 0.13 0.09
REMod − P ER 0.40 0.47 17.72 0.94 1.11 17.19 0.74 0.14 4.65 0.11 0.03 0.18 0.07
REMod − UNA 0.55 0.60 25.16 1.05 0.55 25.63 1.05 0.06 5.88 0.06 0.02 0.14 0.09
REMod − REF 0.35 0.54 24.58 1.39 3.40 13.32 1.02 0.44 5.87 0.07 0.02 0.19 0.76
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the scenario values for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

Fo
c.

F
F

R REMod − SUF 0.23 0.36 16.52 1.01 2.43 9.76 0.69 0.32 3.97 0.05 0.01 0.13 0.77
REMod − P ER 0.40 0.47 17.72 1.18 3.27 13.65 0.74 0.41 4.65 0.07 0.02 0.18 0.62
REMod − UNA 0.55 0.60 25.16 1.32 1.62 20.35 1.05 0.19 5.88 0.04 0.01 0.14 0.81

Fo
c.

E
xt

r.
E

A REMod − REF 0.35 0.54 24.58 1.08 4.88 13.32 1.02 0.64 5.87 0.07 0.02 0.19 0.09
REMod − SUF 0.23 0.36 16.52 0.78 3.49 9.76 0.69 0.45 3.97 0.05 0.01 0.13 0.09
REMod − P ER 0.40 0.47 17.72 0.92 4.70 13.65 0.74 0.59 4.65 0.07 0.02 0.18 0.07
REMod − UNA 0.55 0.60 25.16 1.03 2.33 20.35 1.05 0.27 5.88 0.04 0.01 0.14 0.09

Fo
c.

E
xt

r.
F

X REMod − REF 0.35 0.54 24.58 1.13 1.29 20.96 1.02 0.17 5.87 0.17 0.03 0.19 0.09
REMod − SUF 0.23 0.36 16.52 0.82 0.92 15.35 0.69 0.12 3.97 0.11 0.02 0.13 0.09
REMod − P ER 0.40 0.47 17.72 0.96 1.24 21.48 0.74 0.16 4.65 0.17 0.04 0.18 0.07
REMod − UNA 0.55 0.60 25.16 1.07 0.61 32.03 1.05 0.07 5.88 0.09 0.02 0.14 0.09

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.35 0.54 24.58 1.78 10.86 13.32 1.02 1.42 5.87 0.07 0.02 0.19 3.81

REMod − SUF 0.23 0.36 16.52 1.29 7.76 9.76 0.69 1.01 3.97 0.05 0.01 0.13 3.87
REMod − P ER 0.40 0.47 17.72 1.51 10.46 13.65 0.74 1.31 4.65 0.07 0.02 0.18 3.12
REMod − UNA 0.55 0.60 25.16 1.69 5.18 20.35 1.05 0.61 5.88 0.04 0.01 0.14 4.04

Q
.2

5%

REMod − REF 0.30 0.36 7.03 0.92 0.41 10.29 0.98 0.05 2.38 0.04 0.01 0.13 0.01
REMod − SUF 0.20 0.24 4.73 0.66 0.29 7.53 0.66 0.04 1.61 0.03 0.01 0.09 0.01
REMod − P ER 0.34 0.32 5.07 0.78 0.40 10.54 0.71 0.05 1.88 0.04 0.02 0.12 0.01
REMod − UNA 0.48 0.40 7.20 0.87 0.20 15.72 1.00 0.02 2.38 0.02 0.01 0.09 0.01

Q
.4

0%

REMod − REF 0.33 0.45 13.14 1.06 0.74 12.80 1.00 0.10 4.40 0.06 0.02 0.16 0.04
REMod − SUF 0.22 0.30 8.83 0.77 0.53 9.37 0.67 0.07 2.98 0.04 0.01 0.11 0.04
REMod − P ER 0.37 0.39 9.47 0.90 0.72 13.11 0.72 0.09 3.48 0.06 0.02 0.15 0.04
REMod − UNA 0.52 0.50 13.44 1.01 0.35 19.55 1.02 0.04 4.41 0.03 0.01 0.12 0.05

Q
.5

0%

REMod − REF 0.35 0.50 23.04 1.14 1.00 14.15 1.01 0.13 6.39 0.07 0.02 0.18 0.13
REMod − SUF 0.23 0.34 15.49 0.82 0.71 10.36 0.68 0.09 4.32 0.05 0.01 0.12 0.13
REMod − P ER 0.40 0.44 16.61 0.96 0.96 14.49 0.73 0.12 5.05 0.07 0.03 0.18 0.11
REMod − UNA 0.55 0.56 23.58 1.07 0.47 21.61 1.04 0.06 6.39 0.04 0.01 0.13 0.14

Q
.6

0%

REMod − REF 0.39 0.73 37.24 1.25 1.84 15.57 1.02 0.24 9.93 0.08 0.02 0.21 0.25
REMod − SUF 0.27 0.50 25.04 0.90 1.31 11.40 0.69 0.17 6.71 0.06 0.02 0.14 0.26
REMod − P ER 0.45 0.64 26.84 1.06 1.77 15.95 0.74 0.22 7.86 0.08 0.03 0.20 0.21
REMod − UNA 0.63 0.82 38.11 1.18 0.88 23.78 1.04 0.10 9.94 0.05 0.02 0.16 0.27

Q
.7

5%

REMod − REF 0.44 1.06 96.65 1.39 3.96 18.36 1.04 0.52 14.51 0.12 0.03 0.29 1.03
REMod − SUF 0.30 0.72 64.98 1.01 2.83 13.44 0.70 0.37 9.81 0.08 0.02 0.19 1.05
REMod − P ER 0.51 0.93 69.68 1.18 3.81 18.81 0.75 0.48 11.48 0.12 0.04 0.28 0.84
REMod − UNA 0.71 1.18 98.93 1.32 1.89 28.05 1.06 0.22 14.53 0.07 0.02 0.21 1.09

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for the
scenario values, in particular, the scenario values are calculated based on data in the period from 1995 to 2019.
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D.3.2.3 Robustness Analysis for the Loss Given Scarcity

Table D.56: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.06 0.56 0.00 0.00 9.35 0.28 0.08 0.00 0.08 5.96
REMod − SUF 0.00 0.04 0.38 0.00 0.00 6.29 0.19 0.05 0.00 0.05 6.06
REMod − P ER 0.00 0.05 0.41 0.00 0.00 6.75 0.22 0.07 0.00 0.07 4.88
REMod − UNA 0.00 0.06 0.58 0.00 0.00 9.57 0.28 0.04 0.00 0.06 6.33

M
ea

n REMod − REF 0.08 0.53 2.82 0.51 0.66 0.00 0.56 0.24 0.00 0.33 0.91
REMod − SUF 0.06 0.36 1.89 0.37 0.48 0.00 0.38 0.16 0.00 0.22 0.93
REMod − P ER 0.09 0.47 2.03 0.43 0.68 0.00 0.45 0.24 0.00 0.32 0.75
REMod − UNA 0.13 0.60 2.88 0.48 1.01 0.00 0.56 0.13 0.00 0.24 0.97

Sh
oc

k 20
19

REMod − REF 20.84 19.00 563.56 38.95 211.05 61.54 140.90 1.38 0.69 25.32 18.97
REMod − SUF 14.07 12.88 378.88 28.16 154.54 41.37 95.24 0.94 0.45 17.25 19.29
REMod − P ER 23.74 16.68 406.26 33.08 216.25 44.38 111.46 1.36 0.86 24.35 15.55
REMod − UNA 33.23 21.28 576.80 36.86 322.44 62.97 141.04 0.78 0.49 18.68 20.15

M
ea

n REMod − REF 20.84 19.00 563.56 38.95 219.62 61.54 140.90 1.38 0.81 25.32 18.97
REMod − SUF 14.07 12.88 378.88 28.16 160.82 41.37 95.24 0.94 0.53 17.25 19.29
REMod − P ER 23.74 16.68 406.26 33.08 225.02 44.38 111.46 1.36 1.01 24.35 15.55
REMod − UNA 33.23 21.28 576.80 36.86 335.53 62.97 141.04 0.78 0.58 18.68 20.15

E
xt

r.
20

19

REMod − REF 20.84 19.00 563.56 38.95 219.62 61.54 140.90 1.38 0.81 25.32 18.97
REMod − SUF 14.07 12.88 378.88 28.16 160.82 41.37 95.24 0.94 0.53 17.25 19.29
REMod − P ER 23.74 16.68 406.26 33.08 225.02 44.38 111.46 1.36 1.01 24.35 15.55
REMod − UNA 33.23 21.28 576.80 36.86 335.53 62.97 141.04 0.78 0.58 18.68 20.15

M
ea

n REMod − REF 20.84 19.00 563.56 38.95 219.62 61.54 140.90 1.38 0.81 25.32 18.97
REMod − SUF 14.07 12.88 378.88 28.16 160.82 41.37 95.24 0.94 0.53 17.25 19.29
REMod − P ER 23.74 16.68 406.26 33.08 225.02 44.38 111.46 1.36 1.01 24.35 15.55
REMod − UNA 33.23 21.28 576.80 36.86 335.53 62.97 141.04 0.78 0.58 18.68 20.15

Fo
c.

E
A 20

19

REMod − REF 0.21 11.06 135.82 22.24 0.00 59.51 111.03 1.33 0.00 22.21 18.97
REMod − SUF 0.14 7.50 91.31 16.08 0.00 40.01 75.05 0.90 0.00 15.13 19.29
REMod − P ER 0.24 9.71 97.91 18.89 0.00 42.92 87.83 1.30 0.00 21.35 15.55
REMod − UNA 0.33 12.39 139.01 21.05 0.00 60.89 111.14 0.75 0.00 16.38 20.15

M
ea

n REMod − REF 7.36 18.34 342.08 38.41 66.32 0.86 132.03 1.38 0.09 25.24 18.84
REMod − SUF 4.97 12.43 229.98 27.76 48.57 0.58 89.24 0.94 0.06 17.20 19.16
REMod − P ER 8.38 16.10 246.60 32.62 67.96 0.62 104.44 1.36 0.11 24.28 15.45
REMod − UNA 11.73 20.54 350.12 36.34 101.33 0.88 132.16 0.78 0.06 18.62 20.01

Fo
c.

F
X 20

19

REMod − REF 0.08 1.88 30.43 4.52 0.00 44.99 51.85 0.67 0.00 7.34 18.72
REMod − SUF 0.06 1.28 20.46 3.27 0.00 30.24 35.05 0.46 0.00 5.00 19.04
REMod − P ER 0.09 1.65 21.94 3.84 0.00 32.44 41.02 0.66 0.00 7.06 15.35
REMod − UNA 0.13 2.11 31.15 4.28 0.00 46.03 51.90 0.38 0.00 5.42 19.89

M
ea

n REMod − REF 3.67 7.13 87.35 20.84 77.96 0.55 80.60 1.00 0.03 15.72 16.47
REMod − SUF 2.48 4.83 58.73 15.06 57.09 0.37 54.48 0.68 0.02 10.71 16.74
REMod − P ER 4.18 6.26 62.97 17.70 79.88 0.40 63.76 0.98 0.04 15.12 13.50
REMod − UNA 5.85 7.98 89.40 19.72 119.11 0.57 80.68 0.56 0.02 11.60 17.49

Fo
c.

F
F

R 20
19

REMod − REF 0.10 1.12 31.56 0.93 0.00 47.82 9.02 0.38 0.00 1.22 13.17
REMod − SUF 0.07 0.76 21.22 0.68 0.00 32.15 6.10 0.26 0.00 0.83 13.39
REMod − P ER 0.12 0.98 22.75 0.79 0.00 34.48 7.13 0.37 0.00 1.17 10.80
REMod − UNA 0.17 1.26 32.30 0.88 0.00 48.93 9.03 0.21 0.00 0.90 13.98

M
ea

n REMod − REF 2.46 4.29 68.19 3.74 44.14 0.43 19.16 0.62 0.02 4.63 5.94
REMod − SUF 1.66 2.91 45.85 2.70 32.32 0.29 12.95 0.42 0.02 3.16 6.04
REMod − P ER 2.80 3.77 49.16 3.18 45.23 0.31 15.16 0.61 0.03 4.46 4.87
REMod − UNA 3.92 4.81 69.79 3.54 67.44 0.44 19.18 0.35 0.02 3.42 6.31

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 6.59 18.62 502.69 38.25 6.81 61.36 138.79 1.38 0.06 25.27 18.97
REMod − SUF 4.45 12.62 337.97 27.65 4.99 41.25 93.81 0.94 0.04 17.22 19.29
REMod − P ER 7.50 16.35 362.39 32.49 6.98 44.25 109.79 1.36 0.08 24.30 15.55
REMod − UNA 10.50 20.86 514.50 36.20 10.40 62.78 138.93 0.78 0.04 18.64 20.15

M
ea

n REMod − REF 17.88 19.00 547.22 38.91 182.28 12.99 140.76 1.38 0.69 25.32 18.95
REMod − SUF 12.07 12.88 367.90 28.13 133.48 8.73 95.14 0.94 0.46 17.25 19.27
REMod − P ER 20.37 16.68 394.48 33.05 186.77 9.36 111.35 1.36 0.87 24.35 15.54
REMod − UNA 28.51 21.28 560.07 36.82 278.49 13.29 140.90 0.78 0.50 18.68 20.13

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 2.15 10.13 201.19 30.03 2.64 56.07 121.60 1.16 0.00 20.48 18.95
REMod − SUF 1.45 6.87 135.26 21.71 1.93 37.69 82.19 0.79 0.00 13.96 19.27
REMod − P ER 2.44 8.89 145.04 25.51 2.70 40.43 96.19 1.14 0.01 19.70 15.54
REMod − UNA 3.42 11.34 205.92 28.42 4.03 57.36 121.72 0.65 0.00 15.11 20.13

M
ea

n REMod − REF 11.26 15.11 313.90 36.77 173.94 7.51 129.91 1.28 0.13 23.45 18.67
REMod − SUF 7.60 10.24 211.04 26.58 127.37 5.05 87.81 0.87 0.09 15.97 18.98
REMod − P ER 12.82 13.26 226.29 31.23 178.22 5.41 102.77 1.26 0.16 22.55 15.31
REMod − UNA 17.94 16.92 321.28 34.80 265.74 7.68 130.04 0.72 0.09 17.30 19.83

20
19 REMod − REF 1.25 4.73 116.09 4.28 2.42 57.23 43.96 0.72 0.00 6.76 16.43

REMod − SUF 0.84 3.21 78.05 3.10 1.77 38.48 29.71 0.49 0.00 4.61 16.71
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

Fo
c.

E
xt

r.
F

F
R REMod − P ER 1.42 4.15 83.69 3.64 2.48 41.27 34.78 0.70 0.00 6.50 13.47

REMod − UNA 1.99 5.30 118.82 4.05 3.69 58.56 44.01 0.40 0.00 4.99 17.45

M
ea

n REMod − REF 7.86 8.80 212.46 11.96 103.00 7.32 64.11 0.94 0.09 12.28 11.69
REMod − SUF 5.30 5.96 142.84 8.64 75.42 4.92 43.33 0.64 0.06 8.37 11.88
REMod − P ER 8.95 7.72 153.16 10.16 105.54 5.28 50.72 0.93 0.11 11.81 9.58
REMod − UNA 12.53 9.85 217.45 11.32 157.36 7.49 64.17 0.53 0.06 9.06 12.41

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 1.48 0.14 0.02 0.00 0.00 2.03
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.99 0.10 0.02 0.00 0.00 2.06
REMod − P ER 0.00 0.00 0.00 0.00 0.00 1.07 0.11 0.02 0.00 0.00 1.66
REMod − UNA 0.00 0.00 0.00 0.00 0.00 1.51 0.14 0.01 0.00 0.00 2.16

M
ea

n REMod − REF 0.04 0.29 0.56 0.04 0.00 0.00 0.42 0.09 0.00 0.03 0.36
REMod − SUF 0.03 0.19 0.38 0.03 0.00 0.00 0.29 0.06 0.00 0.02 0.37
REMod − P ER 0.05 0.25 0.41 0.03 0.00 0.00 0.33 0.09 0.00 0.02 0.30
REMod − UNA 0.07 0.32 0.58 0.04 0.00 0.00 0.42 0.05 0.00 0.02 0.38

Q
.6

0%
20

19

REMod − REF 0.08 2.60 40.01 1.21 0.00 54.90 16.63 0.62 0.00 2.30 15.31
REMod − SUF 0.06 1.76 26.90 0.87 0.00 36.91 11.24 0.42 0.00 1.57 15.57
REMod − P ER 0.09 2.29 28.84 1.03 0.00 39.59 13.15 0.61 0.00 2.22 12.55
REMod − UNA 0.13 2.92 40.95 1.14 0.00 56.17 16.64 0.35 0.00 1.70 16.26

M
ea

n REMod − REF 5.04 7.81 100.31 4.79 58.86 1.35 38.33 0.97 0.03 7.09 7.25
REMod − SUF 3.40 5.29 67.44 3.46 43.10 0.91 25.91 0.66 0.02 4.83 7.37
REMod − P ER 5.74 6.86 72.31 4.07 60.31 0.98 30.32 0.96 0.03 6.82 5.94
REMod − UNA 8.04 8.75 102.67 4.53 89.92 1.39 38.36 0.55 0.02 5.23 7.70

Q
.7

5%
20

19

REMod − REF 13.40 18.93 530.87 38.80 39.97 61.54 140.90 1.38 0.03 25.30 18.97
REMod − SUF 9.05 12.83 356.91 28.04 29.27 41.37 95.24 0.94 0.02 17.23 19.29
REMod − P ER 15.26 16.61 382.70 32.95 40.95 44.38 111.46 1.36 0.04 24.32 15.55
REMod − UNA 21.36 21.20 543.34 36.71 61.07 62.97 141.04 0.78 0.02 18.66 20.15

M
ea

n REMod − REF 20.72 19.00 558.49 38.95 218.30 47.82 140.90 1.38 0.65 25.32 18.97
REMod − SUF 13.98 12.88 375.47 28.16 159.85 32.15 95.24 0.94 0.43 17.25 19.29
REMod − P ER 23.59 16.68 402.61 33.08 223.67 34.48 111.46 1.36 0.81 24.35 15.55
REMod − UNA 33.03 21.28 571.61 36.86 333.52 48.93 141.04 0.78 0.46 18.68 20.15

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). Hereby, the results are derived under the
robustness test for the loss given scarcity, in particular, we assume neither commodity is substitutable, resulting in loss
given scarcity values of one.

Table D.57: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Al Cu Ni Pb Sn Zn

M
ea

n
20

19

REMod − REF 4.79 4.36 14.94 1.26 1.32 18.97
REMod − SUF 3.25 3.15 10.10 0.86 0.90 19.29
REMod − P ER 4.20 3.71 11.82 1.24 1.27 15.55
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Al Cu Ni Pb Sn Zn

M
ea

n

REMod − UNA 5.36 4.13 14.95 0.71 0.97 20.15

M
ea

n REMod − REF 18.93 38.41 74.68 1.38 10.89 11.53
REMod − SUF 12.83 27.76 50.48 0.94 7.42 11.73
REMod − P ER 16.61 32.62 59.08 1.36 10.47 9.46
REMod − UNA 21.20 36.34 74.75 0.78 8.03 12.25

Sh
oc

k 20
19

REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

M
ea

n REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

E
xt

r.
20

19

REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

M
ea

n REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

Fo
c.

E
A 20

19

REMod − REF 18.28 23.68 110.19 1.38 12.91 18.97
REMod − SUF 12.39 17.12 74.48 0.94 8.80 19.29
REMod − P ER 16.05 20.12 87.16 1.36 12.42 15.55
REMod − UNA 20.47 22.41 110.30 0.78 9.53 20.15

M
ea

n REMod − REF 19.00 38.95 136.40 1.38 23.65 18.63
REMod − SUF 12.88 28.16 92.19 0.94 16.11 18.94
REMod − P ER 16.68 33.08 107.90 1.36 22.74 15.27
REMod − UNA 21.28 36.86 136.53 0.78 17.45 19.79

Fo
c.

F
X 20

19

REMod − REF 18.96 35.99 130.76 1.38 14.79 18.97
REMod − SUF 12.86 26.02 88.38 0.94 10.07 19.29
REMod − P ER 16.65 30.57 103.44 1.36 14.22 15.55
REMod − UNA 21.24 34.06 130.89 0.78 10.91 20.15

M
ea

n REMod − REF 19.00 38.95 140.62 1.38 23.70 18.48
REMod − SUF 12.88 28.16 95.05 0.94 16.15 18.79
REMod − P ER 16.68 33.08 111.24 1.36 22.79 15.15
REMod − UNA 21.28 36.86 140.76 0.78 17.48 19.63

Fo
c.

F
F

R 20
19

REMod − REF 19.00 38.95 140.90 1.38 25.07 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.08 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.11 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.49 20.15

M
ea

n REMod − REF 19.00 38.95 140.90 1.38 25.22 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.18 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.25 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.60 20.15

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 18.89 34.28 131.04 1.38 21.27 18.97
REMod − SUF 12.81 24.78 88.57 0.94 14.49 19.29
REMod − P ER 16.58 29.11 103.66 1.36 20.45 15.55
REMod − UNA 21.15 32.44 131.17 0.78 15.69 20.15

M
ea

n REMod − REF 19.00 38.95 139.50 1.38 24.61 18.89
REMod − SUF 12.88 28.16 94.29 0.94 16.77 19.21
REMod − P ER 16.68 33.08 110.35 1.36 23.67 15.49
REMod − UNA 21.28 36.86 139.63 0.78 18.16 20.07

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 19.00 38.25 139.21 1.38 21.47 18.97
REMod − SUF 12.88 27.65 94.10 0.94 14.63 19.29
REMod − P ER 16.68 32.49 110.13 1.36 20.65 15.55
REMod − UNA 21.28 36.20 139.35 0.78 15.84 20.15

M
ea

n REMod − REF 19.00 38.95 140.62 1.38 24.92 18.86
REMod − SUF 12.88 28.16 95.05 0.94 16.97 19.18
REMod − P ER 16.68 33.08 111.24 1.36 23.96 15.46
REMod − UNA 21.28 36.86 140.76 0.78 18.38 20.03

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 19.00 38.95 140.90 1.38 25.22 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.18 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.25 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.60 20.15

M
ea

n REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15
REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Al Cu Ni Pb Sn Zn

Q
.2

5%
20

19

REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19
REMod − REF 0.00 0.00 0.00 0.00 0.00 0.27
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.27
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.22
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.28

M
ea

n REMod − REF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.01 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.16 0.56 0.34 0.25 18.48
REMod − SUF 0.00 0.11 0.38 0.23 0.17 18.79
REMod − P ER 0.00 0.13 0.45 0.34 0.24 15.15
REMod − UNA 0.00 0.15 0.56 0.19 0.19 19.63

M
ea

n REMod − REF 3.84 8.80 9.86 0.99 3.39 2.28
REMod − SUF 2.60 6.36 6.67 0.67 2.31 2.31
REMod − P ER 3.37 7.48 7.80 0.98 3.26 1.87
REMod − UNA 4.30 8.33 9.87 0.56 2.50 2.42

Q
.6

0%
20

19

REMod − REF 19.00 38.95 140.90 1.38 24.31 18.97
REMod − SUF 12.88 28.16 95.24 0.94 16.56 19.29
REMod − P ER 16.68 33.08 111.46 1.36 23.38 15.55
REMod − UNA 21.28 36.86 141.04 0.78 17.93 20.15

M
ea

n REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

Q
.7

5%
20

19

REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

M
ea

n REMod − REF 19.00 38.95 140.90 1.38 25.32 18.97
REMod − SUF 12.88 28.16 95.24 0.94 17.25 19.29
REMod − P ER 16.68 33.08 111.46 1.36 24.35 15.55
REMod − UNA 21.28 36.86 141.04 0.78 18.68 20.15

This table displays the expected loss due to scarcity for the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER
and REMod − UNA), as well as per scenario (Mean (Mean), Shock
(Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme
FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quan-
tile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quan-
tile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the
values are derived from the MS-GVAR model based on the weight ma-
trices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or
on the average price level of the previous decade (Mean). Hereby, the re-
sults are derived under the robustness test for the loss given scarcity, in
particular, we assume neither commodity is substitutable, resulting in loss
given scarcity values of one.

Table D.58: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logis-
tic regression models of the robustness analysis for the loss given scarcity under the assumption neither commodity is
substitutable

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n REMod − REF 0.74 1.14 40.83 1.66 1.48 22.27 2.55 0.47 12.71 0.08 0.03 0.52 0.72
REMod − SUF 0.50 0.78 27.45 1.20 1.06 16.31 1.71 0.33 8.59 0.05 0.02 0.35 0.73
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n REMod − P ER 0.85 1.00 29.43 1.41 1.42 22.81 1.84 0.44 10.06 0.08 0.03 0.50 0.59
REMod − UNA 1.19 1.28 41.79 1.57 0.70 34.02 2.61 0.20 12.72 0.04 0.02 0.38 0.76

Sh
oc

k

REMod − REF 1.00 2.19 260.29 2.37 7.70 35.04 3.55 2.45 78.55 0.20 0.06 0.81 15.27
REMod − SUF 0.67 1.48 175.00 1.71 5.51 25.66 2.39 1.74 53.10 0.14 0.04 0.55 15.53
REMod − P ER 1.14 1.92 187.64 2.01 7.42 35.91 2.56 2.27 62.14 0.20 0.07 0.78 12.52
REMod − UNA 1.59 2.45 266.41 2.24 3.67 53.54 3.63 1.05 78.63 0.11 0.04 0.60 16.22

E
xt

r.

REMod − REF 1.33 3.97 509.53 3.35 33.85 53.17 4.91 10.78 132.62 0.44 0.11 1.27 18.93
REMod − SUF 0.90 2.69 342.56 2.42 24.19 38.94 3.30 7.67 89.64 0.30 0.08 0.86 19.25
REMod − P ER 1.52 3.48 367.32 2.84 32.60 54.48 3.54 9.98 104.91 0.43 0.14 1.22 15.52
REMod − UNA 2.13 4.44 521.50 3.17 16.14 81.24 5.03 4.62 132.75 0.25 0.08 0.94 20.10

Fo
c.

E
A

REMod − REF 0.74 1.14 40.83 1.66 2.99 22.27 2.55 0.95 12.71 0.08 0.03 0.52 0.72
REMod − SUF 0.50 0.78 27.45 1.20 2.14 16.31 1.71 0.68 8.59 0.05 0.02 0.35 0.73
REMod − P ER 0.85 1.00 29.43 1.41 2.88 22.81 1.84 0.88 10.06 0.08 0.03 0.50 0.59
REMod − UNA 1.19 1.28 41.79 1.57 1.43 34.02 2.61 0.41 12.72 0.04 0.02 0.38 0.76

Fo
c.

F
X

REMod − REF 0.74 1.14 40.83 1.69 1.63 27.23 2.55 0.52 12.71 0.12 0.03 0.52 0.72
REMod − SUF 0.50 0.78 27.45 1.22 1.17 19.94 1.71 0.37 8.59 0.08 0.02 0.35 0.73
REMod − P ER 0.85 1.00 29.43 1.44 1.57 27.90 1.84 0.48 10.06 0.11 0.04 0.50 0.59
REMod − UNA 1.19 1.28 41.79 1.60 0.78 41.59 2.61 0.22 12.72 0.07 0.02 0.38 0.76

Fo
c.

F
F

R REMod − REF 0.74 1.14 40.83 1.99 3.51 22.27 2.55 1.12 12.71 0.08 0.03 0.52 3.17
REMod − SUF 0.50 0.78 27.45 1.44 2.51 16.31 1.71 0.79 8.59 0.05 0.02 0.35 3.22
REMod − P ER 0.85 1.00 29.43 1.69 3.38 22.81 1.84 1.03 10.06 0.08 0.03 0.50 2.60
REMod − UNA 1.19 1.28 41.79 1.89 1.67 34.02 2.61 0.48 12.72 0.04 0.02 0.38 3.37

Fo
c.

E
xt

r.
E

A REMod − REF 0.74 1.14 40.83 1.66 6.00 22.27 2.55 1.91 12.71 0.08 0.03 0.52 0.72
REMod − SUF 0.50 0.78 27.45 1.20 4.29 16.31 1.71 1.36 8.59 0.05 0.02 0.35 0.73
REMod − P ER 0.85 1.00 29.43 1.41 5.78 22.81 1.84 1.77 10.06 0.08 0.03 0.50 0.59
REMod − UNA 1.19 1.28 41.79 1.57 2.86 34.02 2.61 0.82 12.72 0.04 0.02 0.38 0.76

Fo
c.

E
xt

r.
F

X REMod − REF 0.74 1.14 40.83 1.72 1.80 33.10 2.55 0.57 12.71 0.17 0.04 0.52 0.72
REMod − SUF 0.50 0.78 27.45 1.25 1.29 24.24 1.71 0.41 8.59 0.12 0.03 0.35 0.73
REMod − P ER 0.85 1.00 29.43 1.46 1.73 33.92 1.84 0.53 10.06 0.17 0.05 0.50 0.59
REMod − UNA 1.19 1.28 41.79 1.63 0.86 50.57 2.61 0.25 12.72 0.10 0.03 0.38 0.76

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.74 1.14 40.83 2.39 8.16 22.27 2.55 2.60 12.71 0.08 0.03 0.52 9.59

REMod − SUF 0.50 0.78 27.45 1.72 5.84 16.31 1.71 1.85 8.59 0.05 0.02 0.35 9.75
REMod − P ER 0.85 1.00 29.43 2.03 7.86 22.81 1.84 2.41 10.06 0.08 0.03 0.50 7.86
REMod − UNA 1.19 1.28 41.79 2.26 3.89 34.02 2.61 1.11 12.72 0.04 0.02 0.38 10.18

Q
.2

5%

REMod − REF 0.67 0.84 9.98 1.37 0.57 18.86 2.39 0.18 3.40 0.05 0.02 0.38 0.05
REMod − SUF 0.45 0.57 6.71 0.99 0.41 13.81 1.60 0.13 2.29 0.03 0.01 0.26 0.05
REMod − P ER 0.76 0.73 7.20 1.16 0.55 19.32 1.72 0.17 2.69 0.05 0.02 0.37 0.04
REMod − UNA 1.06 0.94 10.22 1.30 0.27 28.81 2.44 0.08 3.40 0.03 0.01 0.28 0.05

Q
.4

0%

REMod − REF 0.71 0.96 18.45 1.57 0.98 20.96 2.40 0.31 10.70 0.06 0.02 0.45 0.21
REMod − SUF 0.48 0.65 12.40 1.13 0.70 15.35 1.61 0.22 7.23 0.04 0.02 0.31 0.21
REMod − P ER 0.81 0.84 13.30 1.33 0.94 21.48 1.73 0.29 8.46 0.06 0.03 0.44 0.17
REMod − UNA 1.14 1.07 18.88 1.49 0.47 32.03 2.46 0.13 10.71 0.03 0.02 0.34 0.22

Q
.5

0%

REMod − REF 0.74 1.02 29.81 1.67 1.22 22.00 2.44 0.39 15.95 0.07 0.03 0.49 0.55
REMod − SUF 0.50 0.69 20.04 1.21 0.87 16.11 1.64 0.28 10.78 0.05 0.02 0.33 0.56
REMod − P ER 0.84 0.89 21.49 1.42 1.17 22.54 1.76 0.36 12.62 0.07 0.03 0.47 0.45
REMod − UNA 1.17 1.14 30.51 1.58 0.58 33.60 2.50 0.17 15.97 0.04 0.02 0.36 0.58

Q
.6

0%

REMod − REF 0.80 1.24 62.97 1.81 1.81 23.91 2.49 0.57 20.18 0.09 0.03 0.51 1.83
REMod − SUF 0.54 0.84 42.33 1.31 1.29 17.51 1.67 0.41 13.64 0.06 0.02 0.35 1.86
REMod − P ER 0.91 1.09 45.39 1.54 1.74 24.50 1.79 0.53 15.97 0.09 0.04 0.49 1.50
REMod − UNA 1.28 1.39 64.45 1.72 0.86 36.53 2.54 0.25 20.20 0.05 0.02 0.38 1.94
REMod − REF 0.90 1.71 192.65 2.06 3.63 28.05 2.58 1.16 31.36 0.15 0.04 0.69 8.86
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the loss given scarcity under the assumption neither commodity is substitutable

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

Q
.7

5%

REMod − SUF 0.61 1.16 129.52 1.49 2.59 20.54 1.74 0.82 21.20 0.10 0.03 0.47 9.01
REMod − P ER 1.02 1.50 138.88 1.75 3.50 28.74 1.86 1.07 24.81 0.15 0.05 0.66 7.27
REMod − UNA 1.43 1.91 197.17 1.95 1.73 42.85 2.64 0.50 31.39 0.08 0.03 0.51 9.41

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for
the loss given scarcity, in particular, we assume neither commodity is substitutable, resulting in loss given scarcity values
of one.
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D.3.2.4 Robustness Analysis for the Exposure at Scarcity

D.3.2.4.1 Results of the Robustness Analysis for the Exposure at Scarcity of the
reduced Sample
Table D.59: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.02 0.35 0.00 0.00 2.71 0.18 0.08 0.00 0.03 2.28
REMod − SUF 0.00 0.02 0.24 0.00 0.00 1.82 0.12 0.05 0.00 0.02 2.32
REMod − P ER 0.00 0.02 0.25 0.00 0.00 1.96 0.14 0.08 0.00 0.02 1.87
REMod − UNA 0.00 0.03 0.36 0.00 0.00 2.78 0.18 0.04 0.00 0.02 2.42

M
ea

n REMod − REF 0.04 0.21 1.76 0.33 0.40 0.00 0.35 0.25 0.00 0.11 0.35
REMod − SUF 0.02 0.14 1.18 0.24 0.29 0.00 0.24 0.17 0.00 0.08 0.35
REMod − P ER 0.04 0.19 1.27 0.28 0.40 0.00 0.28 0.24 0.00 0.11 0.29
REMod − UNA 0.06 0.24 1.80 0.31 0.60 0.00 0.35 0.14 0.00 0.08 0.37

Sh
oc

k 20
19

REMod − REF 8.90 7.55 352.23 25.33 126.57 17.85 88.19 1.42 0.47 8.55 7.27
REMod − SUF 6.01 5.12 236.81 18.31 92.68 12.00 59.61 0.97 0.31 5.82 7.39
REMod − P ER 10.14 6.63 253.92 21.52 129.68 12.87 69.77 1.40 0.58 8.22 5.96
REMod − UNA 14.20 8.45 360.50 23.97 193.37 18.27 88.28 0.80 0.33 6.31 7.72

M
ea

n REMod − REF 8.90 7.55 352.23 25.33 131.70 17.85 88.19 1.42 0.55 8.55 7.27
REMod − SUF 6.01 5.12 236.81 18.31 96.44 12.00 59.61 0.97 0.36 5.82 7.39
REMod − P ER 10.14 6.63 253.92 21.52 134.94 12.87 69.77 1.40 0.69 8.22 5.96
REMod − UNA 14.20 8.45 360.50 23.97 201.21 18.27 88.28 0.80 0.39 6.31 7.72

E
xt

r.
20

19

REMod − REF 8.90 7.55 352.23 25.33 131.70 17.85 88.19 1.42 0.55 8.55 7.27
REMod − SUF 6.01 5.12 236.81 18.31 96.44 12.00 59.61 0.97 0.36 5.82 7.39
REMod − P ER 10.14 6.63 253.92 21.52 134.94 12.87 69.77 1.40 0.69 8.22 5.96
REMod − UNA 14.20 8.45 360.50 23.97 201.21 18.27 88.28 0.80 0.39 6.31 7.72

M
ea

n REMod − REF 8.90 7.55 352.23 25.33 131.70 17.85 88.19 1.42 0.55 8.55 7.27
REMod − SUF 6.01 5.12 236.81 18.31 96.44 12.00 59.61 0.97 0.36 5.82 7.39
REMod − P ER 10.14 6.63 253.92 21.52 134.94 12.87 69.77 1.40 0.69 8.22 5.96
REMod − UNA 14.20 8.45 360.50 23.97 201.21 18.27 88.28 0.80 0.39 6.31 7.72

Fo
c.

E
A 20

19

REMod − REF 0.09 4.39 84.89 14.46 0.00 17.26 69.50 1.36 0.00 7.50 7.27
REMod − SUF 0.06 2.98 57.07 10.45 0.00 11.61 46.97 0.93 0.00 5.11 7.39
REMod − P ER 0.10 3.86 61.19 12.29 0.00 12.45 54.98 1.34 0.00 7.21 5.96
REMod − UNA 0.14 4.92 86.88 13.69 0.00 17.66 69.57 0.77 0.00 5.53 7.72

M
ea

n REMod − REF 3.14 7.28 213.80 24.98 39.77 0.25 82.64 1.42 0.06 8.52 7.22
REMod − SUF 2.12 4.94 143.74 18.05 29.12 0.17 55.86 0.97 0.04 5.81 7.34
REMod − P ER 3.58 6.39 154.13 21.21 40.75 0.18 65.37 1.40 0.07 8.20 5.92
REMod − UNA 5.01 8.16 218.83 23.63 60.77 0.26 82.72 0.80 0.04 6.29 7.66

Fo
c.

F
X 20

19

REMod − REF 0.04 0.75 19.02 2.94 0.00 13.05 32.46 0.69 0.00 2.48 7.17
REMod − SUF 0.02 0.51 12.79 2.12 0.00 8.77 21.94 0.47 0.00 1.69 7.29
REMod − P ER 0.04 0.66 13.71 2.50 0.00 9.41 25.67 0.68 0.00 2.38 5.88
REMod − UNA 0.06 0.84 19.47 2.78 0.00 13.35 32.49 0.39 0.00 1.83 7.62

M
ea

n REMod − REF 1.57 2.83 54.60 13.55 46.75 0.16 50.45 1.03 0.02 5.31 6.31
REMod − SUF 1.06 1.92 36.70 9.80 34.24 0.11 34.10 0.70 0.01 3.62 6.41
REMod − P ER 1.78 2.48 39.36 11.51 47.90 0.12 39.91 1.01 0.02 5.11 5.17
REMod − UNA 2.50 3.17 55.88 12.82 71.43 0.16 50.50 0.58 0.01 3.92 6.70

Fo
c.

F
F

R 20
19

REMod − REF 0.04 0.45 19.72 0.61 0.00 13.87 5.64 0.39 0.00 0.41 5.04
REMod − SUF 0.03 0.30 13.26 0.44 0.00 9.33 3.82 0.26 0.00 0.28 5.13
REMod − P ER 0.05 0.39 14.22 0.52 0.00 10.00 4.47 0.38 0.00 0.39 4.13
REMod − UNA 0.07 0.50 20.19 0.58 0.00 14.19 5.65 0.22 0.00 0.30 5.36

M
ea

n REMod − REF 1.05 1.71 42.62 2.43 26.47 0.12 11.99 0.64 0.02 1.56 2.27
REMod − SUF 0.71 1.16 28.65 1.76 19.38 0.08 8.11 0.43 0.01 1.07 2.31
REMod − P ER 1.20 1.50 30.72 2.07 27.12 0.09 9.49 0.62 0.02 1.50 1.86
REMod − UNA 1.68 1.91 43.62 2.30 40.44 0.13 12.01 0.36 0.01 1.15 2.42

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 2.81 7.40 314.19 24.88 4.08 17.80 86.87 1.42 0.04 8.53 7.27
REMod − SUF 1.90 5.01 211.23 17.98 2.99 11.97 58.72 0.96 0.03 5.81 7.39
REMod − P ER 3.20 6.49 226.49 21.13 4.18 12.84 68.72 1.40 0.05 8.21 5.96
REMod − UNA 4.49 8.28 321.57 23.54 6.24 18.21 86.96 0.80 0.03 6.29 7.72

M
ea

n REMod − REF 7.64 7.55 342.01 25.31 109.31 3.77 88.11 1.42 0.47 8.55 7.26
REMod − SUF 5.16 5.12 229.94 18.29 80.05 2.53 59.55 0.97 0.31 5.82 7.38
REMod − P ER 8.70 6.63 246.55 21.49 112.00 2.72 69.70 1.40 0.59 8.22 5.95
REMod − UNA 12.18 8.45 350.05 23.95 167.01 3.85 88.19 0.80 0.34 6.31 7.71

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 0.92 4.02 125.75 19.53 1.58 16.26 76.11 1.20 0.00 6.92 7.26
REMod − SUF 0.62 2.73 84.54 14.12 1.16 10.93 51.44 0.81 0.00 4.71 7.38
REMod − P ER 1.04 3.53 90.65 16.59 1.62 11.73 60.21 1.18 0.00 6.65 5.95
REMod − UNA 1.46 4.51 128.70 18.48 2.41 16.64 76.19 0.67 0.00 5.10 7.71

M
ea

n REMod − REF 4.81 6.00 196.19 23.91 104.31 2.18 81.31 1.31 0.09 7.92 7.15
REMod − SUF 3.25 4.07 131.90 17.28 76.38 1.46 54.96 0.89 0.06 5.39 7.27
REMod − P ER 5.48 5.27 141.43 20.31 106.88 1.57 64.32 1.29 0.11 7.61 5.86
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn
REMod − UNA 7.67 6.72 200.80 22.63 159.36 2.23 81.39 0.74 0.06 5.84 7.59

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 0.53 1.88 72.56 2.79 1.45 16.60 27.52 0.74 0.00 2.28 6.29
REMod − SUF 0.36 1.27 48.78 2.01 1.06 11.16 18.60 0.50 0.00 1.56 6.40
REMod − P ER 0.61 1.65 52.31 2.37 1.48 11.97 21.77 0.72 0.00 2.20 5.16
REMod − UNA 0.85 2.10 74.26 2.64 2.21 16.99 27.54 0.41 0.00 1.68 6.68

M
ea

n REMod − REF 3.36 3.49 132.79 7.78 61.77 2.12 40.13 0.97 0.06 4.15 4.48
REMod − SUF 2.27 2.37 89.28 5.62 45.23 1.43 27.12 0.66 0.04 2.82 4.55
REMod − P ER 3.82 3.07 95.73 6.61 63.29 1.53 31.74 0.95 0.08 3.99 3.67
REMod − UNA 5.35 3.91 135.91 7.36 94.37 2.17 40.17 0.55 0.04 3.06 4.75

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.43 0.09 0.02 0.00 0.00 0.78
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.29 0.06 0.02 0.00 0.00 0.79
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.31 0.07 0.02 0.00 0.00 0.64
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.44 0.09 0.01 0.00 0.00 0.83

M
ea

n REMod − REF 0.02 0.11 0.35 0.03 0.00 0.00 0.26 0.09 0.00 0.01 0.14
REMod − SUF 0.01 0.08 0.24 0.02 0.00 0.00 0.18 0.06 0.00 0.01 0.14
REMod − P ER 0.02 0.10 0.25 0.02 0.00 0.00 0.21 0.09 0.00 0.01 0.11
REMod − UNA 0.03 0.13 0.36 0.02 0.00 0.00 0.26 0.05 0.00 0.01 0.15

Q
.6

0%
20

19

REMod − REF 0.04 1.03 25.01 0.79 0.00 15.92 10.41 0.64 0.00 0.78 5.86
REMod − SUF 0.02 0.70 16.81 0.57 0.00 10.71 7.03 0.43 0.00 0.53 5.96
REMod − P ER 0.04 0.91 18.03 0.67 0.00 11.48 8.23 0.63 0.00 0.75 4.81
REMod − UNA 0.06 1.16 25.60 0.74 0.00 16.29 10.42 0.36 0.00 0.57 6.23

M
ea

n REMod − REF 2.15 3.10 62.70 3.12 35.30 0.39 23.99 1.00 0.02 2.39 2.78
REMod − SUF 1.45 2.10 42.15 2.25 25.85 0.26 16.21 0.68 0.01 1.63 2.82
REMod − P ER 2.45 2.72 45.20 2.65 36.16 0.28 18.98 0.98 0.02 2.30 2.28
REMod − UNA 3.44 3.47 64.17 2.95 53.93 0.40 24.01 0.56 0.01 1.77 2.95

Q
.7

5%
20

19

REMod − REF 5.73 7.52 331.80 25.23 23.97 17.85 88.19 1.42 0.02 8.54 7.27
REMod − SUF 3.86 5.10 223.07 18.24 17.55 12.00 59.61 0.97 0.01 5.82 7.39
REMod − P ER 6.52 6.60 239.19 21.43 24.56 12.87 69.77 1.40 0.03 8.21 5.96
REMod − UNA 9.13 8.42 339.59 23.87 36.62 18.27 88.28 0.80 0.02 6.30 7.72

M
ea

n REMod − REF 8.85 7.55 349.06 25.33 130.91 13.87 88.19 1.42 0.44 8.55 7.27
REMod − SUF 5.97 5.12 234.67 18.31 95.86 9.33 59.61 0.97 0.29 5.82 7.39
REMod − P ER 10.08 6.63 251.63 21.52 134.13 10.00 69.77 1.40 0.55 8.22 5.96
REMod − UNA 14.11 8.45 357.26 23.97 200.01 14.19 88.28 0.80 0.31 6.31 7.72

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). Hereby, the results are derived under the
robustness test for the exposure at scarcity (EAS), in particular, the exposure at scarcity is calculated as the total required
commodity amount scaled by the average commodity world production of the period from 2015 to 2019.

Table D.60: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n
20

19

REMod − REF 1.90 2.84 9.35 1.30 0.44 7.27
REMod − SUF 1.29 2.05 6.32 0.88 0.30 7.39
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n

REMod − P ER 1.67 2.41 7.40 1.28 0.43 5.96
REMod − UNA 2.13 2.68 9.36 0.73 0.33 7.72

M
ea

n REMod − REF 7.52 24.98 46.74 1.42 3.68 4.42
REMod − SUF 5.10 18.05 31.59 0.97 2.50 4.49
REMod − P ER 6.60 21.21 36.98 1.40 3.54 3.62
REMod − UNA 8.42 23.63 46.79 0.80 2.71 4.69

Sh
oc

k 20
19

REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

M
ea

n REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

E
xt

r.
20

19

REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

M
ea

n REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

Fo
c.

E
A 20

19

REMod − REF 7.26 15.40 68.97 1.42 4.36 7.27
REMod − SUF 4.92 11.13 46.62 0.96 2.97 7.39
REMod − P ER 6.37 13.08 54.56 1.40 4.19 5.96
REMod − UNA 8.13 14.57 69.04 0.80 3.22 7.72

M
ea

n REMod − REF 7.55 25.33 85.37 1.42 7.99 7.14
REMod − SUF 5.12 18.31 57.70 0.97 5.44 7.26
REMod − P ER 6.63 21.52 67.53 1.40 7.68 5.85
REMod − UNA 8.45 23.97 85.46 0.80 5.89 7.58

Fo
c.

F
X 20

19

REMod − REF 7.53 23.41 81.84 1.42 4.99 7.27
REMod − SUF 5.11 16.92 55.32 0.97 3.40 7.39
REMod − P ER 6.61 19.88 64.74 1.40 4.80 5.96
REMod − UNA 8.44 22.15 81.92 0.80 3.68 7.72

M
ea

n REMod − REF 7.55 25.33 88.02 1.42 8.00 7.08
REMod − SUF 5.12 18.31 59.49 0.97 5.45 7.20
REMod − P ER 6.63 21.52 69.63 1.40 7.70 5.80
REMod − UNA 8.45 23.97 88.10 0.80 5.90 7.52

Fo
c.

F
F

R 20
19

REMod − REF 7.55 25.33 88.19 1.42 8.46 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.77 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.14 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.24 7.72

M
ea

n REMod − REF 7.55 25.33 88.19 1.42 8.52 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.80 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.19 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.28 7.72

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 7.50 22.29 82.02 1.42 7.18 7.27
REMod − SUF 5.09 16.11 55.44 0.96 4.89 7.39
REMod − P ER 6.59 18.93 64.88 1.40 6.91 5.96
REMod − UNA 8.40 21.09 82.10 0.80 5.30 7.72

M
ea

n REMod − REF 7.55 25.33 87.31 1.42 8.31 7.24
REMod − SUF 5.12 18.31 59.02 0.97 5.66 7.36
REMod − P ER 6.63 21.52 69.07 1.40 7.99 5.93
REMod − UNA 8.45 23.97 87.40 0.80 6.13 7.69

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 7.55 24.88 87.14 1.42 7.25 7.27
REMod − SUF 5.12 17.98 58.90 0.97 4.94 7.39
REMod − P ER 6.63 21.13 68.93 1.40 6.97 5.96
REMod − UNA 8.45 23.54 87.22 0.80 5.35 7.72

M
ea

n REMod − REF 7.55 25.33 88.02 1.42 8.41 7.22
REMod − SUF 5.12 18.31 59.49 0.97 5.73 7.34
REMod − P ER 6.63 21.52 69.63 1.40 8.09 5.92
REMod − UNA 8.45 23.97 88.10 0.80 6.21 7.67

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 7.55 25.33 88.19 1.42 8.52 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.80 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.19 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.28 7.72

M
ea

n REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Al Cu Ni Pb Sn Zn
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.10
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.10
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.08
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.11

M
ea

n REMod − REF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.01 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.10 0.35 0.35 0.09 7.08
REMod − SUF 0.00 0.07 0.24 0.24 0.06 7.20
REMod − P ER 0.00 0.09 0.28 0.35 0.08 5.80
REMod − UNA 0.00 0.10 0.35 0.20 0.06 7.52

M
ea

n REMod − REF 1.52 5.72 6.17 1.02 1.15 0.87
REMod − SUF 1.03 4.14 4.17 0.69 0.78 0.89
REMod − P ER 1.34 4.86 4.88 1.00 1.10 0.71
REMod − UNA 1.71 5.42 6.18 0.57 0.85 0.93

Q
.6

0%
20

19

REMod − REF 7.55 25.33 88.19 1.42 8.21 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.59 7.39
REMod − P ER 6.63 21.52 69.77 1.40 7.89 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.05 7.72

M
ea

n REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

Q
.7

5%
20

19

REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

M
ea

n REMod − REF 7.55 25.33 88.19 1.42 8.55 7.27
REMod − SUF 5.12 18.31 59.61 0.97 5.82 7.39
REMod − P ER 6.63 21.52 69.77 1.40 8.22 5.96
REMod − UNA 8.45 23.97 88.28 0.80 6.31 7.72

This table displays the expected loss due to scarcity for the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER
and REMod − UNA), as well as per scenario (Mean (Mean), Shock
(Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme
FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quan-
tile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quan-
tile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the
values are derived from the MS-GVAR model based on the weight ma-
trices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or on
the average price level of the previous decade (Mean). Hereby, the results
are derived under the robustness test for the exposure at scarcity (EAS), in
particular, the exposure at scarcity is calculated as the total required com-
modity amount scaled by the average commodity world production of the
period from 2015 to 2019.

Table D.61: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models of the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n REMod − REF 0.29 0.35 23.51 1.17 2.16 12.83 0.84 0.28 4.57 0.09 0.02 0.16 0.87
REMod − SUF 0.19 0.24 15.80 0.85 1.55 9.40 0.57 0.20 3.09 0.06 0.01 0.11 0.88

318 D.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE



APPENDIX D. EMPIRICAL RESULTS

Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n REMod − P ER 0.33 0.31 16.95 1.00 2.08 13.15 0.61 0.26 3.61 0.09 0.02 0.15 0.71
REMod − UNA 0.46 0.39 24.06 1.11 1.03 19.61 0.86 0.12 4.57 0.05 0.01 0.12 0.92

Sh
oc

k

REMod − REF 0.41 0.71 178.44 1.68 9.51 23.00 1.24 1.24 20.06 0.25 0.04 0.23 6.83
REMod − SUF 0.28 0.48 119.97 1.21 6.80 16.84 0.83 0.88 13.56 0.17 0.03 0.16 6.94
REMod − P ER 0.47 0.62 128.64 1.43 9.16 23.56 0.89 1.15 15.87 0.25 0.05 0.22 5.60
REMod − UNA 0.65 0.79 182.63 1.59 4.53 35.14 1.27 0.53 20.08 0.14 0.03 0.17 7.25

E
xt

r.

REMod − REF 0.58 1.36 329.85 2.38 35.46 38.60 1.80 4.63 54.12 0.58 0.10 0.34 7.26
REMod − SUF 0.39 0.92 221.76 1.72 25.35 28.27 1.21 3.29 36.58 0.39 0.07 0.23 7.38
REMod − P ER 0.66 1.20 237.79 2.02 34.15 39.55 1.30 4.29 42.81 0.57 0.13 0.32 5.95
REMod − UNA 0.93 1.52 337.60 2.25 16.91 58.98 1.84 1.98 54.17 0.32 0.07 0.25 7.71

Fo
c.

E
A

REMod − REF 0.29 0.35 23.51 1.17 4.58 12.83 0.84 0.60 4.57 0.09 0.02 0.16 0.87
REMod − SUF 0.19 0.24 15.80 0.85 3.27 9.40 0.57 0.43 3.09 0.06 0.01 0.11 0.88
REMod − P ER 0.33 0.31 16.95 1.00 4.41 13.15 0.61 0.55 3.61 0.09 0.02 0.15 0.71
REMod − UNA 0.46 0.39 24.06 1.11 2.18 19.61 0.86 0.26 4.57 0.05 0.01 0.12 0.92

Fo
c.

F
X

REMod − REF 0.29 0.35 23.51 1.20 2.45 16.55 0.84 0.32 4.57 0.15 0.02 0.16 0.87
REMod − SUF 0.19 0.24 15.80 0.87 1.75 12.12 0.57 0.23 3.09 0.10 0.01 0.11 0.88
REMod − P ER 0.33 0.31 16.95 1.02 2.36 16.96 0.61 0.30 3.61 0.15 0.03 0.15 0.71
REMod − UNA 0.46 0.39 24.06 1.14 1.17 25.29 0.86 0.14 4.57 0.08 0.01 0.12 0.92

Fo
c.

F
F

R REMod − REF 0.29 0.35 23.51 1.34 4.05 12.83 0.84 0.53 4.57 0.09 0.02 0.16 2.23
REMod − SUF 0.19 0.24 15.80 0.97 2.89 9.40 0.57 0.38 3.09 0.06 0.01 0.11 2.27
REMod − P ER 0.33 0.31 16.95 1.14 3.90 13.15 0.61 0.49 3.61 0.09 0.02 0.15 1.83
REMod − UNA 0.46 0.39 24.06 1.27 1.93 19.61 0.86 0.23 4.57 0.05 0.01 0.12 2.37

Fo
c.

E
xt

r.
E

A REMod − REF 0.29 0.35 23.51 1.17 9.51 12.83 0.84 1.24 4.57 0.09 0.02 0.16 0.87
REMod − SUF 0.19 0.24 15.80 0.85 6.80 9.40 0.57 0.88 3.09 0.06 0.01 0.11 0.88
REMod − P ER 0.33 0.31 16.95 1.00 9.15 13.15 0.61 1.15 3.61 0.09 0.02 0.15 0.71
REMod − UNA 0.46 0.39 24.06 1.11 4.53 19.61 0.86 0.53 4.57 0.05 0.01 0.12 0.92

Fo
c.

E
xt

r.
F

X REMod − REF 0.29 0.35 23.51 1.23 2.77 21.16 0.84 0.36 4.57 0.23 0.03 0.16 0.87
REMod − SUF 0.19 0.24 15.80 0.89 1.98 15.49 0.57 0.26 3.09 0.16 0.02 0.11 0.88
REMod − P ER 0.33 0.31 16.95 1.04 2.67 21.68 0.61 0.34 3.61 0.23 0.03 0.15 0.71
REMod − UNA 0.46 0.39 24.06 1.16 1.32 32.32 0.86 0.16 4.57 0.13 0.02 0.12 0.92

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.29 0.35 23.51 1.53 7.50 12.83 0.84 0.98 4.57 0.09 0.02 0.16 4.30

REMod − SUF 0.19 0.24 15.80 1.10 5.36 9.40 0.57 0.70 3.09 0.06 0.01 0.11 4.37
REMod − P ER 0.33 0.31 16.95 1.30 7.22 13.15 0.61 0.91 3.61 0.09 0.02 0.15 3.53
REMod − UNA 0.46 0.39 24.06 1.44 3.57 19.61 0.86 0.42 4.57 0.05 0.01 0.12 4.57

Q
.2

5%

REMod − REF 0.28 0.32 5.02 1.05 1.25 10.91 0.70 0.16 1.66 0.05 0.01 0.14 0.04
REMod − SUF 0.19 0.22 3.38 0.76 0.89 7.99 0.47 0.12 1.12 0.03 0.01 0.10 0.04
REMod − P ER 0.32 0.28 3.62 0.89 1.21 11.18 0.50 0.15 1.32 0.05 0.02 0.14 0.04
REMod − UNA 0.44 0.36 5.14 0.99 0.60 16.67 0.71 0.07 1.66 0.03 0.01 0.10 0.05

Q
.4

0%

REMod − REF 0.28 0.33 9.09 1.10 1.60 11.18 0.71 0.21 2.99 0.05 0.01 0.15 0.17
REMod − SUF 0.19 0.22 6.11 0.80 1.15 8.19 0.48 0.15 2.02 0.04 0.01 0.11 0.17
REMod − P ER 0.32 0.29 6.55 0.93 1.54 11.46 0.51 0.19 2.36 0.05 0.02 0.15 0.14
REMod − UNA 0.45 0.36 9.30 1.04 0.76 17.09 0.73 0.09 2.99 0.03 0.01 0.11 0.18

Q
.5

0%

REMod − REF 0.28 0.33 13.43 1.14 1.89 11.37 0.72 0.25 4.39 0.06 0.01 0.16 0.40
REMod − SUF 0.19 0.22 9.03 0.82 1.35 8.33 0.49 0.18 2.97 0.04 0.01 0.11 0.41
REMod − P ER 0.32 0.29 9.68 0.97 1.82 11.65 0.52 0.23 3.47 0.06 0.02 0.16 0.33
REMod − UNA 0.45 0.37 13.75 1.08 0.90 17.37 0.74 0.11 4.39 0.03 0.01 0.12 0.42

Q
.6

0%

REMod − REF 0.32 0.43 41.12 1.28 3.14 13.39 0.74 0.41 7.65 0.09 0.02 0.17 1.65
REMod − SUF 0.21 0.29 27.64 0.92 2.24 9.81 0.50 0.29 5.17 0.06 0.01 0.12 1.68
REMod − P ER 0.36 0.37 29.64 1.08 3.02 13.72 0.53 0.38 6.05 0.09 0.02 0.16 1.36
REMod − UNA 0.51 0.48 42.08 1.21 1.50 20.46 0.75 0.18 7.66 0.05 0.01 0.13 1.76
REMod − REF 0.38 0.62 157.05 1.52 6.63 17.02 0.76 0.87 16.62 0.17 0.03 0.18 5.60
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the exposure at scarcity for the reduced sample period from 2015 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

Q
.7

5%

REMod − SUF 0.26 0.42 105.59 1.10 4.74 12.46 0.51 0.62 11.23 0.12 0.02 0.12 5.70
REMod − P ER 0.43 0.54 113.22 1.29 6.38 17.44 0.55 0.80 13.14 0.17 0.03 0.17 4.59
REMod − UNA 0.61 0.69 160.74 1.44 3.16 26.00 0.78 0.37 16.63 0.10 0.02 0.13 5.95

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for the
exposure at scarcity (EAS), in particular, the exposure at scarcity is calculated as the total required commodity amount
scaled by the average commodity world production of the period from 2015 to 2019.

320 D.3. SCARCITY RISK OF THE GERMAN ENERGIEWENDE



APPENDIX D. EMPIRICAL RESULTS

D.3.2.4.2 Results of the Robustness Analysis for the Exposure at Scarcity of the
enlarged Sample
Table D.62: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

M
ea

n 20
19

REMod − REF 0.00 0.04 0.42 0.00 0.00 6.82 0.23 0.09 0.00 0.03 2.71
REMod − SUF 0.00 0.02 0.28 0.00 0.00 4.59 0.16 0.06 0.00 0.02 2.76
REMod − P ER 0.00 0.03 0.30 0.00 0.00 4.92 0.19 0.09 0.00 0.03 2.22
REMod − UNA 0.00 0.04 0.43 0.00 0.00 6.98 0.23 0.05 0.00 0.02 2.88

M
ea

n REMod − REF 0.04 0.33 2.10 0.42 0.55 0.00 0.47 0.30 0.00 0.13 0.41
REMod − SUF 0.03 0.22 1.41 0.31 0.40 0.00 0.32 0.20 0.00 0.09 0.42
REMod − P ER 0.05 0.29 1.51 0.36 0.56 0.00 0.37 0.29 0.00 0.12 0.34
REMod − UNA 0.07 0.37 2.15 0.40 0.83 0.00 0.47 0.17 0.00 0.09 0.44

Sh
oc

k 20
19

REMod − REF 10.89 11.80 420.09 32.52 175.02 44.89 117.23 1.72 0.46 9.66 8.63
REMod − SUF 7.35 8.00 282.43 23.50 128.16 30.18 79.23 1.17 0.31 6.58 8.78
REMod − P ER 12.41 10.36 302.84 27.62 179.33 32.37 92.73 1.69 0.58 9.29 7.08
REMod − UNA 17.37 13.21 429.96 30.77 267.40 45.93 117.34 0.97 0.33 7.13 9.17

M
ea

n REMod − REF 10.89 11.80 420.09 32.52 182.13 44.89 117.23 1.72 0.55 9.66 8.63
REMod − SUF 7.35 8.00 282.43 23.50 133.36 30.18 79.23 1.17 0.36 6.58 8.78
REMod − P ER 12.41 10.36 302.84 27.62 186.61 32.37 92.73 1.69 0.69 9.29 7.08
REMod − UNA 17.37 13.21 429.96 30.77 278.25 45.93 117.34 0.97 0.39 7.13 9.17

E
xt

r.
20

19

REMod − REF 10.89 11.80 420.09 32.52 182.13 44.89 117.23 1.72 0.55 9.66 8.63
REMod − SUF 7.35 8.00 282.43 23.50 133.36 30.18 79.23 1.17 0.36 6.58 8.78
REMod − P ER 12.41 10.36 302.84 27.62 186.61 32.37 92.73 1.69 0.69 9.29 7.08
REMod − UNA 17.37 13.21 429.96 30.77 278.25 45.93 117.34 0.97 0.39 7.13 9.17

M
ea

n REMod − REF 10.89 11.80 420.09 32.52 182.13 44.89 117.23 1.72 0.55 9.66 8.63
REMod − SUF 7.35 8.00 282.43 23.50 133.36 30.18 79.23 1.17 0.36 6.58 8.78
REMod − P ER 12.41 10.36 302.84 27.62 186.61 32.37 92.73 1.69 0.69 9.29 7.08
REMod − UNA 17.37 13.21 429.96 30.77 278.25 45.93 117.34 0.97 0.39 7.13 9.17

Fo
c.

E
A 20

19

REMod − REF 0.11 6.87 101.24 18.57 0.00 43.41 92.37 1.65 0.00 8.48 8.63
REMod − SUF 0.07 4.65 68.07 13.42 0.00 29.18 62.44 1.12 0.00 5.77 8.78
REMod − P ER 0.12 6.03 72.98 15.77 0.00 31.30 73.07 1.62 0.00 8.15 7.08
REMod − UNA 0.17 7.69 103.62 17.57 0.00 44.42 92.47 0.93 0.00 6.25 9.17

M
ea

n REMod − REF 3.85 11.38 255.00 32.06 55.00 0.63 109.84 1.72 0.06 9.64 8.57
REMod − SUF 2.60 7.72 171.44 23.17 40.28 0.42 74.24 1.17 0.04 6.56 8.72
REMod − P ER 4.38 9.99 183.82 27.23 56.36 0.45 86.89 1.69 0.07 9.27 7.03
REMod − UNA 6.13 12.75 260.99 30.34 84.03 0.64 109.95 0.97 0.04 7.11 9.10

Fo
c.

F
X 20

19

REMod − REF 0.04 1.17 22.69 3.77 0.00 32.82 43.14 0.83 0.00 2.80 8.52
REMod − SUF 0.03 0.79 15.25 2.73 0.00 22.06 29.16 0.57 0.00 1.91 8.66
REMod − P ER 0.05 1.03 16.35 3.20 0.00 23.66 34.13 0.82 0.00 2.70 6.98
REMod − UNA 0.07 1.31 23.22 3.57 0.00 33.58 43.18 0.47 0.00 2.07 9.05

M
ea

n REMod − REF 1.92 4.42 65.11 17.40 64.65 0.40 67.05 1.24 0.02 6.00 7.49
REMod − SUF 1.29 3.00 43.78 12.57 47.34 0.27 45.32 0.84 0.01 4.09 7.62
REMod − P ER 2.18 3.88 46.94 14.78 66.25 0.29 53.04 1.22 0.02 5.77 6.14
REMod − UNA 3.06 4.95 66.64 16.46 98.78 0.41 67.12 0.70 0.01 4.43 7.96

Fo
c.

F
F

R 20
19

REMod − REF 0.05 0.70 23.53 0.78 0.00 34.88 7.50 0.47 0.00 0.46 5.99
REMod − SUF 0.04 0.47 15.82 0.56 0.00 23.45 5.07 0.32 0.00 0.32 6.09
REMod − P ER 0.06 0.61 16.96 0.66 0.00 25.15 5.93 0.46 0.00 0.45 4.91
REMod − UNA 0.09 0.78 24.08 0.74 0.00 35.69 7.51 0.26 0.00 0.34 6.36

M
ea

n REMod − REF 1.29 2.67 50.83 3.12 36.61 0.31 15.94 0.77 0.02 1.77 2.70
REMod − SUF 0.87 1.81 34.17 2.26 26.81 0.21 10.78 0.52 0.01 1.20 2.75
REMod − P ER 1.46 2.34 36.64 2.65 37.51 0.23 12.61 0.76 0.02 1.70 2.22
REMod − UNA 2.05 2.99 52.03 2.95 55.93 0.32 15.96 0.43 0.01 1.30 2.87

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 3.44 11.56 374.72 31.93 5.65 44.76 115.47 1.72 0.04 9.65 8.63
REMod − SUF 2.32 7.84 251.93 23.08 4.13 30.09 78.05 1.17 0.03 6.57 8.78
REMod − P ER 3.92 10.15 270.13 27.12 5.78 32.28 91.34 1.69 0.05 9.28 7.08
REMod − UNA 5.49 12.95 383.53 30.22 8.63 45.79 115.58 0.96 0.03 7.12 9.17

M
ea

n REMod − REF 9.35 11.80 407.91 32.49 151.16 9.47 117.11 1.72 0.47 9.66 8.62
REMod − SUF 6.31 8.00 274.24 23.48 110.69 6.37 79.16 1.17 0.31 6.58 8.77
REMod − P ER 10.64 10.36 294.06 27.59 154.88 6.83 92.64 1.69 0.59 9.29 7.07
REMod − UNA 14.90 13.21 417.49 30.74 230.95 9.69 117.22 0.97 0.34 7.13 9.16

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 1.12 6.29 149.97 25.07 2.19 40.90 101.17 1.45 0.00 7.82 8.62
REMod − SUF 0.76 4.26 100.83 18.12 1.60 27.49 68.38 0.98 0.00 5.33 8.77
REMod − P ER 1.28 5.52 108.11 21.29 2.24 29.49 80.03 1.42 0.00 7.52 7.07
REMod − UNA 1.79 7.04 153.50 23.72 3.34 41.84 101.27 0.81 0.00 5.77 9.16

M
ea

n REMod − REF 5.88 9.38 233.99 30.70 144.24 5.48 108.08 1.59 0.09 8.95 8.49
REMod − SUF 3.97 6.36 157.31 22.19 105.62 3.68 73.05 1.08 0.06 6.10 8.64
REMod − P ER 6.70 8.23 168.68 26.07 147.79 3.95 85.50 1.56 0.11 8.61 6.96
REMod − UNA 9.38 10.50 239.49 29.05 220.37 5.60 108.19 0.89 0.06 6.60 9.02

20
19 REMod − REF 0.65 2.94 86.54 3.58 2.00 41.75 36.57 0.89 0.00 2.58 7.47

REMod − SUF 0.44 1.99 58.18 2.59 1.47 28.07 24.72 0.61 0.00 1.76 7.60
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Ag Al Co Cu In Li Ni Pb Pt Sn Zn

Fo
c.

E
xt

r.
F

F
R REMod − P ER 0.74 2.58 62.39 3.04 2.05 30.11 28.93 0.88 0.00 2.48 6.13

REMod − UNA 1.04 3.29 88.57 3.38 3.06 42.72 36.61 0.50 0.00 1.90 7.94

M
ea

n REMod − REF 4.11 5.46 158.38 9.98 85.42 5.34 53.34 1.17 0.06 4.69 5.32
REMod − SUF 2.77 3.70 106.48 7.22 62.55 3.59 36.05 0.80 0.04 3.19 5.41
REMod − P ER 4.68 4.80 114.17 8.48 87.52 3.85 42.19 1.15 0.08 4.51 4.36
REMod − UNA 6.55 6.12 162.10 9.45 130.50 5.47 53.39 0.66 0.04 3.46 5.65

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 1.08 0.12 0.03 0.00 0.00 0.92
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.72 0.08 0.02 0.00 0.00 0.94
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.78 0.09 0.03 0.00 0.00 0.76
REMod − UNA 0.00 0.00 0.00 0.00 0.00 1.10 0.12 0.02 0.00 0.00 0.98

M
ea

n REMod − REF 0.02 0.18 0.42 0.03 0.00 0.00 0.35 0.11 0.00 0.01 0.16
REMod − SUF 0.01 0.12 0.28 0.02 0.00 0.00 0.24 0.07 0.00 0.01 0.17
REMod − P ER 0.02 0.16 0.30 0.03 0.00 0.00 0.28 0.11 0.00 0.01 0.13
REMod − UNA 0.03 0.20 0.43 0.03 0.00 0.00 0.35 0.06 0.00 0.01 0.17

Q
.6

0%
20

19

REMod − REF 0.04 1.62 29.83 1.01 0.00 40.04 13.83 0.77 0.00 0.88 6.97
REMod − SUF 0.03 1.10 20.05 0.73 0.00 26.92 9.35 0.52 0.00 0.60 7.08
REMod − P ER 0.05 1.42 21.50 0.86 0.00 28.88 10.94 0.76 0.00 0.85 5.71
REMod − UNA 0.07 1.81 30.53 0.95 0.00 40.97 13.85 0.43 0.00 0.65 7.40

M
ea

n REMod − REF 2.64 4.85 74.78 4.00 48.81 0.99 31.89 1.21 0.02 2.71 3.30
REMod − SUF 1.78 3.29 50.27 2.89 35.74 0.66 21.55 0.82 0.01 1.84 3.35
REMod − P ER 3.00 4.26 53.91 3.40 50.01 0.71 25.22 1.19 0.02 2.60 2.70
REMod − UNA 4.20 5.43 76.53 3.78 74.57 1.01 31.92 0.68 0.01 2.00 3.50

Q
.7

5%
20

19

REMod − REF 7.00 11.75 395.73 32.39 33.15 44.89 117.23 1.72 0.02 9.66 8.63
REMod − SUF 4.73 7.97 266.05 23.41 24.27 30.18 79.23 1.17 0.01 6.58 8.78
REMod − P ER 7.98 10.32 285.28 27.51 33.96 32.37 92.73 1.69 0.03 9.28 7.08
REMod − UNA 11.17 13.16 405.03 30.65 50.64 45.93 117.34 0.97 0.02 7.12 9.17

M
ea

n REMod − REF 10.83 11.80 416.31 32.52 181.03 34.88 117.23 1.72 0.44 9.66 8.63
REMod − SUF 7.31 8.00 279.89 23.50 132.56 23.45 79.23 1.17 0.29 6.58 8.78
REMod − P ER 12.33 10.36 300.12 27.62 185.49 25.15 92.73 1.69 0.55 9.29 7.08
REMod − UNA 17.26 13.21 426.09 30.77 276.58 35.69 117.34 0.97 0.31 7.13 9.17

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), indium (In), lithium (Li), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and zinc (Zn), per path (REMod − REF ,
REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario (Mean (Mean), Shock (Shock), Extreme
(Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus
Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quantile (Q. 25%), 40% quantile (Q. 40%), 50%
quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the values are derived
from the GVAR model based on the weight matrices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA transformation path as well as on the initial basis
price level of 2019 or on the average price level of the previous decade (Mean). Hereby, the results are derived under the
robustness test for the exposure at scarcity (EAS), in particular, the exposure at scarcity is calculated as the total required
commodity amount scaled by the average commodity world production of the period from 1995 to 2019.

Table D.63: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR
models of the robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

20
19 REMod − REF 2.97 3.64 12.43 1.57 0.50 8.63

REMod − SUF 2.02 2.63 8.40 1.07 0.34 8.78
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn

M
ea

n

REMod − P ER 2.61 3.09 9.83 1.55 0.48 7.08
REMod − UNA 3.33 3.45 12.44 0.88 0.37 9.17

M
ea

n REMod − REF 11.75 32.06 62.13 1.72 4.16 5.25
REMod − SUF 7.97 23.17 41.99 1.17 2.83 5.34
REMod − P ER 10.32 27.23 49.15 1.69 4.00 4.30
REMod − UNA 13.16 30.34 62.19 0.97 3.07 5.57

Sh
oc

k 20
19

REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

M
ea

n REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

E
xt

r.
20

19

REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

M
ea

n REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

Fo
c.

E
A 20

19

REMod − REF 11.35 19.77 91.67 1.72 4.93 8.63
REMod − SUF 7.69 14.29 61.96 1.17 3.36 8.78
REMod − P ER 9.96 16.79 72.52 1.69 4.74 7.08
REMod − UNA 12.71 18.71 91.76 0.96 3.64 9.17

M
ea

n REMod − REF 11.80 32.52 113.47 1.72 9.03 8.48
REMod − SUF 8.00 23.50 76.70 1.17 6.15 8.62
REMod − P ER 10.36 27.62 89.76 1.69 8.68 6.95
REMod − UNA 13.21 30.77 113.59 0.97 6.66 9.00

Fo
c.

F
X 20

19

REMod − REF 11.77 30.05 108.79 1.72 5.64 8.63
REMod − SUF 7.98 21.72 73.53 1.17 3.85 8.78
REMod − P ER 10.34 25.52 86.05 1.69 5.43 7.08
REMod − UNA 13.19 28.43 108.89 0.97 4.16 9.17

M
ea

n REMod − REF 11.80 32.52 116.99 1.72 9.05 8.41
REMod − SUF 8.00 23.50 79.08 1.17 6.16 8.55
REMod − P ER 10.36 27.62 92.55 1.69 8.70 6.89
REMod − UNA 13.21 30.77 117.11 0.97 6.67 8.93

Fo
c.

F
F

R 20
19

REMod − REF 11.80 32.52 117.23 1.72 9.57 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.52 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.20 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.06 9.17

M
ea

n REMod − REF 11.80 32.52 117.23 1.72 9.63 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.56 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.26 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.10 9.17

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 11.73 28.62 109.02 1.72 8.12 8.63
REMod − SUF 7.95 20.68 73.69 1.17 5.53 8.78
REMod − P ER 10.29 24.30 86.24 1.69 7.81 7.08
REMod − UNA 13.13 27.08 109.13 0.96 5.99 9.17

M
ea

n REMod − REF 11.80 32.52 116.05 1.72 9.39 8.60
REMod − SUF 8.00 23.50 78.44 1.17 6.40 8.74
REMod − P ER 10.36 27.62 91.80 1.69 9.03 7.05
REMod − UNA 13.21 30.77 116.17 0.97 6.93 9.13

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 11.80 31.93 115.82 1.72 8.20 8.63
REMod − SUF 8.00 23.08 78.28 1.17 5.58 8.78
REMod − P ER 10.36 27.12 91.62 1.69 7.88 7.08
REMod − UNA 13.21 30.22 115.93 0.97 6.05 9.17

M
ea

n REMod − REF 11.80 32.52 116.99 1.72 9.51 8.58
REMod − SUF 8.00 23.50 79.08 1.17 6.48 8.72
REMod − P ER 10.36 27.62 92.55 1.69 9.15 7.03
REMod − UNA 13.21 30.77 117.11 0.97 7.02 9.11

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 11.80 32.52 117.23 1.72 9.63 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.56 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.26 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.10 9.17

M
ea

n REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the MS-GVAR models of
the robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Al Cu Ni Pb Sn Zn
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.12
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.12
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.10
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.13

M
ea

n REMod − REF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.01 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.01 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.01 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.00 0.13 0.47 0.43 0.10 8.41
REMod − SUF 0.00 0.09 0.32 0.29 0.07 8.55
REMod − P ER 0.00 0.11 0.37 0.42 0.09 6.89
REMod − UNA 0.00 0.12 0.47 0.24 0.07 8.93

M
ea

n REMod − REF 2.38 7.35 8.21 1.23 1.30 1.04
REMod − SUF 1.62 5.31 5.55 0.84 0.88 1.05
REMod − P ER 2.09 6.24 6.49 1.21 1.25 0.85
REMod − UNA 2.67 6.95 8.21 0.69 0.96 1.10

Q
.6

0%
20

19

REMod − REF 11.80 32.52 117.23 1.72 9.28 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.32 8.78
REMod − P ER 10.36 27.62 92.73 1.69 8.92 7.08
REMod − UNA 13.21 30.77 117.34 0.97 6.84 9.17

M
ea

n REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

Q
.7

5%
20

19

REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

M
ea

n REMod − REF 11.80 32.52 117.23 1.72 9.66 8.63
REMod − SUF 8.00 23.50 79.23 1.17 6.58 8.78
REMod − P ER 10.36 27.62 92.73 1.69 9.29 7.08
REMod − UNA 13.21 30.77 117.34 0.97 7.13 9.17

This table displays the expected loss due to scarcity for the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER
and REMod − UNA), as well as per scenario (Mean (Mean), Shock
(Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme
FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quan-
tile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quan-
tile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby, the
values are derived from the MS-GVAR model based on the weight ma-
trices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or on
the average price level of the previous decade (Mean). Hereby, the results
are derived under the robustness test for the exposure at scarcity (EAS), in
particular, the exposure at scarcity is calculated as the total required com-
modity amount scaled by the average commodity world production of the
period from 1995 to 2019.
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Table D.64: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic
regression models of the robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn

M
ea

n

REMod − REF 0.39 0.71 30.44 1.39 1.48 18.47 1.86 0.19 10.58 0.10 0.02 0.20 0.33
REMod − SUF 0.26 0.48 20.46 1.00 1.06 13.52 1.25 0.14 7.15 0.07 0.01 0.13 0.33
REMod − P ER 0.44 0.62 21.94 1.18 1.42 18.92 1.34 0.18 8.37 0.10 0.02 0.19 0.27
REMod − UNA 0.62 0.80 31.15 1.31 0.70 28.21 1.90 0.08 10.59 0.06 0.01 0.15 0.35

Sh
oc

k

REMod − REF 0.52 1.36 194.03 1.98 7.70 29.06 2.59 1.01 65.35 0.25 0.04 0.31 6.95
REMod − SUF 0.35 0.92 130.45 1.43 5.51 21.28 1.74 0.72 44.17 0.17 0.02 0.21 7.06
REMod − P ER 0.59 1.19 139.88 1.68 7.42 29.78 1.87 0.93 51.70 0.24 0.05 0.30 5.70
REMod − UNA 0.83 1.52 198.59 1.87 3.67 44.40 2.65 0.43 65.42 0.14 0.03 0.23 7.38

E
xt

r.

REMod − REF 0.70 2.46 379.82 2.80 33.85 44.10 3.58 4.42 110.33 0.55 0.08 0.48 8.61
REMod − SUF 0.47 1.67 255.36 2.02 24.19 32.29 2.41 3.14 74.58 0.37 0.05 0.33 8.76
REMod − P ER 0.79 2.16 273.81 2.37 32.60 45.18 2.58 4.09 87.28 0.54 0.10 0.47 7.06
REMod − UNA 1.11 2.76 388.74 2.65 16.14 67.37 3.67 1.89 110.44 0.31 0.06 0.36 9.15

Fo
c.

E
A

REMod − REF 0.39 0.71 30.44 1.39 2.99 18.47 1.86 0.39 10.58 0.10 0.02 0.20 0.33
REMod − SUF 0.26 0.48 20.46 1.00 2.14 13.52 1.25 0.28 7.15 0.07 0.01 0.13 0.33
REMod − P ER 0.44 0.62 21.94 1.18 2.88 18.92 1.34 0.36 8.37 0.10 0.02 0.19 0.27
REMod − UNA 0.62 0.80 31.15 1.31 1.43 28.21 1.90 0.17 10.59 0.06 0.01 0.15 0.35

Fo
c.

F
X

REMod − REF 0.39 0.71 30.44 1.41 1.63 22.58 1.86 0.21 10.58 0.15 0.02 0.20 0.33
REMod − SUF 0.26 0.48 20.46 1.02 1.17 16.53 1.25 0.15 7.15 0.10 0.01 0.13 0.33
REMod − P ER 0.44 0.62 21.94 1.20 1.57 23.13 1.34 0.20 8.37 0.14 0.03 0.19 0.27
REMod − UNA 0.62 0.80 31.15 1.34 0.78 34.49 1.90 0.09 10.59 0.08 0.02 0.15 0.35

Fo
c.

F
F

R REMod − REF 0.39 0.71 30.44 1.66 3.51 18.47 1.86 0.46 10.58 0.10 0.02 0.20 1.44
REMod − SUF 0.26 0.48 20.46 1.20 2.51 13.52 1.25 0.33 7.15 0.07 0.01 0.13 1.47
REMod − P ER 0.44 0.62 21.94 1.41 3.38 18.92 1.34 0.42 8.37 0.10 0.02 0.19 1.18
REMod − UNA 0.62 0.80 31.15 1.58 1.67 28.21 1.90 0.20 10.59 0.06 0.01 0.15 1.53

Fo
c.

E
xt

r.
E

A REMod − REF 0.39 0.71 30.44 1.39 6.00 18.47 1.86 0.78 10.58 0.10 0.02 0.20 0.33
REMod − SUF 0.26 0.48 20.46 1.00 4.29 13.52 1.25 0.56 7.15 0.07 0.01 0.13 0.33
REMod − P ER 0.44 0.62 21.94 1.18 5.78 18.92 1.34 0.73 8.37 0.10 0.02 0.19 0.27
REMod − UNA 0.62 0.80 31.15 1.31 2.86 28.21 1.90 0.34 10.59 0.06 0.01 0.15 0.35

Fo
c.

E
xt

r.
F

X REMod − REF 0.39 0.71 30.44 1.44 1.80 27.45 1.86 0.23 10.58 0.21 0.03 0.20 0.33
REMod − SUF 0.26 0.48 20.46 1.04 1.29 20.10 1.25 0.17 7.15 0.14 0.02 0.13 0.33
REMod − P ER 0.44 0.62 21.94 1.22 1.73 28.13 1.34 0.22 8.37 0.21 0.03 0.19 0.27
REMod − UNA 0.62 0.80 31.15 1.36 0.86 41.94 1.90 0.10 10.59 0.12 0.02 0.15 0.35

Fo
c.

E
xt

r.
F

F
R REMod − REF 0.39 0.71 30.44 1.99 8.16 18.47 1.86 1.07 10.58 0.10 0.02 0.20 4.36

REMod − SUF 0.26 0.48 20.46 1.44 5.84 13.52 1.25 0.76 7.15 0.07 0.01 0.13 4.43
REMod − P ER 0.44 0.62 21.94 1.69 7.86 18.92 1.34 0.99 8.37 0.10 0.02 0.19 3.58
REMod − UNA 0.62 0.80 31.15 1.88 3.89 28.21 1.90 0.46 10.59 0.06 0.01 0.15 4.63

Q
.2

5%

REMod − REF 0.35 0.52 7.44 1.14 0.57 15.64 1.74 0.07 2.82 0.06 0.01 0.15 0.02
REMod − SUF 0.24 0.35 5.00 0.83 0.41 11.45 1.17 0.05 1.91 0.04 0.01 0.10 0.02
REMod − P ER 0.40 0.46 5.36 0.97 0.55 16.03 1.26 0.07 2.23 0.06 0.02 0.14 0.02
REMod − UNA 0.56 0.58 7.62 1.08 0.27 23.90 1.78 0.03 2.83 0.04 0.01 0.11 0.02

Q
.4

0%

REMod − REF 0.37 0.59 13.75 1.31 0.98 17.38 1.75 0.13 8.90 0.07 0.02 0.17 0.09
REMod − SUF 0.25 0.40 9.25 0.95 0.70 12.73 1.18 0.09 6.02 0.05 0.01 0.12 0.09
REMod − P ER 0.42 0.52 9.92 1.11 0.94 17.81 1.26 0.12 7.04 0.07 0.02 0.17 0.08
REMod − UNA 0.59 0.67 14.08 1.24 0.47 26.56 1.79 0.05 8.91 0.04 0.01 0.13 0.10

Q
.5

0%

REMod − REF 0.38 0.63 22.22 1.39 1.22 18.24 1.78 0.16 13.27 0.08 0.02 0.19 0.25
REMod − SUF 0.26 0.43 14.94 1.01 0.87 13.36 1.20 0.11 8.97 0.06 0.01 0.13 0.25
REMod − P ER 0.44 0.55 16.02 1.18 1.17 18.69 1.28 0.15 10.50 0.08 0.02 0.18 0.20
REMod − UNA 0.61 0.71 22.74 1.32 0.58 27.87 1.82 0.07 13.28 0.05 0.01 0.14 0.27

Q
.6

0%

REMod − REF 0.42 0.77 46.94 1.51 1.81 19.83 1.81 0.24 16.79 0.11 0.02 0.20 0.83
REMod − SUF 0.28 0.52 31.56 1.09 1.29 14.52 1.22 0.17 11.35 0.07 0.01 0.13 0.85
REMod − P ER 0.48 0.68 33.84 1.29 1.74 20.32 1.31 0.22 13.28 0.11 0.03 0.19 0.68
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the logistic regression models
of the robustness analysis for the exposure at scarcity for the enlarged sample period from 1995 to 2019

Ag Al Co Cu Dy In Li Nd Ni Pb Pt Sn Zn
REMod − UNA 0.67 0.86 48.04 1.43 0.86 30.30 1.86 0.10 16.81 0.06 0.01 0.14 0.88
REMod − REF 0.47 1.06 143.60 1.72 3.63 23.26 1.88 0.47 26.09 0.18 0.03 0.26 4.03

Q
.7

5%

REMod − SUF 0.32 0.72 96.55 1.24 2.59 17.03 1.27 0.34 17.63 0.13 0.02 0.18 4.10
REMod − P ER 0.53 0.93 103.52 1.46 3.50 23.83 1.36 0.44 20.64 0.18 0.03 0.25 3.31
REMod − UNA 0.75 1.19 146.98 1.63 1.73 35.54 1.93 0.20 26.12 0.10 0.02 0.19 4.28

This table displays the expected loss due to scarcity for the commodities silver (Ag), aluminum (Al), cobalt (Co), copper
(Cu), dysprosium (Dy), indium (In), lithium (Li), neodymium (Nd), nickel (Ni), lead (Pb), platinum (Pt), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA), as well as per scenario
(Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Focus FFR (Foc. FFR),
Focus Extreme EA (Foc. Extr. EA), Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25%
quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quantile (Q. 60%), 75% quantile (Q. 75%)) for the
input variables, derived from the logistic regression model. Hereby, the results are derived under the robustness test for the
exposure at scarcity (EAS), in particular, the exposure at scarcity is calculated as the total required commodity amount
scaled by the average commodity world production of the period from 1995 to 2019.
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D.3.2.5 Robustness Analysis for the Industrial Metal Markets

Table D.65: Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the
commodity set restricted to the industrial metals

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
R

E
F

20
19

Mean 0.01 0.01 0.00 0.10 0.00 0.52
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.80 0.81 0.88 0.99 0.95 1.00
Foc. FX 0.22 0.31 0.41 0.61 0.49 1.00
Foc. FFR 0.11 0.05 0.05 0.37 0.09 0.84
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.66 0.87 0.92 0.88 0.92 1.00
Foc. Extr. FFR 0.31 0.21 0.26 0.61 0.37 0.95
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.01
Q. 50% 0.01 0.00 0.00 0.05 0.00 0.23
Q. 60% 0.23 0.12 0.11 0.55 0.12 0.90
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.09 0.04 0.01 0.24 0.03 0.15
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.98 1.00 1.00 1.00
Foc. FX 0.60 0.75 0.71 0.82 0.82 0.95
Foc. FFR 0.32 0.21 0.12 0.59 0.30 0.49
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.88 0.96 0.97 0.95 0.98 0.99
Foc. Extr. FFR 0.60 0.48 0.43 0.77 0.61 0.74
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.06 0.01 0.00 0.12 0.01 0.06
Q. 60% 0.54 0.33 0.23 0.78 0.33 0.59
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
S

U
F

20
19

Mean 0.03 0.02 0.01 0.13 0.01 0.58
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.86 0.85 0.91 1.00 0.96 1.00
Foc. FX 0.30 0.43 0.53 0.64 0.53 1.00
Foc. FFR 0.16 0.11 0.11 0.40 0.12 0.87
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.71 0.88 0.93 0.88 0.92 1.00
Foc. Extr. FFR 0.37 0.30 0.36 0.62 0.40 0.95
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.01
Q. 50% 0.02 0.01 0.00 0.04 0.00 0.29
Q. 60% 0.35 0.23 0.23 0.59 0.16 0.92
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.14 0.09 0.03 0.28 0.04 0.23
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.99 1.00 1.00 1.00
Foc. FX 0.65 0.82 0.76 0.81 0.83 0.95
Foc. FFR 0.39 0.31 0.22 0.60 0.33 0.56
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.91 0.97 0.97 0.95 0.98 0.99
Foc. Extr. FFR 0.66 0.59 0.51 0.77 0.65 0.78
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.07 0.03 0.02 0.14 0.01 0.11
Q. 60% 0.63 0.51 0.39 0.80 0.40 0.71
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
P

E
R

20
19

Mean 0.01 0.01 0.00 0.10 0.00 0.53
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.79 0.81 0.88 0.99 0.95 1.00
Foc. FX 0.21 0.31 0.42 0.61 0.49 1.00
Foc. FFR 0.10 0.05 0.04 0.38 0.09 0.85
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.65 0.87 0.93 0.88 0.92 1.00
Foc. Extr. FFR 0.30 0.21 0.26 0.61 0.37 0.95
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
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Probability of scarcity per commodity derived from the GVAR models of the robustness analysis for the commodity set
restricted to the industrial metals

Al Cu Ni Pb Sn Zn

R
E

M
o
d

−
P

E
R

20
19

Q. 40% 0.00 0.00 0.00 0.00 0.00 0.01
Q. 50% 0.01 0.00 0.00 0.05 0.00 0.24
Q. 60% 0.22 0.12 0.11 0.57 0.11 0.91
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.07 0.04 0.01 0.24 0.03 0.15
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.98 1.00 1.00 1.00
Foc. FX 0.58 0.75 0.71 0.82 0.82 0.95
Foc. FFR 0.31 0.20 0.12 0.59 0.28 0.50
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.88 0.96 0.98 0.95 0.98 0.99
Foc. Extr. FFR 0.59 0.48 0.42 0.77 0.61 0.76
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.05 0.01 0.00 0.12 0.01 0.06
Q. 60% 0.52 0.35 0.23 0.77 0.32 0.61
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

R
E

M
o
d

−
U

N
A

20
19

Mean 0.01 0.01 0.00 0.07 0.00 0.47
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 0.80 0.80 0.88 0.99 0.95 1.00
Foc. FX 0.21 0.30 0.40 0.55 0.45 1.00
Foc. FFR 0.10 0.05 0.05 0.32 0.07 0.79
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.65 0.86 0.92 0.86 0.91 1.00
Foc. Extr. FFR 0.30 0.19 0.25 0.57 0.34 0.92
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.01
Q. 50% 0.01 0.00 0.00 0.03 0.00 0.20
Q. 60% 0.20 0.09 0.10 0.46 0.07 0.85
Q. 75% 1.00 0.99 1.00 1.00 1.00 1.00

M
ea

n

Mean 0.09 0.04 0.01 0.19 0.01 0.14
Shock 1.00 1.00 1.00 1.00 1.00 1.00
Extr. 1.00 1.00 1.00 1.00 1.00 1.00
Foc. EA 1.00 1.00 0.98 1.00 1.00 1.00
Foc. FX 0.56 0.75 0.70 0.78 0.80 0.94
Foc. FFR 0.31 0.19 0.12 0.53 0.26 0.46
Foc. Extr. EA 1.00 1.00 1.00 1.00 1.00 1.00
Foc. Extr. FX 0.87 0.96 0.97 0.94 0.98 1.00
Foc. Extr. FFR 0.58 0.48 0.41 0.75 0.58 0.72
Q. 25% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 40% 0.00 0.00 0.00 0.00 0.00 0.00
Q. 50% 0.05 0.01 0.01 0.08 0.00 0.06
Q. 60% 0.49 0.30 0.20 0.73 0.23 0.53
Q. 75% 1.00 1.00 1.00 1.00 1.00 1.00

This table displays the probability of scarcity (PS) of the commodities alu-
minum (Al), copper (Cu), nickel (Ni), lead (Pb),tin (Sn), and zinc (Zn), derived
from the GVAR model based on the weight matrices representing the depen-
dencies between the commodities within the REMod − REF , REMod − SUF ,
REMod − P ER, and REMod − UNA transformation path as well as on the
initial basis price level of 2019 or on the average price level of the previous
decade (Mean). Hereby, the probability of scarcity is calculated for the scenar-
ios Mean (Mean), Shock (Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus
FX (Foc. FX), Focus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA),
Focus Extreme FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR),
25% quantile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60%
quantile (Q. 60%), 75% quantile (Q. 75%) of the input variables. The presented
results are derived under the robustness test for the restricted commodity set,
in particular, only the industrial metals are considered.
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Table D.66: Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR
models of the robustness analysis for the commodity set restricted to the industrial metals

Al Cu Ni Pb Sn Zn

M
ea

n 20
19

REMod − REF 0.12 0.16 0.17 0.14 0.05 3.76
REMod − SUF 0.08 0.12 0.12 0.10 0.03 3.83
REMod − P ER 0.10 0.14 0.14 0.14 0.04 3.09
REMod − UNA 0.13 0.15 0.17 0.08 0.03 4.00

M
ea

n REMod − REF 0.76 1.12 0.79 0.34 0.26 1.10
REMod − SUF 0.52 0.81 0.53 0.23 0.18 1.11
REMod − P ER 0.67 0.95 0.62 0.33 0.25 0.90
REMod − UNA 0.85 1.06 0.79 0.19 0.20 1.16

Sh
oc

k 20
19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

E
xt

r.
20

19

REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
A 20

19

REMod − REF 6.65 21.98 76.62 1.37 8.69 7.21
REMod − SUF 4.51 15.89 51.79 0.93 5.92 7.33
REMod − P ER 5.84 18.67 60.61 1.35 8.35 5.91
REMod − UNA 7.44 20.80 76.69 0.77 6.41 7.66

M
ea

n REMod − REF 8.35 27.21 85.88 1.38 9.12 7.20
REMod − SUF 5.66 19.67 58.04 0.94 6.21 7.32
REMod − P ER 7.33 23.11 67.93 1.36 8.77 5.90
REMod − UNA 9.35 25.75 85.96 0.78 6.72 7.65

Fo
c.

F
X 20

19

REMod − REF 1.81 8.37 35.82 0.84 4.49 7.20
REMod − SUF 1.22 6.05 24.21 0.57 3.06 7.32
REMod − P ER 1.59 7.11 28.33 0.83 4.32 5.90
REMod − UNA 2.02 7.92 35.85 0.47 3.32 7.65

M
ea

n REMod − REF 5.01 20.56 61.94 1.13 7.50 6.82
REMod − SUF 3.40 14.86 41.87 0.77 5.11 6.93
REMod − P ER 4.40 17.46 49.00 1.11 7.21 5.59
REMod − UNA 5.61 19.45 62.00 0.64 5.53 7.24

Fo
c.

F
F

R 20
19

REMod − REF 0.89 1.42 4.11 0.52 0.82 6.05
REMod − SUF 0.61 1.02 2.78 0.35 0.56 6.15
REMod − P ER 0.79 1.20 3.25 0.51 0.79 4.96
REMod − UNA 1.00 1.34 4.11 0.29 0.61 6.42

M
ea

n REMod − REF 2.68 5.75 10.57 0.81 2.72 3.56
REMod − SUF 1.82 4.16 7.14 0.55 1.85 3.62
REMod − P ER 2.36 4.89 8.36 0.80 2.61 2.92
REMod − UNA 3.01 5.44 10.58 0.46 2.00 3.78

Fo
c.

E
xt

r.
E

A
20

19

REMod − REF 8.33 27.19 87.01 1.38 9.12 7.21
REMod − SUF 5.65 19.65 58.81 0.94 6.21 7.33
REMod − P ER 7.31 23.09 68.83 1.36 8.77 5.91
REMod − UNA 9.33 25.72 87.10 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

Fo
c.

E
xt

r.
F

X
20

19

REMod − REF 5.53 23.72 80.63 1.21 8.34 7.21
REMod − SUF 3.75 17.15 54.50 0.82 5.68 7.33
REMod − P ER 4.85 20.15 63.79 1.19 8.02 5.91
REMod − UNA 6.19 22.45 80.71 0.68 6.15 7.66

M
ea

n REMod − REF 7.38 26.20 84.91 1.31 8.91 7.17
REMod − SUF 5.01 18.94 57.40 0.89 6.07 7.29
REMod − P ER 6.48 22.26 67.17 1.29 8.56 5.88
REMod − UNA 8.27 24.80 85.00 0.74 6.57 7.62

Fo
c.

E
xt

r.
F

F
R

20
19

REMod − REF 2.59 5.84 22.54 0.85 3.40 6.88
REMod − SUF 1.76 4.22 15.23 0.58 2.32 7.00
REMod − P ER 2.28 4.96 17.83 0.83 3.27 5.64
REMod − UNA 2.90 5.52 22.56 0.48 2.51 7.31

M
ea

n REMod − REF 5.03 13.14 37.22 1.06 5.60 5.37
REMod − SUF 3.41 9.50 25.15 0.72 3.81 5.46
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Commodity-specific expected loss due to scarcity based on the different scenarios, derived from the GVAR models of the
robustness analysis for the commodity set restricted to the industrial metals

Al Cu Ni Pb Sn Zn
REMod − P ER 4.42 11.16 29.44 1.05 5.38 4.40
REMod − UNA 5.64 12.44 37.25 0.60 4.13 5.70

Q
.2

5%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.4

0%
20

19

REMod − REF 0.00 0.00 0.00 0.00 0.00 0.09
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.09
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.07
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.09

M
ea

n REMod − REF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − SUF 0.00 0.00 0.00 0.00 0.00 0.00
REMod − P ER 0.00 0.00 0.00 0.00 0.00 0.00
REMod − UNA 0.00 0.00 0.00 0.00 0.00 0.00

Q
.5

0%
20

19

REMod − REF 0.11 0.14 0.09 0.07 0.01 1.65
REMod − SUF 0.07 0.10 0.06 0.05 0.01 1.68
REMod − P ER 0.10 0.12 0.07 0.07 0.01 1.35
REMod − UNA 0.12 0.13 0.09 0.04 0.01 1.75

M
ea

n REMod − REF 0.47 0.35 0.26 0.16 0.07 0.45
REMod − SUF 0.32 0.26 0.18 0.11 0.05 0.45
REMod − P ER 0.41 0.30 0.21 0.16 0.07 0.37
REMod − UNA 0.52 0.34 0.26 0.09 0.05 0.47

Q
.6

0%
20

19

REMod − REF 1.92 3.27 9.61 0.76 1.06 6.51
REMod − SUF 1.30 2.37 6.50 0.52 0.72 6.62
REMod − P ER 1.69 2.78 7.60 0.75 1.02 5.34
REMod − UNA 2.15 3.10 9.62 0.43 0.78 6.91

M
ea

n REMod − REF 4.50 9.05 20.09 1.07 3.05 4.28
REMod − SUF 3.05 6.54 13.58 0.73 2.08 4.35
REMod − P ER 3.95 7.69 15.89 1.05 2.94 3.51
REMod − UNA 5.04 8.57 20.11 0.60 2.25 4.55

Q
.7

5%
20

19

REMod − REF 8.34 27.19 87.27 1.38 9.11 7.21
REMod − SUF 5.65 19.65 58.99 0.94 6.20 7.33
REMod − P ER 7.32 23.09 69.04 1.36 8.76 5.91
REMod − UNA 9.34 25.72 87.36 0.78 6.72 7.66

M
ea

n REMod − REF 8.36 27.27 87.36 1.38 9.12 7.21
REMod − SUF 5.67 19.71 59.05 0.94 6.21 7.33
REMod − P ER 7.34 23.16 69.11 1.36 8.77 5.91
REMod − UNA 9.36 25.80 87.45 0.78 6.72 7.66

This table displays the expected loss due to scarcity for the commodi-
ties aluminum (Al), copper (Cu), nickel (Ni), lead (Pb), tin (Sn), and
zinc (Zn), per path (REMod − REF , REMod − SUF , REMod − P ER
and REMod − UNA), as well as per scenario (Mean (Mean), Shock
(Shock), Extreme (Extr.), Focus EA (Foc. EA), Focus FX (Foc. FX), Fo-
cus FFR (Foc. FFR), Focus Extreme EA (Foc. Extr. EA), Focus Extreme
FX (Foc. Extr. FX), Focus Extreme FFR (Foc. Extr. FFR), 25% quan-
tile (Q. 25%), 40% quantile (Q. 40%), 50% quantile (Q. 50%), 60% quan-
tile (Q. 60%), 75% quantile (Q. 75%)) for the input variables. Hereby,
the values are derived from the GVAR model based on the weight ma-
trices representing the dependencies between the commodities within the
REMod − REF , REMod − SUF , REMod − P ER and REMod − UNA
transformation path as well as on the initial basis price level of 2019 or
on the average price level of the previous decade (Mean). Hereby, the re-
sults are derived under the robustness test for the restricted commodity set,
in particular, only the industrial metals are considered.
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